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Abstract

Owing to the complexity and variability of metagenomic studies, modern machine learning
approaches have seen increased usage to answer a variety of question encompassing the full
range of metagenomic NGS data analysis. We review here the contribution of machine learning
techniques for the field of metagenomics, by presenting known successful approaches in a unified
framework. This review focuses on five important metagenomic problems: OTU-clustering, bin-
ning, taxonomic profling and assignment, comparative metagenomics and gene prediction. For
each of these problems, we identify the most prominent methods, summarize the machine learn-
ing approaches used and put them into perspective of similar methods. We conclude our review
looking further ahead at the challenge posed by the analysis of interactions within microbial
communities and different environments, in a field one could call “integrative metagenomics”.
Keywords: metagenomics, machine learning, OTU-clustering, binning, taxonomic assignment,
comparative metagenomics, gene prediction

1 Introduction

While genomics is the research field relative to the study of the genome of any organism, metage-
nomics is the term for the research that focuses on many genomes at the same time, as typical in
some sections of environmental study. Metagenomics recognizes the need to develop computational
methods that enable understanding the genetic composition and activities of communities of species
so complex that they can only be sampled, never completely characterized.

Analysis of microbial communities has been until recently a complicated task due to their high
diversity and the fact that many of these organisms can not be cultivated. Metagenomics has
essentially emerged as the only way to characterize these unculturable communities. Though “tra-
ditional” genomic studies are challenging, metagenomic studies push the requirement for highly
scalable computational solutions further. Indeed, computational analysis is even more important for
metagenomic analysis due not only to the large amount of metagenomic data, but also to the new
questions introduced by metagenomic projects such as simultaneous assembly of multiple genomes,
community-realized functions or host-microbe interactions (Wooley and Yuzhen, 2009).

Metagenomics has been popularized by the studies of bacterial communities and is still largely
dominated by such applications. Indeed, the word itself is often employed in this sense. However,
such a reductive view does not grant enough credit to the lively research in other areas such as viral or
fungal metagenomics, and large-scale environmental studies that generate extremely heterogeneous
data in terms of their origin.

Bazinet and Cummings have listed in their review 25 tools (Bazinet and Cummings, 2012) and
this collection continuously expands. The specific challenges of ”Big Data metagenomics” that the
field is currently facing promote computational solutions originating from data science. In particular,
recent years have brought a large set of work in machine learning applied to metagenomics. Indeed,
machine learning is the methodology of finding patterns and making predictions from data, based
on multivariate statistics, data mining and pattern recognition.
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Machine learning currently offers some of the most promising tools for building predictive mod-
els for classification of biological data (see e.g. Libbrecht and Noble (2015)). Various biological
applications cover the entire spectrum of machine learning problems including supervised learn-
ing, unsupervised learning (or clustering), and model construction. Moreover, most of biological
data, such as those produced in metagenomic studies, are both unbalanced and heterogeneous, thus
meeting the current challenges of machine learning in the era of Big Data.

The goal of this review is to examine the contribution of machine learning techniques for metage-
nomics, that is, answer the question to what extent does machine learning contribute to the study
of microbial communities and environmental samples? We will first briefly introduce the scientific
fundamentals of machine learning. In the following sections we will illustrate how these techniques
are helpful in answering questions of metagenomic data analysis. We will describe a certain number
of methods and tools to this end, though we will not cover them exhaustively. Finally, we will
speculate on the possible future directions of this research.

2 Machine Learning Fundamentals

General principles The defining characteristic of machine learning (ML) systems is that they
can improve with experience. Contrary to a system employing a classical deterministic algorithm,
an ML system will exploit patterns observed in datasets to fine-tune and adapt its decisions. As
defined by Mitchell (1997), a typical ML program requires at least three different components:

1. experience, in the form of data,

2. task, in the form of an output of the algorithm,

3. objective, in the form of performance measurement of a given output.

A program is said to “learn” if its performance for a given task improves with experience.
To design a program able to learn how to solve a given task, Flach (Flach, 2012) indicates the

following requirements. First, data from the domain must be mapped to features constituting an
(often finite) representation given as input to a model that will map it to an output. To build this
model, some example data – often called training data – are fed into a learning algorithm that
will search and try to identify an optimal model (w.r.t. the objective function) from a hypothesis
space.

Learning algorithms are often grouped by how the model that they learn is represented in this
hypothesis space. Such spaces and potential hypotheses are usually structured and reduced in
order to obtain a ”well-behaved” hypothesis space where the learning problem can be redefined
mathematically in terms of a numerical optimization problem.

In the field of metagenomics, the most common questions that we identified as being amenable
to learning are: OTU clustering, binning, taxonomic assignment, gene prediction and comparative
metagenomics. These questions involve three types of machine learning tasks (see Table 1):

1. classification, where the task output is a discrete variable,

2. clustering, where the task output is a (possibly soft) partition of input data,

3. dimensionality reduction, where the task output is a lower-dimensional representation of the
input data.

Another useful distinction is between supervised and unsupervised problems. A problem is said to
be supervised if the output variable is provided in the training data. For example, distinguishing
metagenomic samples based on known phenotypical traits is a supervised problem. The goal of
supervised methods is thus to build a model from a set of labeled data points that can predict
the correct category of unlabeled future data. Labels can be provided by any type of important
metadata, such as the species of the microbe or of the host, but they have to be discrete and
scalar. The possibility to classify unlabeled data is especially useful when alternative methods for
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obtaining data labels are difficult such as it is the case, for example, for unculturable bacteria. On
the other hand, unsupervised methods assume no labeled response but rather seek to determine
hidden structure in the data. The most common application of unsupervised methods are for cluster
analysis as well as dimensionality reduction.

Components of ML systems As indicated by Domingos (2012), any learning algorithm can be
broken down into three components: (i) representation: the structure of the hypothesis space,
(ii) evaluation: how a model will be evaluated, and (iii) optimization: how to navigate in the
hypothesis space.

Some examples of hypothesis spaces / learning algorithm that are relevant for metagenomics are
shown in Table 1.

Representations Learning Applications 
example Tools example

Classification/
Regression

Instances k-NN binning, OTU 
clustering

DOTUR

Support Vector Machines gene prediction, 
Comparative MG

MetaDistance

Linear models linear regression binning Tetra

logistic regression gene prediction, 
Comparative MG

MetaGene, MetaPhyl

large scale linear model taxonomic 
assignment

Vowpal Wabbit

Decision trees Random Forest taxonomic 
assignment

16S Classifier

Neural networks neural networks gene prediction Orphelia

Network Hidden Markov Model gene prediction FragGeneScan

Interpolated Markov Model binning, gene 
prediction

Glimmer-MG, 
SCIMM

Dimension reduction Linear combinations 
of features

PCA binning CONCOCT

SVD binning LSA

Clustering Means k-means binning SCIMM, MetaCluster

Medoids k-medoids binning MultiBin

Dendrogram hierarchical clustering OTU clustering ESPRIT, MOTUR

Mixtures / Soft 
partitions / 
Likelihoods

Gaussian mixture models binning CONCOCT

Bayesian clustering / stochastic search 
clustering

OTU clustering, 
binning

CROP,BACDNAS, 
BEBaC, LikelyBin

spectral clustering binning CompostBin

NA greedy heuristic clustering binning, OTU 
clustering

DNAClust, 
USEARCH

�1

Table 1: Examples of machine learning approaches for metagenomic applications. Methods are clas-
sified according to the three identified types of machine learning tasks: Classification, Dimension
reduction and Clustering. These tasks can be further analysed by the type of representation
of the hypothesis space (column Representations) and the learning algorithm that is applied
to training data (column Learning). Finally, we mention types of metagenomic analyses to which
these approaches have been applied (column Application example) and show examples of existing
software that implements them (column Tools example).

