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ABSTRACT
Methods from machine learning are being applied to design Indus-
trial Control Systems resilient to cyber-attacks. Such methods focus
on two major areas: the detection of intrusions at the network-level
using the information acquired through network packets, and de-
tection of anomalies at the physical process level using data that
represents the physical behavior of the system. This survey focuses
on four types of methods from machine learning in use for intru-
sion and anomaly detection, namely, supervised, semi-supervised,
unsupervised, and reinforcement learning. Literature available in
the public domain was carefully selected, analyzed, and placed in a
7-dimensional space for ease of comparison. The survey is targeted
at researchers, students, and practitioners. Challenges associated
in using the methods and research gaps are identified and recom-
mendations are made to fill the gaps.
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1 INTRODUCTION
This article is a survey of methods from machine learning (ML)
that are being applied to detect intrusions, or anomalies, in systems.
The systems of interest in this survey are primarily those where an
Industrial Control System (ICS) is used to control a physical process.
Such systems are constituents of critical infrastructure in a city and
country, and include the electric power grid, water treatment and
distributions systems, and oil refineries. Such systems are a subset of
a broader class of systems known as Cyber-Physical Systems (CPS)
that consist of cyber and physical subsystems. These subsystems
are integrated via sensors, actuators, and communications links to
enable the control of the underlying physical process [20, 21, 158].
While ICS remain the focus of this survey, we have not avoided ref-
erences to systems that do not use ICS, but fall in the CPS category.

Industrial Control Systems: ICS include a Supervisory Control and
Data Acquisition (SCADA) system, Programmable Logic Controllers
(PLCs), Remote I/O (RIO) units, sensors, and actuators. While the
specific brand and types of such subsystems may differ, their overall
function is to effectively control the underlying physical process.
Successful and unsuccessful attempts to affect the behavior of ICS
has led to an increase in research aimed at developing methods

and tools to protect plants from malicious actors [140, 166]. Such
attempts by malicious actors are made possible, and are sometimes
successful, due to a variety of reasons including inadequate physical
and or cyber protective measures and network connectivity.

Attacks on ICS: Data in Table 1 is indicative of the rise in successful
cyber-attacks on ICS. A uranium enrichment plant in Iran was
attacked [44] resulting in an increase in the failure of centrifuges.
The Maroochy water services were attacked by an ex-employee
and a large quantity of sewage spilled into a local park [174]. A
water treatment plant in the U.S. was attacked in 2006 [31]. Such
attacks, and their impact, has led to a realization that new methods
and tools, beyond the traditional mechanism, e.g., firewalls that
protect communication networks, are needed to protect ICS.

Target audience: Given an increasing body of literature focusing on
using ML for defending ICS against cyber-attacks, it is important
to subject this body of work from a critical perspective for the
benefit of researchers, students and practitioners. Researchers and
students aiming to explore the use of ML in defending ICS against
cyber-attacks stand to benefit from this survey as it would allow
them to identify gaps in the literature and weaknesses of existing
methods. Practitioners, aiming to develop commercial tools for use
in operational plants, stand to benefit from this survey as it would
help them identify the most promising methods on which to base
their tools.

Keeping the survey live: Given the rate at which research is progress-
ing in the application of machine learning to detect cyber intrusions,
it is likely that this survey will rapidly be rendered incomplete, or
even outdated, soon after its publication. To ensure that the survey
remains up-to-date, we have created a web site1 where we will add
new literature in this area with suitable comments. Tables in this
article that place each research publication in a 7-dimensional space
will be kept at this site and updated regularly.

Abbreviations and nomenclature: Given the focus of this survey,
the terms “plant," “system," and ICS are used synonymously. Such
usage is justifiable as an ICS is a subsystem in a physical system
and, when attacked, it impacts the underlying process, e.g., water
filtration or uranium enrichment. We note that ICS enabled systems
are Cyber-Physical Systems. However, as much as possible, we have
avoided the use of the term CPS due its breadth and the fact that
1https://sites.google.com/view/crcsweb/survey-paper
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literature surveyed here focuses mostly on plants controlled by an
ICS. Literature related to detection of anomalies in network traffic is
generally classified under “Intrusion detection" category. However,
literature in the ICS domain that focuses on physical processes in a
plant, is classified under “anomaly detection." In this survey we use
the “intrusion detection" to refer to anomaly detection in physical
plants as well as the detection of network intrusions. Techniques
from machine learning are often referred to by their abbreviations,
e.g., RNN for Recurrent Neural Networks. This survey uses a large
number of such abbreviations. To make it easy for a reader new
to machine learning each abbreviation used in this article, and its
expansion, is listed in alphabetic order in Table 8 placed at the end
of this survey.

Organization: The remainder of this survey article is organized as
follows. In Section 2 we introduce Intrusion Detection Systems
(IDS) and categorize them broadly. A large number of articles had
to be collected for this survey to be possible. The collection process
is summarized in Section 3. There are other surveys reported that
also focus on ML techniques as applied to ICS. Such surveys are
cited with differences from our survey identified in Section 4. The
literature surveyed and evaluated is placed in a 7-dimensional space
described in Section 5. Various methods from machine learning
used for intrusion detection are categorized and explained in Sec-
tion 6. This is followed by Sections 7, 8, 9, and 10 where we examine,
respectively, the literature that focuses on the use of supervised,
unsupervised, semi-supervised, and reinforcement learning for in-
trusion detection. Major challenges and recommendations related
to IDS in ICS are discussed in Section 11. Section 12 has summarized
the overall work and discussed the conclusion.

2 INTRUSION DETECTION SYSTEMS
Before diving into a detailed survey, we summarize below the vari-
ous types of intrusion detection systems (IDS). Such systems aim
at detecting intrusions and anomalies during plant operation. The
detected intrusions and anomalies are reported to plant engineers
who are then expected to take appropriate actions to prevent un-
desirable consequences such as service disruption and component
damage. Three types of IDS are considered in the following, namely,
signature-based, specification-based, and behavior based.

2.1 Signature-based IDS
This type of IDS requires a predefined dictionary of attack patterns.
It detects an intrusion if any pattern detected during plant oper-
ation matches one or more of the predefined attack patterns [53].
Though this approach maintains a low rate of false positives, it fails
to detect zero-day attacks. Further, it is often difficult to produce
an exhaustive dictionary of attack signature in complex physical
processes. There are numerous ways to automate the generation
of malware signatures. For example, in the study reported in [137]
malware signatures were generated in private cloud using deep
feature transfer learning. Volatile memory dumps were extracted
during the malware activity by querying the hypervisor of the vir-
tual machine. Malicious processes were extracted from the memory
dumps and converted to images. Later, these images served as input
to a pre-trained deep neural network model, namely, VGG19. The
proposed model is robust and fast as it does not require training on

new input data. However, as it generates signatures using only the
available malware processes, it could be prone to zero-day attacks.

2.2 Specification-based IDS
This approach develops a mathematical model to define the nor-
mal operation of the physical process under consideration. An
anomaly is said to exist whenever the process deviates from the
prediction by the predefined model [130]. Such models are devel-
oped with the help of experts and plant design. While the experts
may have knowledge of physical processes, there are issues related
to the aging of the physical system, inaccuracies that may exist in
operational manuals, and interpretation of the process behavior.
Secondly, it is difficult to develop accurate mathematical models
for complex distributed physical systems. The study reported in [2]
derived the invariants (specifications) from the design of a water
treatment plant. They used it to detect cyber-attacks on the plant.
However, unless automated, the proposed approach is unable to
derive the specifications of complex physical processes that are not
reflected in the design document. A study reported in [24] also used
a specification-based approach for intrusion detection in Advanced
Metering Infrastructures (AMI). They used sensors to monitor the
traffic at meters and access points at the network, transport, and
application layer. They made a set of specifications and policies to
ensure the safety of meters and AMI, respectively.

2.3 Behavior-based IDS
This approach is based on the operational data from the physical
system. Based on data collected, a model is trained on the normal
and abnormal behavior of the process and used to detect intrusions.
This approach is favored against incorrect vendor specifications
as it trains the model on empirical data [79] and thus helps in
identifying incorrect vendor specifications. For instance, a study
reported in [82] noticed different levels of a water tank in a water
treatment plant. According to the vendor specifications, the upper
bound of on the volume of water in the tank was 1100 liters; this
value was also encoded in the control logic of the PLCs in the ICS.
Analysis of data obtained through level sensors associated with the
tank revealed that the upper bound in practice was 900 liters.

Traditional behavior-based approaches relied on statistical tech-
niques [206] such as the mean and standard deviation of sensor
readings. Lately, machine learning (ML) techniques are being used
extensively as behavior-based approaches to secure ICS. State of
the art techniques using this approach have been reported in the lit-
erature. Such techniques are gaining popularity among researchers
and commercial vendors mainly due to the availability of high com-
puting power and tools to detect the non-linear relations and unob-
served regularities in the massive volumes of data. Nevertheless,
there remain serious problems associated with these techniques
including the detection of zero-day attacks, ensuring an accept-
able rate of false alarms, and managing computational complexity.
These problems are creating a bottleneck for the deployment of
IDS based on these techniques, in particular in complex Industrial
Control Systems (ICS). This article discusses these techniques in
detail within the paradigm of intrusion detection in ICS. It also
discusses the associated problems and offers recommendations.
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Table 1: Incidents on Industrial Control Systems

Year Incident Year Incident
2019 LockerGoga Ransomware [124] 2014 Port Hudson Paper Mill Insider Threat [187]
2018 Olympic Destroyer [63] 2013 Havex [155]
2018 TRITON Triconex SIS Malfunction [161] 2012 Shamoon [154]
2017 TEMP.isotope Campaign [139] 2011 Duqu [62]
2017 BadRabbit Ransomware [142] 2010 Stuxnet [44]
2017 EternalPetya Ransomware [123] 2008 CIA Reports Foreign Utilities Hacked [122]
2017 WannaCry Ransomware [50] 2007 Aurora Generator Test [75]
2016 Industroyer Ukraine Blackout [143] 2003 Northeast Blackout [127]
2015 BlackEnergy 3 Ukraine Blackout [110] 2001 Maroochy Sewage Spill [174]

Figure 1: Retrieval and Selection of Articles

3 COLLECTION OF ARTICLES
Apart from other relevant articles, a major set of articles reported
in this study were collected using a systematic approach. Due to the
inaccessibility of Web of Science and Scopus, five major databases
including IEEE Xplore, ACM digital library, ScienceDirect, Springer,
and Wiley were explored in-depth. Several queries were used to
retrieve the relevant articles. These queries can be combined to
form a single query using logical connectives, as for example
(INTRUSION DETECTION OR ATTACK DETECTION OR CYBER AT-
TACK OR ANOMALY DETECTION) AND (CYBER PHYSICAL SYS-
TEMS OR CRITICAL INFRASTRUCTURE) AND MACHINE LEARN-
ING.

All articles from 2012 to 2020 were retrieved in multiple itera-
tions as described in Figure 1. In the first iteration, a breadth-first
study of each article was performed to extract various properties
including the approach, limitations, strengths, etc. In the second

iteration, articles were selected based on the relevance of the pro-
posed approach to ICS. For example, some articles were related to
IDS but did not emphasize ICS or CPS, and hence were not selected
for further analysis. Twenty-five articles were retrieved from IEEE
Xplore. Here, the focus was only on journals and magazine articles.
Fifty-three articles were retrieved from the ACM Digital Library.
From this library, only the articles from journals and conferences of
core rank A and Bwere selected. Twenty-five articles were retrieved
from ScienceDirect. Nineteen articles were selected in the first it-
eration and fifteen in the second. Fifty-two articles were retrieved
from Springer of which nineteen articles were selected in the first
iteration and eight in the second. Thirty-five articles were retrieved
from Wiley of which eight were selected in the first iteration and
only two were selected in the second.
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Table 2: Comparison with Past Surveys

Past Surveys Difference
[26] Main theme is to shift current ICS to cloud based infrastructure.
[12] Focus on IDS in general terms; not specifically on ICS.
[115] Focus on Deep Learning (DL) techniques with types of anomalies, evaluation

metrics, strategies, and implementation details; different taxonomy
[60] A general survey of physics-based attack detection in CPS; not focused on ML.
[129] A survey of IDS in CPS focusing only on detection technique and audit material.
[65, 172] A survey of CPS discussing challenges and future trends; does not focus on IDS

approaches for CPS.
[15, 19, 35, 54, 178] Focus on Network-based IDS.
[11] Focus on Reinforcement Learning (RL) based Q-learning methods for securing

CPS.
[216] Focus on SCADA specific intrusion detection and prevention.

