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Information retrieval using probabilistic techniques has at- 
tracted significant attention on the part of researchers in 
information and computer science over the past few de- 
cades. In the 198Os, knowledge-based techniques also 
made an impressive contribution to “intelligent” informa- 
tion retrieval and indexing. More recently, information sci- 
ence researchers have turned to other newer artificial-in- 
telligence-based inductive learning techniques including 
neural networks, symbolic learning, and genetic algo- 
rithms. These newer techniques, which are grounded on 
diverse paradigms, have provided great opportunities for 
researchers to enhance the information processing and re- 
trieval capabilities of current information storage and re- 
trieval systems. In this article, we first provide an overview 
of these newer techniques and their use in information 
science research. To familiarize readers with these tech- 
niques, we present three popular methods: the connec- 
tionist Hopfield network; the symbolic ID3/ID5R; and evolu- 
tion-based genetic algorithms. We discuss their knowl- 
edge representations and algorithms in the context of 
information retrieval. Sample implementation and testing 
results from our own research are also provided for each 
technique. We believe these techniques are promising in 
their ability to analyze user queries, identify users’ infor- 
mation needs, and suggest alternatives for search. With 
proper user-system interactions, these methods can 
greatly complement the prevailing full-text, keyword- 
based, probabilistic, and knowledge-based techniques. 

Introduction 

In the past few decades, the availability of cheap and 
effective storage devices and information systems has 
prompted the rapid growth and proliferation of rela- 
tional, graphical, and textual databases. Information col- 
lection and storage efforts have become easier, but effort 
required to retrieve relevant information has become sig- 
nificantly greater, especially in large-scale databases. 
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This situation is particularly evident for textual data- 
bases, which are widely used in traditional library science 
environments, in business applications (e.g., manuals, 
newsletters, and electronic data interchanges), and in sci- 
entific applications (e.g., electronic community systems 
and scientific databases). Information stored in these da- 
tabases often has become voluminous. fragmented, and 
unstructured after years of intensive use. Only users with 
extensive subject area knowledge, system knowledge, 
and classification scheme knowledge (Chen & Dhar, 
1990) are able to maneuver and explore in these textual 
databases. 

Most commercial information retrieval systems still 
rely on conventional inverted index and Boolean query- 
ing techniques. Even full-text retrieval has produced less 
than satisfactory results (Blair & Maron, 1985). Probabi- 
listic retrieval techniques have been used to improve the 
retrieval performance of information retrieval systems 
(Bookstein & Swanson, 1975: Maron & Kuhns, 1960). 
The approach is based on two main parameters, the 
probability of relevance and the probability of irrele- 
vance of a document. Despite various extensions, prob- 
abilistic methodology still requires the independence as- 
sumption for terms and it suffers from difficulty of esti- 
mating term-occurrence parameters correctly (Gordon, 
1988; Salton, 1989). 

Since the late 1980s knowledge-based techniques 
have been used extensively by information science re- 
searchers. These techniques have attempted to capture 
searchers’ and information specialists’ domain knowl- 
edge and classification scheme knowledge, effective 
search strategies, and query refinement heuristics in doc- 
ument retrieval systems design (Chen & Dhar, 1991). 
Despite their usefulness, systems of this type are consid- 
ered performance systems (Simon, 199 1)-they only per- 
form what they were programmed to do (i.e., they are 
without learning ability). Significant efforts are often re- 
quired to acquire knowledge from domain experts and 
to maintain and update the knowledge base. 
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A newer paradigm, generally considered to be the ma- 
chine learning approach, has attracted attention of re- 
searchers in artificial intelligence, computer science, and 
other functional disciplines such as engineering, medi- 
cine, and business (Carbonell, Michalski, & Mitchell, 
1983; Michalski, 1983; Weiss & Kulikowski, 199 1). In 
contrast to performance systems, which acquire knowl- 
edge from human experts, machine learning systems ac- 
quire knowledge automatically from examples, that is, 
from source data. The most frequently used techniques 
include symbolic, inductive learning algorithms such as 
ID3 (Quinlan, 1979) multiple-layered, feed-forward 
neural networks such as backpropagation networks 
(Rumelhart, Widrow, & Lehr, 1986), and evolution- 
based genetic algorithms (Goldberg, 1989). Many infor- 
mation science researchers have started to experiment 
with these techniques as well (Belew, 1989; Chen & 
Lynch, 1992; Chen et al., 1993; Gordon, 1989; Kwok, 
1989). 

In this article, we aim to review the prevailing ma- 
chine learning techniques and to present several sample 
implementations in information retrieval to illustrate 
the associated knowledge representations and algo- 
rithms. Our objectives are to bring these newer tech- 
niques to the attention of information science research- 
ers by way of a comprehensive overview and discussion 
of algorithms. We review the probabilistic and knowl- 
edge-based techniques and the emerging machine learn- 
ing methods developed in artificial intelligence (AI). We 
then summarize some recent work adopting AI tech- 
niques in information retrieval (IR). After the overview, 
we present in detail a neural network implementation 
(Hopfield network), a symbolic learning implementation 
(ID3 and IDSR), and a genetic algorithms implementa- 
tion. Detailed algorithms, selected IR examples, and pre- 
liminary testing results are also provided. A summary 
concludes the study. 

Information Retrieval Using Probabilistic, 

Knowledge-Based, and Machine Learning 
Techniques 

In classical information retrieval models, relevance 
feedback, document space modification, probabilistic 
techniques, and Bayesian inference networks are among 
the techniques most relevant to our research. In this sec- 
tion, we first summarize important findings in these ar- 
eas and then present some results from knowledge-based 
systems research in information retrieval. However, our 
main purpose will be to present research in machine 
learning for information retrieval. Similarities and 
differences among techniques will be discussed. 

Relevance Feedback and Probabilistic Models in IR 

One of the most important and difficult operations in 
information retrieval is to generate queries that can suc- 

cinctly identify relevant documents and reject irrelevant 
documents. Since it is often difficult to accomplish a suc- 
cessful search at the initial try, it is customary to conduct 
searches iteratively and reformulate query statements 
based on evaluation of the previously retrieved docu- 
ments. One method for automatically generating im- 
proved query formulations is the well-known relevance- 
feedback process (Ide, I97 1; Ide & Salton, 197 1; Roc- 
chio, 197 1; Salton, 1989). A query can be improved iter- 
atively by taking an available query vector (ofterms) and 
adding terms from the relevant documents, while sub- 
tracting terms from the irrelevant documents. A single 
iteration of relevance feedback usually produces im- 
provements of from 40% to 60% in search precision (Sal- 
ton, 1989). A similar approach can also be used to alter 
the document representation. Document-vector modij- 
cation changes and improves document indexes based 
on the user relevance feedback of relevant and irrelevant 
documents (Brauen, 1971). Using such a technique, the 
vectors of documents previously retrieved in response to 
a given query are modified by moving relevant docu- 
ments closer to the query and at the same time moving 
irrelevant documents away from the query. While the 
relevance feedback procedure is efficient and intuitively 
appealing, it does not attempt to analyze characteristics 
associated with the relevant and irrelevant documents to 
“infer” what concepts (terms) are most appropriate for 
representing a given query (or queries). 

In probabilistic information retrieval, the goal is to es- 
timate the probability of relevance of a given document 
to a user with respect to a given query. Probabilistic as- 
sumptions about the distribution of elements in the rep- 
resentations within relevant and irrelevant documents 
are required. Using relevance feedback from a few docu- 
ments, the model can be applied to estimate the proba- 
bility of relevance for the remaining documents in a col- 
lection (Fuhr & Buckley, 199 1; Fuhr & Pfeifer, 1994; 
Gordon, 1988). To simplify computation, an assump- 
tion is usually made that terms are distributed indepen- 
dently (Maron & Kuhns, 1960). Fuhr and his coworkers 
discussed probabilistic models as an application of ma- 
chine learning. They presented three different probabi- 
listic learning strategies for information retrieval. First, 
the classical binary independence retrieval model (Rob- 
ertson & Sparck Jones, 1976; Yu & Salton, 1976) imple- 
mented a query-oriented strategy. In the relevance feed- 
back phase, given a query, relevance information was 
provided for a set of documents. In the application 
phase, this model can be applied to all documents in the 
collection, but only for the same initial query. The sec- 
ond document-oriented strategy collected relevance feed- 
back data for a specific document from a set of queries 
(Maron & Kuhns, 1960). The parameters derived from 
these data can be used only for the same document, but 
for all queries submitted to the system. Neither of these 
strategies can be generalized to all documents and for all 

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-April 1995 195 



. queries. Fuhr et al. proposed a third, feature-oriented 
strategy. In query-oriented and document-oriented strat- 
egies, the concept of abstraction was adopted implicitly 
by regarding terms associated with the query or the doc- 
ument, instead of the query or document. In this feature- 
oriented strategy, abstraction was accomplished by using 
features of terms (e.g., the number of query terms, length 
of the document text, the with-document frequency of 
a term, etc.) instead of terms themselves. The feature- 
oriented strategy provides a more general form of proba- 
bilistic learning and produces bigger learning samples for 
estimation; but the disadvantage is the heuristics re- 
quired to define appropriate features for analysis. After 
transforming terms into features, Fuhr et al. (1990) 
adopted more sophisticated general-purpose statistical 
and machine learning algorithms such as regression 
methods and the decision-tree building ID3 algorithm 
(Quinlan, 1986) for indexing and retrieval. In summary, 
by using features of terms instead of terms, Fuhr et al. 
were able to derive larger learning samples during rele- 
vance feedback. The general-purpose analytical tech- 
niques of regression methods and ID3 they adopted are 
similar to the techniques to be discussed in this article. 

The use of Bayesian classification and inference net- 
works for information retrieval and indexing represents 
an extension of the probabilistic models (Maron & 
Kuhns, 1960; Turtle & Croft, 1990). The basic inference 
network consists of a document network and a query 
network (Turtle & Croft, 1990, 1991; Tzeras & Hart- 
mann, 1993) that is intended to capture all of the signifi- 
cant probabilistic dependencies among the variables rep- 
resented by nodes in the document and query networks. 
Given the prior probabilities associated with the docu- 
ments and the conditional probabilities associated with 
the interior nodes, the posterior probability associated 
with each node in the network can be computed using 
Bayesian statistics. The feedback process in a Bayesian 
inference network is similar to conventional relevance 
feedback and the estimation problems are essentially 
equivalent to those observed in probabilistic models. 
Tzeras and Hartmann (1993) showed that the network 
can be applied for automatic indexing in large subject 
fields with encouraging results, although it does not per- 
form better than the probabilistic indexing technique de- 
scribed in Fuhr et al. ( 1990). Turtle and Croft ( 199 1) 
showed that, given equivalent document representations 
and query forms, the inference network model per- 
formed better than conventional probabilistic models. 

Although relevance feedback and probabilistic 
models exhibit interesting query or document refine- 
ment capabilities, their abstraction processes are based 
on either simple addition/removal of terms or probabi- 
listic assumptions and principles. Their learning behav- 
iors are very different from those developed in symbolic 
machine learning, neural networks, and genetic algo- 
rithms. In the following two subsections, we will first re- 

view knowledge-based information retrieval, and then 
provide an extensive discussion of the recent machine 
learning paradigms for information retrieval. 