In the case of supervised learning, the performance of a model shouldn’t be measured on the
training data. The main reason is that the real objective of inductive learning is not to perform
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perfectly on data that was already seen, but to generalize well for previously unseen data. The
phenomenon of poor performance on unseen data is called “overfitting”, and a simple way to ensure
its absence is to leave out part of the data for evaluation purposes. It is however worth noting
that different representations suffer differently from overfitting. Usually, the more complex the
hypotheses are, the more care should be put in overfitting avoidance. For example, Näıve Bayes
models have a simple representation (basically, just conditional probabilities / counts) and their
simplicity makes them less prone to overfitting than more complex models (e.g. Random Forests),
but their simplicity doesn’t allow complex decision functions to be represented. On the other hand,
very complex models (such as e.g. neural networks) can approximate universal decision functions
with any level of precision, but require tremendous training data and usually can not be trained to
optimality.

Features Besides the learning algorithm and the model per se, the most important component of
a learning system is how features are extracted from the domain data, a process known as feature
engineering. As stated by Flach (Flach, 2012), “features are the workhorse of machine learning”.
In our case, reads originating from an NGS project must be mapped to a domain that can be
processed by the learning algorithm. Often, this domain is a vector in a multidimensional space.
The combination of (i) how to map NGS reads into vector representation, (ii) learning algorithm
and (iii) how a metagenomic question is formulated as a task is actually what distinguishes most of
the methods described in this review.

A very natural and simple representation of DNA sequences as a numerical vector is the k-mer
frequencies representation. For a given integer k, count the number of times any nucleotide subse-
quence of length k appears in the read. Subsequent transformation can enrich this representation
(e.g. robust estimations, variance stabilization, normalization etc.). Naturally, the precision of this
representation increases with k, but this comes with the cost of much higher computational and
memory requirements needed to represent each read. For example, even for values of k as small as
k = 12, each read will be represented by 412 ≈ 16×106 dimensional vector, with a memory cost that
is out of reach of today’s computers, given a reasonably-sized metagenomics project. In fact, a more
pervasive issue appears as k grows: generalizing a decision function becomes exponentially harder
as we increase the dimensionality of the space, since only a very limited fraction of the feature space
can be observed in the training data. Pushing this argument to its extreme, it is straightforward
to observe that most 21-mers are actually unique to species present in public sequence databases
(Kurtz et al., 2008). On one hand, this implies that we can recognize any known species with high
precision, but on the other hand, this implies that novel species can not be classified and thus that
such a system has close to zero generalization power. This is indeed the case for most large k-mer
indexing schemes (e.g., LMAT (Ames et al., 2013)). Even for moderate values of k, it might still
be the case that the feature space is too large given the training data, but that lower values of k
yield too low resolution. In this case, it is possible to learn a lower-dimension manifold in which
the data is projected, and instances of such techniques (e.g. PCA, SOM) are used by several of the
tools reviewed here.

3 Metagenomics: data and questions

Modern metagenomic analysis involves a variety of options: genetic diversity profiling of samples,
identification of present taxa (taxonomic assignment), assembly of sequencing reads, clustering and
binning, prediction of protein-coding genes and further functional analysis of community-realized
functions, without forgetting the comparative aspects of multi-sample studies. Machine learning has
penetrated in all these applications, even assembly, which is traditionally solved by data-structure
and algorithmic approaches, has been tackled by machine learning (Sato and Sakakibara, 2015). In
this review we will focus on five important questions of metagenomic studies from the perspective of
machine learning: OTU clustering, binning, taxonomic assignment, comparative metagenomics and
gene prediction.
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Terminology The abundance of literature on metagenomic analysis has generated quite a variable
terminology, which makes navigating the underlying computational concepts a complex task. For
the sake of consistency, we will keep the same terminology throughout this paper. In particular, we
will use the term of assignment to mean the assignment of a given sequence to a specific taxonomic
group (see section 6). We will thoroughly distinguish this from both OTU clustering and binning
which correspond to the same machine learning problem of clustering as both refer to the grouping
of a data set into subgroups which are distinct from one another. Being unsupervised problems by
nature, these subgroups may remain unlabeled. However, we will distinguish them by using the
term OTU clustering exclusively for clustering of marker gene sequencing data (see section 4), while
binning will be used for the case of whole metagenome untargeted data (see section 5).

Notice that all these different analyses perform a classification, the difference being that in one
case it is unsupervised (OTU clustering and binning) and in another, supervised (assignment). A lot
(but not all) of the methods presented below contain both some form of grouping and an assignment
step. We have decided to discuss them in the sections that correspond best to the computationally
innovative part of such papers.

Data

Metagenomic studies differ by a number of elements. First and foremost is the kind of data that is
collected, which largely determines the downstream analysis.

Amplicon sequencing In many metagenomic studies only partial genomic information is used.
DNA is extracted from all the cells of the the sample (e.g., sea, soil, gut), a set of genomic markers
is chosen and then targeted and amplified by PCR. Consequently, only marker genes are sequenced.
The most widely used marker gene for amplicon sequencing is the small subunit ribosomal RNA
(16S) locus, that is both a taxonomically and phylogenetically informative marker for both bacteria
and archaea (Pace et al., 1986; Hugenholtz and Pace, 1996). Other markers such as the small subunit
18S, the large subunit (LSU: 23S/25S/28S) and the highly variable spacers ITS1 and ITS2 of the
internal transcribed spacer (ITS) region have also been used, in particular for fungi, higher plants,
insects and microalgae (Lindahl et al., 2013; Koetschan et al., 2010; Cuadros-Orellana et al., 2013).

Such targeted sequencing simplifies the analysis for two reasons. First, the amount of data
remains reasonable (for a high-throughput analysis) and second, known marker genes’ taxonomic
classification is available – in particular for bacterial communities – through reference taxonomies
such as, for example, in RDP (Cole et al., 2009) or Greengenes (McDonald et al., 2012) databases.

Many synonyms for amplicon studies can be found in literature, the most frequent being metabar-
coding and targeted metagenomics.

Untargeted sequencing Whole metagenome sequencing without targeted amplification provides
the possibility to tap into unknown species, but generates a substantial increase in the volume of
data. Here, one of the important aspects is the representativity of the extracted DNA with respect
to taxa that compose the sample, and various protocols exist (Delmont et al., 2011; Burke et al.,
2009). If the community of interest is associated with a host than its DNA has to be separated by
either fractionation or selective lysis to ensure that minimal host DNA is present. Physical filtering
(fractionation) can also be used when only part of the community is of interest to the analysis. The
organisms are then separated by size, leading to untargeted sequencing of filtered samples. Various
physical and molecular extraction / filtering techniques exist and can be used to separate eukaryotic,
prokaryotic, or viral particles. In particular, size-based filtering is widely used for separating viruses
prior to studying the composition of viral communities (John et al., 2011; Hurwitz et al., 2013).