4 RELATED SURVEYS
A comparison of related surveys is presented in Table 2. A survey
of ICS security focusing mainly on ML is reported in [26]. The
article has discussed the benefits and shortcomings of using ML
techniques for detecting anomalies in ICS. The need for shifting
current ICS to cloud-based infrastructure was the main theme of
this research. This survey has discussed minimal work on machine
learning-based IDS. Also, only an overview of machine learning
approaches was emphasized.

Deep Learning-based intrusion detection systems are discussed
in [12]. This work focuses on intrusion detection in its general
terms, not focusing on ICS. Thework is divided into the frameworks,
developed IDS, datasets, and testbeds. A survey of deep learning
techniques for anomaly detection is reported in [115]. A taxonomy
was developed for the survey which includes type of anomalies,
evaluation metrics, strategies, and implementation details.

A survey of physics-based anomaly detection is reported in [60].
The authors developed a taxonomy to identify the key character-
istics of their survey. This taxonomy consists of attack detection,
attack location, and validation. Attack detection is divided into
prediction and detection statistics. Metrics and the implementation
to verify and validate the performance of attack detection algo-
rithms, are discussed. A survey of intrusion detection techniques is
reported in [129]. This survey focuses on two dimensions, i.e., the
audit material and detection techniques. Apart from these two di-
mensions, the survey reported in the article here focuses on several
other dimensions as well as discussed in section 5.

A survey of CPS is reported in [65, 172]. This survey discusses
the challenges and future research trends but did not focus on
IDS approaches for CPS. The network-based IDS was surveyed
in [15, 19, 35, 54, 178], but the authors do not address the scenario
which differs from conventional networks. A survey reported in [11]
focuses on reinforcement learning based Q-Learning method for se-
curing a CPS. The survey focused on CPS in terms of supported tech-
niques, domains, and attacks. The study reported in [216] focused
on SCADA specific intrusion detection and prevention. The sur-
vey presented in this article focuses on behavior-based approaches
for intrusion detection in CPS focusing on ML and DL techniques.
Recently these approaches have gained more attention as they

are relatively easier to automate than others, and are scalable and
generalizable for new ICS.

5 DIMENSIONS FOR CLASSIFYING
INTRUSION DETECTION SYSTEMS

Recent progress inML coupled with attempted and successful cyber-
attacks on critical infrastructure, has sparked a wave of interest
in behavior-based IDS for ICS. It is important for researchers and
practitioners to understand how the proposed approaches compare
with each other and their usability in operational environments.
With this as our goal, it was decided to adopt a multi-dimensional
approach to categorize the literature most of which focuses on IDS
for ICS while some on a broader class of CPS. Specifically, works
surveyed in this article are placed in a 7-dimensional space where
the dimensions are domain, audit material, complexity, feature
selection, time series, dataset, and metrics. The use of this multi-
dimensional space adds formalism to the comparison of different
works and enables a scientific discussion on their utility or non-
utility in specific environments. We mote that the adoption of
a multi-dimensional approach for categorization of research has
also been adopted by other researchers [129]. However, the multi-
dimensional space adopted by us is richer in terms of the dimensions
selected and their number. The dimensions used in the work are
enumerated in Table 3 and described in the following subsections.

5.1 Domain
Intrusion detection for ICS has been applied in a variety of do-
mains, including smart utilities. Not surprisingly, most applications
are in the area of energy, water and gas primarily because of the
critical nature of these systems. A power grid compromised for a
few seconds can trip a generator. This transfer may result in the
affected load transferred to other generators and possibly initiate a
cascade of generators tripping one after the other leading to a major
blackout. The works labelled as Annon in Table 4, 5, 6, and 7 do not
specify the domain on which the proposed approach is applied,
instead they mention it as “some CPS/ICS".

In our survey we found that the least explored ICS in smart util-
ity is gas. Even though a few such ICS are listed in Table 7, they rely
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Table 3: Dimensions used for categorizing literature in this survey.

Dimension Description
Domain Application domain such as electric power grid and water treatment plant.
Audit material Data used in model creation
Complexity Computing power needed; scalability
Feature selection Selection of features to reduce overfitting
Time series Modeling processes as a time series
Dataset Data used; pre-collected or live; from simulation or live plant
Metrics Metrics used for evaluating the effectiveness of the ML techniques used

on a relatively simple gas ICS testbed at Mississippi State Univer-
sity (MSU) [131], which consists of a a minimal set of components
including pressure sensor, a pump, and a solenoid valve.

5.2 Audit Material
Typically the data analyzed by an IDS includes network traffic
and sensor measurements with few IDS considering both. Since
IDS were first developed for the internet and LAN networks, most
of the IDS developed for ICS also attempt to detect intrusions in
the network layer using similar approaches. Typically, ICS use
industrial control protocols such as Modbus [37], BACnet [165],
and DNP3 [25]. Hence, it is commercially viable to develop IDS
for such protocols. A study reported in [97] used bits per packet,
connections per second, and recent/mean interval time and count
of Goose messages for this purpose. Another study reported in [52]
used several responses against a command to detect attacks. The
study in [40, 66] did deep packet inspection to calculate the n-gram
features from the payload of the packet. The method used in this
work is to constructs a feature vector that contains the count, fre-
quency, and binary occurrence of these n-grams. The authors also
argue that n-grams are successful in detecting attacks. However,
the approach proposed in [165] uses Ethernet, IP, UDP, and BACnet
packet header attributes to train its IDS. The study reported in [120]
suggests detecting attacks by using the number of live TCP, UDP &
ICMP connections, duration of terminated connections, overall net-
work fragments pending reassembly by Bro, amount of data sent by
connection responder/originator, and the number of packets sent
by connection responder/originator features.

Detecting attacks in the physical process controlled by an ICS is
challenging as components, size, and functionality of each process
is different from others. Such IDS have received relatively little
attention and though at the time of writing this survey there seems
to be a growing trend to detect intrusion at the physical process
level. IDS that model the physical process of the energy systems
have used the following features to train their model: voltage Phase
angle, voltage magnitude, current phase angle, current phase mag-
nitude, zero voltage phase angle magnitude, current phase angle
magnitude, the frequency of relays, frequency delta for relays, ap-
parent impedance seen by relays, angle seen by relays, status flags
for relays, snort alert status for each relay, control panel remote
trip status, and their correlations [28, 148]. A study reported in [82]
used the status of the pumps and valves, rate of inflow, level of
the tank, and rate of change of water level for water ICS. For gas
ICS, [134] uses pressure in the pipeline, pump, and solenoid status
as features.

There have been few attempts in developing a hybrid approach
by using both the network traffic and physical process features. A
study reported in [23, 52] used a couple of physical process features
along with a few dozen network traffic features to detect attacks in
gas ICS. Also, a study reported in [205] used CPU and OS usage pa-
rameters in addition to features of network traffic to detect attacks
in a simulated CPS made up of different SUN Microsystem servers
and workstations. A study reported in [92] used Wireshark to cap-
ture network logs and physical stream data such as temperature
and airflow. This data was then used to learn an IDS for Heating,
ventilation, and air conditioning (HVACs). The above-mentioned
hybrid approaches have used a single algorithm to model both the
network traffic and physical processes.

5.3 Complexity
Based on complexity, we refer to some approaches as simple when
they follow the traditional ML life cycle, i.e., derive some features,
followed by some feature selection, and training a classifier. Hybrid
approaches follow a more complex life cycle by either a) trans-
forming the input features to a transformed features space where a
classifier is trained to give better performance [165], or b) multiple
classifiers are trained separately but cooperate to arrive at a deci-
sion [98, 165, 199]. A study reported in [147] first used the K-means
to cluster the data followed by self-organizing maps (SOM) to do
the final classification. Another study reported in [98] learns five
different SVM’s and uses an ensemble of them to detect attacks.
Likewise, a three-tier system for state monitoring of a CPS was
proposed in [199]. The first tier consists of a threshold-based alarm.
The minimum and maximum bound of each sensor are defined here.
Anything above or below this bound triggers an alert. The second
tier uses a self-organizing fuzzy logic system. The purpose of this
layer is to detect anomalies. This tier learns the rules of the CPS
itself. The third tier uses an artificial neural network (ANN) to fore-
cast the value of each sensor based on the historical data. Finally,
fuzzy logic is used to raise an alarm based on outputs of tier 2 and
tier 3. A study reported an anomaly-based IDS for SCADA [147].
It extracts the time correlation between different packets using
histograms, followed by Bayesian inferencing, to identify attacks.
An alarm is raised if the probability of belonging to anyone of the
seen categories is below a spefific threshold.

5.4 Feature Selection
Feature selection techniques are used to increase the accuracy and to
reduce the overfitting and training time of the model; the selection
could be manual or automatic. Feature selection techniques include
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Univariate Selection, Feature Importance, and Correlation Matrix
with Heatmap [168]. Deep Learning techniques do not require ex-
plicit feature selection because they have an inherent capability to
select the best features for the model. A study reported in [138]
proposed a feature selection method based on Tabu Search and
Random Forest. They used Tabu Search for searching and Random
Forest as a learning algorithm for intrusion detection.

5.5 Time Series
Time series data contains a well-defined time pattern consisting of a
specific sequence of measurements. This property is quite useful as
it helps determine which particular algorithm, such as time series
analysis or any other, would be better to apply in the ML or DL
model. A study reported in [83] used fuzzy logic to classify the time
series data of sensors in CPS. It represented the time series using the
distribution of its data samples. This was done using its proposed
Intervals Numbers technique. Moreover, the effectiveness of the
proposed approach was tested using a benchmark classification
problem.

5.6 Dataset
A major bottleneck in the use of supervised ML and DL techniques
is the lack of attack data. The attacks on real-world systems are
rare and sparse. Therefore, studies that have used actual data from
CPS have resorted to simulated attacks to train and evaluate its
classifiers [98, 109], thus making the realism and fidelity question-
able. Other works resort to validate their model on completely
simulated data [28, 148, 173, 205]. Some studies have even used the
NSL-KDD99 dataset [22] to validate their IDS whereas, this data is
a collection of simulated raw TCP dump data over nine weeks on
a military local area network. It is a benchmark dataset for IDS in
normal LAN traffic but not for CPS network traffic.

A publicly available dataset is provided by a Critical Infrastruc-
ture Protection Center at Mississippi State University (MSU) 1. Their
power system dataset is a simulated smart grid data consisting of
data under normal behavior, attacks, and faults. This dataset was
used by [28, 148] for intrusion detection in ICS usingML approaches.
Their water storage tank and gas pipeline dataset were developed
using small scale laboratory testbed and were used by [23, 134, 135]
to detect intrusion in CPS usingML approaches. Their water testbed
consists of a water tank having a storage capacity of 2 liters, a pump,
and a level sensor. It consists of a physical process attribute for
the level of the tank and the status of the pump. Apart from that,
they have seventeen different network traffic and PLC status at-
tributes. The gas pipeline dataset consists of twenty-three network
attributes and PLC status attributes, and only three physical pro-
cess attributes, namely pressure in the gas pipeline, solenoid, and
pump status. Both of these datasets are flawed for ML research
as acknowledged by the authors themselves. SWaT dataset [61] is
another publicly available dataset of a water treatment testbed. This
testbed is an industrial scaled-down replica of a water treatment
plant. It has six stages and can produce five gallons per minute of
filtered water. Data collection was done by running the plant non-
stop for eleven consecutive days. For the first seven days the plant
was run in a normal state while during the last four days specifically
1https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

crafted attacks were launched on the plant. Therefore, this dataset
contains both the normal and attack data of a real testbed. Both
network and physical process data were collected for this purpose.
Following the publication of the dataset in [61], iTrust has made
public several other datasets collected from the SWaT testbed [77].
The SWaT datasets have been used in a large number of research
projects including, though not limited to, [76, 79, 80, 190–192].

5.7 Metrics
Intrusion detection is a skewed class problem, also known as class
imbalance. This refers to a setting where most of the data belongs
only to a single class, e.g., instances of normal behavior in an IDS
dataset constitute more than 90% of the dataset. Hence any naive
classifier that labels each instance as normal will get an accuracy
higher than 90%. Therefore, accuracy is not enough to assess the
performance of IDS, and yet some studies only report accuracy
(or error graphs). Similarly, some studies report only the detec-
tion rate (DR), which is the same as recall. The recall alone is not
enough to assess the performance of IDS, as there is a trade-off
between precision and recall. A 100% recall can always be achieved
by compromising the precision of the system.