Knowledge-Based Systems in IR 

Creating computer systems with knowledge or “intel- 
ligence” has long been the goal of researchers in artificial 
intelligence. Many interesting knowledge-based systems 
have been developed in the past few decades for such ap- 
plications as medical diagnosis, engineering trouble- 
shooting, and business decisionmaking (Hayes-Roth & 
Jacobstein, 1994). Most of these systems have been de- 
veloped based on the manual knowledge acquisition pro- 
cess, a significant bottleneck for knowledge-based sys- 
tems development. A recent approach to knowledge elic- 
itation is referred to as “knowledge mining” or 
“knowledge discovery” (Frawley, Pietetsky-Shapiro, & 
Matheus, 199 1; Pietetsky-Shapiro, 1989). Grounded on 
various AI-based machine learning techniques, the ap- 
proach is automatic and it acquires knowledge or identi- 
fies patterns directly from examples or databases. We re- 
view some important work in knowledge-based systems 
in IR and learning systems in IR, respectively, in the next 
two subsections. 

There have been many attempts to capture informa- 
tion specialists’ domain knowledge, search strategies, 
and query refinement heuristics in document retrieval 
systems design. Some of such systems are “computer- 
delegated,” in that decisionmaking has been delegated to 
the system and some are “computer-assisted,” wherein 
users and the computer form a partnership (Buckland & 
Florian, 199 1). Because computer-assisted systems have 
been shown to be more adaptable and useful for search 
tasks than computer-delegated systems, many knowl- 
edge-based systems of this type have been developed for 
IR over the past decade. 

CoalSORT (Monarch & Carbonell, 1987) a knowl- 
edge-based system, facilitates the use of bibliographic da- 
tabases in coal technology. A semantic network, repre- 
senting an expert’s domain knowledge, embodies the sys- 
tem’s intelligence. PLEXUS, developed by Vickery and 
Brooks (1987), is an expert system that helps users find 
information about gardening. Natural language queries 
are accepted. The system has a knowledge base of search 
strategies and term classifications similar to a thesaurus. 
EP-X (Smith et al., 1989) is a prototype knowledge- 
based system that assists in searching environmental pol- 
lution literature. This system makes extensive use of do- 
main knowledge, represented as hierarchically defined 
semantic primitives and frames. The system interacts 
with users to suggest broadening or narrowing opera- 
tions. GRANT, developed by Cohen and Kjeldsen 
( 1987) is an expert system for finding sources of funding 
for given research proposals. Its search method-con- 
strained spreading activation in a semantic network- 
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makes inferences about the goals of the user and thus 
finds information that the user has not explicitly re- 
quested but that is likely to be useful. Fox’s CODER sys- 
tem (Fox, 1987) consists of a thesaurus that was gener- 
ated from the Handbook of Artificial Intelligence and 
Collin’s Dictionary. In CANSEARCH (Pollitt, 1987) a 
thesaurus is presented as a menu. Users browse and se- 
lect terms for their queries from the menu. It was de- 
signed to enable doctors to search the MEDLINE medi- 
cal database for cancer literature. The “Intelligent Inter- 
mediary for Information Retrieval” (13R), developed by 
Croft and Thompson ( 1987), consists of a group of “ex- 
perts” that communicate via a common data structure, 
called the blackboard. The system consists of a user 
model builder, a query model builder, a thesaurus ex- 
pert, a search expert (for suggesting statistics-based 
search strategies), a browser expert, and an explainer. 
The IOTA system, developed by Chiaramella and De- 
fude ( 1987), includes natural language processing of que- 
ries, deductive capabilities (related to user modeling, 
search strategies definition, use of expert and domain 
knowledge), management of full-text documents, and 
relevance evaluation of answers. Chen and Dhar’s ( 199 1) 
METACAT incorporates several human search strate- 
gies and a portion of the Library of Congress Subject 
Headings (LCSH) for bibliographic search. The system 
also includes a branch-and-bound algorithm for an au- 
tomatic thesaurus (LCSH) consultation process. 

The National Library of Medicine’s thesaurus proj- 
ects are probably the largest-scale effort that uses the 
knowledge in existing thesauri. In one of the projects, 
Rada and Martin (Martin & Rada, 1987; Rada et al., 
1989) conducted experiments for the automatic addition 
of concepts to MeSH (Medical Subject Headings) by in- 
cluding the CMIT (Current Medical Information and 
Terminology) and SNOMED (Systematized Nomencla- 
ture of Medicine) thesauri. Access to various sets of doc- 
uments can be facilitated by using thesauri and the con- 
nections that are made among thesauri. The Unified 
Medical Language System (UMLS) project is a long- 
term effort to build an intelligent automated system that 
understands biomedical terms and their interrelation- 
ships and uses this understanding to help users retrieve 
and organize information from machine-readable 
sources (Humphreys & Lindbergh, 1989; Lindbergh & 
Humphreys, 1990; McCray & Hole, 1990). The UMLS 
includes a Metathesaurus, a Semantic Network, and an 
Information Sources Map. The Metathesaurus contains 
information about biomedical concepts and their repre- 
sentation in more than ten different vocabularies and 
thesauri. The Semantic Network contains information 
about the types of terms (e.g., “disease,” “virus,” etc.) 
in the Metathesaurus and the permissible relationships 
among these types. The Information Sources Map con- 
tains information about the scope, location, vocabulary, 

and access conditions of biomedical databases of all 
kinds. 

Another important component of information re- 
trieval is user modeling capability, which is a unique 
characteristic of reference librarians. During the user-li- 
brarian consultation process, the librarian develops an 
understanding of the type of user being dealt with on the 
basis of verbal and nonverbal clues. Usually, the educa- 
tional level of the user, the type of question, the way the 
question is phrased, the purpose of the search, and the 
expected search results all play major roles in helping the 
librarian determine the needs of the user. The librarian, 
in essence, creates models of the user profile and the task 
requirements during the consultation process. 

User modeling has played a crucial role in applica- 
tions such as question-answering systems, intelligent tu- 
toring systems, and consultation systems (Appelt, 1985; 
Chen & Dhar, 1990; Sleeman, 1985; Swarthout, 1985; 
Zissos & Witten, 1985). An intelligent interface for doc- 
ument retrieval systems must also exhibit the user-mod- 
eling capability of experienced human intermediaries. 
Daniels proposed a frame-based representation for a user 
model and rules for interacting with the users. She has 
shown that user modeling is a necessary function in the 
presearch information interaction (Daniels, 1986). 
Rich’s Grundy system builds models of its users, with the 
aid of stereotypes, and then uses those models to guide it 
in its task, suggesting novels that people may find inter- 
esting (Rich, 1979a, 1979b, 1983). IR-NLI II (Brajnik, 
Guida, & Tasso, 1988) incorporates user modeling into 
a domain-independent bibliographic retrieval expert sys- 
tem. A user model is built based on the user’s amount of 
domain knowledge and search experience. 

Despite successes in numerous domains, the develop- 
ment process for knowledge-based systems is often slow 
and painstaking. Knowledge engineers or system design- 
ers need to be able to identify subject and classification 
knowledge from some sources (usually some domain ex- 
perts) and to represent the knowledge in computer sys- 
tems. The inference engines of such systems, which 
mainly emulate human problem-solving strategies and 
cognitive processes (Chen & Dhar, 1991), may not be 
applicable across different applications. 

After examining the potential contribution of knowl- 
edge-based techniques (natural language processing and 
expert systems, in particular) to the information retrieval 
and management tasks, Sparck Jones ( 199 1) warned that 
it is important not to overestimate the potential of such 
techniques for IR. She argued that for really hard tasks 
we will not be able to replace humans by machines in the 
foreseeable future and many information operations are 
rather shallow, linguistic tasks, which do not involve 
elaborate reasoning or complex knowledge. However, 
she believed AI can contribute to specialized systems and 
in situations where users and systems complement each 
other (i.e., computer-assisted systems). 
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Learning Systems: Neural Networks, Symbolic 
Learning, and Genetic Algorithms 

Unlike the manual knowledge acquisition process 
and the linguistics-based natural language processing 
technique used in knowledge-based systems design, 
learning systems rely on algorithms to extract knowledge 
or identify patterns in examples or data. Various statis- 

tics-based algorithms have been developed by manage- 
ment scientists and have been used extensively over the 
past few decades for quantitative data analysis. These al- 
gorithms examine quantitative data for the purposes of 
(Parsaye et al., 1989): (1) clustering descriptors with 
common characteristics, for example, nearest neighbor 
methods, factor analysis, and principal components 
analysis; (2) hypothesis testing for differences among 
different populations, for example, t-test and analysis of 
variance (ANOVA); (3) trend analysis, for example, time 
series analysis; and (4) correlation between variables, for 
example, correlation coefficient, discriminant analysis, 
and linear/multiple regression analysis (Freund, 197 1; 
Montgomery, 1976). These analysis techniques often 
rely on complex mathematical models, stringent as- 
sumptions, or special underlying distributions. The 
findings are then presented in mathematical formulas 
and parameters. 

Learning Systems: An Overview. The symbolic ma- 
chine learning technique, the resurgent neural networks 
approach, and evolution-based genetic algorithms pro- 
vide drastically different methods of data analysis and 
knowledge discovery (Chen et al., in press; Fisher & 
McKusik, 1989; Kitano, 1990; Mooney et al., 1989: 

Weiss & Kapouleas, 1989: Weiss & Kulikowski, 199 1). 
These techniques, which are diverse in their origins and 
behaviors, have shown unique capabilities for analyzing 
both qualitative, symbolic data and quantitative, nu- 
meric data. We provide below a brief overview of these 
three classes of techniques, along with a representative 
technique for each class. 

l Symbolic learning and 103: Symbolic machine learn- 
ing techniques, which can be classified based on such 
underlying learning strategies as rote learning, learning 
by being told, learning by analogy, learning from ex- 
amples, and learning from discovery (Carbonell, Mi- 
chalski, & Mitchell, 1983), have been studied exten- 
sively by AI researchers over the past two decades. 
Among these techniques, learning from examples, a 
special case of inductive learning, appears to be the 
most promising symbolic machine learning technique 
for knowledge discovery or data analysis. It induces a 
general concept description that best describes the pos- 
itive and negative examples. Examples of algorithms 
which require both positive and negative examples are 
Quinlan’s (1983) ID3 and Mitchell’s (1982) Version 
Space. Some algorithms are batch-oriented, such as 

Stepp and Michalski’s CLUSTER/RD algorithm 
(Stepp & Michalski, 1987) and ID3; but some are in- 
cremental, such as Utgoffs IDSR (Utgoff, 1989). Many 
algorithms create a hierarchical arrangement of con- 
cepts for describing classes of objects, including Lebo- 
witz’ UNIMEM (Lebowitz, 1987), Fisher’s COBWEB 
(Fisher & McKusick, 1989) and Brieman’s CART 
(Brieman et al., 1984). Most of the symbolic learning 
algorithms produce production rules or concept hier- 
archies as outputs. These representations are easy to 
understand and their implementation is typically 
efficient (especially when compared with neural net- 
works and genetic algorithms). 