Choice of data Notice that the choice of data to be used in a given metagenomic study is not
neutral since it determines the final results of the analysis. For example, in the case of amplicon
sequencing, the choice of amplicons is known to influence the resulting clusters. Regions of marker
genes with high inter-species and low intra-species variability are typically chosen to be sequenced
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(e.g. V1 through V9 for 16S). They are flanked by conserved sequences that enable PCR amplifi-
cation of targeted sequences (amplicons) using universal or specifically designed primers. However,
depending on the chosen variable regions and primers, the resulting OTUs clusters and estima-
tions of diversity may not be the same (see for example (Jumpstart Group, 2012), (Bella et al.,
2013)). Moreover, amplicon sequencing excludes unknown species or highly diverged microbes from
the analysis. Analyzing whole-metagenome untargeted sequencing data is the most computationally
challenging task in metagenomics for the reasons of both data volume and variety. For example,
environmental samples can contain genetic material from hundreds to tens of thousands of species of
different abundances, some estimations placing the number of species for certain environments in the
range of millions (Gans et al., 2005). Moreover, a large fraction species collected this way may not
be known, potentially leading to annotation biases since the analysis relies on the genomes present in
the current databases. In this respect, identification of viruses remains especially challenging (Souei-
dan et al., 2014). Sequencing filtered samples alleviates the computational burden downstream, thus
allowing efficient contig assembly (Coetzee et al., 2010; Minot et al., 2012). However, it introduces
certain biases, such as artificially including or excluding certain species.

4 OTU clustering

A wide-spread approach to explore the genetic diversity of a microbial community is to analyse
amplicon sequencing data (or barcode sequences) by grouping it into Operational Taxonomic Units
(OTUs). Historically, ribosomal RNAs are the most used basis for the reconstruction of microbial
phylogeny (Ludwig and Schleifer, 1994) and the definition of the corresponding taxa. Thus, rRNA
approach has quite naturally become the most popular one for defining taxa in targeted bacterial
studies (Blaxter et al., 2005) and has been since generalized to other marker genes. The OTUs are
defined at varying levels of identity (often 97%, see e.g.(Koeppel and Wu, 2013)), and can then be
used to estimate the diversity and composition in terms of taxa of a given sample. Methods for OTU
clustering typically require a distance function d and a certain threshold t under which two sequences
are considered to be sufficiently close. One of the characteristics of OTU-based approaches is that all
sequences are clustered into OTUs, including both species for which annotation is absent in the public
databases as well as novel species. Moreover, OTU clustering has the double advantage of being a
light-weight approach in terms of input data (amplicon sequencing) and consequent computation, as
well as of producing high-quality groups precisely because amplicon sequences are by definition taxa-
specific and different between species. Such data are an ideal setting for highly sensitive and specific
machine learning methods. We recapitulate OTU clustering methods presented in this review in
Table 2.

While quite computationally performant, OTU-based methods also possess certain intrinsic lim-
itations. Most importantly, the analysis and biologically meaningful interpretation of the resulting
OTUs can be problematic, especially in the case of unknown species. Also, while the threshold t
greatly influences the inferred clusters, it is difficult to choose a priori given that the evolutionary
rates for marker genes can vary greatly (Patwardhan et al., 2014). Furthermore, due to sequencing
errors, wrong choice of t can result in an artificial inflation of OTUs (Kunin et al., 2010). Moreover,
a number of studies point out that different clustering methods provide non-equivalent clusters for
the same dataset, quantitatively in terms of total number of clusters and OTU size distributions as
well as qualitatively in terms of cluster composition (Huse et al., 2010; Schloss and Westcott, 2011;
Sun et al., 2011; Abeln et al., 2012). This is particularly salient in the presence of sequencing errors.

4.1 Hierarchical clustering

Hierarchical clustering algorithms such as the nearest neighbor (single linkage clustering), the fur-
thest neighbor (complete linkage clustering), the weighted neighbor, and the average neighbor
(unweighted-pair group method using average linkages, UPGMA) are widely used for OTU clus-
tering. These algorithms require the computation of the complete pairwise distance matrix between
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Tool Validated on Feature eng. ML model Source code Publication Last 
update Compared to

Dotur 16S, rpoB multiple seq. alignment hierachical 
clustering github.com/mothur/DOTUR 2005 2005 none

Mothur 16S alignment against a reference DB hierachical 
clustering github.com/mothur/Mothur 2009 2015 none

ESPRIT 16S k-mer prefiltering, pairwise 
alignment 

hierachical 
clustering upon request 2009 unknown Dotur 

Usearch / Uclust 16S pairwise alignment greedy clustering drive5.com/usearch 2010 unknown CD-HIT 

GramCluster 
16S 

suffix tree to access sequences, 
grammar-based distance, Lempel- 
Ziv sequence representation, 
grammar-based comparisons 

greedy clustering bioinfo.unl.edu/ gramcluster.php 2010 2010 CD-HIT, Uclust 

ESPRIT-Tree 16S k-mer prefiltering, probabilistic 
sequences, pairwise alignment 

pseudo-hierarchical 
clustering web access 2011 unknown Uclust, CD- HIT, 

ESPRIT 

DNAclust 16S suffix trees, k-mer prefiltering, 
length sorting, pairwise alignment greedy clustering dnaclust.sourceforge.net 2011 2013 Uclust, CD-HIT 

CROP 
16S 

Gaussian mixture model to 
describe the data, MCMC, pairwise 
alignment 

Baeysian clustering github.com/tingchenlab/CROP 2011 2014 ESPRIT, mothur 

CD-HIT 16S k-mer prefiltering, length sorting, 
pairwise sequence alignment greedy clustering cd-hit.org 2012 2015 Uclust 

BEBaC 16S k-means, pre-clustering based on 
k-mers, multiple seq. alignment 

stochastic search 
clustering available upon request 2012 unknown ESPRIT- Tree, 

Uclust, CROP 

Uparse 
16S, ITS 

maximum parsimony model, 
abundance sorting, pairwise 
alignment 

greedy clustering drive5.com/uparse 2013 unknown QIIME, mothur 

BACDNAS 
16S sequences modeled as Markov 

chains (no alignment!) 
Bayesian Clustering 
with the Dirichlet 
process prior 

www.helsinki.fi/bsg/software/
BACDNAS/ 2013 2013 ESPRIT-Tree, 

BEBaC, CROP 

Swarm 
16S k-mer prefiltering, pairwise 

alignment 
single-linkage 
agglomerative 
clustering 

github.com/torognes/swarm 2014 2015 CD-HIT, DNAclust, 
Usearch 

OTUCLUST 16S-10, ITS-10,  
16S-R 

abundance sorting, pairwise 
alignment greedy clustering github.com/ compmetagen/ 

micca/wiki 2015 2015 Uparse, QIIME 

�1

Table 2: Characteristics of tools for OTU clustering. Shown are types of data on which the method
has been validated, how features have been extracted (column Feature eng.), the machine learning
algorithm (column ML method), link to the Source code, year of publication as well as the last
source code update (column Last update), and finally tools against which the performance has
been evaluated (column Compared to).

sequences. Based on this matrix, a hierarchical tree is constructed. Given a user-specified threshold
t, leaf nodes within the cutoff are assigned to an OTU. The main disadvantage of the hierarchi-
cal clustering strategy is the overestimation of the number of OTUs, especially in the presence of
sequencing errors, resulting in skewed OTU abundances.

Alignment-based methods suffer from the high computational cost and methods such as Dotur
(Schloss et al., 2005) (based on multiple sequence alignment) and Mothur (Schloss et al., 2009)
(based on Needleman-Wunsch alignments against a pre-aligned reference database) do not scale up
very well despite the use of sparse matrices that represent the unique sequences only in the case of
Mothur.