For proper evaluation of the effectiveness of an IDS, more than
one of the following metrics should be reported: accuracy, precision,
recall, F-measure, receiver operating characteristic (ROC), and area
under the ROC curve (AUC). Precision measures the correctness of
the classifier based on the detection of an attack. A high value of
precision leads to a lesser number of false positives (FP). Whereas,
recall is the number of attacks detected by the classifier. A high value
of recall leads to a lesser number of false negatives (FN). An ideal
classifier should have high precision and recall. F-Measure helps us
to combine both into a single metric, which is the harmonic mean
of precision and recall. It is a more conservative measure than the
arithmetic mean of the two. These measures are defined as follows.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where TP is the number of attacks correctly classified by the classi-
fier, and TN the number of normal instances classified as normal.

ROC curve is a true positive rate (TPR) plotted against false
positive rate (FPR) thresholded at various settings, whereas AUC
is the area under this ROC. These measures are considered to be
more robust for highly skewed problems [156]. The reason being
that by increasing and decreasing the sensitivity of a sensor, the
output of the classifier can often be tweaked to make it more (or
less) conservative thus achieving a trade-off between FP and FN.
The AUC measure allows selecting possibly optimal models by
evaluating the performance of the classifier by varying the threshold
that decides whether the instance is an attack or not. Unfortunately,
few researchers [82, 87, 141, 152, 198] have used this measure for
evaluating their respective classifiers.
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Figure 2: Categorization of machine learning approaches for detecting intrusions in Industrial Control Systems.

The time to detect an attack and the percentage of the time the
attack remains detected should also be used as an evaluation metric.
It is likely not of any value when an attack is detected once it has
already damaged a physical component or the attack is detected
intermittently by turning on and off the alarm after every few
seconds leading to confusion. Few studies report these measures
[82, 98, 191]. Among these, [98] reported the latency. They define
latency as the number of cycles after the spoof begins but before
the classifier correctly identifies a string of 30 consecutive cycles
as spoofed. Whereas [82, 191] reported the time to detect an attack.
While [82] also reported the percentage of time the attack was
detected during its course.

6 MACHINE LEARNING APPROACHES FOR
INTRUSION DETECTION

As shown in Figure 2, ML and DL techniques can be classified
into four major categories, i.e. Supervised Learning, Unsupervised
Learning, Semi-Supervised Learning, and Reinforcement Learning.
Most of the intrusion detection work available in the literature is
related to the first two areas while limited work is available in the
last two areas. The difference between the first three approaches
lies in whether or not the training data used is labeled. An unsu-
pervised approach does not require labeled data, relying solely on
the normal behavior of the ICS. A supervised approach requires
training data under both normal and abnormal (attack) behavior.
The semi-supervised approach makes use of both, relying on the
assumption that labeled training data is scarce and rare whereas
unlabeled training data is plenty and easily available. All areas
mentioned in Figure 2 are discussed in subsequent sections.
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Figure 3: Supervised Learning

Each approach mentioned above has its pros and cons. Unsu-
pervised learning does not require labeled training data, therefore,
the dependency on attack data gets eliminated making it capable
of detecting zero-day attacks. However, it usually produces high
false alarms [135, 136]. While the supervised learning algorithms
are more robust in terms of attack detection, they require labeled
data, i.e., both normal and attack data. Given only a few instances
of attacks, the supervised approach is capable of detecting other
instances of attacks as well. The study reported in [82] showed
that their best classifiers produce almost no FPs and achieved high
precision and recall. These approaches do not have any guarantee
in detecting the zero-day attacks.

Another set of promising approaches that have not been explored
for IDS in ICS are one-shot learning [93, 200] and zero-shot learn-
ing [163, 175]. One-shot learning refers to a scenario where only
one instance of each attack type is available in the labeled training
data. Whereas zero-shot is a more challenging approach in which
few instances of some attacks are available in the labeled training
data. The attack type that does not have any instance in the training
data represents zero-day attacks. Thus, the performance of this type
of learning is based on detecting the zero-day attacks while leverag-
ing the information provided by the known attacks. This represents
a more practical approach for an ICS as it would generate fewer
FPs than unsupervised approaches and at the same time detect
zero-day attacks while leveraging on some known attacks that can
be safely carried out on the ICS in a controlled environment. We
believe that zero-shot learning is a promising approach for IDS in
ICS because it achieves a good compromise between the supervised
and unsupervised approaches.

7 SUPERVISED LEARNING
Supervised Learning (SL) requires labeled training data as described
in Figure 3. For each instance of the training dataset, SL uses ’n’
features from feature vector ’X’, i.e., [x1, x2 .....,xn] to learn the class
variable ’Y’ against each instance of the dataset. The relationship
between ’X’ and ’Y’ is captured in the equation Y = 𝑓 (X) where 𝑓
is learned from data.

There are mainly two types of SL techniques: classification and
regression. In classification, the class variable is discrete while for
regression problems it is continuous. IDS are typically modeled
as classification problems where the class variable can contain
both single and multiple classes. If the class variable contains only
a single class then it is referred to as a One-Class Classification
(OCC) problem. OCC-based IDS research for ICS is summarized in
Table 4 while the work related to multiple classes is summarized in
Table 5 and 6

7.1 Supervised Learning Approaches
Certain behavior-based approaches have used conventional statisti-
cal techniques [97, 205]. These approaches use traditional statistical
techniques such as mean and standard deviation on sensor mea-
surements. These techniques are not completely automatic due to
their parametric nature. It is difficult to produce statistical tests for
a deeply interdependent and large number of sensors and actuators
as doing so may lead to unacceptable FPs. ML and DL are consid-
ered as non-parametric approaches. They are more automatable
and diverse in terms of different techniques employed while using
them. In this survey we have grouped the ML approaches as dis-
criminative, generative, and tree-based, with details of each given
below.
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Table 4: Summary of OCC-based Intrusion Detection work in ICS using Supervised Learning techniques

Work Domain Audit
Material Complexity Algorithms Feature

Selection
Time
Series Dataset Data Type Data

Available Metrics

[90] Conveyor
Belt System Physical Simple k-NN, and NB Yes Yes Annon Actual No Confidence, Accuracy

[91] Chemical
Plant Physical Simple OCSVM Yes Yes HITL Actual Yes Accuracy, Precision,

Recall, and F1 score
[195] Annon Physical Simple OCSVM Yes Annon Annon Actual No FPR, FNR

[135] Gas, and
Water Physical Simple SVDD, and

KPCA No Yes MSU, and UCI Actual Yes Accuracy

[217] Water Physical Simple LSTM Yes Yes SWaT Actual Yes Accuracy

[102]
Industrial
Demonstra-

tor
Physical Simple OCSVM, DINA No Yes

Industrial
demonstrator,
and Wind
Turbines

Actual, and
Simulated No TPR, TNR, F1 Score,

and Balanced Accuracy

[39] Water, Gas,
and Energy Nerwork Simple

ESNN,
SOCCADF,
OCC-SVM,

OCC-CD/CPE

No Yes Water, Gas, and
Electric Actual Yes

TPR, TNR, TA,
Precision, Recall, and

F1-score

[210] Annon Network Hybrid SVM No Yes Annon Actual No DR, and IR

[194] Energy Physical Hybrid

DAE, OCSVM,
AdaBoost +

C4.5, XGBoost,
MLP, SVM,
k-NN.

Yes Yes Annon Simulated No Accuracy, Precision,
Recall, and F1 score

[48] Energy Physical Simple GDLM, SVM,
MLP, and PCA No Yes Annon Simulated No F1 Score

7.1.1 Discriminative Approaches. Support Vector Machines (SVM)
are linear classifiers, non-probabilistic, and perform binary clas-
sification. When using SVM, the data points are projected to a
higher dimensional feature space. Then, a hyperplane is learned
to distinguish the data points of the two classes. The goal of learn-
ing a hyperplane is to enlarge the difference between the closest
data points of the classes and thereby provide stronger generaliza-
tion on the unseen data. This property of SVM makes it robust for
classification problems including IDS [5].

Artificial Neural Networks (ANN) is a class of algorithms that
attempt to mimic the learning process of biological neural networks.
ANNs are capable of estimating the functions that are dependent on
a large number of inputs. There are multiple layers in this network
including input, output, and one or more hidden layers. It trains
the model to learn the non-linear decision boundaries to segregate
the classes. ANNs have also been used for IDS [10].

Instance-based learning algorithms (IBK) do not work on gener-
alization as compared to SVM and ANN. Instead, they compute the
distance of every new instance with all the available instances in
the training dataset. A decision is taken based on all the computed
distances. That is why IBK is also referred to as a lazy learning al-
gorithm. It has been used in [94, 133, 147] for IDS. The Non-Nested
Generalized Exemplars (NNGE) also belong to this class of algo-
rithms [149]. It was applied to detect network intrusions in KDDCup
1999 dataset [22].

Artificial immune systems try to mimic the complex vertebrate
immune system [213]. They are intelligent and robust computing
systems. Fuzzy rules were developed in [199] to express the normal
behavior of the system. This was done using Fuzzy-Neural Data
Fusion Engine (FN-DFE). Later these fuzzy rules were used for
anomaly detection by comparing it with previously described rules
of the system. Moreover, a classifier based on neural networks was
used to make the concluding decision based on these anomalies.

Multinomial Logistic Regression (LR) is comparable to linear
regression and serves as an alternative to Linear Discriminant Anal-
ysis (LDA). However, they both have different underlying assump-
tions. LR assumes Bernoulli distribution while linear regression
assumes Gaussian distribution. Moreover, LR uses the logistic func-
tion for prediction. The so predicted values are the probabilities
calculated using the logistic function and measure the relationship
between the dependent and the independent variable(s). Here, the
dependent variable is categorical. Its performance can be improved
by using a large number of features. However, it is not as successful
in IDS [188].

7.1.2 Decision Tree-Based Approaches. This class also belongs to
the discriminative-based approaches but are classified separately
due to the existence of distinctive features. This class has been
popular among ML researchers. The decisions in this class can be
easily translated into an IF-ELSE structure using logical connectives
like OR, AND, etc. These decisions (rules) are impulsive and easy
to understand. These decisions follow a tree-like structure having
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Table 5: Summary of Multiclass-based Intrusion Detection in CPS using Supervised Learning technique (1 of 2)

Work Domain Audit
Material Complexity Algorithms Feature

Selection
Time
Series Dataset Data Type Data

Available Metrics

[196] Energy Physical Simple MSA, SVM, and
ANN No Yes PMU Actual, and

Simulated No Accuracy

[103] Healthcare Physical Simple
k-NN, NN,

SVM, DT, NB,
and ZeroR.

No Yes Annon Actual, and
Simulated No Accuracy, Precision,

Recall,and F1 Score

[41] Water
Network,

and
Physical

Hybrid SVM, and SMC Yes Yes Annon Actual No Accuracy, Sensitivity,
and Specificity

[16] Smart
Home Network Simple

NB, BN, J48,
Zero R, OneR,
Logistic, SVM,
MLP, and RF

Yes Yes Annon Actual No F1 Score

[177] Energy Physical SImple BR with ARD No Yes Annon Simulated No FP, FN, and PT

[203] Gas, and
Energy Physical Simple ELM Yes Yes Annon Actual, and

Simulated No ROC, TPR, and FPR

[6] Water
Network,

and
Physical

Simple SVM Yes Yes SWaT, and
WADI Actual Yes Accuracy

[14] Annon Physical SImple CNN Yes Yes Annon Actual No Accuracy

[56] Water
Network,

and
Physical

Simple

RF, NBTree,
LMT, J48, PART,
MLP, HTree,

LogF, and SVM.