Among the numerous symbolic learning algorithms 
which have been developed over the past 15 years, 
Quinlan’s ID3 decision-tree building algorithm and its 
descendants (Quinlan, 1983, 1986) are popular and 
powerful algorithms for inductive learning. ID3 takes 
objects of a known class. described in terms of a fixed 
collection of properties or attributes, and produces a 
decision tree incorporating these attributes that cor- 
rectly classifies all the given objects. It uses an informa- 
tion-economics approach aimed at minimizing the ex- 
pected number of tests to classify an object. Its output 
can be summarized in terms of IF-THEN rules. 

9 R’eural networks and backpropagation: The founda- 
tion of the neural networks paradigm was laid in the 
1950s and this approach has attracted significant atten- 
tion in the past decade due to the development of more 
powerful hardware and neural algorithms (Rumelhart, 
Widrow, & Lehr, 1994). Nearly all connectionist algo- 
rithms have a strong learning component. In symbolic 
machine learning, knowledge is represented in the 
form of symbolic descriptions of the learned concepts, 
for example, production rules or concept hierarchies. 
In connectionist learning, on the other hand, knowl- 
edge is learned and remembered by a network of inter- 
connected neurons, weighted synapses, and threshold 
logic units (Lippmann, 1987; Rumelhart, Hinton, & 
McClelland, 1986). Learning algorithms can be ap- 
plied to adjust connection weights so that the network 
can predict or classify unknown examples correctly. 
Neural networks have been adopted in various engi- 
neering, business, military, and biomedical domains 
(Chen et al., 1994; Lippmann, 1987; Simpson, 1990; 
Widrow, Rumelhart, & Lehr, 1994). For example, 
Hopfield networks have been used extensively in the 
area ofglobal optimization and search (Hopfield, 1982; 
Tank & Hopfield, 1987); Kohonen networks have been 
adopted in unsupervised learning and pattern recogni- 
tion (Kohonen, 1989). For a good overview of various 
artificial neural systems, readers are referred to Lipp- 
mann (1987). 

Among the numerous artificial neural networks 
that have been proposed recently, backpropagation 
networks have been extremely popular for their unique 
learning capability (Widrow et al., 1994). Backpropa- 
gation networks (Rumelhart, 1986) are fully con- 
nected, layered, feed-forward models. Activations flow 
from the input layer through the hidden layer, then to 
the output layer. A backpropagation network typically 
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starts out with a random set of weights. The network 
adjusts its weights each time it sees an input-output 
pair. Each pair is processed at two stages, a forward 
pass and a backward pass. The forward pass involves 
presenting a sample input to the network and letting 
activations flow until they reach the output layer. Dur- 
ing the backward pass, the network’s actual output is 
compared with the target output and error estimates 
are computed for the output units. The weights con- 
nected to the output units are adjusted to reduce the 
errors (a gradient descent method). The error estimates 
of the output units are then used to derive error esti- 
mates for the units in the hidden layer. Finally, errors 
are propagated back to the connections stemming from 
the input units. The backpropagation network updates 
its weights incrementally until the network stabilizes. 

l Simulated evolution and genetic algorithms., During 
the past decade there has been a growing interest in 
algorithms which rely on analogies to natural processes 
and Darwinian survival ofthe fittest. The emergence of 
massively parallel computers made these algorithms of 
practical interest. There are currently three main ave- 
nues of research in simulated evolution: genetic algo- 
rithms; evolution strategies; and evolutionary pro- 
gramming (Fogel, 1994). Each method emphasizes a 
different facet of natural evolution. Genetic algorithms 
stress chromosomal operations such as crossover and 
mutation (Booker, Goldberg, & Holland, 1990; 
Holland, 1975). Evolution strategies emphasize indi- 
vidual behavioral changes. Evolutionary programming 
stresses behavioral changes at the level of the species 
(Fogel, 1962, 1964). Fogel ( 1994) also provides an ex- 
cellent review of the history and recent efforts in this 
area. Among these methods, genetic algorithms have 
been used successfully for various optimization prob- 
lems in engineering and biomedical domains. 

Genetic algorithms were developed based on the 
principle of genetics (Goldberg, 1989; Koza, 1992; Mi- 
chalewicz, 1992). In such algorithms a population of 
individuals (potential solutions) undergoes a sequence 
of unary (mutation) and higher order (crossover) trans- 
formations. These individuals strive for survival: a se- 
lection (reproduction) scheme, biased toward selecting 
fitter individuals, produces the individuals for the next 
generation. After some number ofgenerations the pro- 
gram converges-the best individual represents the op- 
timum solution. 

Over the past years there have been several studies 
which compared the performance of these techniques for 
different applications as well as some systems which used 
hybrid representations and learning techniques. We 
summarize some of these studies below. 

Mooney et al. (1985) found that ID3 was faster than a 

backpropagation net, but the backpropagation net was 
more adaptive to noisy data sets. The performances of 
these two techniques were comparable, however. Weiss 
and Kapouleas (1989, 1991) suggested using a resam- 
pling technique, such as leave-one-out for evaluation, in- 
stead of using a hold-out testing data set. Discriminant 

analysis methods, backpropagation net, and decision- 
tree-based inductive learning methods (ID3-like) were 
found to achieve comparable performance for several 
data sets. Fisher and McKusick (1989) found that using 
batch learning, backpropagation performed as well as 
ID3, but it was more noise-resistant. They also compared 
the effect of incremental learning versus batch learning. 

Kitano ( 1990) performed systematic, empirical studies 
on the speed of convergence of backpropagation net- 
works and genetic algorithms. The results indicated that 
genetic search is, at best, equally efficient as faster vari- 
ants of a backpropagation algorithm in very small scale 
networks, but far less efficient in larger networks. Earlier 

research by Montana and Davis (1989), however, 
showed that using some domain-specific genetic opera- 
tors to train the backpropagation network, instead of us- 
ing the conventional backpropagation delta learning 
rule, improved performance. Harp, Samad, and Guha 
( 1989) also achieved good results by using GAS for neural 
network design. 

Systems developed by Kitano ( 1990) and Harp et al. 
( 1989) are also considered hybrid systems (genetic algo- 
rithms and neural networks), as are systems like COGIN 
(Green & Smith, 1991) which performed symbolic in- 
duction using genetic algorithms and SC-net (Hall & Ro- 
maniuk, 1990), which is a fuzzy connectionist expert sys- 

tem. Other hybrid systems developed in recent years em- 
ploy symbolic and neural net characteristics. For 
example, Touretzky and Hinton (1988) and Gallant 
( 1988) proposed connectionist production systems, and 
Derthick (1988) and Shastri (199 1) developed different 
connectionist semantic networks. 

Learning Systems in IR. The adaptive learning 
techniques cited have also drawn attention from re- 
searchers in information science in recent years. In par- 
ticular, Doszkocs, Reggia, & Lin ( 1990) provided an ex- 
cellent review of connectionist models for information 

retrieval and Lewis ( 199 1) has briefly surveyed previous 
research on machine learning in information retrieval 
and discussed promising areas for future research at the 
intersection of these two fields. 

l Neural networks and IR: Neural networks computing, 
in particular, seems to fit well with conventional re- 
trieval models such as the vector space model (Salton, 
1989) and the probabilistic model (Maron & Kuhns, 
1960). Doszkocs et al. (1990) provided an excellent 
overview of the use of connectionist models in infor- 
mation retrieval. These models include several related 
information processing approaches, such as artificial 
neural networks, spreading activation models, associa- 
tive networks, and parallel distributed processing. In 
contrast to more conventional information processing 
models, connectionist models are “self-processing” in 
that no external program operates on the network: the 
network literally processes itself, with “intelligent be- 
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havior” emerging from the local interactions that oc- 
cur concurrently between the numerous network 
nodes through their synaptic connections. By taking a 
broader definition of connectionist models, these au- 
thors were able to discuss the well-known vector space 
model, cosine measures of similarity, and automatic 
clustering and thesaurus in the context of netH!ork rep- 
resentation. Based on the network representation, 
spreading activation methods such as constrained 
spreading activation adopted in GRANT (Cohen & 
Kjeldsen, 1987) and the branch-and-bound algorithm 
adopted in METACAT (Chen & Dhar, 1991) can be 
considered as variants of connectionist activation. 
However, only a few systems are considered classical 
connectionist systems that typically consist of 
weighted, unlabeled links and exhibit some adaptive 
learning capabilities. 

The work of Belew is probably the earliest connec- 
tionist model adopted in IR. In AIR (Belew, 1989). he 
developed a three-layer neural network of authors. in- 
dex terms, and documents. The system used relevance 
feedback from its users to change its representation of 
authors, index terms, and documents over time. The 
result was a representation of the consensual meaning 
of keywords and documents shared by some group of 
users. One of his major contributions was the use of a 
modified correlational learning rule. The learning pro- 
cess created many new connections between docu- 
ments and index terms. Rose and Belew (199 1) ex- 
tended AIR to a hybrid connectionist and symbolic 
system called SCALIR which used analogical reason- 
ing to find relevant documents for legal research. Kwok 
( 1989) also developed a similar three-layer network of 
queries, index terms, and documents. A modified Heb- 
bian learning rule was used to reformulate probabilistic 
information retrieval. Wilkinson and Hingston ( 199 1, 
1992) incorporated the vector space model in a neural 
network for document retrieval. Their network also 
consisted of three layers: queries, terms, and docu- 
ments. They have shown that spreading activation 
through related terms can help improve retrieval per- 
formance. 

While the above systems represent information re- 
trieval applications in terms of their main components 
ofdocuments. queries, index terms, authors, etc., other 
researchers used different neural networks for more 
specific tasks. Lin, Soergel, & Marchionini (199 1) 
adopted a Kohonen network for information retrieval. 
Kohonen’s feature map, which produced a two-dimen- 
sional grid representation for N-dimensional features, 
was applied to construct a self-organizing (unsuper- 
vised learning), visual representation of the semantic 
relationships between input documents. In MacLeod 
and Robertson (199 I), a neural algorithm was used for 
document clustering. The algorithm compared favor- 
ably with conventional hierarchical clustering algo- 
rithms. Chen et al. (1992, 1993, in press) reported a 
series of experiments and system developments which 
generated an automatically created weighted network 
of keywords from large textual databases and integ- 
rated it with several existing man-made thesauri (e.g., 

LCSH). Instead of using a three-layer design, Chen’s 
systems developed a single-layer, interconnected, 
weighted/labeled network of keywords (concepts) for 
“concept-based” information retrieval. A blackboard- 
based design which supported browsing and automatic 
concept exploration using the Hopfield neural net- 
works parallel relaxation method was adopted to facil- 
itate the usage of several thesauri (Chen et al., 1993). In 
Chen, Basu, and Ng (in press-a), the performance of a 
branch-and-bound serial search algorithm was com- 
pared with that of the parallel Hopfield network acti- 
vation in a hybrid neural-semantic network (one neu- 
ral network and two semantic networks). Both meth- 
ods achieved similar performance, but the Hopfield 
activation method appeared to activate concepts from 
different networks more evenly. 