This gave rise to methods that attempt to achieve better scalability, such as ESPRIT (Sun et al.,
2009) that implements a complete-linkage hierarchical clustering and minimizes the memory usage
by using an on-line approach, and ESPRIT-Tree (Cai and Sun, 2011) that uses a probabilistic
distance and a set of heuristics in order to avoid all pairwise distances. The computational speedup
is also achieved by avoiding to align pairs of sequences for which it is easy to deduce from their
k-mer comparison that the alignment will not be good enough.

A recent tool called Swarm (Mahe et al., 2014) is an agglomerative, unsupervised, single-linkage
clustering algorithm that avoids the use of a global threshold t. First, it attempts to iteratively
cluster highly similar amplicons using a local user-defined threshold and then refines the results by
using clusters internal structure and amplicon abundances.

4.2 Heuristic clustering

Amplicon sequencing projects, especially in the case of environmental studies, produce constantly
increasing datasets. For this reason, in order to compute OTUs, two important requirements are
speed and scalability. However, exact clustering algorithms described in section 4.1 do not scale
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well, requiring at worst the square of the number of input sequences comparisons. This has given
rise to methods based on heuristic greedy clustering. Given a set of sequences S, a sequence s ∈ S
is chosen and it becomes the centroid of a new OTU cluster. This sequence s is then compared to
all remaining sequences S \ s. Given a distance function d and a threshold t, all sequences s′ ∈ S
such that d(s, s′) < t are added to the OTU and removed from S. Since each sequence is considered
only once, heuristic greedy algorithms are usually fast. Notice, that the greedy approach provides
results that are dependent on the order of input sequences.

A lot of methods in this category sort input sequences by length or abundance, such as for
example Uclust (Edgar, 2010), DNAclust (Ghodsi et al., 2011) and CD-HIT (Suzek et al., 2007;
Fu et al., 2012) and try to avoid costly all-against-all sequence alignment by a pre-filtering k-mer
based step. Moreover, GramCluster (Russell et al., 2010) and DNAclust (Ghodsi et al., 2011)
index the input dataset by a suffix tree for efficiency.

While remaining in the scope of greedy clustering, the Uparse (Edgar, 2013) and OTUCLUST
of MICCA (Albanese et al., 2015) emphasize the need to rely on high quality sequences only and
both include a number of steps for quality filtering, trimming and chimera filtering.

4.3 Model-based clustering

Model-based clustering aims to circumvent the overestimation of OTUs that due to the limitations
of choosing an a priori threshold t.

For example, CROP (Hao et al., 2011) uses an unsupervised Bayesian clustering approach.
The model relies on the notion of probability that a given sequence s belongs to a cluster. This
probability is defined as function of the distance between the sequence s and the sequence that is
in the center of the cluster. Moreover, CROP applies the divide-and-conquer principle by dividing
the dataset into small subsets and performing Bayesian clustering on the subsets. Thus generated
clusters are replaced by their consensus sequences on which a final step of Bayesian clustering is
performed in order to obtain the OTUs.

In (Cheng et al., 2012) the authors introduce a probabilistic model-based BEBaC method. It is
based on the calculation of an unnormalized posterior probability for an arbitrary partition of the
reads, such that any two partitions can be compared. The best partition is then determined by a
stochastic search process over the partition space.

In (Jaaskinen et al., 2013) the authors introduce the BACDNAS method that models sequences
by Markov chains of fixed order and an expectation-maximization algorithm is used for learning a
partition of these Markov chains. The prior distribution for partitions is the Dirichlet process prior.

5 Binning

The goal of binning is to establish the taxonomic profile of a given sample and it is often used in
the case of environmental studies. We differentiate binning from OTU clustering mainly in terms of
input data: while OTU clustering is used in targeted studies, binning deals with reads coming from
any genomic region of any genome present in the sample. Binning is thus the most suited approach
for studying complex communities. Nevertheless, almost all available methods are developed for
bacterial communities, with the notable exception of MetaVir (Roux et al., 2013) that aims at the
analysis of viromes. Analysis of other communities, such as for example fungi, are often done by
ad-hoc methods or by hijacking software tools designed for bacteria (see e.g. (Lindahl et al., 2013;
Cuadros-Orellana et al., 2013)).

In terms of computation, binning consists of assigning each read to a group, called bin, with the
expected property that each bin consists of reads originating from the same taxon. Although some
alignment-based methods exist (not detailed in this review), most existing computational tools for
binning utilize sequence k-mer composition. Indeed, as observed by Kariin and Burge (1995), the
distribution of k-mer composition is stable across a single genome and varies between genomes, even
when only dinucleotides (di-mers) are considered. This observation underlies many metagenomic
binning approaches.
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In the existing literature, machine learning-based classification algorithms used for binning are
categorized into supervised, semi-supervised, and unsupervised classes, depending on whether a
training set of labeled data is used to build their models or not. We consider that the former case
corresponds to solving the taxonomic assignment problem, that we describe in the next section. In
this section, we only consider unsupervised or semi-supervised methods for the binning problem ex-
clusively, that is methods that group sequences into bins without consideration of external reference
sequences or taxonomic information in the same way it is done for OTU clustering. Indeed, it has
been observed that in environmental samples, up to 99% of sampled bacteria are unknown (Eisen,
2007), hence methods relying on existing datasets will very likely miss important properties of sam-
ples. To solve the binning problem, various measures of similarity such as GC content, oligomer
frequencies, the abundance of genes or contig coverage can be used during the inference. See Table
3 for the summary of binning methods presented in this review.

Tool Validated on Feature eng. ML model Source code Publication Last 
update Compared to 

TETRA only 16s 4-mers linear regression www.megx.net/tetra 2004 unknown none

CompostBin bacterial genomes 6-mers + alignment-based 
weighting scheme

PCA+spectral 
clustering 

bobcat.genomecenter.ucdavis.edu/
souravc/compostbin/ 2008 2012 none

LikelyBin bacterial genomes k-mers 
partitions / 
stochastic search 
(MCMC)

ecotheory.biology.gatech.edu/
downloads/likelybin 2009 unknown none

SCIMM only 16s preclustering
Interpolated 
Markov Models + k-
means 

www.cbcb.umd.edu/software/
scimm 2010 2012 PHYSCIMM

AbundanceBin bacterial genomes k-mer abundances
stochastic search, 
expectation-
maximization

omics.informatics.indiana.edu/
AbundanceBin 2011 2013 MetaCluster

MetaCluster 
bacterial, whole 
metagenome (viral 
included) 

k-mer frequencies + Spearman 
footrule distance k-means i.cs.hku.hk/~alse/MetaCluster 2012 2014 AbundanceBin, Toss 

MultiBin bacterial genomes pairwise alignment similarity graph + 
k-medoids none 2012 NA AbundanceBin

Toss bacterial genomes unicity of k-mers similarity graphs + 
MCL 

www.cs.ucr.edu/~tanaseio/
toss.htm 2012 unknown CompostBin 

MultiMetaGeno
me bacterial genomes 

scaffold coverage, 4-mers 
frequencies, GC content, ORF, 
marker proteins, taxonomic 
assignement 

linear regression + 
local PCA

github.com/MadsAlbertsen/multi-
metagenome 2013 2014 ESOM 

CONCOCT bacterial genomes k-mers and coverage Gaussian mixture 
models github.com/BinPro/CONCOCT 2014 2015

MetaWatt, 
CompostBin, 
SCIMM, LikelyBin

MaxBin bacterial genomes 4-mers, coverage, marker genes 
analysis 

stochastic search, 
expectation 
maximization

sourceforge.net/projects/maxbin/ 2014 2015 ESOM

LSA 
bacterial genomes, 
some remarks on 
phage analysis 

locally sensitive hashing of k-mers, SVD + k-means github.com/brian-cleary/
LatentStrainAnalysis 2015 2015 CONCOCT, GroopM

MetaBAT bacterial genomes 4-mers, coverage, alignment, pre-
assembled contigs custom k-medoids bitbucket.org/berkeleylab/metabat 2015 2015 CONCOCT, Canopy, 

MaxBin, GroopM

DNAClust AMD dataset k-mers + filtering greedy clustering dnaclust.sourceforge.net 2011 2013 Uclust, CD-HIT

�1

Table 3: Characteristics of binning tools. Shown are types of data on which the method has
been validated, how features have been extracted (column Feature eng.), the machine learning
algorithm (column ML method), link to the Source code, year of publication as well as the last
source code update (column Last update), and finally tools against which the performance has
been evaluated (column Compared to).