Yes Yes SWaT Actual Yes Precision, and
Sensitivity

[176] Water Physical Simple NN Yes Yes SWaT Actual Yes Accuracy, Precision,
Recall, and F1 score

[87] Electric
Vehicles

Network,
and

Physical
Hybrid RF, and k-NN No Yes Annon SImulated No Accuracy, DR, ROC,

and AUC

[17] Annon Physical Hybrid LSTM, NN,
SVC, and SVM Yes Yes Annon SImulated No Probability of detection

[171] Annon Network Simple ANN No Yes Annon Actual No Accuracy, Precision,
Sensitivity, and ROC

[95] Cloud Physical Simple LR, RF, NB, RT,
SMO, and J48 Yes Yes Annon Actual No TPR, TNR, F1 score,and

Accuracy
[152] Energy Network Simple SVM No Yes Annon Actual No Accuracy, and AUC

[46] Drones Physical Simple GA, XGBoost,
and SVM No Yes Annon Actual No Precision

[182] Energy Physical Simple SVM, k-NN, RF,
and CNN Yes Yes Annon Actual No Accuracy

[88] Cloud Network Simple ELM Yes Yes CTU Actual Yes
TPR, FPR, TNR, FNR,
Precision, Accuracy,
ER, F1 score, MC

[169] VANETs Network Simple SVM Yes Yes Annon SImulated No DE, FPR, DT and CH
Load

[74] Annon Network Simple
AE, LSTM,
MLP, SVM,

LDA and QDA
Yes Yes NSL-KDD Actual Yes Precision, Recall, F1

score, and Accuracy

[159] Annon Nework Simple
BN, NB,

MLPNN, J48,
and SVM

Yes Yes

NSL-KDD
CUP, and
UNSW-
NB15

Actual Yes DR, FAR, and Accuracy
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Table 6: Summary of Multiclass-based Intrusion Detection in CPS using Supervised Learning technique (2 of 2)

Work Domain Audit
Material Complexity Algorithms Feature

Selection
Time
Series Dataset Data Type Data

Available Metrics

[57] Annon Network Simple MLP Yes Yes

KDD Cup
99,

NSL-KDD,
SCX2012,
and UNSW-

NB15

Actual Yes DR, FAR, and AR

[67] Energy Physical Simple

RF, OneR, JRip,
Adaboost +

JRip,SVM, and
NN

Yes Yes MSU, and
ORNL Actual Yes Accuracy, Precision,

Recall, and F1 score

[105]
Supercom-
puter/
Water

Physical Simple LSTM No Yes Tianhe-1A Actual Yes RMSE, and Accuracy

[160] Healthcare Physical Simple MLP, and SVM Yes No ECG-ID Actual Yes Accuracy, Precision,
Recall, and F1 score

[170] Annon Network Simple MLP, MGSA,
PSO, and EBP No Yes

Intrusion
Detection
dataset

Actual Yes CCR, ER, MR, and FAR

[145] Annon Network Simple ASCH-IDS, and
RBC-IDS Yes No KDD’99

Dataset Simulated Yes AR, FNR, DR, ROC ,
and F1 score

[209] Energy
Network,

and
Physical

Hybrid BPNN, and
ELM Yes Yes Annon SImulated No Error / Hz

[112] Vehicle
Network,

and
Physical

SImple
RNN, MLP, LR,
DT(5.0), RF,
and SVM

Yes Yes Annon Actual No Accuracy

[147] Annon Network Hybrid k-means-SOM No No KDD-
Cup1999 Actual Yes FPR, TPR, and DR

[214] Energy Network Simple SVM, and AIS No No KDD-
Cup1999 Simulated Yes FPR, FNR, and No. of

Detections

[98] Energy Physical Hybrid Ensemble of
SVMs No Yes

Bonneville
Power

Administra-
tion

Actual No Recall, Precision, F1
score, and Latency

[148] Energy Physical Hybrid CPM No No MSU Power Simulated Yes Accuracy, and FPR

[28] Energy Physical Simple

NB, OneR,
Nnge, Jripper,
RF, SVM, and
Adaboost

No No MSU Power Simulated Yes F1 score

[199] Energy Physical Hybrid
Fuzzy-Neural
Data Fusion

Engine
No No

Idaho
National
Labs

energy sys.
model

Actual No Error Graphs

[23] Gas Hybrid Simple
NB, OneR,

Nnge, RF, SVM,
and J48

No No MSU Actual Yes Precision, and Recall

[52] Water Hybrid Simple NN No No MSU Actual No Accuracy, FP, and FN

[82] Water Physical Simple

RF, SVM, NN,
J48, BN, NB,
BFTree,

BayesLR, LR,
and IBK

No No SWaT Actual No
Accuracy, AUC,

Precision, Recall, and
F1 score

[108] Water Physical SImple RTI+, and BN Yes Yes SWaT Actual Yes CP, and PS
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nodes from the top (root) to bottom (leaves). Here the internal nodes
can be considered as a test on a feature (attribute). The branches
represent the result of the test while leaves represent the labels
of the class. Every new record is assigned a label by traversing
the tree from the top to the bottom. The selection of attributes as
different nodes of the tree is determined based on the information
provided by that attribute. In ID3 and J48, this information is calcu-
lated through information gain [157, 208]. Information gain is the
anticipated reduction in entropy by segregating the examples of
datasets based on an attribute. Overfitting can be avoided by proper
pruning of the tree. The traversal order of tree is an important fac-
tor in this class of algorithm. For example, J48 and Best First Tree
(BFTree) are similar to each other. However, BFTree prefers the
best node rather than depth-first order. This is a useful approach to
prune the trees for avoiding overfitting. One Rule (OneR) is another
algorithm of this class. It has one rule for each predictor of the class.
The rule with smaller error is selected as "One Rule".

Random Forest (RF) follows an ensemble learning approach [30].
It trains multiple decision trees based on the random subset of fea-
tures. Themajority vote from different decision trees for an instance
is selected as the class of that instance. Due to the random selection
of features, RF shows different accuracies in every iteration even
for the same set of parameters. It is robust in terms of overfitting as
compared to the other decision trees. The decision tree algorithms
have enjoyed success in IDS at network level [69, 164]. An ensem-
ble method (AdaBoost) was used in [132] for intrusion detection in
the network traffic of IoT devices. While IoT devices are playing a
vital role in providing comfort to daily routine tasks, they generally
have a weak security mechanism. The proposed study used a hybrid
approach by using multiple classifiers to detect anomalies. It used
Decision Tree, Naive Bayes, and Artificial Neural Network for this
purpose. Although the performance of the model is acceptable it
suffered from false positives. Also, the ensemble method has more
processing time than Decision Tree, Naive Bayes, and Artificial
Neural Networks.

7.1.3 Generative Approaches. Generative approaches include Bayesian
Classifiers, also referred to as probabilistic classifiers. They predict
the class based on the probabilities of any object belonging to a
certain class. Bayesian Networks (BayesNet) and Naive Bayes (NB)
are two popular Bayesian classifiers used in IDS [85, 201]. The at-
tributes in the NB classifier do not affect each other given the value
of the class. They are scalable and the parameter requirement is
linear in terms of the number of features. It is suitable for high
dimensional data with good generalization over the unseen data.
The model is learned in a single iteration over the train data.

BayesNet are directed acyclic graph [49] that represent the set of
random variables along with their conditional dependencies. The
dependency between the variables can be eliminated by connecting
them by an edge. In the real-world, the attributes of a dataset are
likely dependent on each other thus making BayesNet approach
better than NB, therefore the BayesNet approach is better than NB
on a small number of features. BayesLR is a Bayesian variant of LR.
It uses Laplace prior to escape from overfitting, and hence is more
robust than LR for large feature space [55].

Due to their simplicity, performance, and low computational com-
plexity, Bayesian classifiers are commonly used to solve real-world

problems. A study reported in [108] used the Bayesian networks
and RTI+ (Radio Tomographic Imaging) to model the normal behav-
ior of a system and for anomaly detection. Naive Bayes, together
with several ML algorithms, was used in [95] to protect the hypervi-
sor or the monitor of a virtual machine. The proposed architecture
is composed of executable file extractor, online malware detector,
and offline malware classifier. Offline malware classification was
accomplished using ML algorithms applied to benign and malicious
data.

7.2 Deep Learning Based Supervised Learning
Approaches

Deep learning is an extension of ML which focuses on the Artificial
Neural Network (ANN). It does not require a complex set of features
to be manually engineered by humans, instead they aim to learn
these features themselves. This makes them a promising approach
for ICS as each ICS has different physical dynamics. Moreover, deep
learning is capable of dealing with high-velocity data [86], thus
making it desirable for ICS. However, computational complexities
associated with deep learning [36] make it difficult.

7.2.1 Convolutional Neural Networks. Convolutional Neural Net-
work (CNN) is a type of deep neural network. It normally works on
visual images. CNN is a variant of Multi-Layer Perceptron (MLP).
One of the important properties of MLP is Fully Connectedness, in
which every single neuron in one layer has connectivity with all
neurons in the next layer. This may create the problem of overfit-
ting. To reduce this overfitting, regularization methods are applied.
Regularization methods include adjustments of weights to config-
ure the loss function. It exploits the underlying hierarchical pattern
of data to get complex patterns from relatively small and simple
patterns. CNN has been used in a classification model for different
PLC programs using phasor measurement unit (PMU) data gener-
ated during the execution of different PLC programs[182]. Later it
was used for the anomaly detection in the PMU data. CNNwas used
to detect keystroke using sensor data of nearby mobile phone[59].
They classified keystrokes using a real-world dataset of 20 users.
CNN was used for anomaly detection using thermal side channels
[14]. Thermal images were captured on a predefine time window
then these images were input in CNN to detect anomalies using
the information of predefined actual active time.

7.2.2 Recurrent and Recursive Neural Networks. Recurrent Neural
Networks (RNN) is a class of ANN. Its edges input the next time step
instead of the next layer of the current time step [100]. RNNs refer
to two classes of networks, namely, finite impulse and infinite im-
pulse networks. Both classes have temporal dynamic behavior [125]
and could have additional stored states where storage would be con-
trolled by the neural network. Recursive Neural Networks are also
a type of deep neural network. They apply the same set of weights
recursively over a structured input sequence. Therefore, they give
structured predictions over variable-sized input sequences. Com-
pared to RNN, Recursive Neural Networks work hierarchically on
the input sequence [100].

Study reported in [112] makes use of RNN to protect vehicles
from cyber-attacks. All computations were performed on the cloud.
Long short-term memory (LSTM) networks are a type of RNN.
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They are effective in speech recognition and showed remarkable
performance in speech applications [47]. Though machine learning
is being used for intrusion detection, at the same time Adversarial
machine learning is being used to counter it. For example, in [217]
LSTM was used to train the model on the normal data from a water
treatment plant and its performance tested on attack data. Further,
the adaptive attacks were performed to deteriorate the performance
of the classifier.

State of the art classifiers, including LSTM, were applied on the
NSL-KDD dataset to classify the data into different classes for an
IDS [74]. A layered architecture using different ML techniques for
proactive fault management by predicting sensor values at different
stages was proposed in [17]. A hybrid machine learning approach
was used to detect anomalies in a simulated IoT environment. Four
algorithms, including LSTM, single-layer neural network, SVC, and
SVM were used in the anomaly detector. A three-stage layered ar-
chitecture was proposed for this purpose and served as the quorum
for the final decision of the model.

Accurate prediction of faults in supercomputers can be used to
overcome financial losses. The historical chilled water data was
used in [105] to predict the load of a supercomputer using LSTM.
Later, a Z-score model of predicted values was used to identify the
anomalies. 5G Networks has proposed a formidable challenge to the
security of data, although several anomaly detection mechanisms
exist but the emergence of 5G Networks has posed a significant
threat due to its high velocity and veracity of data. Deep learning
methods were used in [118] for anomaly detection in 5G networks;
this was done hierarchically. At the initial level, Deep Belief Net-
work (DBN), or a Stacked AutoEncoder (SAE), was selected to detect
the anomaly. At this level, the primary intention was to classify the
anomalous data at the high velocity to cope with higher velocity
data of 5G Networks and therefore accuracy was not the major con-
cern in this phase. In the subsequent phase, the output of DBN was
used by LSTM to recognize the temporal patterns of cyber-attacks.

8 UNSUPERVISED LEARNING
Unsupervised Learning (UL) uses features from feature vector ’X’,
but there is no corresponding class variable as described in Figure 4.
Two types of UL techniques are popular, namely, clustering and
Association Rule Mining (ARM). In clustering, different clusters are
formed based on a set of feature values while in ARM, rules are
extracted based on the support and confidence. The overall work
available in literature using UL is summarized in table 7.

8.1 Unsupervised Learning Approaches
8.1.1 Connectivity-based clustering. Connectivity-based clustering
is also known as hierarchical clustering, i.e. a hierarchy of clus-
ters is formed. The method can be divided into the following two
categories [162]: agglomerative clustering and divisive clustering.
Agglomerative clustering proceeds in a bottom-up manner. Here
different instances form a cluster with the nearest one at each level
of the hierarchy and ultimately forms a single cluster at the top. Di-
visive clustering proceeds in a top-down manner. In the beginning,
a single large cluster is formed which is subsequently divided into
smaller clusters at each level of the hierarchy.