l Symbolic learning and IR: Despite the popularity of 
using neural networks for information retrieval, we see 
only limited use of symbolic learning techniques for 
IR. In Blosseville et al. ( 1992). the researchers used dis- 
criminant analysis and a simple symbolic learning 
technique for automatic text classification. Their sym- 
bolic learning process represented the numeric classi- 
fication results in terms of IF-THEN rules. Text clas- 
sification involves the task of classifying documents 
with respect to a set of two or more predefined classes 
(Lewis, 1992). A number of systems were built based 
on human categorization rules (a knowledge-based sys- 
tem approach) (Rau & Jacobs, 1991). However, a 
range of statistical techniques including probabilistic 
models. factor analysis, regression, and nearest neigh- 
bor methods have been adopted (Blosseville et al., 
1992: Lewis, 1992: Masand, Gordon, & Waltz, 1992). 
Fuhr et al. (1990) adopted regressions methods and 
ID3 for their feature-based automatic indexing tech- 
nique. Crawford, Fung, and their coworkers (Crawford 
et al., 199 I; Crawford & Fung, 1992: Fung & Craw- 
ford, 1990) have developed a probabilistic induction 
technique called CONSTRUCTOR and have com- 
pared it with the popular CART algorithm (Breiman et 
al., 1984). Their experiment showed that CON- 
STRUCTOR’s output is more interpretable than that 
produced by CART, but CART can be applied to more 
situations (e.g., real-valued training sets). Chen and 
She ( 1994) adopted ID3 and the incremental IDSR al- 
gorithm for information retrieval. Both algorithms 
were able to use user-supplied samples of desired doc- 
uments to construct decision trees of important key- 
words which could represent the users’ queries. For a 
test collection of about 1000 documents, both sym- 
bolic learning algorithms did a good job in identifying 
the concepts (keywords) which best represent the set 
of documents identified by users as relevant (positive 
examples) and irrelevant (negative examples). More 
testing, however, is underway to determine the 
effectiveness of example-based document retrieval us- 
ing ID3 and IDSR. 

Several recent works which involved using sym- 
bolic learning techniques in the related database areas 
were also identified, especially in relational database 
management systems (RDBMS). Cai, Cercone, and 
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Han ( 199 1) and Han, Cai, and Cercone (1993) devel- 
oped an attribute-oriented, tree-ascending method for 
extracting characteristic and classification rules from 
relational databases. The technique relied on some ex- 
isting conceptual tree for identifying higher-level, ab- 
stract concepts in the attributes. Ioannidis, Saulys, and 
Whitsitt (1992) examined the idea of incorporating 
machine learning algorithms (UNIMEM and COB- 
WEB) into a database system for monitoring the 
stream of incoming queries and generating hierarchies 
with the most important concepts expressed in those 
queries. The goal is for these hierarchies to provide 
valuable input for dynamically modifying the physical 
and logical designs of a database. Also related to data- 
base design, Borgida and Williamson (1985) proposed 
the use of machine learning to represent exceptions in 
databases that are based on semantic data models. Li 
and McLeod ( 1989) used machine learning techniques 
to handle object flavor evolution in object-oriented da- 
tabases. 

l Genetic algorithms and IR: Our literature search re- 
vealed several implementations of genetic algorithms 
in information retrieval. Gordon (1988) presented a 
genetic algorithms-based approach for document in- 
dexing. Competing document descriptions (keywords) 
are associated with a document and altered over time 
by using genetic mutation and crossover operators. In 
his design, a keyword represents a gene (a bit pattern), 
a document’s list of keywords represents individuals (a 
bit string), and a collection of documents initially 
judged relevant by a user represents the initial popula- 
tion. Based on a Jaccard’s score matching function 
(fitness measure), the initial population evolved 
through generations and eventually converged to an 
optimal (improved) population-a set of keywords 
which best described the documents. Gordon (1991) 
further adopted a similar approach to document clus- 
tering. His experiment showed that after genetically re- 
describing the subject description of documents, de- 
scriptions of documents found co-relevant to a set of 
queries will bunch together. Redescription improved 
the relative density of co-relevant documents by 
39.74% after 20 generations and 56.6 1% after 40 gen- 
erations. Raghavan and Agarwal ( 1987) have also stud- 
ied the genetic algorithms in connection with docu- 
ment clustering. Petry et al. (1993) applied genetic pro- 
gramming to a weighted information retrieval system. 
In their research, a weighted Boolean query was modi- 
fied to improve recall and precision. They found that 
the form of the fitness function has a significant effect 
upon performance. Yang and coworkers (Yang & Kor- 
lhage, 1993; Yang, Korlhage, & Rasmussen, 1993) 
have developed adaptive retrieval methods based on 
genetic algorithms and the vector space model using 
relevance feedback. They reported the effect of adopt- 
ing genetic algorithms in large databases, the impact of 
genetic operators, and GA’s parallel searching capabil- 
ity. Frieder and Siegelmann ( 199 1) also reported a data 
placement strategy for parallel information retrieval 
systems using a genetic algorithms approach. Their re- 
sults compared favorably with pseudo-optimal docu- 

ment allocations. In Chen and Kim ( 1993), a GA-NN 
hybrid system, called GANNET, was developed for IR. 
The system performed concept optimization for user- 
selected documents using genetic algorithms. It then 
used the optimized concepts to perform concept explo- 
ration in a large network of related concepts through 
the Hopfield net parallel relaxation procedure. A Jac- 
card’s score was also adopted to compute the “fitness” 
of subject descriptions for information retrieval. 

Following this overview, we present three sample im- 
plementations of neural networks, symbolic learning, 
and genetic algorithms, respectively, for illustration 
purposes. We hope that examining these implementa- 
tions in the context of IR will encourage other research- 
ers to appreciate these techniques and adopt them in 
their own research. 

Neural Networks for II? 

Neural networks provide a convenient knowledge 
representation for IR applications in which nodes typi- 

cally represent IR objects such as keywords, authors, and 
citations and bidirectional links represent their weighted 
associations (of relevance). The learning property of 
backpropagation networks and the parallel search prop- 

erty of the Hopfield network provide effective means for 
identifying relevant information items in databases. 
Variants of the backpropagation learning in IR can be 

found elsewhere (Belew, 1989; Kwok, 1989). In this sec- 
tion, we review a Hopfield network implementation and 
its associated parallel search property. 

A Hopjield Network: Knowledge Representation and 
Procedure 

The Hopfield net (Hopfield, 1982; Tank & Hopfield, 
1987) was introduced as a neural net that can be used as 
a content-addressable memory. Knowledge and infor- 
mation can be stored in single-layered interconnected 
neurons (nodes) and weighted synapses (links) and can 
be retrieved based on the network’s parallel relaxation 
method-nodes are activated in parallel and are tra- 
versed until the network reaches a stable state (con- 
vergence). It had been used for various classification 
tasks and global optimization (Lippmann, 1987; Simp- 
son, 1990). 

A variant of the Hopfield network for creating a net- 
work of related keywords developed by Chen (Chen & 
Lynch, 1992; Chen et al., 1993) used an asymmetric sim- 
ilarity function to produce thesauri (or knowledge bases) 
for different domain-specific databases. These automatic 
thesauri were then integrated with some existing man- 
ually created thesauri for assisting concept exploration 
and query refinement. A variant of the Hopfield parallel 
relaxation procedure for network search (Chen et al., 
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1993) and concept clustering (Chen et al., in press-b) had 
been reported earlier. 

The implementation reported below incorporated the 
basic Hopfield net iteration and convergence ideas. 
However, significant modification was also made to ac- 
commodate unique characteristics of information re- 
trieval; for example, asymmetric link weights and the 
continuous SIGMOID transformation function. With 
the initial search terms provided by searchers and the as- 
sociation of keywords captured by the network, the Hop- 
field parallel relaxation algorithm activates neighboring 
terms, combines weighted links, performs a transforma- 
tion function (a SIGMOID function,f,), and determines 
the outputs of newly activated nodes. The process re- 
peats until node outputs remain unchanged with further 
iterations. The node outputs then represent the concepts 
that are strongly related to the initial search terms. A 
sketch of the Hopfield net activation algorithm follows: 

(1) 

(2) 

(3) 

202 

Assigning synaptic weights: For thesauri which were 
generated automatically using a similarity function 
(e.g., the COSINE function) (Everitt. 1980), the re- 
sulting links represent probabilistic, synaptic weights 
between any two concepts. For other external the- 
sauri which contain only symbolic links (e.g., nar- 
rower term, synonymous term, broader term, etc.), 
a user-guided procedure of assigning a probabilistic 
weight to each symbolic link can be adopted (Chen 
et al., 1993). 

The “training” phase of the Hopfield net is com- 
pleted when the weights have been computed or as- 
signed. to represents the “synaptic” weight from 
node i to node j. 
Initialization with search terms: An initial set of 
search terms is provided by searchers, which serves 
as the input pattern. Each node in the network which 
matches the search terms is initialized (at time 0) to 
have a weight of 1. 

p,(O)=x,,Osisn- 1 

p,(t) is the output of node i at time t and xl, which 
has a value between 0 and 1, indicates the input pat- 
tern for node i. 
Activation, weight computation, and iteration. 

n-l 
p,(t + 1) =f; [ C tb@i(t)], 0 5j 5 n - 1 

i=O 

wheref, is the continuous SIGMOID transformation 
function as shown below (Dalton & Deshmane, 
199 1; Knight, 1990) 

.t;(nq) = 
1 + exp[ -l(neiO- “1 

where n&j = Cy:d &p,(t), 0, serves as a threshold or 

(4) 

bias and B0 is used to modify the shape of the SIG- 
MOID function. 

This formula shows the parallel relaxation prop- 
erty of the Hopfield net. At each iteration, all nodes 
are activated at the same time. The weight computa- 

tion scheme, net, = X7& &F,(t), is a unique charac- 
teristic of the Hopfield net algorithm. Based on par- 
allel activation, each newly activated node derives its 
new weight based on the summation of the products 
of the weights assigned to its neighbors and their syn- 
apses. 
Convergence: The above process is repeated until 
there is no change in terms of output between two 
iterations, which is accomplished by checking: 

n-1 
c lP,(t+ l)-P,Cc,(Q 56 
,=o 

where 6 is the maximal allowable error (a small num- 
ber). The final output represents the set of terms rel- 
evant to the starting keywords. Some default thresh- 
old values were selected for (0,, 19,). 

A Hopjield hTet work Example 

A sample session of the Hopfield net spreading activa- 
tion is presented below. Three thesauri were incorpo- 
rated in the experiment: a Public thesaurus (generated 
automatically from 3000 articles extracted from DIA- 
LOG), the ACM Computing Review Classification Sys- 
tem (ACM CRCS), and a portion of the Library of Con- 
gress Subject Headings (LCSH) in the computing area. 
The links in the ACM CRCS and in the LCSH were as- 
signed weights between 0 and 1. Several user subjects 
(MIS graduate students) were also asked to reviewed se- 
lected articles and create their own folders for topics of 
special interest to them. Notice that some keywords were 
folder names assigned by the users (in the format of *.*); 
for example, QUERY.OPT folder for query optimiza- 
tion topics; DBMS.AI folder for artificial intelligence 
and databases topics; and KEVIN.HOT folder for 
“HOT” (current) topics selected by a user, Kevin. In the 
example shown below, the searcher was asked to identify 
descriptors which were relevant to “knowledge indexed 
deductive search.” The initial search terms were: “infor- 
mation retrieval,” “knowledge base,” “thesaurus,” and 
“automatic indexing” (as shown in the following interac- 
tion). 