Binning is a computationally expensive task since the complete untagged environmental datasets
are both large and heterogeneous due to the high-complexity of communities in terms of number of
species, such as exemplified by ocean microbial communities (see the Science special issue on Tara
Oceans project (Bork et al., 2015)) and the human microbiome project (https://commonfund.nih.
gov/hmp/index).

Binning methods are known to perform better on either longer reads or on pre-assembled datasets.
It has been shown that even partial assembly improves the strength of the taxonomic signal contained
in individual short reads, and that even in the case of increased chimericity (Teeling and Glockner,
2012; Mende et al., 2012). Consequently, given a metagenomic dataset, a lot of methods suppose
that at least partial assembly has been performed to obtain contigs of the size not less than 1000bp.
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5.1 Fully unsupervised clustering

To the extent of our knowledge, the first application of k-mer distribution to the binning problem
was proposed by Teeling in 2004 with a tool called Tetra (Teeling et al., 2004). Tetra computes a
z-score for each possible 4-mer then compares two fragments by Pearson correlation over all 4-mers.
However, the author indicates that this method works well for very large sequences only (in the
range of 40kb).

More recently, CompostBin (Chatterji et al., 2008) uses an unsupervised clustering scheme
based on graph cuts. First, principal component analysis extracts meaningful k-mer features and
then the tool applies a normalized cuts clustering technique (spectral clustering) to group sequences
into taxa-specific clusters. MetaCluster (Wang et al., 2012a,b) is a collection of unsupervised
methods based on k-means clustering. The authors make uses of three observations that are the
basis of most unsupervised binning strategies.

1. k-mer frequencies from reads of a genome are linearly proportional to the genome abundance,

2. long k-mers are unique, and

3. short k-mers frequency distribution are similar for similar genomes.

Furthermore, observing that binning is sensitive to the range of abundance (for samples containing
both extremely-low and high abundance), the authors propose to separate reads originating from
low abundance species from reads originating from high abundance species. The group of high-
abundance species’ reads are then processed separately using the k-means algorithm on the 5-mer
representation, while the group of low-abundance species’ reads are binned using 4-mer’s frequencies.

In its turn, Toss (Tanaseichuk et al., 2012) groups all unique k-mers into clusters and then
merges these clusters based on k-mer repeat information by the Markov Cluster algorithm. In the
case, where samples are expected to have highly different abundance levels of individual species, Toss
relies on AbundanceBin (Wu and Ye, 2011) to pre-cluster reads. MetaVir (Roux et al., 2013) was
developed to deal specifically with filtered viral sequencing data and is based on k-mers of size 2, 3
and 4; hierarchical clustering is performed based on the Euclidean distance between k-mer frequency
vectors.

A recent method called Latent Strain Analysis (LSA) (Cleary et al., 2015) tries to leverage
modern machine-learning techniques such as feature hashing (Weinberger et al., 2009) and online
dimensionality reduction. It is a binning method based on the hyperplane clustering approach and
relying on a complex-space hashing approach. They devise a k-mer hashing function that has the
property of being locally sensitive: similar k-mers have a much higher probability of generating a
hash collision. Such k-mers are placed in the same row within a matrix that recapitulates k-mer
abundance for each sample. This matrix is then reduced using singular value decomposition (SVD)
- meaning that it is performed in the space of k-mer co-variation - and reads are then assigned to the
resulting k-mer clusters. The intuition behind the method is that co-variance information provided
by SVD represents the relationships between k-mers found in the same genome.

Orthogonally, one of the approaches that has been fairly used in literature is self-organizing
maps (SOMs), which groups sequences by oligonucleotide frequencies (Dick et al., 2009) and read
coverage levels (Sharon et al., 2013). Although vastly used, application of SOMs requires a manual
step, where the user selects sets of reads (or scaffolds) that should be binned together.

5.2 Model-based clustering

Another family of approaches to solve the binning problem relies on inference of a probabilistic
model. These methods are unsupervised, and mostly use expectation maximization to estimate
model parameter.

The main goal of LikelyBin (Kislyuk et al., 2009) is to bin together relatively short reads (400nt)
from low complexity samples (between 2 and 10 species) that show sufficient evidence of genomic
diversity. To this end, an inference scheme based on maximum likelihood principle and Markov
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Chain Monte Carlo estimates a nucleotide model (a Markov model with order ranging from 3 to 5
) and then assigns each read to the most likely model.

The Markov model of LikelyBin has been generalized to varying order Markov chains by (Kelley
and Salzberg, 2010) in a tool called SCIMM. Instead of having a fixed order, varying order chains
(termed Interpolated Markov Models) interpolate between all models of lower order. Furthermore,
the authors propose an expectation maximization scheme similar to the k-means algorithm, but
where each cluster is modeled as an Interpolated Markov chain and cluster assignment follows max-
imum likelihood. Cluster initialization (one of the major problems of k-means clustering) can be
obtained by running LikelyBin or CompostBin. Interestingly, the authors also suggest a super-
vised scheme for cluster initialization based on taxonomic assignment obtained by the tool Phymm
(described in section 6).

AbundanceBin (Wu and Ye, 2011) was the first method to rely on information different from
similarity and composition. Indeed, it uses k-mer abundance information in order to separate reads
from genomes that have different abundance levels. AbundanceBin first computes frequencies of all
k-mers in a metagenomic dataset and then, assuming that these frequencies come from a mixture of
Poisson distributions, models the original reads as a mixture of these distributions. An expectation-
maximization algorithm is further used to find the distributions’ parameters. Each read is then
assigned to the bin having the highest estimated probability of this read to belong to a given bin. A
drawback of this abundance-based approach is to be only able to distinguish species whose abundance
levels are considerably different.

Noting that most existing method for scaffold binning (such as SOM) require the user to manually
and individually select bins, the authors of MaxBin (Wu et al., 2014) propose a fully automated
scaffold binning model-based algorithm. Using expectation maximization over 4-mers frequencies
as well as scaffold coverage levels, MaxBin can estimate the probability that a sequence belongs
to a particular bin. Similarly to other model-based clustering algorithms, the results of MaxBin
are highly sensitive to parameter initialization, especially the number of bins. To circumvent this
difficulty, MaxBin can use results from FragGeneScan to identify single-copy marker genes and thus
derive estimates for the number of bins.