8.1.2 Centroid-based clustering. Centroid-based clustering is the
most commonly used clustering technique. It works on the concept
of the central vector. This central vector does not need to be a mem-
ber of the dataset. Different clusters are formed based on the central
vector. Each instance from the dataset is assigned to each cluster
based on its distance to that cluster. K-means is a commonly use
centroid-based clustering technique, where 𝑘 is the fixed number
of clusters formed. K-means clustering was used in [27] for the
classification of compromised meters in the Advanced Metering
Infrastructure (AMI). AMIs are highly vulnerable to false data injec-
tion attacks and can be compromised by adversaries to send false
data regarding power consumption. In addition to electricity theft,
such attacks may also affect the load balancing and other critical
functions in a power grid. A consensus correction scheme was in-
troduced in [27] to detect anomaly using the ratio of harmonic to
the arithmetic mean. Compromised meter classification was done
using k-means clustering. The GRYPHONmodel is proposed in [39]
for anomaly detection in critical infrastructure using evolving spik-
ing neural networks, fuzzy logic, and clustering techniques. It uses
fuzzy c-means clustering by assigning random values to cluster
centers and subsequently assigns data points to all clusters using
the Euclidean distance.

To overcome the vulnerabilities of PLCs, a mechanism to aug-
ment PLCswithAES - 256 Encryption andDecryptionwas proposed
in [13]. Further, k-means clustering and Local Outlier Factor (LOF)
was used to propose an ML-based intrusion prevention system
against three categories of cyber-attacks including interception,
injection, and denial of Service. A study reported in [111] used the
Channel State Information (CSI) to identify the malicious user in
the network. For this purpose, k-means clustering was used to dif-
ferentiate malicious and legitimate users. Further, this information
was used to create an Attack Resilient Profile Builder and Profile
Matching Authenticator. Profile Matching was done using SVM.

8.1.3 Distribution-based clustering. Distribution-based clustering
is a statistical technique. It works on the principle that if objects
belong to the same distribution, then they must be assigned to the
same clusters. The technique usually suffers from overfitting unless
constraints are applied to the complexity of the model. Gaussian
mixture model was applied in [48] to detect false data injection at-
tacks. A mixture Gaussian distribution (MGD) was used to learn the
model over normal data.Based on the parameters of this distribu-
tion, any upcoming transaction is classified as normal or anomalous.
In addition, Principal Component Analysis (PCA), which is an unsu-
pervised machine learning technique, was used for dimensionality
reduction. The performance of proposed method was compared
with one-class classification (OCC) by using only the normal data.
OCC creates a decision boundary on the normal data so that any
new transaction on the dataset could be detected whether it is an
anomaly or not. The proposed method was also compared with
Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP).
Overall, the study reported has a good F1 score. The proposed ap-
proach has better time complexity than when using SVM and MLP
while lower than OCC on training data. It performed better than
all of the aforementioned approaches on test data.

8.1.4 Density-based clustering. Density-based clustering works on
the principle that higher density data areas need to be separated
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Figure 4: Unsupervised Learning

from the rest of the data. Doing so helps in removing noise and in the
creation of a decision boundary. Density-based spatial clustering of
applications with noise (DBSCAN) is a well-known density-based
clustering technique [42]. It works on the principle of “Density-
reachability" using a distance threshold. DBSCAN was used in [32]
for anomaly detection in temperature data. Its performance was
compared against statistical approaches and several advantages
observed in anomaly detection. Likewise, DBSCAN-OD, a variant of
DBSCAN for outlier detection, was proposed in [1] for applications
with noise. It was able to detect outliers with an accuracy of 99% in
simulations.

8.1.5 Grid-based clustering. Grid-based clustering is used in multi-
dimensional datasets [3]. A grid structure is created in this tech-
nique and clusters are formed by traversing each cell in the grid
based on the threshold density. Grid-based clustering was used
in [215] for anomaly detection. They evaluated the system using
the Kyoto2006+ and the KDD Cup 1999 datasets. False Positive
rate of the proposed algorithm was better than the Song based
K-means [179], Song based One-Class SVM [180], Y-means [64], k-
means [116], and Li [101]. To partition high dimensional and large
data space, a grid-based algorithm was proposed in [197]. The algo-
rithm works in two phases. Firstly, it creates the non-overlapping
d-dimensional cells using the domain space followed by partition-
based clustering. The proposed approach led to a high detection
rate and a relatively low false-positive rate.

8.1.6 Association Rule Mining. ARM[4] is a rule-based machine
learning technique used to uncover relationships in databases. Tra-
ditionally, it was used for market basket analysis. It has several
applications such as predicting customer behavior, product cluster-
ing, web usage mining, catalog design, store layout, bioinformatics,
and intrusion detection.

ARMworks on the principle of Support and Confidence. Support
is calculated using the itemset. An itemset is a set of values of one
or more attributes. Itemsets that meet the support threshold are
called as frequent itemsets. Support for an item set 𝐴 in 𝐷 can be
defined as the proportion of examples (rows, or transactions) 𝑒 in

the dataset that contains 𝐴. Formally, it can be defined as follows:

𝑆 (𝐴) = |𝑒∈𝐷 ;𝐴∈𝑒 |
|𝐷 | (1)

Confidence is the proportion of rules that contain both the an-
tecedent and the consequent. It measures the frequency of the rule
w.r.t. the antecedent. The confidence of 𝑋 =⇒ 𝑌 can be defined
as follows:

𝐶 (𝑋 =⇒ 𝑌 ) = 𝑆 (𝑋∪𝑌 )
𝑆 (𝑋 ) . (2)

Frequent itemsets are partitioned in one or more ways to gen-
erate rule such as 𝑋 =⇒ 𝑌 , where 𝑋 is antecedent, and 𝑌 the
consequent. Rules that satisfy the confidence threshold are qualified
for the final set of association rules.

ARM was used in [84] to determine the critical system state for
the intrusion detection system using the Apriori algorithm. At the
same time, it also incorporated the expert opinion for the iden-
tification of critical states. The expert opinion was used in each
iteration to reduce the number of candidates in the following itera-
tion. ARM was also used in [146] to generate invariants for a water
treatment plant using the Apriori algorithm. This was a preliminary
work to discuss the effectiveness of ARM as a proof of concept. It
only mined the rules, or invariants, for pairwise sensors/actuators.
Secondly, the accuracy of the proposed approach was not effec-
tive for practical implementation due to False Positives and False
Negatives. Subsequently in [8, 190, 191] invariants were mined
on the same plant using the FP-Growth algorithm. The approach
succeeded in mining a more exhaustive set of invariants including
local and global invariants. Here, “local" refers to within a process
and “global" to inter-process invariants. The invariants mined are
available at [77]. The invariants were also placed a monitors for dis-
tributed attack detection in the plant. The accuracy of the proposed
approach was promising considering that the implementation was
on an operational plant.

8.2 Deep Learning Based Unsupervised
Learning Approaches

There exist several unsupervised deep learning approaches though
only a few studies have been reported for securing ICS. Events
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Table 7: Summary of Intrusion Detection in CPS using Unsupervised Learning techniques

Work Domain Audit
Material Complexity Algorithms Feature

Selection
Time
Series Dataset Data

Type
Data

Available Metrics

[111] Annon Network Simple k-means, and
SVM No Yes Annon Actual No ADR, and

Accuracy
[146] Water Physical Simple Apriori No Yes SWaT Actual Yes Accuracy
[135,
136]

Gas, and
Water Physical Simple OCSVM No No MSU Actual Yes Accuracy

[92] HVAC Hybrid Simple BN No No Annon Actual No Accuracy
[119,
120]

Printed In-
telligence Network Hybrid SOM No No PrintoCent Actual No None

[9] Energy Physical Simple
IF, PCA,

SVM,k-NN, NB,
and MLP

No Annon SE-MF Actual No Accuracy,
and F1 score

[13] Water Network Simple k-means, and
LOF Yes Yes Annon Actual No PLC Scan

Time

[151] Annon
Network,

and
Physical

Hybrid k-NN, SVM,
SVR, and AR Yes Yes Annon Actual No SR, and

NFAR

[109] Water Network Simple NN Yes Yes Annon Actual No Recall, and
FPR

[84] Water Physical Simple Apriori No No Annon Actual No Accuracy

[66] Annon Network Simple

PAYL,
POSEIDON,
Anagram,
McPAD

No No Annon Actual No FPR, and DR

[173] Annon Network Simple Multi Hop
Clustering No No Annon Simulated No DR

[99] Aviation,
and Robots Network Hybrid Statistical No No Annon Simulated No

% of Devient
Nodes for

convergence

[97] Energy Network Simple Statistical No No Korean
substation Actual No

Precision,
Recall, F1
score, FPR,
and FNR

[165] Energy Network Hybrid Bayesian No Yes

American
University
of Beirut
power
plant

Actual No Accuracy,
and FP

[134] Gas Physical Simple OCSVM No No MSU Actual Yes Accuracy
[8, 190,
191] Water Physical Simple FP-growth Yes Yes SWaT Actual Yes Accuracy

[27] Energy Physical Simple k-means No Yes

PeCanStreet
Project, and
Irish Social
Science
Data

Archive

Actual Yes Accuracy

[40] SCADA Network Simple Statistical No No AUT09 Actual No DR, and FP

[205] SCADA Hybrid Simple Statistical Yes Yes Annon Simulated No Detection
Diagrams

[117] SCADA Network Simple OCSVM No No Annon Actual No Accuracy
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Figure 5: Semi-Supervised Learning

originating between the application layer to the kernel layer get
recorded in system logs and traces. These logs and traces are help-
ful in monitoring the performance of any system and are useful
for anomaly detection. However, these traces and logs are gen-
erally large in a real-time system, and therefore online anomaly
detection remains a challenge for such systems. A deep recursive
attentive model (DReAM) was proposed in [43] to detect anom-
alies through temporal information of the system using execution
sequences. DReAM works on two components, namely, the unsu-
pervised recurrent neural network predictor and the supervised
clustering classifier. Similarly, Mobile Edge Computing (MEC) aims
to do intensive computation at the edge networks. This has led to
an increase in traffic of transportation networks and the key secu-
rity issues as well. Therefore, a DL-based framework was proposed
in [36] using DBN to learn the model. Its performance was com-
pared with traditional ML-based algorithms. The proposed method
was able to detect attacks with acceptable accuracy, but with higher
time complexity thus rendering it unsuitable for streaming data. DL-
based clustering techniques are further discussed in the following
subsections.

8.2.1 Autoencoder based deep clustering. Autoencoder (AE) is a
type of ANN that works in an unsupervised manner to learn ef-
ficient data encodings [89]. It first learns the representation, i.e.,
encoding from data and then used for dimensionality reduction. It
thus trains the network to ignore noise. It tries to learn a representa-
tion close enough to the original input while minimizing the recon-
struction loss. There are several AE-based deep clustering methods
including Deep Clustering Network (DCN) [204], Deep Embedding
Network (DEN) [71], Deep Subspace Clustering Networks (DSC-
Nets) [153], Deep Multi-Manifold Clustering (DMC) [33], Deep Em-
bedded Regularized Clustering (DEPICT) [58], and Deep Continu-
ous Clustering (DCC) [167].

8.2.2 Clustering Deep Neural Network (CDNN). This method trains
the model primarily on clustering loss. Therefore, if reconstruction
loss is not properly designed, then it may lead to a corrupted feature
space. Based on network initialization, it can be classified into unsu-
pervised pre-trained, supervised pre-trained, and non-pre-trained
network [126].

8.2.3 Variational Autoencoder (VAE)-based deep clustering. In VAE,
the latent code of AE is bound to follow a predefined distribution.
It is a combination of Bayesian methods [126]. It can use stochastic
gradient descent [29] and standard backpropagation [70] to opti-
mize the variational inference.

8.2.4 Generative Adversarial Network (GAN)-based deep cluster-
ing. GAN-based clustering works on the principle of the min-max
adversarial game. Two types of networks are used, namely, gener-
ative and discriminative [126]. The generative network attempts
to map a sample from prior distribution to data space whereas
the discriminative network maps the input as a real sample of
the distribution by computing the probability. There are various
GAN-based deep clustering algorithms including Deep Adversarial
Clustering (DAC) [68], Categorical Generative Adversarial Network
(CatGAN) [181], and Information Maximizing Generative Adver-
sarial Network (InfoGAN) [34].