*--.--....-....--...* 
Initialterms: {*Suppliedbythesubject. *) 
_-_---_------ 

1. (P L) INFORMATIONRETRIEVAL{*P:Public, A: 
ACM,L:LCSH*) 

2. (P )KNOWLEDGEBASE 

3. (P )THESAURUS 
4. (P L)AUTOMATICINDEXING 

*.-...--..----------* 
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TABLE I. Sample Hopfield net iterations. 

Iteration 
no. Suggested terms Activations 

0 INFORMATIONRETRIEVAL 1.00 
KNOWLEDGEBASE 1.00 
THESAURUS 1.00 
AUTOMATICINDEXING 1.00 

I INDEXING 0.65 
KEVIN.HOT 0.56 
CLASSIFICATION 0.50 
EXPERTSYSTEMS 0.50 
ROSS.HOT 0.44 

2 RECALL 0.50 
3 INFORMATIONRETRIEVALSYSTEM 0.26 

EVALUATION 
4 SELLING-INFORMATION 0.15 

STORAGEANDRETRIEVAL 
SYSTEMS 

. . 

Enter the numberof system-suggestedterms or '0' 
toquit>>lO 
{* The users suppliedatargetnumber of relevant 

terms.*) 

Given these starting terms, the Hopfield net iterated 
and converged after 11 iterations. The activated terms 
after the first four iterations and their associated levels of 
activation are shown in Table 1. Due to the damping 
effect of the parallel search property (i.e., the farther 
away from the initial search terms, the weaker the acti- 
vation), terms activated at later iterations had lower acti- 
vation values and were less relevant to the initial search 
terms in general. Fourteen terms were suggested after the 
complete Hopfield net activation. Searchers could 
browse the system-suggested list, select terms of interest, 
and then activate the Hopfield net again. The user-sys- 
tem interaction continued until the user decided to stop. 

{* The system reported14 relevant terms as shown 

below. *} 

1. ( )INDEXING 

2. ( ) SELLING - INFORMATION STORAGE AND RE- 

TRIEVALSYSTEMS 

3. ( )KEVIN.HOT 
4. ( ) INFORMATIONRETRIEVALSYSTEMEVALUATION 

5. ( )RECALL 
6. ( )EXPERTSYSTEMS 
7. ( )CLASSIFICATION 

8. ( ) DBMS.AI 

9. ( )ROSS.HOT 

10. ( ) INFORMATION STORAGE AND RETRIEVAL SYS- 
TEMS 

11. ( ) INFORMATIONRETRIEVAL 
12. ( )KNOWLEDGEBASE 
13. ( )THESAURUS 

14. ( )AUTOMATICINDEXING 

Enter numbers [lto14] or '0' toquit: 1, 2, 4, 5, 

7,10-14 
{*Theuserselectedtermshedeemedrelevant. 

The system confirmed the selections made and 

displaythesource foreachterm. *} 

1. (P 1 
2.c L) 

3. (P ) 

4.(P ) 
5. (P ) 

6-C L) 

INDEXING 

SELLING - INFORMATION STORAGEANDRE- 

TRIEVALSYSTEMS 
INFORMATION RETRIEVAL SYSTEM EVALUA- 

TION 
RECALL 
CLASSIFICATION 
INFORMATIONSTORAGEANDRETRIEVALSYS- 

TEMS 

7. (P L)INFORMATIONRETRIEVAL 

8. (P )KNOWLEDGEBASE 

9. (P )THESAURUS 

10. (P L)AUTOMATICINDEXING 

Enterthenumberof system-suggestedtermsor '0' 

toquit>> 

{* The uses decide to broaden the search by re- 
questing the Hopfield network to identify 30 

newtermsbasedonthetermshehadselected. *} 
. . . . . . . . 

Enter number [lto40] or '0' toquit: 3-7, 9, 33, 

35,36,38 
. . . . . . . . 

Enternumbers [lto67]or '0'toquite:O 

{*Thesystemlistedhisfinalselections.*} 

1. (P )PRECISION 

2. (P L) INFORMATIONRETRIEVAL 

3. (P )INDEXING 

4. (P L)AUTOMATICINDEXING 

5. (P )RECALL 

6. ( L)AUTOMATICABSTRACTING 

7. ( L)AUTOMATICCLASSIFICATION 

8. ( L)AUTOMATICINFORMATIONRETRIEVAL 

9. (P ) INFORMATION RETRIEVAL SYSTEM EVALUA- 

TION 

10. (P )THESAURUS 

11. ( L)INFORMATIONSTORAGEANDRETRIEVALSYS- 
TEMS 

12. (P )KNOWLEDGEBASE 

{* A total of 12 terms were selected. Eight terms 

weresuggestedbytheHopfieldnetalgorithm. *} 

In a more structured benchmark experiment, we 
tested 30 sample queries using the Hopfield algorithm 
in an attempt to understand the general behavior of the 
algorithm. We tested five cases each for queries with 1 
term, 2 terms, 3 terms, 4 terms, 5 terms, and 10 terms, a 
total of 30 cases. A few examples of the queries used, all 
in the computing area, were: (1 term: Natural Language 
Processing); (2 terms: Group Decision Support Systems, 
Collaboration); (3 terms: Systems Analysis and Design, 
Simulation and Modeling, Optimization); etc. 
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TABLE 2. Results of Hoplield network testing 

Case 
No. of Query terms in 
terms (P, A> L) 

Suggested terms in 
NN: (P. A, L) 

No. of iterations 
NN 

Times (seconds) 
NN 

1 
2 
3 
4 
5 
6 
7 
8 
9 

IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Average 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 

IO 
IO 
10 
10 
10 
5 

(1, 13 1) 
(l,O, 1) 
(1, 1, 1) 
(0.0, 1) 
(I,% 1) 
(2, 1,O) 
(LO, 2) 
(LO, 0) 
Cl, J) 
(2. 1,2) 
(330, 1) 
(I. 2, 1) 
(2, I,31 

(1.3, 1) 

(1.&a 
(2.2,4) 
(3,2,2) 
(2. 3,2) 
(1.3.4) 
(I, 2, 1) 
(1.4, 1) 
(4.2,2) 
(3,234) 
(j,O, 1) 
(5.0, 1) 
t&O, 3) 

(10, I,31 
(8.0,4) 
(9. l,5) 

(8.2,3) 
(3.1, 1.2, 1.9) 

(12, I. 7) 18 21 

(5,0, 16) I5 14 
(ll,5. II) 14 18 

(0, 0, 20) 11 10 
(4,4, 19) 17 26 
(19,2.3) 21 18 

(16,0,8) 19 22 

(20,3,4) 20 24 
(Il,5. II) 15 16 
(11,O. 12) 27 29 
(20,O. 18) 19 31 

(4, 11,8) 22 34 

(22, 1,s) 18 29 

(20,2,2) 16 23 

(l3,9,3) 9 10 

(l7,4,4) 17 II 

(ll,2,13) 19 31 
(18,5.6) 24 33 

(1&2,5) 19 32 
(15, 8. 3) 18 6 
(19,436) 16 27 
(IO, 1. 12) 15 27 

(2,O. 18) 11 23 

(19,0.3) 23 33 
(20,O. I) 12 30 
(I l,O. 13) 17 34 

(1% 2, 10) 25 32 
(16,0.8) 24 36 
(19, 1.6) 21 25 

(20, 2. 3) 28 31 
(14.5,2.5,8.5) 18.8 24.5 

For each query, we selected terms from different 
knowledge sources, “P” for the Public KB, “A” for the 
ACM CRCS, and “L” for the LCSH, as shown in Table 
2. Some terms may have appeared in more than one 
knowledge source. The three knowledge sources con- 
tained about 14,000 terms and 80,000 weighted links. 
The results shown in Table 2 reveal the number of itera- 
tions, the computing times, and the sources of knowl- 
edge for the query terms and the system-suggested terms, 
The reason for investigating the source of knowledge for 
system-suggested terms was to show the extent to which 
the Hopfield algorithm branched out and utilized knowl- 
edge from various knowledge sources. 

Despite the variation in the number of starting terms, 
the response times increased only slightly when the num- 
ber of starting terms was increased. The average response 
time was 24.5 seconds after about an average of about 19 
iterations by the Hopfield network. The reason for this 
was that the Hopfield net thresholds (0, and 0,) helped 
prune the search space. However, more stringent thresh- 
olds may need to be adopted to achieve reasonable real- 
time response for large databases. 

Another important observation was that the Hopfield 
net appeared to invoke the different knowledge sources 
quite evenly. As shown in Table 2, for most queries the 
Hopfield net (NN) almost always produced terms from 
all three knowledge sources. Most terms suggested by the 
algorithm appeared relevant and many of them were 

multiple links away from the initial search terms (con- 
ventional Hypertext browsing does not traverse multiple 
links effectively). However, detailed user studies need to 
be performed to examine the usefulness of the algorithm 
in search, especially for large-scale applications. 

Symbolic Learning for IR 

Even though symbolic learning techniques have been 
adopted frequently in various database, engineering, and 

business domains, we see only limited use of such tech- 
niques in IR. For illustration purposes, we summarize 
below a symbolic learning for IR implementation based 
on the ID3 and IDSR algorithms (Chen & She, 1994). 
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ID3/ID5R: Knowledge Representation and Procedure 

ID3 is a decision-tree building algorithm developed 
by Quinlan (1979, 1983). It adopts a divide-and-conquer 
strategy for object classification. Its goal is to classify 
mixed objects into their associated classes based the ob- 
jects’ attribute values. In a decision tree, one can classify 
a node as: 

l a leaf node that contains a class name; or 
l a non-leaf node (or decision node) that contains an at- 

tribute test. 

Each training instance or object is represented as a list 
of attribute-value pairs, which constitutes a conjunctive 
description of that instance. The instance is labeled with 
the name of the class to which it belongs. Using the di- 
vide-and-conquer strategy, ID3 picks an attribute and 
uses it to classify a list of objects based on their values 
associated with this attribute. The subclasses which are 
created by this division procedure are then further di- 
vided by picking other attributes. This process continues 
until each subclass produced contains only a single type 
of object. To produce the simplest decision tree (a mini- 
mal tree) for classification purpose, ID3 adopts an infor- 
mation-theoretic approach which aims at minimizing 
the expected number of tests to classify an object. An 
entropy (a measure of uncertainty) concept is used to 
help decide which attribute should be selected next. In 
general, an attribute which can help put objects in their 
proper classes tends to reduce more entropy and thus 
should be selected as a test node. 

In IR, we can assume that there exists a database (uni- 
verse) of records (documents, tables, etc.). Records are 
described by attributes (keywords, primary keys, fields). 
Each record in the database then belongs to only one of 
two possible classes: 

l the “positive” class (+): consisting of records that are 
desired; and 

l the “negative” class (-): consisting of records that are 
undesired. 

Different database users may desire different sets of 
documents due to their unique information needs, and 
the set of documents desired by one user often consti- 
tutes only a small portion of the entire database. En- 
abling the system to identify this small set of positive 
documents is therefore a challenging task. 