5.3 Multiple-sample binning

In response to the inability of abundance-based methods to separate species with similar abundances,
a number of techniques have emerged that counter-balance it by considering multiple samples si-
multaneously. For example, algorithms proposed in MultiBin (Baran and Halperin, 2012) start by
pooling all reads from all samples and comparing them by pairwise alignment. The algorithm then
performs k-medoid clustering on vectors representing the coverage in each sample.

More extensively, MultiMetaGenome (Albertsen et al., 2013) improves on this idea by consid-
ering the abundance difference in any of the samples in order to separate bins. MultiMetaGenome ap-
plies a primary binning by clustering assembled genes by similarity, thus producing a non-redundant
gene catalogue. Original reads are then mapped against these representative sequences and a normal-
ized coverage for each sequence is computed. The representative sequences are further clustered into
population genomes by plotting the two coverage estimates of all representative sequences against
each other. In a similar way (Nielsen and et al., 2014) introduces a method for binning based on
clustering of co-abundant genes, where groups of genes are binned based on their abundance across
multiple samples. Seed genes are picked randomly and bins (called co-abundance gene groups CAGs)
are defined by correlation in terms of abundance.

Recently, methods that combine information on both sequence abundance (as indicated by cov-
erage) in multiple samples and sequence composition (or similarity) have received a lot of attention.
For example, Concoct (Alneberg et al., 2014) uses Gaussian mixture models to cluster contigs
based on both sequence composition and coverage across multiple samples. MetaBat (Kang et al.,
2015) is a binning method that uses a probabilistic distance based on the tetranucleotide frequency
and coverage of contigs. This pairwise distance between contigs is subsequently used in a medoid
clustering algorithm to consolidate similar contigs into bins.
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6 Diversity profiling and taxonomic assignment

While OTU clustering and binning provide a global view of a metagenomic sample, they do not
answer the question of which species constitute it. This is the goal of diversity profiling and taxo-
nomic assignment. Diversity profiling aims to investigate the community structure of metagenomes,
by providing abundances of different taxa. In the case of taxonomic assignment, we are interested to
know to which taxon belongs each read (or assembled contig). Here we have a set of known reference
sequences S = {si} and a set of class labels L = {li} (species or any other taxonomic unit). Each
sequence s is labelled by its class. A taxonomic assignment algorithm uses S in order to identify
patterns in S and thus be able to classify novel (eventually unknown) metagenomic sequences M by
providing a mapping M → L. Notice that diversity profiling can be performed based on the results
of taxonomic assignment, however dedicated methods aim at circumventing this step and rather to
perform a global analysis for the reasons of computational efficiency.

Taxonomic assignment may take as input the result of OTU clustering or binning, or it can be
done directly from sequencing data. Notice that many software methods provide a ”two-in-one”
solution integrating both clustering / binning and taxonomic assignment of the resulting clusters.
As for OTU clustering and binning, taxonomic assignment methods are based either on sequence
similarity provided by alignment or on genomic signatures in terms of oligonucleotide (k-mer) compo-
sition. Alignment-based methods combined with an algorithmic and data structure-driven solution
(e.g. LCA) are very efficient for small-scale studies, such as amplicon sequencing. In particular,
they provide state-of-the-art performance in terms of classification accuracy. Since these methods
do not rely on machine learning, they will not be discussed in this review (see for review (Bazinet
and Cummings, 2012)). See Table 4 for methods that we discuss in this review.

Even if they demonstrated state-of-art accuracy, alignment-based approaches are time-consuming
and highly dependent on the presence of reference genomes in databases. Consequently, whole and
complex metagenomic sample can hardly be analyzed using such methods. By contrast, machine
learning alignment-free methods are based on pattern recognition, and should (theoretically) be more
robust to noise or missing data. Furthermore, in terms of computation, once a model has been trained
using reference data, it’s execution on novel sequences is generally linear and thus much less time-
consuming than alignment based methods. A recent study by Vervier and co-authors (Vervier et al.,
2015) that explores the possibility of a large-scale machine learning implementation for taxonomic
assignment problem, has confirmed that compositional approaches achieve faster prediction times
and consequently are appropriate for whole metagenome studies.

Taxonomic assignment relies on reference databases in order to assign reads to taxonomic units.
Consequently, computational methods fall into the category of supervised classification and learning,
classification labels being provided by the taxa present in the reference database. However, there
are several competing taxonomies that differ substantially (DeSantis et al., 2006; Santamaria et al.,
2012) and choosing among them is not necessarily obvious (Alonso-Alemany et al., 2014). Moreover,
for the unknown taxa, the inherent risk is to incorrectly assign their reads since they may be closely
related to some of the reference sequences. Moreover, it has been long known that the assignment of
short fragments (less than 1000bp) is a difficult task (McHardy and Rigoutsos, 2007), consequently
as for binning, a pre-assembly step is often performed (Teeling and Glockner, 2012; Mende et al.,
2012).

6.1 Näıve Bayes and Bayesian methods

The well-known ribosomal database project RDP classifier (Wang et al., 2007; Cole et al., 2009)
relies on a reference sequence database which contains relevant species, then assigns a class label
(e.g. species, genus, etc.) to each read by the näıve Bayesian algorithm based on k-mer occurrence
information. Similarly, the popular NBC (Rosen et al., 2011) tool and FCP classifier Parks et al.
(2011) implement a näıve Bayesian framework based on k-mer counts. Notice however, that RDP
classifier is meant for 16S data, while NBC was developed for whole genome sequencing projects.

While based on Bayes’ rules, Näıve Bayesian classifiers, such as learnt by RDP and NBC, are
not bayesian in the formal sense, as they do not derive probability distributions over posteriors. By
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Tool Validated on Feature eng. ML model Source code Publication Last 
update Compared to 

RDP classifier 16S, LSU
8-mers, with specific priors and 
genus-specific conditional 
probabilities

naive Bayes / k-NN rdp.cme.msu.edu 2007 2015 none

NBC 16S, ITS, LSU, 
viruses, fungal k-mers naive Bayes nbc.ece.drexel.edu 2008 2012 BLAST

Phymm whole metagenome variable-length k-mers Interpolated 
Markov Models

www.cbcb.umd.edu/software/
phymm/ 2009 2012 PhyloPythia, Carma

pplacer 16S none likelihood based 
phylogenetics matsen.fredhutch.org/pplacer/ 2010 2015 RAxML

TAC-ELM whole metagenome GC-content, 3--4 mers
extreme learning 
machines, neural 
networks

cs.gmu.edu/~mlbio/TAC-ELM 2010 unknown
TAC-ELM, Phymm, 
BLAST, PhymmBL, 
PhyloPythia

FCP bacterial genomes 10-mers + Laplace Smoothing custom Naive Bayes kiwi.cs.dal.ca/Software/FCP 2011 2015
PhyloPythiaS, 
TACOA, BLAST, 
LCA

Taxy whole metagenome k-mer composition of the sample mixture modeling gobics.de/peter/taxy 2011 unknown Carma, Treephyler, 
Phymm, Galaxy

PhyloPithia / 
PhyloPithiaS

bacterial, whole 
metagenome 4, 5 and 6-mer frequencies structural SVM web access 2012 unknown NBC, best BLASTN

Quikr* 16S k-mer frequency

dimensionality 
reduction 
(compressed 
sensing), convex 
optimization

sourceforge.net/projects/quikr 2013 2014 RDP

WGSQuikr* whole metagenome k-mer frequency

dimensionality 
reduction 
(compressed 
sensing), convex 
optimization

sourceforge.net/projects/wgsquikr 2014 2014 RDP

SEK* 16S k-mer composition of the sample
Kernel density 
estimator and 
mixture density 
models

github.com/dkoslicki/SEK 2014 2015 Quikr, Taxy, BeBAC

ARK* 16S k-mer frequency k-means then SEK github.com/dkoslicki/ARK 2015 2015 Quikr, SEK, RDP