9 SEMI-SUPERVISED LEARNING
Semi-Supervised Learning (SSL) uses both the labeled and unlabeled
data for training of the model, one way of doing SSL is described
in Figure 5. In the first phase, the model is trained using the labeled
data as in supervised learning. In the second phase, it assigns the
labels to the unlabeled data using the model trained in the earlier
phase. In the third phase, both the initially given labeled data and
the newly assigned labeled data are used for training the model.
The following assumptions are made to label the unlabeled data.
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Figure 6: Reinforcement Learning

9.1 Continuity assumption
This assumption works on the principle that points closer to each
other are likely to share the same label. This assumption is also
used in SL to create decision boundaries. In SSL, this assumption
prefers decision boundaries that are in lower density regions. Thus,
it is possible that some points are close to each other but may lie in
different classes.

9.2 Cluster assumption
This assumption considers that data points are scattered across
clusters. The data points present in the same cluster should share
the same label.

9.3 Manifold assumption
In this assumption data points lie on a manifold of a lower dimen-
sion as compared to the input space. This assumption can eliminate
the curse of dimensionality if the manifold is learned using both
labeled and unlabeled data. Further learning can be done using
distances and densities set out on manifold.

SSL approaches are worth exploring. They have exhibited perfor-
mance better than supervised and unsupervised approaches when
the size of labeled data is relatively small [38, 81, 114]. A study re-
ported in [72] proposed a model to extract the behavioral patterns
of malware using semi-supervised and unsupervised machine learn-
ing techniques. SSL was used in [73] to automatically update the
attack detection system of CPS using the unlabeled malware data.
At the first stage, it captures malware patterns from unlabeled data
using UL. Then, this information is used by the classification system
of the detection engine. The proposed approach used the k-means
for clustering and SVM for classification. SSL is also used for fault
detection as in [212] using Local Linear Embedding (LLE). LLE is
usually used for fault detection in ICS. It only preserves the local
information of the structure while ignores the global properties of
data. The proposed approach integrated SSL into LLE to utilize the
labeled data. The studies reported in [51, 186, 193] have shown that
semi-supervised approaches can perform better than supervised
and unsupervised approaches for conventional network intrusion
detection, but these studies are yet to make their way through to
IDS for ICS.

10 REINFORCEMENT LEARNING
Reinforcement Learning (RL) is significantly different from other
ML techniques. In RL there exist three main components of the
learning system, namely, an Agent, the Environment, and Reward.
As illustrated in Figure 6, an agent performs an action in the envi-
ronment for which it receives reward, which could be positive or
negative. This way the agent learns in the environment. RL does not
require a dataset for learning as required in other ML techniques.
Some commonly used RL algorithms are introduced next.

10.1 Temporal difference (TD) learning
TD is a model-free learning algorithm. The model is learned using
bootstrapping done using the current estimate of the value func-
tion. Methods are sampled from the environment and updates are
performed based on the current estimate [185].

10.2 State–action–reward–state–action
(SARSA)

SARSA learns using a Markov Decision Process. It performs actions
on the environment and updates its policy based on the reward
received against those actions. Initial conditions, learning rate, and
discount factor are the hyper-parameters of the algorithm.

10.3 Q-learning
Q-learning is also a model-free algorithm and does not require
a model of the environment. It lets the agent learn a policy to
perform an action based on different circumstances. It does not
require adaptations because of stochastic transitions and rewards.

RL was used in [144] for intrusion detection in a simulated Wire-
less Sensor Network (WSN) environment. The authors also com-
pared their work with adaptive ML-based IDS. RL-based IDS per-
formed better than other ML-based IDS. A model-free based RL
approach was proposed in [96] for anomaly detection in the smart
grid. They proposed an RL based solution to the Partially Observ-
able Markov Decision Process (POMDP) problem. For the optimal
defense of CPS in [45], the problem was formulated as a two-player
zero-sum game. Deep RL was used to tune the actor-critic Neural
Network structure. Likewise in [150], a multi-agent general sum
game was used to model the attack problem. RL was used to find
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the optimal solution for prevention actions and the associated costs.
A proof-of-concept was provided by simulating a subsystem of
the ATENA controller [18]. Q-Learning based vulnerability assess-
ment of smart grid is reported in [202] where sequential topological
attacks were the targets. Using Q-Learning, an attacker can cause se-
vere damage to a plant. The effectiveness of the proposed approach
was demonstrated using IEEE 5-bus, RTS-79, and IEEE 300-bus
systems-based simulation results. RL was also used in [113] for
anomaly detection in Unmanned Aerial Vehicle (UAV). It recorded
the temperature of the motor using sensors and used a Raspberry
Pi based processing unit to observe the anomalous behavior of the
motor.

11 MAJOR CHALLENGES AND
RECOMMENDATIONS FOR IDS IN ICS

11.1 Adversarial Machine Learning for IDS
Machine learning is being used for intrusion detection, at the same
time Adversarial machine learning is being used to counter its bene-
fits. For example, in [217] LSTM was used to train the model on the
normal data from a real-world ICS and its performance tested on
attack data. Further, the adaptive attacks were performed to deteri-
orate the performance of the machine learning classifier. Machine
Learning as a service (MLaas) is also gaining popularity in cloud-
based services. They typically use deep neural networks (DNN)
for different predictive models. Now they have become vulnerable
to different adversarial attacks. In this case, the adversary try to
steal the model by querying the Application Programming Inter-
face (API). For example a study proposed in [207] used an attack
methodology to extract the DNN models from various cloud-based
platforms. For this purpose, they used various algorithms including
active and transfer learning. Similarly, [107] used composite attacks
using Trojan triggers to disrupt the performance of DNN model.
Their Trojan triggers were composed of benign features of multiple
labels. The model misclassifies the output when input is stamped
with Trojan trigger.

There are some studies which have tried to tackle this challenge
but still more work needs to be done. For example, [211] used
the zero knowledge proofs for decision tree. They reported their
accuracy and predictions on public dataset without leaking any
information about the model. Using the proposed study a decision
tree having depth of 23 levels and 1029 number of nodes can gen-
erate the zero knowledge proofs in 250 seconds. Likewise, [104]
used simple and smaller pre-trained neural network models for
the verification of DNN-based systems and to protect them against
adversarial attacks. We believe that these types of approaches could
be useful for defending the adversarial attacks on machine learning
models.

11.2 Lack of Attack Patterns and its Mitigation
in ICS

It is difficult to produce an exhaustive dictionary of attack signature
in complex physical processes in ICS. Therefore it becomes difficult
to detect zero-day attacks. For example, the model proposed in [137]
is robust and fast as it does not require training on new input data.

However, as it generates signatures using only the available mal-
ware processes, it could be prone to zero-day attacks. The study
reported in [189] used the unsupervised machine learning approach
to generate attacks for a real-world ICS. They used association rule
mining to generate attack patterns. Normally, Supervised learning
approaches lacks attack data, therefore the study reported in [189]
could be beneficial for making robust supervised learning-based
IDS. Moreover, it can also be useful for signature-based approaches
for IDS, as it automatically generates the signatures using the at-
tacked data on real-world ICS. Cyber-attacks were modeled as
timed-automaton in [183] for SWaT [121]. This model was used
as a baseline to create a number of cyber-attacks using mutation.
Though all the created attacks may not be actual attacks but it seems
to be a good strategy to defend against zero-day attacks because
of the comprehensive attack dictionary created by the proposed
approach. Similarly, a study reported in [78] used a gradient-based
attack scheme to generate attacks for real-world ICS. Through their
approach they mislead the RNN based anomaly detector of two
real-world ICS namely SWaT [121] and WADI [7].

11.3 Aging and Complexity of the Physical
Systems in ICS

There are serious issues related to the aging and complexity of
the physical systems while dealing with specification-based ap-
proach. There could be inaccuracies in the operational manuals,
and interpretation of the process behavior. Though behavior-based
approach is favoured against incorrect vendor specifications due to
its dependability on empirical data but there are issues of detecting
zero-day attacks, ensuring an acceptable rate of false alarms, and
managing computational complexity

11.4 Heterogeneity among Physical Processes
in ICS

There exists a heterogeneous behavior among physical processes
of an ICS because components, size, and functionality of each pro-
cess is different from others [77, 121]. Therefore it is a challenge to
detect attacks in the heterogeneous physical processes controlled
by an ICS. For example, SWaT testbed [77] which is an industrial
scaled-down replica of a water treatment plant has different six
stages. Here attack on one stage can disrupt the processes of other
stages as well. So developing a model which can capture the behav-
ior of heterogeneous physical processes is still a major challenge.
Though IDS based on physical process have received relatively little
attention but now there is a growing trend to detect intrusion at
the physical process level.

11.5 Inherent Class Imbalance Nature of IDS
Behavior-based approaches suffer from skewed class problems.
Here most of the data belongs only to a single class (normal be-
havior). Any naive classifier that labels each instance as normal
will get a higher accuracy. Therefore, accuracy is not enough to
assess the performance of IDS. It is also important to note that
acceptable values of the metrics discussed in section 5.7 might still
not make an IDS suitable for deployment in an operational plant.
As an example, consider accuracy. A high accuracy can be obtained
by having high values of TP and TN and relatively lower values of
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FP and FN. However, suppose that accuracy is high, lets say, 99%,
but the number of false positives (FP) per day is, say, 50. Such an
IDS would likely be not used in an operational plant. Thus, it is
recommended that in addition to reporting one or more metrics
mentioned above, FP must also be reported to assess how well an
IDS would perform when deployed in a constantly running plant.

11.6 Stealthy Attacks on ICS
If the attacker has deep insights of the system then it would be
vulnerable to stealthy attacks. These types of attacks gradually
disrupt the performance of the operational plant. Though there are
a number of studies on this issue but the detection of these attacks is
still a major challenge. For example, a study proposed in [184] used
the Profile-DNS for detecting the stealthy attacks by characterizing
the expected DNS behavior. Likewise, [128] used VMshield for
securing the cloud platforms against the stealthy attacks. They did
feature selection using meta-heuristic , and binary particle swarm
optimization (BPSO) algorithms. They used Random Forest for the
classification of malicious and benign processes.

11.7 Association Rule Mining for IDS
Most of the reported ML-based intrusion detection work in ICS
uses SL approaches while there exists only a sprinkling of work
using UL approaches. Particularly, only a few studies have reported
the use of an ARM-based UL approach for intrusion detection in
ICS [84, 146, 190, 191]. Despite this, there remain gaps that need to
be filled. For example, all the studies reported in [84, 146, 190, 191]
used data from an ICS controlling a water plant. Though, [191]
practically implemented the ARM-approach in an operational plant
with promising results, the same approach needs to be tested on
other ICS used in systems such as the smart grid and gas plants.
Moreover, [191] used a time series data but used the FP-Growth
algorithm to mine the rules. FP-Growth is time agnostic, therefore
could be promising to use Temporal Association Rule Mining [106]
for that purpose.

11.8 Deep Learning for IDS
Deep learning can be an effective approach for detecting anom-
alies in ICS-controlled plants. It can automatically generate features
based on the physical dynamics of each ICS. Some studies reported
the use of DL to secure ICS as discussed in section 7.2 and 8.2 most
of which are SL approaches. There exist only a few studies [36, 43]
where the UL approach is used. There are several DL-based cluster-
ing techniques as discussed in section 8.2 that need to be explored
for securing the ICS. However, higher time complexity possesses a
great challenge for their application in real-time systems, such as
ICS.

11.9 Agent-based Learning for Securing ICS
Reinforcement Learning which works on the basis of agent and
environment interaction is the least explored area for securing
ICS. Though there are a few studies reported in the literature as
discussed in section 10. However, considering the dynamic nature
of ICS in different domains including smart grids, water, gas, etc, RL
appears a promising avenue to explore and implement in various
domains.

11.10 Zero-shot Learning for Resilience against
Zero-day Attacks

Apart from the ones mentioned above, there are other promising
ML approaches that need to be explored for intrusion detection in
ICS. Zero-shot learning [163, 175] is one such promising approach
for detecting zero-day attacks. Domain adaptation can help learn
an IDS for one ICS using data of some other ICS. Lastly, distribution
shift techniques can be explored for making the model adapt to the
changing behavior of the system with time. The above-mentioned
approaches remain to be explored in depth to effectively solve the
problem of intrusion detection.

11.11 Comparative Analysis of Behavior-based
Approach with Specification and
Signature-based Approach for IDS

Even though some studies compare various ML algorithms on their
dataset, we were not able to find a comparison with the specifi-
cation or signature-based techniques except in [190, 191] where
the behavior-based approach was compared with the specification
based approach. A comparison of the three types of approaches
needs to be conducted on the same dataset under similar assump-
tions to gain a better understanding of their effectiveness in detect-
ing cyber-attacks.