In our implementation, we maintained a list of all the 
keywords that existed in the desired documents and used 
this list to decide what attributes were crucial to describ- 
ing documents in the positive class. The test at each non- 
leaf node of the decision tree determined the presence or 
absence of a particular keyword: “yes” meant that the 
test keyword existed in a document, and “no” meant 
that the keyword did not exist in a document. Thus, ID3 

created a binary classification tree. A sketch of the ID3 
algorithm adopted follows: 

(1) 

(2) 

(3) 

Compute entropy for mixed classes: Initially search- 
ers were requested to provide a set of positive and 
negative documents. This set of documents served as 
the training examples for the ID3 algorithm. Entropy 
was calculated by using the following function 
(Quinlan, 1983): 

entwv = -pPo.% b ppos - pneJog pneg 

where ppOi and pnen represented the proportions of the 
documents that were positive or negative, respec- 
tively. 
Select the best attribute based on entropy reduction. 
For each untested attribute (keyword), the algorithm 
computed an entropy value for its use when classify- 
ing mixed documents. Each branch of the decision 
tree represented the existence or nonexistence of a 
particular keyword. The keyword that reduced the 
entropy most served as the next decision node in the 
tree. As a “greedy” algorithm, ID3 always aims at 
maximizing local entropy reduction and never back- 
tracks. 
Iterate until all documents are classified: Repeating 
steps ( 1) and (2) ID3 computed the entropy value of 
each mixed class and identified the best attribute for 
further classifying the class. The process was contin- 
ued until each class contained either all positive or 
all negative documents. 

Considered as an incremental version of the ID3 algo- 
rithm, IDSR, developed by Utgoff (1989), is guaranteed 
to build the same decision tree as ID3 for a given set of 
training instances (Quinlan, 1993). In IDSR, a non-leaf 
node contains an attribute test (same as in ID3) and a set 
of other non-test attributes, each with object counts for 
the possible values of the attribute. This additional non- 
test attribute and object count information at each no- 
leaf node allows IDSR to update a decision tree without 
rebuilding the entire tree. During the tree rebuilding pro- 
cess, an old test node may be replaced by a new attribute 
or swapped with other positions in the tree. As in ID3, 
the tree-building process requires much less computa- 
tion and time than other inductive learning methods, in- 
cluding neural networks and genetic algorithms. 

To create a robust and real-time inductive learning 
system, a relevancefeedback scheme was introduced into 
our implementation. Although the proposed inductive 
learning algorithms require users to provide examples to 
confirm their interests, it is inconceivable that users will 
be able to browse the entire database to identify such in- 
stances. An incremental, interactive feedback process, 
therefore, was designed to allow users to examine a few 
documents at a time. In essence, our IDSR algorithm 
was implemented such that it provided a few suggested 
documents based on the documents initially provided by 
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a user after examining a small portion of the database. 
When a predetermined number of desired documents 
had been found (say three, in our implementation), the 
system presented these documents to the user immedi- 
ately for evaluation (as desired or undesired). This itera- 
tive system-induction and user-feedback process contin- 
ued until the user decided to stop or the complete data- 
base had been traversed. 

During the relevance feedback process, the newly con- 
firmed documents, either desired or undesired, could be 
used by IDSR to update the decision tree it previously 
had constructed. It was shown that when more examples 
are provided by the users and when the database is more 
exhaustively searched, IDSR can significantly improve 
its classification accuracy and search performance. 

An ID3/ID5R Example 

We created a small test database of 60 records. For 
evaluation purposes, we were able to manually select a 
small set of target desired documents (i.e., eight docu- 
ments in the areas of information retrieval and key- 
wording). The goal of the experiment was to present a 
few documents at a time to our system and see whether 
the system would be able to identify them after the itera- 

tive relevance feedback process. The performance of our 
IDSR-based system was also compared with that of the 
more conventional ID3 algorithm, which used only an 
initial set of desired documents to generate a query tree. 
Sample entries in the literature database are shown be- 
low, where the first column represents the document 
number, and the remaining columns represent different 
numbers of keywords (two to five) associated with the 
document. 

010 generic, keyword, reference 
013 modeling, thesaurus, terrorism 
014 modeling, simulation, thesaurus, terrorism 
018 keyword, thesaurus 
021 ID3, AI, NN 
022 file, keyword 
023 hierarchy, interface, index 
030 carat, AI, expert, keyword, thesaurus 
031 AI, protocol, thesaurus 
048 keyword, retrieval 
049 cross-reference, remote use, redundancy 
050 expectations, market, maintenance, quel, interface 

io7 iT, computerized, MIS 
149 database, query, keyword 
152 sort, indexing, merge, keyword 
177 country, code, keyword, IS0 

Initially the user was able to identify the following 
documents as desired (+) or undesired (-), respectively 
(documents which the user had seen before): 

006 thesaurus, remote use, keyword (+) 
008 retrieval, interface (+) 
083 syntax checking, remote use, test, user (-) 
084 interface, protocol, standardization (-) 

Providing negative documents was optional. If a user 
could not think of an example of a document which was 
undesired, the system by default automatically generated 
one negative document which contained no keyword 
identical to any that was present in the desired set. The 
initial positive keyword list then consisted of all key- 
words from desired documents; that is, thesaurus, re- 
mote use, keyword, retrieval, interface (in that order). 
Therefore, the set of initial training instances can be rep- 
resented as: 

Initial Training Instances 

Y Y Y n n (+I 
n n n Y Y (+I 
n Y n n n t-1 
n n n n Y (-) 

If a document contained a particular keyword in the 
keyword list, its attribute value was labeled “y” (“yes”), 
otherwise the value was “n” (“no”). Based on the set of 
training instances, ID3 first computed the entropy value 
when adopting “thesaurus” (the first keyword obtained 
from the desired documents). It then computed the en- 
tropy values when adopting other positive keywords. 

The “thesaurus” keyword produced the most entropy re- 
duction and was thus selected as the first decision node. 
Following the same computation, “retrieval” was se- 
lected as the next (and last) decision node. ID3 con- 
structed the decision tree shown in Figure 1. In the figure, 
for example, [2, l] means 2 instances were in the negative 
class and 1 instance was in the positive class. The deci- 

FIG. I. Initial tree created for an IR example. 

206 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-April 1995 



sion tree in Figure 1 can be represented as production 
rules: ( 1) IF a document has “thesaurus” as a keyword 
THEN it is desired (one +, the rightmost branch); (2) IF 
a document does not have “thesaurus” as a keyword, but 
has “retrieval” THEN it is also a desired document (one 
+, the middle branch); (3) IF a document does not have 
“thesaurus” or “retrieval” as a keyword THEN it is an 
undesired document (two-, the leftmost branch). 

Based on this decision tree, the system searched the 
database for similar documents and identified three 
more documents as presented below: 

013 modeling, thesaurus, terrorism (+) 
014 modeling, simulation, thesaurus, terrorism (+) 
018 keyword, thesaurus (+) 

These documents were then presented to the user, 
who provided feedback as to whether or not they were 
desired. If the user confirmed that document 0 18 was de- 
sired but rejected documents 0 13 and 0 14, IDSR used 
the new (contradictory) evidence to update its current 
tree. The new training instances for IDSR were: 

New Training instances 

Y n n n n t-1 
Y n n n n t-1 
Y n Y n n (+I 

The system produced a new tree as shown in Figure 2. 
This new tree looked different from the original one and 
can be summarized by the following rules: (1) IF a docu- 
ment has “keyword” as a keyword THEN it is desired 
(two +, the rightmost branch); (2) IF a document does 
not have “keyword” as a keyword, but has “retrieval” 
THEN it is also a desired document (one +, the middle 
branch); (3) IF a document does not have “keyword” or 
“retrieval” as a keyword THEN it is an undesired docu- 
ment (four -, the leftmost branch). The whole process 
was repeated until the entire database was traversed. For 
this particular example, the final decision tree was the 
same as the one shown in Figure 2. 

To determine how IDSR performed during the user 
relevance feedback process we examined its recall at each 
point of relevance feedback and compared its perfor- 
mance with that of ID3. ID3 used only the initial docu- 
ment feedback from the users to construct a decision tree 
and used the tree to search the database. IDSR, on the 
other hand, collected new evidence during each iteration 
and updated its trees accordingly. The recall measure 
was defined as: 

Recall = 
Number of relevant records retrieved 

Total number of relevant records in database 

We developed a test database of about 1000 docu- 
ments from the 1992 COMPENDEX CD-ROM collec- 
tion of computing literature. We then identified 10 re- 
search topics, each of which had between 5 and 20 rele- 
vant documents in the database (manually identified). 
The testing was conducted by comparing the recall of the 
ID3 algorithm and that of the IDSR incremental ap- 
proach using the 10 research topics. 

Detailed results of the experiment are presented in Ta- 
ble 3. IDSR and ID3 achieved the same levels of perfor- 
mance for 5 of the 10 test cases (cases 3 and 6-9). After 
we examined these cases carefully, we found that the ini- 
tial documents presented for these cases had very precise 
keywords assigned to them. New instances provided dur- 
ing relevance feedback were consistent with the initial 
documents, thus IDSR did not revise its decision tree. 
(At each interaction, IDSR searched only a portion of the 
entire database. The trees constructed by ID3 remained 
constant because ID3 did not have any interaction with 
its users. However, to compare its results with those of 
the IDSR fairly, ID3’s performance at each interaction 
was computed based on the same documents visited by 
IDSR. As more documents were examined, ID3’s classi- 
fication results may also have improved.) 

For the other five test cases, IDSR’s performance in- 
creased gradually until it reached 93.1%. ID3 had been 
able to reach 74.9%. These research topics tended to have 
more diverse keywords in the initial documents pro- 
vided. IDSR appeared to benefit from incremental query 
tree revision based on the relevance feedback informa- 
tion provided by users. In all 10 cases, IDSR was able to 
terminate in eight interactions. The response times were 
often less than a second for each decision-tree building 
process. 

In conclusion, the symbolic ID3 algorithm and its 
IDSR variant both were shown to be promising tech- 
niques for inductive document retrieval. By using the en- 

d4, 

FIG. 2. Updated tree after relevance feedback. 
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TABLE 3. Results of ID3 and ID5R testing. 

Case 
Int. 1 Int. 2 Int. 3 Int. 4 Int. 5 Int. 6 Int. 7 Int. 8 

ID3/IDSR ID3/ID5R ID3/ID5R ID3/IDSR ID3/ID5R ID3/ID5R ID3/ID5R ID3/ID5R Target 

2 
3 
4 
5 
6 
7 
8 
9 

10 
Avg. hits 

Avg. recall 

l/1 
o/o 
l/l 
l/l 
o/o 
l/l 
l/l 
212 
5/5 
l/l 

1.3/1.3 
16.0/16.0 

112 213 516 
O/l 012 l/4 
212 313 4/4 
l/l 11-2 l/3 
O/l o/2 315 
212 515 616 
212 313 515 
313 313 616 
717 w3 9/O 
212 313 414 
212.3 2.813.4 4.415.2 

16.5/31.2 35.0/40. I 55.5164.1 

619 
115 

214 

717 
IO/IO 

717 
5.1j6.2 

66.3179.3 

10 
217 218 3110 II 

4 
517 10 

6 
6 
5 
8 

I l/l I 12 
7110 10 

5.617. I 5.617.2 5.717.4 8.2 
74.0/90.4 74.019 I .3 74.9193. I 
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tropy concept in selecting keywords, both algorithms 
were able to create minimal and understandable decision 
trees efficiently. However, IDSR’s incremental learning 
and relevance feedback capabilities made it more robust 
and appealing for large-scale, real-time IR applications. 