AKE bacterial genomes
k-mers (length normalized, 
importance weight and over/under 
representation)

H2SOM classifier 
(neural network) web access 2014 unknown NBC, PhyloPythiaS, 

WebCarma

PhyloSift 16S alignment against HMMs of gene 
families Bayesian model github.com/gjospin/PhyloSift 2014 2014 QIIME

16S Classifier 16S 2--6 normalized k-mers 
frequencies Random Forest metabiosys.iiserb.ac.in/

16Sclassifier/application.php 2015 2015 RDP, BLAST

Vowpal Wabbit whole metagenome 4--12 mers
large scale linear 
models, feature 
hashing

unavailable 2015 NA BWA-MEM, NBC

CSSS viral, bacterial k-mer based distances + alignment 1-NN collaborators.oicr.on.ca/vferretti/
borozan_csss/csss.html 2015 2015

Phymm, NBC, 
PAIPhy, Kraken, 
PAUDA

�1

Table 4: Characteristics of tools for diversity profiling (signalled by ∗) and taxonomic assignment.
Shown are types of data on which the method has been validated, how features have been extracted
(column Feature eng.), the machine learning algorithm (column ML method), link to the Source
code, year of publication as well as the last source code update (column Last update), and finally
tools against which the performance has been evaluated (column Compared to).

contrast, pplacer (Matsen and Armbrust, 2010) offers a full probabilistic and Bayesian framework
to locate a query sequence in a reference phylogeny. From this localisation, a taxon identifier can be
assigned to the query sequence. pplacer is used as a component of the popular PhyloSift (Darling
et al., 2014) suite, that uses a reference database of gene families, aligns all of the input reads against
this database and then calculates the posterior probability that the read diverged from particular
branches of the reference tree via direct integration.

6.2 Model-based methods

Phymm (Brady and Salzberg, 2009) uses Interpolated Markov Models to learn variable-length
oligonucleotides typical of a given phylogenetic grouping. In a similar fashion, PhyloPithia and
PhyloPithiaS (McHardy et al., 2007; Patil et al., 2012) learn Support Vector Machine classifiers
based on k-mer frequencies associated with different taxonomic groups. This classifier is then used
to assign reads from a new metagenomic sample to pre-existing taxa.

The training step for such approaches can be quite slow, which gave rise to software tools that
employ different optimization techniques. These approaches target the problem of diversity pro-
filing, for which establishing a global model is particularly well-suited. Among these methods are
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convex optimization strategies such as Quikr (Koslicki et al., 2013) (and its whole genome ver-
sion WGSQuikr (Koslicki et al., 2014)) and Taxy, a mixture modeling approach of the overall
oligonucleotide distribution of a metagenomic dataset (Meinicke et al., 2011). SEK (Chatterjee
et al., 2014) aims to overcome the sensitivity of Quikr to the differences between length of sequences
that are present in the database and read length, by proposing a method based on kernel density
estimators and mixture density models, that enables the estimation of taxonomic units’ frequencies
by solving an under-determined system of linear equations. ARK (Koslicki et al., 2015) is another
method for diversity profiling that aims to improve the precision of convex optimisations approaches
by aggregating the reads from a sample with an unsupervised machine learning approach prior to
the estimation phase.

Other classical machine-learning approaches, such as Random Forests and neural networks have
been advanced to perform taxonomic assignment. For example, 16S Classifier (Chaudhary et al.,
2015) uses Random Forests for the taxonomic classification of short 16S rRNA and the Greengenes
taxonomy for assignment, while TAC-ELM (Rasheed and Rangwala, 2012) is a composition-based
method (oligonucleotides and GC content) that uses a neural network-based model. Moreover,
Vervier and co-authors have demonstrated that modern large scale linear classifiers with feature
hashing such as Vowpal Wabbit (Vervier et al., 2015) can be efficiently used.

The recent CSSS method (Borozan et al., 2015) exploits the complementary nature of alignment-
based and alignment-free similarity measures and applies the nearest neighbor clustering. In par-
ticular it aims at being able to assign taxonomic ranks to both bacterial and viral communities.
However, having to compute four different similarity measures, impacts the scalability.

7 Comparative Metagenomics

The questions that we have addressed so far concern the association of DNA fragments from a given
sample with a class (either an OTU, a bin or a taxon). On the other spectrum of machine learning
applications for metagenomics lie methods that try to assign labels to whole samples, by analyzing
features derived from all DNA fragments that compose it. Such classification aims for example at
analyzing phenotypes based on metagenomic fragments and has wide applications in biomedical
settings.

Following the distinction between binning and taxonomic assignment, we first review unsuper-
vised methods that aim at clustering / comparing samples that are not labeled then we review
supervised methods that can classify metagenomic samples into pre-defined classes. See Table 5 for
a summary.

Tool Validated on Feature eng. ML model Source code Publication Last 
update Compared to 

R-SVM plants, bacteria normalized k-mer counts; feature 
selection integrated in R-SVM recursive SVM none 2014 NA none

DectICO whole bacterial 
metagenome 

intrinsic correlation of 
oligonucleotides, feature selection 
by kernel partial least squares

SVM github.com/dingxiao8715/
DectICO 2015 2015 R-SVM

MetaPhyl 16S vector of OTU frequences + 
phylogenetic tree of the OTUs

multinomial logistic 
regression model

www.cs.ucr.edu/~tanaseio/
metaphyl.htm 2014 unknown Toss, Velvet

MetaDistance 16S
normalized and variance-stabilized 
proportion of reads assigned to a 
given taxon, sparse weighted 
distance

quadratic SVM metadistance.igs.umaryland.edu/
Welcome.html 2011 unknown ANOVA 
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Table 5: Characteristics of tools for comparative metagenomics. Shown are types of data on which
the method has been validated, how features have been extracted (column Feature eng.), the
machine learning algorithm (column ML method), link to the Source code, year of publication
as well as the last source code update (column Last update), and finally tools against which the
performance has been evaluated (column Compared to).

7.1 Unsupervised methods

One of the first approaches to assess the distance between metagenomic samples is known as the
Directed Homogeneity test (Mitra et al., 2009) and is implemented in the MEGAN toolbox.
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This test employs Pearson’s chi-square test over all sub-nodes of a taxa, and accounts for multiple
testing correction. Although this test can indicate how significant is the difference between two
samples, it is not usable in a distance-based clustering approach.

Jiang and co-authors explore different sequence signature methods (14 k-mer based distances)
and UPGMA clustering for the problem of clustering metagenomic samples as well as for recovering
environmental gradients that affect microbial samples (Jiang et al., 2012). The authors concluded
that k-mer based descriptors are well-suited for this task and have singled out the dS2 dissimilarity
measure, (corresponding to the uncentered correlation between the number of counts of k-mers for
two sequences normalized by standard deviation) that outperformed others for both application
scenarios. This measure has been recently employed in the DectICO method (Ding et al., 2015) (see
section 7.2).