11.12 Need of Comprehensive Evaluation
Metrics for Real-world ICS

Several studies have reported only a few metrics such as either
accuracy (or error rate/graphs) or detection rates as discussed in
section 5.7. Reporting only one or two performance metrics for
a skewed class problem is not sufficient, more than one of the
following metrics should be used: accuracy, precision, recall, F-
measure, ROC, and AUC. Only a few studies have reported AUC or
ROC despite the fact that these are more appropriate measure of
classifier performance in IDS. Secondly, there is little focus in the
literature to report the time to detect an attack or the percentage
detection of an attack over the duration for which it lasts. The use
of these measures should be made more prevalent.

11.13 Multi-layered Defense for IDS
A majority of the approaches focus on detecting intrusion at the
network layer. After all, this is the first line of defense of an ICS,
though often easier to breach as many ICS are using ready-made
industrial protocols, and due to insider threats. Once breached,
detecting intrusions in the physical layer improves the chances
of avoiding plant damage or service disruption. Detecting cyber-
attacks at this layer would be more promising as each ICS is unique
and to be successful, the attacker would require a knowledge of the
physical dynamics of that particular ICS. Therefore more attention
seems necessary in developing IDS for the physical layer consisting
of at least a few dozen sensors and actuator attributes. We believe
that the final solution lies in a multi-layered defense, a network
IDS followed by a physical process IDS.
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11.14 Root Cause Isolation for IDS
While detecting a cyber-attack launched by an intruder is the pri-
mary goal of an IDS, detecting the nature and location of the ongo-
ing attack, and taking further actions, remain crucial to steps. Only
one work [92] has reported root cause isolation. Lastly, few stud-
ies have modeled the problem as a time series problem, whereas,
many ICS repeat the same operations over and over again. More
approaches are needed to address these issues.

12 CONCLUSION
ICS are critical for the economy and infrastructure of any country
and hence ought to be protected against cyber-adversaries. These
adversaries could be hackers, enemy states, and displeased employ-
ees, etc. Therefore securing an ICS from cyber-attacks is one of the
prime concerns for governments and organizations. Behavior-based
approaches such as machine learning, deep learning, and statisti-
cal approaches for intrusion detection, are gaining attention. They
can be automated, several scale well, and can be generalized and
are becoming affordable to apply because of cheaper and widely
available computational power. Thus, this survey focuses on liter-
ature to consolidate the work on behavior-based approaches for
IDS in ICS, categorizes them, identifies gaps, and proposes future
research directions. This area This area is in a need of a high fidelity
benchmark dataset. There is room to apply the newly developed ML
techniques and compare them with the specification and signature-
based approaches, especially for the physical process controlled
by an ICS. Time series modeling of the problem and the use of
new metrics is also required. All in all, ML and DL approaches are
promising techniques for the detection of cyber-attacks in both the
network and physical process layer of an ICS, though there is room
for improvement.

ACKNOWLEDGEMENTS
The authors acknowledge the time and efforts made by Mr. Bilal
Hayat Butt for providing valuable suggestions and feedback on the
survey.

REFERENCES
[1] Aymen Abid, Abdennaceur Kachouri, and Adel Mahfoudhi. 2017. Outlier detec-

tion for wireless sensor networks using density-based clustering approach. IET
Wireless Sensor Systems 7, 4 (2017), 83–90.

[2] Sridhar Adepu and Aditya Mathur. 2016. Using Process Invariants to Detect
Cyber Attacks on a Water Treatment System. In ICT Systems Security and Pri-
vacy Protection, Jaap-Henk Hoepman and Stefan Katzenbeisser (Eds.). Springer
International Publishing, Cham, 91–104.

[3] Charu C. Aggarwal and Chandan K. Reddy. 2013. Data Clustering: Algorithms
and Applications (1st ed.). Chapman &amp; Hall/CRC.

[4] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Association
Rules between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993),
207–216. https://doi.org/10.1145/170036.170072

[5] Iftikhar Ahmad, Muhammad Hussain, Abdullah Alghamdi, and Abdulhameed
Alelaiwi. 2014. Enhancing SVM performance in intrusion detection using
optimal feature subset selection based on genetic principal components. Neural
Computing and Applications 24, 7-8 (2014), 1671–1682.

[6] Chuadhry Mujeeb Ahmed, Martin Ochoa, Jianying Zhou, Aditya P. Mathur,
Rizwan Qadeer, Carlos Murguia, and Justin Ruths. 2018. <i>NoisePrint</i>:
Attack Detection Using Sensor and Process Noise Fingerprint in Cyber Physi-
cal Systems. In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security (Incheon, Republic of Korea) (ASIACCS ’18). As-
sociation for Computing Machinery, New York, NY, USA, 483–497. https:
//doi.org/10.1145/3196494.3196532

[7] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P. Mathur. 2017.
WADI: AWater Distribution Testbed for Research in the Design of Secure Cyber

Physical Systems. In CysWater. ACM, NY, USA. http://doi.acm.org/10.1145/
3055366.3055375

[8] Chuadhry Mujeeb Ahmed, Muhammad Azmi Umer, Beebi Siti Salimah Binte
Liyakkathali, Muhammad Taha Jilani, and Jianying Zhou. 2021. Machine Learn-
ing for CPS Security: Applications, Challenges and Recommendations. In Ma-
chine Intelligence and Big Data Analytics for Cybersecurity Applications. Springer,
397–421.

[9] Saeed Ahmed, YoungDoo Lee, Seung-Ho Hyun, and Insoo Koo. 2019. Unsuper-
vised Machine Learning-Based Detection of Covert Data Integrity Assault in
Smart Grid Networks Utilizing Isolation Forest. IEEE Transactions on Information
Forensics and Security 14, 10 (2019), 2765–2777.

[10] Omar Al-Jarrah and Ahmad Arafat. 2015. Network Intrusion Detection System
Using Neural Network Classification of Attack Behavior. Journal of Advances
in Information Technology Vol 6, 1 (2015), 1–8.

[11] M. Alabadi and Z. Albayrak. 2020. Q-Learning for Securing Cyber-Physical Sys-
tems : A survey. In 2020 International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA). IEEE, 1–13.

[12] A. M. Aleesa, B. B. Zaidan, A. A. Zaidan, and Nan M. Sahar. 2020. Review
of intrusion detection systems based on deep learning techniques: coherent
taxonomy, challenges, motivations, recommendations, substantial analysis and
future directions. Neural Comput. Appl. 32, 14 (2020), 9827–9858. https://doi.
org/10.1007/s00521-019-04557-3

[13] Thiago Alves, Rishabh Das, and Thomas Morris. 2018. Embedding encryption
and machine learning intrusion prevention systems on programmable logic
controllers. IEEE Embedded Systems Letters 10, 3 (2018), 99–102.

[14] Hussam Amrouch, Prashanth Krishnamurthy, Naman Patel, Jörg Henkel,
Ramesh Karri, and Farshad Khorrami. 2017. Emerging (un-) reliability based
security threats and mitigations for embedded systems: Special session. In Pro-
ceedings of the 2017 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems Companion. IEEE, 1–10.

[15] Tiranuch Anantvalee and Jie Wu. 2007. A survey on intrusion detection in
mobile ad hoc networks. In Wireless Network Security. Springer, 159–180.

[16] Eirini Anthi, Lowri Williams, Małgorzata Słowińska, George Theodorakopoulos,
and Pete Burnap. 2019. A Supervised Intrusion Detection System for Smart
Home IoT Devices. IEEE Internet of Things Journal 6, 5 (2019), 9042–9053.

[17] V Ariharan, Subha P Eswaran, Srinivasarao Vempati, and Naveed Anjum. 2019.
Machine Learning Quorum Decider (MLQD) for Large Scale IoT Deployments.
Procedia Computer Science 151 (2019), 959–964.

[18] AUBIGNY. 2017. A. Consortium, "ATENA website". https://www.atena-
h2020.eu/.

[19] Stefan Axelsson. 2000. Intrusion detection systems: A survey and taxonomy. Tech-
nical Report. Technical report Chalmers University of Technology, Goteborg,
Sweden.

[20] Radhakisan Baheti and Helen Gill. 2011. Cyber-physical systems. The impact of
control technology 12, 1 (2011), 161–166.

[21] José Barbosa, Paulo Leitão, Damien Trentesaux, Armando W Colombo, and
Stamatis Karnouskos. 2016. Cross benefits from cyber-physical systems and
intelligent products for future smart industries. In 2016 IEEE 14th International
Conference on Industrial Informatics (INDIN). IEEE, 504–509.

[22] Stephen D Bay, Dennis Kibler, Michael J Pazzani, and Padhraic Smyth. 2000. The
UCI KDD archive of large data sets for datamining research and experimentation.
ACM SIGKDD Explorations Newsletter 2, 2 (2000), 81–85.

[23] Justin M Beaver, Raymond C Borges-Hink, and Mark A Buckner. 2013. An
evaluation of machine learning methods to detect malicious SCADA communi-
cations. In Machine Learning and Applications (ICMLA), 2013 12th International
Conference on, Vol. 2. IEEE, 54–59.

[24] R. Berthier and W. H. Sanders. 2011. Specification-Based Intrusion Detection for
Advanced Metering Infrastructures. In 2011 IEEE 17th Pacific Rim International
Symposium on Dependable Computing. 184–193.

[25] Robin Berthier and William H Sanders. 2011. Specification-based intrusion
detection for advanced metering infrastructures. In Dependable Computing
(PRDC), 2011 IEEE 17th Pacific Rim International Symposium on. IEEE, 184–193.

[26] Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and
Nader Meskin. 2020. Cybersecurity for industrial control systems: A survey.
Computers & Security 89 (2020), 101677. https://doi.org/10.1016/j.cose.2019.
101677

[27] Shameek Bhattacharjee, Aditya Thakur, and Sajal K. Das. 2018. Towards
Fast and Semi-Supervised Identification of Smart Meters Launching Data
Falsification Attacks. In Proceedings of the 2018 on Asia Conference on Com-
puter and Communications Security (Incheon, Republic of Korea) (ASIACCS
’18). Association for Computing Machinery, New York, NY, USA, 173–185.
https://doi.org/10.1145/3196494.3196551

[28] Raymond C Borges Hink, Justin M Beaver, Mark A Buckner, Tommy Morris,
Uttam Adhikari, and Shengyi Pan. 2014. Machine learning for power system
disturbance and cyber-attack discrimination. In Resilient Control Systems (ISRCS),
2014 7th International Symposium on. IEEE, 1–8.

[29] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010. Springer, 177–186.

https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/3196494.3196532
https://doi.org/10.1145/3196494.3196532
http://doi.acm.org/10.1145/3055366.3055375
http://doi.acm.org/10.1145/3055366.3055375
https://doi.org/10.1007/s00521-019-04557-3
https://doi.org/10.1007/s00521-019-04557-3
https://www.atena-h2020.eu/
https://www.atena-h2020.eu/
https://doi.org/10.1016/j.cose.2019.101677
https://doi.org/10.1016/j.cose.2019.101677
https://doi.org/10.1145/3196494.3196551


Machine Learning for Intrusion Detection in Industrial Control Systems , ,

Table 8: Abbreviations used in the survey.∗Terms in bold are used in machine learning literature.