Genetic Algorithms for IR 

Often compared with the neural networks and the 
symbolic learning methods, the self-adaptiveness prop- 
erty of genetic algorithms is also extremely appealing for 
IR applications. 

A Genetic Algorithm: Knowledge Representation 
and Procedure 

Genetic algorithms (GAS) (Goldberg, 1989; Koho- 
nen, 1989; Michalewicz, 1992) are problem-solving sys- 
tems based on principles of evolution and heredity. A 
GA maintains a population of individuals, P(t) = x,, . . . , 
x, at iteration t. Each individual represents a potential 
solution to the problem at hand and is implemented as 
some (possibly complex) data structure S. Each solution 
x, is evaluated to give some measure offitness. Then a 
new population at iteration t + 1 is formed by selecting 
the fitter individuals. Some members of the new popula- 
tion undergo transformation by means of genetic opera- 
tors to form new solutions. There are unary transforma- 
tions m, (mutation type), which create new individuals 
by a small change in a single individual and higher order 
transformations c, (crossover type), which create new in- 
dividuals by combining parts from several (two or more) 
individuals. For example, if parents are represented by a 
five-dimensional vector (a,, a2, a3, a4, a5) and (b,, b2, b3, 
b4, b,), then a crossover of chromosomes after the second 
gene produces offspring (a,, a2, b3, b4, b,) and (b,, b2, a3, 
a4, as). The control parameters for genetic operators 

(probability of crossover and mutation) need to be care- 
fully selected to provide better performance. The intu- 
ition behind the crossover operation is information ex- 
change between different potential solutions. After some 
number of generations the program converges-the best 
individual hopefully represents the optimum solution. 
Michalewicz (1992) provided an excellent algorithmic 
discussion of GAS. Goldberg (1989, 1994) presented a 
good summary of many recent GA applications in biol- 
ogy, computer science, engineering, operations research, 
physical sciences, and social sciences. 

Genetic algorithms use a vocabulary borrowed from 
natural genetics in that they talk about genes (or bits), 
chromosomes (individuals or bit strings), and popula- 
tion (of individuals). Populations evolve through gener- 
ations. Our genetic algorithm was executed in the follow- 
ing steps: 

(1) Initializepopulation and evaluatefitness: To initial- 
ize a population, we needed first to decide the num- 
ber of genes for each individual and the total number 
of chromosomes @opsise) in the initial population. 
When adopting GAS in IR, each gene (bit) in the 
chromosome (bit string) represents a certain key- 
word or concept. The loci (locations of a certain 
gene) decide the existence (1, ON) or nonexistence 
(0, OFF) of a concept. A chromosome therefore rep- 
resents a document that consists of multiple con- 
cepts. The initial population contains a set of docu- 
ments which were judged relevant by a searcher 
through relevance feedback. The goal of a GA was to 
find an optimal set of documents which best 
matched the searcher’s needs (expressed in terms of 
underlying keywords or concepts). An evaluation 
function for the@ness of each chromosome was se- 
lected based on Jaccard’s score matching function as 
used by Gordon (1988) for document indexing. The 
Jaccard’s score between two sets, X and Y, was com- 
puted as: 



(2) 

(3) 

(4) 

#(Xfl Y)/#(XU Y) 

where #(S) indicated the cardinality of set S. The 
Jaccard’s score is a common measure of association 
in information retrieval (van Rijsbergen, 1979). 
Reproduction (selection): Reproduction is the selec- 
tion of a new population with respect to the proba- 
bility distribution based on the fitness values. Fitter 
individuals have better chances of being selected for 
reproduction (Michalewicz, 1992). A roulette wheel 
with slots (F) sized according to the total fitness of 
the population was defined as follows: 

pop3ize 

F = C Jitness(VJ 
,=I 

wherejfitnc~ss( Vj) indicated the fitness value of chro- 
mosome V, according to the Jaccard’s score. 

Each chromosome had a certain number of slots 
proportional to its fitness value. The selection pro- 
cess was based on spinning the wheel popsize 
times-each time we selected a single chromosome 
for a new population. Obviously, some chromo- 
somes were selected more than once. This is in ac- 
cordance with the genetic inheritance: the best chro- 
mosomes get more copies, the average stay even, and 
the worst die off. 
Recombination (crossover and mutation): We were 
then ready to apply the first recombination operator, 
crossover, to the individuals in the new population. 
The probability of crossover, pr, gave us the expected 
number pc X popsize of chromosomes which should 
undergo the crossover operation. For each chromo- 
some, we generated a random number r between 0 
and I; if r < pr, then the chromosome was selected 
for crossover. We then mated selected pairs of chro- 
mosomes randomly: for each pair of coupled chro- 
mosomes we generated a random number pas from 
the range of (1.. .m - l), where m was the total 
number of genes in a chromosome. The numberpos 
indicated the position ofthe crossing point. The cou- 
pled chromosomes exchanged genes at the crossing 
point as described earlier. 

The next recombination operator, mutation, was 
performed on a bit-by-bit basis. The probability of 
mutation, pm, gave us the expected number of mu- 
tated bits p,,, X m X popsize. Every bit in all chromo- 
somes of the whole population had an equal chance 
to undergo mutation, that is, change from 0 to 1 or 
vice versa. For each chromosome in the crossovered 
population, and for each bit within the chromosome, 
we generated a random number r from the range of 
(0. . 1); if r < pm, we mutated the bit. Typical pc se- 
lected ranged between 0.7 and 0.9 and pm ranged be- 
tween 0.0 1 and 0.03. 
Convergence: Following reproduction, crossover, 
and mutation, the new population was ready for its 
next generation. The rest of the evolutions were sim- 
ply cyclic repetitions of the above steps until the sys- 
tem reached a predetermined number of generations 

or converged (i.e., showed no improvement in the 
overall fitness of the population). 

A GA Example 

We present a sample session, implementation details, 
and some benchmark testing results below. In our sys- 
tem, a keyword represented a gene (bit) in GAS; a user- 
selected document represented a chromosome (individ- 
ual); and a set of user-selected documents represented 
the initial population. 

The keywords used in the set of user-selected docu- 
ments were first identified to represent the underlying bit 
strings for the initial population. Each bit represented the 
same unique keyword throughout the complete GA pro- 
cess. When a keyword was present in a document, the bit 
was set to 1, otherwise it was 0. Each document could 
then be represented in terms of a sequence of 0s and 1s. 
The keywords of five user-selected documents are pre- 
sented below. The set of unique concepts present in these 
sample documents is also summarized-33 keywords 
(genes) in total. As in the Hopfield network example, 
some concepts were folder names assigned by the users 
(in the format of . * *); for example, QUERY.OPT folder 
for query optimization topics. 

We computed the fitness of each document based on 
its relevance to the documents in the user-selected set. 
Higher Jaccard’s score (a value between 0 and 1) indi- 
cated stronger relevance between two documents. For 
document 0, we computed five different Jaccard’s scores 
between document 0 and documents 0, 1, 2, 3, and 4, 
respectively (shown below). An average fitness was then 
computed for document 0 (0.28774). The same proce- 
dure was applied to other documents to compute their 
fitness. A document which included more concepts 
shared by other documents had a higher Jaccard’s score. 

Jaccard’s Score of DOCO and DOCO = 1 .OOOOOO 

Jaccard’s Score of DOCO and DOCl = 0.120000 

Jaccard’s Score of DOCO and DOC2 = 0.120000 

Jaccard’s Score of DOCO and DOC3 = 0.115384 

Jaccard’s Score of DOCO and DOC4 = 0.083333 

Average Fitness (Jaccard’s Score) of Document0 : 0.28774 

If a user provided documents that are closely related, 
the average fitness for the complete document set was 
high. If the user-selected documents were only loosely 
related, their overall fitness was low. Generally, GAS did 
a good job optimizing a document set which was initially 
low in fitness. Using the previous example, the overall 
Jaccard’s score increased over generations. The opti- 
mized population contained only one single chromo- 
some, with an average fitness value of 0.45 12 1. The op- 
timized chromosome contained six relevant keywords 
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Input Documents and Keywpords - Optimized Chromosomes in the Population ~ 

DOCO 

DOCl 

DOC2 

DOC3 

DOC4 

DATA RETRIEVAL, DATABASE, COMPUTER 

NETWORKS, IMPROVEMENTS, INFORMATION 
RETRIEVAL, METHOD, NETWORK, MULTIPLE, 
QUERY, RELATION, RELATIONAL, RETRIEVAL, 
QUERIES, RELATIONAL DATABASES, RELA- 
TIONAL DATABASE, US, CARAT.DAT, GQP.DAT, 
ORUSDAT, QUERY.OPT 
INFORMATION, INFORMATION RETRIEVAL, 
INFORMATION STORAGE, INDEXING, RE- 
TRIEVAL, STORAGE, US, KEVIN.HOT 
ARTIFICIAL INTELLIGENCE, INFORMATION RE- 
TRIEVAL SYSTEMS, INFORMATION RETRIEVAL, 

INDEXING, NATURAL LANGUAGE PROCESS- 
ING, US, DBMS.AI, GQP.DAT 
FUZZY SET THEORY, INFORMATION RE- 
TRIEVAL SYSTEMS, INDEXING, PERFOR- 
MANCE, RETRIEVAL SYSTEMS, RETRIEVAL, 
QUERIES, US, KEVIN.HOT 
INFORMATION RETRIEVAL SYSTEMS. INDEX- 
ING, RETRIEVAL, STAIRS, US, KEVIN.HOT 

Total Set gf Concepts 

DATA RETRIEVAL. DATABASE, COMPUTER. NET- 
WORKS, IMPROVEMENTS, INFORMATION RE- 
TRIEVAL, METHOD, NETWORK, MULTIPLE, QUERY, 
RELATION, RELATIONAL, RETRIEVAL, QUERIES. RE- 
LATIONAL DATABASES. RELATIONAL DATABASE. US, 
CARAT.DAT, GQP.DAT. ORUS.DAT, QUERY.OPT. IN- 
FORMATION. INFORMATION STORAGE, INDEXING, 
STORAGE, KEVIN.HOT, ARTIFICIAL INTELLIGENCE, 
INFORMATION RETRIEVAL SYSTEMS, NATURAL LAN- 
GUAGE PROCESSING, DBMSAI, FUZZY SET THEORY, 
PERFORMANCE, RETRIEVAL SYSTEMS, STAIRS. 