Term∗ Expansion
AE Autoencoder
AMI Advanced Metering Infrastructure
ANN Artificial Neural Networks
ARM Association Rule Mining
AUC Area Under ROC
BACnet Building Automation Control Network
BayesLR Bayes Logistic Regression
BayesNet Bayes Network
BFTree Best First Tree
CatGAN Categorical Generative Adversarial Network
CDNN Clustering Deep Neural Network
CNN Convolutional Neural Networks
CPS Cyber-Physical System
DAC Deep Adversarial Clustering
DBN Deep Belief Networks Decision Process
DCC Deep Continuous Clustering
DEN Deep Embedding Network
DEPICT Deep Embedded Regularized Clustering
DL Deep learning
DMC Deep Multi-Manifold Clustering
DNP3 Distributed Network Protocol 3
DReAM Deep Recursive Attentive Model
DSC-Nets Deep Subspace Clustering Networks
FN False Negative
FP False Positive
GAN Generative Adversarial Network
ICMP Internet Control Message Protocol
ICS Industrial Control Systems
IDS Intrusion Detection System
InfoGAN Information Maximizing Generative Adversarial Net-

work
ML machine learning
LAN Local Area Network

Term∗ Expansion
LDA Linear Discriminent Analysis
LLE Local Linear Embedding
LR Logistic Regression
LSTM Long-Short Term Memory
MLP Multi-Layer Perceptron
NB Naive Bayes
NNGE Non-Nested Generalized Exemplers
OCC One-Class Classification
OneR One Rule
PLC Programmable Logic Controller
PMU Phasor Management Unit
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
RF Random Forest
RNN Recurrent Neural Networks
ROC Receiver Operating Characteristic
SAE Stacked Autoencoder
SARSA State–action–reward–state–action
SCADA Supervisory Control and data Acquisition System
SL Supervised Learning
SOM Self-Organizing Maps
SVM Support Vector Machine
SSL Semi-Supervised Learning
TCP Transmission Control Protocol
TD Temporal difference
TP, TPR True Positive, True Positive Rate
TN True Negative
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UL Unsupervised Learning
VAE Variational Autoencoder

[30] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[31] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen

Huang, and Shankar Sastry. 2011. Attacks against Process Control Systems: Risk
Assessment, Detection, and Response. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security (Hong Kong, China)
(ASIACCS ’11). Association for Computing Machinery, New York, NY, USA,
355–366. https://doi.org/10.1145/1966913.1966959

[32] Mete Çelik, Filiz Dadaşer-Çelik, and Ahmet Şakir Dokuz. 2011. Anomaly detec-
tion in temperature data using dbscan algorithm. In 2011 International Sympo-
sium on Innovations in Intelligent Systems and Applications. IEEE, 91–95.

[33] Dongdong Chen, Jiancheng Lv, and Yi Zhang. 2017. Unsupervised multi-
manifold clustering by learning deep representation. In Workshops at the thirty-
first AAAI conference on artificial intelligence. AAAI.

[34] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. 2016. InfoGAN: Interpretable Representation Learning by Information
Maximizing Generative Adversarial Nets. In Proceedings of the 30th International
Conference on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16).
Curran Associates Inc., Red Hook, NY, USA, 2180–2188.

[35] You Chen, Yang Li, Xue-Qi Cheng, and Li Guo. 2006. Survey and taxonomy
of feature selection algorithms in intrusion detection system. In Information
security and cryptology. Springer, 153–167.

[36] Yuanfang Chen, Yan Zhang, Sabita Maharjan, Muhammad Alam, and Ting
Wu. 2019. Deep learning for secure mobile edge computing in cyber-physical
transportation systems. IEEE Network 33, 4 (2019), 36–41.

[37] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner,
and Alfonso Valdes. 2007. Using model-based intrusion detection for SCADA
networks. In Proceedings of the SCADA security scientific symposium, Vol. 46.
Citeseer, 1–12.

[38] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. 2012. Decision forests:
A unified framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends® in Computer
Graphics and Vision 7, 2–3 (2012), 81–227.

[39] Konstantinos Demertzis, Lazaros Iliadis, and Ilias Bougoudis. 2019. Gryphon: a
semi-supervised anomaly detection system based on one-class evolving spiking
neural network. Neural Computing and Applications (2019), 1–12.

[40] Patrick Düssel, Christian Gehl, Pavel Laskov, Jens-Uwe Bußer, Christof Stör-
mann, and Jan Kästner. 2009. Cyber-critical infrastructure protection using

https://doi.org/10.1145/1966913.1966959


, , Muhammad Azmi Umer, Khurum Nazir Junejo, Muhammad Taha Jilani, and Aditya P. Mathur

real-time payload-based anomaly detection. In Critical Information Infrastruc-
tures Security. Springer, 85–97.

[41] Ibrahim Elgendi, Md Farhad Hossain, Abbas Jamalipour, and Kumudu S Munas-
inghe. 2019. Protecting cyber physical systems using a learned MAPE-K model.
IEEE Access 7 (2019), 90954–90963.

[42] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining (Portland, Oregon) (KDD’96). AAAI Press, 226–231.

[43] Okwudili M Ezeme, Qusay H Mahmoud, and Akramul Azim. 2019. DReAM:
Deep recursive attentive model for anomaly detection in kernel events. IEEE
Access 7 (2019), 18860–18870.

[44] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32. stuxnet dossier.
White paper, Symantec Corp., Security Response 5 (2011).

[45] Ming Feng and Hao Xu. 2017. Deep reinforecement learning based optimal
defense for cyber-physical system in presence of unknown cyber-attack. In 2017
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 1–8.

[46] Zhiwei Feng, Nan Guan, Mingsong Lv, Wenchen Liu, Qingxu Deng, Xue Liu, and
Wang Yi. 2020. Efficient drone hijacking detection using two-step GA-XGBoost.
Journal of Systems Architecture 103 (2020), 101694.

[47] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. 2007. An appli-
cation of recurrent neural networks to discriminative keyword spotting. In
International Conference on Artificial Neural Networks. Springer, 220–229.

[48] S Armina Foroutan and Farzad R Salmasi. 2017. Detection of false data injection
attacks against state estimation in smart grids based on a mixture Gaussian
distribution learning method. IET Cyber-Physical Systems: Theory & Applications
2, 4 (2017), 161–171.

[49] Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian network
classifiers. Machine learning 29, 2-3 (1997), 131–163.

[50] Josh Fruhlinger. 2018. What is WannaCry ransomware, how does it infect, and
who was responsible? https://www.csoonline.com/article/3227906/what-is-
wannacry-ransomware-how-does-it-infect-and-who-was-responsible.html.

[51] Guohong Gao, Guoyi Miao, Jiaxia Sun, and Yafeng Han. 2013. Improved Semi-
supervised Fuzzy Clustering Algorithm and Application in Effective Intrusion
Detection System. International Journal of Advancements in Computing Technol-
ogy 5, 4 (2013).

[52] Wei Gao, Thomas Morris, Bradley Reaves, and Drew Richey. 2010. On SCADA
control system command and response injection and intrusion detection. In
eCrime Researchers Summit (eCrime), 2010. IEEE, 1–9.

[53] Wei Gao and Thomas H Morris. 2014. On Cyber Attacks and Signature Based
Intrusion Detection for MODBUS Based Industrial Control Systems. Journal of
Digital Forensics, Security and Law 9, 1 (2014), 37–56.

[54] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, sys-
tems and challenges. computers & security 28, 1 (2009), 18–28.

[55] Alexander Genkin, David D Lewis, and David Madigan. 2007. Large-scale
Bayesian logistic regression for text categorization. Technometrics 49, 3 (2007),
291–304.

[56] Hamid Reza Ghaeini, Nils Ole Tippenhauer, and Jianying Zhou. 2019. Zero
Residual Attacks on Industrial Control Systems and Stateful Countermeasures.
In Proceedings of the 14th International Conference on Availability, Reliability
and Security (Canterbury, CA, United Kingdom) (ARES ’19). Association for
Computing Machinery, New York, NY, USA, Article 80, 10 pages. https://doi.
org/10.1145/3339252.3340331

[57] Waheed AHM Ghanem and Aman Jantan. 2019. A new approach for intrusion
detection system based on training multilayer perceptron by using enhanced
Bat algorithm. Neural Computing and Applications (2019), 1–34.

[58] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and
Heng Huang. 2017. Deep clustering via joint convolutional autoencoder embed-
ding and relative entropy minimization. In Proceedings of the IEEE international
conference on computer vision. IEEE, 5736–5745.

[59] Tyler Giallanza, Travis Siems, Elena Smith, Erik Gabrielsen, Ian Johnson,
Mitchell A Thornton, and Eric C Larson. 2019. Keyboard Snooping from Mobile
Phone Arrays with Mixed Convolutional and Recurrent Neural Networks. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
3, 2 (2019), 1–22.

[60] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,
Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.
A Survey of Physics-Based Attack Detection in Cyber-Physical Systems. ACM
Comput. Surv. 51, 4, Article 76 (July 2018), 36 pages. https://doi.org/10.1145/
3203245

[61] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. 2016.
A dataset to support research in the design of secure water treatment systems. In
International Conference on Critical Information Infrastructures Security. Springer,
88–99.

[62] GReAT. 2015. The Mystery of Duqu 2.0: a sophisticated cyberespionage actor
returns. https://securelist.com/the-mystery-of-duqu-2-0-a-sophisticated-
cyberespionage-actor-returns/70504/.

[63] GReAT. 2018. Hades, the actor behind Olympic Destroyer is still alive. https:
//securelist.com/olympic-destroyer-is-still-alive/86169/.

[64] Y. Guan, A. A. Ghorbani, and N. Belacel. 2003. Y-means: a clustering method for
intrusion detection. In CCECE 2003 - Canadian Conference on Electrical and Com-
puter Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436),
Vol. 2. 1083–1086 vol.2.

[65] Rachana Ashok Gupta and Mo-Yuen Chow. 2010. Networked control system:
overview and research trends. Industrial Electronics, IEEE Transactions on 57, 7
(2010), 2527–2535.

[66] Dina Hadžiosmanović, Lorenzo Simionato, Damiano Bolzoni, Emmanuele Zam-
bon, and Sandro Etalle. 2012. N-gram against the machine: On the feasibility
of the n-gram network analysis for binary protocols. In Research in Attacks,
Intrusions, and Defenses. Springer, 354–373.

[67] Lida Haghnegahdar and Yong Wang. 2019. A whale optimization algorithm-
trained artificial neural network for smart grid cyber intrusion detection. Neural
Computing and Applications (2019), 1–15.

[68] Warith Harchaoui, Pierre-Alexandre Mattei, and Charles Bouveyron. 2017. Deep
adversarial Gaussian mixture auto-encoder for clustering. In International Con-
ference on Learning Representations. ICLR, Toulon, France.

[69] Md Al Mehedi Hasan, Mohammed Nasser, Biprodip Pal, and Shamim Ahmad.
2014. Support vector machine and random forest modeling for intrusion de-
tection systems. Journal of Intelligent Learning Systems and Applications 2014
(2014), 45–52.

[70] ROBERT HECHT-NIELSEN. 1992. III.3 - Theory of the Backpropagation Neural
Network**Based on “nonindent” by Robert Hecht-Nielsen, which appeared
in Proceedings of the International Joint Conference on Neural Networks 1,
593–611, June 1989. © 1989 IEEE. In Neural Networks for Perception, Harry
Wechsler (Ed.). Academic Press, 65 – 93. https://doi.org/10.1016/B978-0-12-
741252-8.50010-8

[71] Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. 2014. Deep embed-
ding network for clustering. In 2014 22nd International conference on pattern
recognition. IEEE, 1532–1537.

[72] Shamsul Huda, Jemal Abawajy, Baker Al-Rubaie, Lei Pan, and Moham-
mad Mehedi Hassan. 2019. Automatic extraction and integration of behavioural
indicators of malware for protection of cyber–physical networks. Future Gener-
ation Computer Systems 101 (2019), 1247–1258.

[73] Shamsul Huda, Suruz Miah, Mohammad Mehedi Hassan, Rafiqul Islam, John
Yearwood, Majed Alrubaian, and Ahmad Almogren. 2017. Defending unknown
attacks on cyber-physical systems by semi-supervised approach and available
unlabeled data. Information Sciences 379 (2017), 211–228.

[74] Cosimo Ieracitano, Ahsan Adeel, Francesco Carlo Morabito, and Amir Hussain.
2020. A novel statistical analysis and autoencoder driven intelligent intrusion
detection approach. Neurocomputing 387 (2020), 51 – 62. https://doi.org/10.
1016/j.neucom.2019.11.016

[75] INCIBE. 2019. Aurora vulnerability: origin, explanation and solu-
tions. https://www.incibe-cert.es/en/blog/aurora-vulnerability-origin-
explanation-and-solutions.

[76] Jun INOUE, Yoriyuki YAMAGATA, Yufi CHEN, Christopher M. POSKITT, , and
Jun SUN. 2017. Anomaly detection for a water treatment system using unsuper-
vised machine learning. In Proceedings of 17th IEEE International Conference on
Data Mining Workshops ICDMW 2017, 18-21 November. IEEE, New Orleans, LA,
1058–1065.

[77] iTrust. 2015. Dataset and Models. https://itrust.sutd.edu.sg/itrust-labs_datasets/
dataset_info/#swat.

[78] Yifan Jia, Jingyi Wang, Christopher M. Poskitt, Sudipta Chattopadhyay, Jun Sun,
and Yuqi Chen. 2021. Adversarial attacks andmitigation for anomaly detectors of
cyber-physical systems. International Journal of Critical Infrastructure Protection
34 (2021), 100452.

[79] Khurum Nazir Junejo. 2020. Predictive safety assessment for storage tanks of
water cyber physical systems using machine learning. Sādhanā 45, 1 (2020),
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