- Initial Genetic Pattern sf Chromosome in Population __ 

chromosome 
111111111111111111110000000000000 
000010000001000100001111100000000 
000010000000000101000010011110000 
000000000001100100000010101001110 
000000000001000100000010101000001 

Average Fitness = 0.389 I 

fitness 
[0.287744] 
[0.4 I 16921 
[0.367556] 
[0.427473] 
[0.451212] 

which best described the initial set of documents. Using 
these “optimized” keywords, an information retrieval 
system could proceed to suggest relevant documents to 
users. The user-GA interaction continued until a search 
was completed or the user decided to stop. 

Table 4 summarizes the results of a benchmark test- 
ing. In the testing we randomly retrieved five test cases of 
1 -document, 2-document. 3-document, 4-document, 5- 
document, and 1 O-document examples, respectively. 
from the 3000-document DIALOG-extracted database 
discussed earlier. There were 30 test cases in total. For 
each test case, an initial fitness based on the Jaccard’s 
score was computed. For l-document and 2-document 

chromosome 
000000000001000100000010101000001 
000000000001000100000010101000001 
000000000001000100000010101000001 
000000000001000100000010101000001 
000000000001000100000010101000001 

Average Fitness = 0.45 12 

fitness 
[0.45 12 1] 
[0.45121] 
[0.45121] 
[0.45 12 I] 
[0.45121] 

- Derived Conceptsfrom Optimized Population- 

RETRIEVAL, US, INDEXING, KEVIN.HOT, INFORMA- 
TION RETRIEVAL SYSTEMS, STAIRS. 

test cases, their initial fitness tended to be higher due to 
the smaller sample size (see column 2 of Table 4). In Ta- 
ble 4 we also report performance measures in terms of 
Jaccard scores for the GA processes, the CPU times, and 
the average improvements in fitness. 

Using the GA optimization process, our system 
achieved an average fitness improvement from 5.38% to 
17.7%. This improvement was slightly worse than the 
performance improvement for indexing reported by 
Gordon (1988). An interesting observation was that 
when more initial documents were present, the initial 
fitness tended to be lower, which allowed the system to 
do a better job in improving the preciseness of the initial 
keywords and in identifying other relevant documents. 
As shown in Table 4, fitness improvement increased as a 
function of the number of initial documents. This find- 
ing also suggested that when initial user-supplied docu- 
ments are fuzzy and not well articulated, GAS may be 
able to make a more significant contribution in suggest- 
ing other relevant documents. This could be quite im- 
portant for complex information retrieval sessions dur- 
ing which searchers need help in query articulation and 
search refinement. 

The number of documents suggested by GANNET af- 
ter the first GA process was between 9 and 13, with an 
average of about 11 documents. The CPU times required 
of the GA process also was quite reasonable, with an av- 
erage of 0.168 seconds. The response times were signifi- 
cantly better than the Hopfield net activation. In conclu- 
sion, by using reproduction and the genetic operators, 
GAS provided an interesting system-aided way of analyz- 
ing users’ intermediate search results and suggesting 
other potentially relevant documents. 

Conclusion and Future Directions 

Information retrieval research has been advancing 
very quickly over the past few decades. Researchers have 
experimented with techniques ranging from probabilis- 
tic models and the vector space model to the knowledge- 
based approach and the recent machine learning tech- 
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TABLE 4. Results of genetic algorithms testing. 

Impr. CPU Dots. 
No. Init. score GA score @) bc.) selected 

1 1.0 I.0 0.0 0.067 7 
2 1.0 1.0 0.0 0.05 25 
3 1.0 1.0 0.0 0.067 7 
4 1.0 1.0 0.0 0.05 9 
5 1.0 1.0 0.0 0.067 5 

I dot. avg. I.0 0.0 0.06 10.6 

1 0.5139 0.5139 0.0 0.083 10 
2 0.5833 0.5833 0.0 0.1 8 
3 0.6111 0.6111 0.0 0.083 5 
4 0.6486 0.6486 0.0 0.067 10 
5 0.7857 0.7857 0.0 0.083 16 

2 dots. avg. 0.6285 0.0 0.08 9.8 

1 0.384 1 0.3984 3.72 0.023 8 
2 0.4157 0.4360 4.88 0.1 5 
3 0.4286 0.46 11 7.1 0.1 13 
4 0.5032 0.5215 3.6 0.133 5 
5 0.5899 0.6349 7.6 0.083 16 

3 dots. avg. 0.4904 5.38 0.088 9.4 

1 0.2898 0.3010 3.8 0.117 22 
2 0.3078 0.3142 2.1 0.1 15 
3 0.3194 0.3495 9.4 0.283 5 
4 0.3319 0.3442 3.7 0.25 II 
5 0.4409 0.5060 14.7 0.25 10 

4 dots. avg. 0.3629 6.74 0.2 12.6 

1 0.3048 0.3370 10.5 0.4 12 
2 0.3068 0.3267 6.4 0.15 7 
3 0.3194 0.3575 11.9 0.52 5 
4 0.4655 0.567 1 21.8 0.3 21 
5 0.6181 0.7171 16.0 0.12 21 

5 dots. avg. 0.4610 13.32 0.298 13.2 

I 0.2489 0.2824 13.5 0.32 18 
2 0.2038 0.2282 12.9 0.35 8 
3 0.2016 0.2343 16.2 0.47 6 
4 0.4997 0.6201 24.1 0.13 5 
5 0.3727 0.4540 21.8 0.13 I1 

IO dots. avg. 0.3638 17.7 0.28 9.6 

All avg. 0.5511 7.19 0.168 10.87 

niques. At each stage, significant insights regarding how 
to design more useful and “intelligent” information re- 
trieval systems have been gained. 

In this article, we presented an extensive review of IR 
research that was based mainly on machine learning 
techniques. Connectionist modeling and learning, in 
particular, has attracted considerable attention due to its 
strong resemblance to some existing IR models and tech- 
niques. Symbolic machine learning and genetic algo- 
rithms, two popular candidates for adaptive learning in 
other applications, on the other hand, have been used 
only rarely. However, these newer techniques have been 
found to exhibit promising inductive learning capabili- 
ties for selected IR applications. 

For researchers who are interested in examining these 
techniques, this study has discussed an algorithmic ap- 
proach and knowledge representations appropriate for 
IR. We feel that the proper selection of knowledge repre- 
sentation and the adaptation of machine learning algo- 
rithms in the IR context are essential to the successful 
use of such techniques. For example, in IR a keyword 
could represent a node in the Hopfield net, a single bit in 
a genetic algorithm, or a decision node in ID3 and IDSR. 
Similarly, the paralkl relaxation search of the Hopfield 
net, the entropy reduction scheme in ID3, and the Dar- 
winian seIection of genetic algorithms all need to be car- 
efully studied and modified in the unique IR context. 

Despite some initially successful application of se- 
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lected machine learning techniques for IR, there are nu- 
merous research directions that need to be pursued be- 
fore we can develop a robust solution to “intelligent” in- 
formation retrieval. We briefly review several important 
research directions below: 

l Limitations of learning techniques for IR: The perfor- 
mance of the inductive learning techniques relies 
strongly on the examples provided (as in any other sta- 
tistical and classification techniques) (Weiss & Kuli- 
kowski, 199 1). In IR, these examples may include user- 
provided queries and documents collected during rele- 
vance feedback. The importance of sample size has 
been stressed heavily, even in the probabilistic models 
(Fuhr & Buckley, 199 1: Fuhr & Pfeifer, 1994). In real- 
ity, user-provided relevance feedback information may 
be limited in quantity and noisy (i.e., contradictory or 
incorrect), which may have adverse effects for the IR or 
indexing tasks. Some learning techniques such as the 
neural networks approach have documented noise-re- 
sistant capability, but empirical evidence and research 
need to be performed to verify this characteristic in the 
context of IR and indexing. In our preliminary investi- 
gation, all three machine learning algorithms per- 
formed satisfactorily for small document samples. but 
the effect of the sample size needs to be examined more 
carefully. 

For large-scale real-life applications, neural net- 
works and, to some extent, genetic algorithms, may 
suffer from requiring extensive computation time and 
lack of interpretable results. Symbolic learning, on the 
other hand. efficiently produces simple production 
rules or decision-tree representations. The effects ofthe 
representations on the cognition of searchers in the 
real-life retrieval environments (e.g., users’ acceptance 
of the analytical results provided by an intelligent sys- 
tem) remain to be determined. 

l Applicahilit~~ to the fkll-text retrieval environment: In 
addition to extensive IR research conducted in proba- 
bilistic models, knowledge-based systems, and ma- 
chine learning, significant efforts have also been made 
by many commercial companies in pursuit of more 
effective and “intelligent” information retrieval sys- 
tems. In an attempt to understand the potential role 
of machine learning in commercial full-text retrieval 
systems, we examined several major full-text retrieval 
software packages on the market, including: BRS/ 
SEARCH,’ BASIS/Plus,’ PixTex,3 and Topic.4 

Most full-text retrieval software has been designed 
to handle large volumes of text by indexing every word 
(a!d its position). This allows users to perform prox- 
imity search, morphological search (using prefix, 
suffix, or wildcards), and thesaurus search. BRS/ 
SEARCH and BASIS/plus are typical of this type of 
software. PixTex and Topic, on the other hand, are 

’ Vended by BRS Software Products, McLean, VA, USA. 
2 Vended by Information Dimensions Inc.. Dublin, OH, USA. 
3 Vended by Excalibur Technologies Corp., McLean, VA, USA. 
4 Vended by Verity, Inc., Mountain View, CA, USA. 

among the most advanced full-text retrieval systems 
and feature “content-based IR” and “learning” capa- 
bilities. PixTex calls its indexing process “learning.” 
The system automatically extracts patterns from bi- 
nary data (texts or images) and associates (or “learns”) 
the storage location of the data based on neural net- 
work technology (the exact form and algorithm are not 
clear due to the lack of publications on and the propri- 
etary nature of the product). By automatically storing 
visual scene or textual contents in terms of Huffman 
codes. the system can then retrieve other similar scene 
objects or texts during IR. Verity’s Topic claims to use 
fuzzy logic in its design of “conceptual searching” for 
“intelligent” document retrieval systems. It allows us- 
ers to create and reuse hierarchical, weighted query 
trees (thus becoming part of the corporate menwry), 
which produce rank-ordered documents. It also ap- 
pears to have some “similarity search” capability (e.g., 
“find me all documents like this one”). However. like 
PixTex. no algorithmic detail can be obtained. Despite 
the lack of implementation detail, we believe that with 
the extensive indexing capabilities provided by such 
full-text software, a simple user relevance feedback 
component and inductive machine learning algo- 
rithms. similar to the ones discussed in this research, 
could be incorporated to help identify what users want, 
based on the concepts (keywords) learned from the 
sample documents. As more researchers and practi- 
tioners recognize the need for concept-based and “in- 
telligent” IR, application of machine learning algo- 
rithms presents unique challenges and opportunities. 

We believe this research has shed light on the feasibil- 
ity and usefulness of the newer, AI-based machine learn- 
ing algorithms for IR. However, more extensive and sys- 
tematic studies of various system parameters and for 
large-scale, real-life applications are needed. We hope by 
incorporating into IR inductive learning capabilities, 
which are complementary to the prevailing full-text, key- 
word-based, probabilistic, or knowledge-based tech- 
niques, we will be able to advance the design of adaptive 
and “intelligent” information retrieval systems. 
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