The DSM Framework of Seth et al. (2014) aims at computing a dissimilarity measure between
samples based on their k-mer frequencies. Such a measure can be used for initial exploratory analysis
of a large set of metagenomic samples. The authors propose to compare samples based on the Jaccard
dissimilarity between normalized relative frequencies of informative k-mers. By using an efficient
distributed implementation, informative k-mers can be identified over all values of k simultaneously.
Although this is an unsupervised method in the sense that samples are a priori not labeled, the
authors demonstrate that their method can discriminate samples more efficiently than supervised
methods based on protein families. In our opinion, such feature estimation and feature selection can
be used for other machine learning approaches aiming at sample classification.

7.2 Supervised methods

The unsupervised approaches are powerful for exploratory data analysis, but are not adequate when
samples are known to belong to different groups or phenotypes. In this setup, supervised machine
learning aims at inferring the relationship between the sample’s content and the label of interest.

To the best of our knowledge, the first attempt at supervised learning for comparative metage-
nomics was performed by Yang et al. (2006) to distinguish between soil and sediment samples
obtained via amplicon sequencing. They applied both Random Forest and k-nearest neighbors
algorithms over all identified hyper-variable regions. Specifically for metagenomics samples, the
MetaDistance (Z. Liu et al., 2011) method was devised for multi-class classification of amplicon
sequenced metagenomic datasets. MetaDistance represents samples as a normalized and variance-
stabilized proportion of reads assigned to a given taxon. This matrix is then used to learn a sparse
weighted distance by using a quadratic SVM formulation that maximises intra-class distance and
minimized inter-class distance. This sparse distance encodes feature selection and is then used in a
k-NN algorithm.

Owing to the observation that OTUs can be organized as a tree, Tanaseichuk et al. (2014) pro-
posed a multi-class metagenomic classifier called MetaPhyl that accounts for OTUs relationships.
Each sample is represented by a vector of OTU frequencies, and a multinomial logistic regression
model with a tree penalty is then trained. The authors report greatly improved performance over
MetaDistance and over generic classifiers (logistic regression and Random Forest).

Another approach specifically devised for metagenomic sample classification is the R-SVM of Cui
and Zhang (2013) where the authors generalized recursive SVMs to perform both feature selection
and discrimination of human whole metagenome samples for both control and inflammatory bowel
disease patients.

More recently, this approach has been generalized in the DectICO tool (Ding et al., 2015), which
combines (i) kernel partial least squares as a strategy for feature selection, (ii) intrinsic correlation
of oligonucleotides (ICO) that generalizes the k-mer frequencies to describe samples and (iii) SVM
as a learning algorithm. The authors claim that DectICO method outperforms other approaches
when long k-mers are considered.
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8 Gene prediction

Another broad question that metagenomics tries to answer is the functional analysis for metage-
nomic studies, that is determining what are the functional and metabolic repertoires of a given
community, what are the differences between communities and what are the members that enable
them to exert different effects. Ideally, a functional profiling of a community would establish a com-
plete geneset for each species present in the sample and perform further functional annotation and
network analysis. This is still not possible.

Considering a microbial community as a whole (and thus ignoring the exact assignment of a
gene to a specific species) gives rise to community network analysis. It has even been argued that a
functional view should better characterize a microbial community than its taxonomic composition
since different organisms are able to perform similar biological functions, giving rise to the concept
of community-realized functions (Liu, 2012; Fuhrman, 2009; Zhou et al., 2010). To the best of our
knowledge, neither functional annotation nor network reconstruction have been tackled by machine
learning approaches. Consequently, this section is dedicated to gene prediction in metagenomic
samples, see Table 6 for an overview.

Gene prediction methods attempt to identify patterns within DNA sequences that correspond to
those recognized by transcription and translation machinery. Typically, gene prediction tools predict
the start and stop sites of protein-coding genes and produce in silico translations of these genes.

Standard tools for gene finding were designed to work on single genome sequencing data (e.g.
Glimmer (Delcher et al., 1999)). Typically, gene prediction is based on Hidden Markov models that
are trained on the gene structure of known organisms similar to the one that is being studied or
alternatively on generalized models of prokaryotic or eukaryotic genes. Often, genes present in a
metagenomic sample come from different organisms, this is why such an approach can not produce
predictions with high confidence. Indeed, true positive rates of gene identification in metagenomic
samples are at best around 70% of true positives for reads, missing a significant subset of genes
(Filippo et al., 2012; Trimble et al., 2012). Since the accuracy in complete genomes is very high
(> 95%), an assembly step can greatly improve gene prediction for metagenomic samples and some
methods explicitly aim at longer sequences.

It has also to be noted that most of the proposed computational methods target bacterial commu-
nities. Thus, gene prediction for mixed metagenomic datasets remains a largely unresolved question.

Tool Validated on Feature eng. ML model Source code Publication Last 
update Compared to

MetaGene
bacterial

GC%, ORF lengths, distance from 
left start codons, distance between 
neighboring ORFs

Hidden Markov 
Model

omics.informatics.indiana.edu/
FragGeneScan 2006 2015 Glimmer, MetaGene

MetaGeneMark
bacteria, archaea 3, 4, 5 and 6-mer and nucleotide 

frequencies
three-periodic 
Markov chain 
model 

web access 2010 unknown
GeneMarkS, 
MetaGeneAnnotator, 
MetaGene

FragGeneScan bacteria, whole 
metagenome

codon usage bias, sequencing error 
models and start/stop codon 
patterns

Hidden Markov 
Model

omics.informatics.indiana.edu/
FragGeneScan 2010 2015 BLASTX, MetaGene 

Orphelia bacterial codon, dicodon usage, orf length, 
tis, gc content neural network orphelia.gobics.de 2008 unknown MetaGene

MetaGeneAnnot
ator

bacteria, archaea, 
prophage

as MetaGene + models for 
prophage genes and RBS logistic regression metagene.cb.k.u-tokyo.ac.jp 2008 unknown GeneMarkS, 

Glimmer, MetaGene

MetaProdigal
bacterial

start site information, translation 
table, hexamer statistics, RBS 
motifs and upstream base 
composition

log-likelihood 
function on subsets 
of training data

github.com/hyattpd/Prodigal 2012 2015 MetaGeneAnnotator, 
MetaGeneMark

Glimmer-MG
whole metagenome

gene length, start/stop codon 
presence, TIS, rbs, start codon 
usage

Interpolated 
Markov Models

www.cbcb.umd.edu/software/
glimmer-mg 2012 2014

MetaGeneAnnotator, 
MetaGeneMark,  
FragGeneScan 
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Table 6: Characteristics of gene detection tools. Shown are types of data on which the method has
been validated, how features have been extracted (column Feature eng.), the machine learning
algorithm (column ML method), link to the Source code, year of publication as well as the last
source code update (column Last update), and finally tools against which the performance has
been evaluated (column Compared to).
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8.1 Statistical methods

One of the first gene prediction methods for metagenomic datasets, MetaGene (Noguchi et al.,
2006), uses logistic regression models whose features are the GC content and the di-codon frequencies
in order to distinguish between gene-coding and non-gene coding ORFs. MetaGeneAnnotator
(Nogucki et al., 2008) builds on the MetaGene approach by integrating more thorough statistical
models for bacterial, archaeal and prophage genes and incorporating species-specific patterns of
ribosome binding sites in order to increase the confidence of the translation starts site prediction.

MetaProdigal (Hyatt et al., 2012) is a method that improves on the Prodigal software Hyatt
et al. (2010) and is based on the same idea of gene prediction. The coding regions are distin-
guished from the background by using a log-likelihood function that incorporates information such
as translation table, hexamer statistics, ribosomal binding site motifs and upstream base composi-
tion. The main difference with Prodigal resides in the fact that training data is pre-clustered using
a complete-linkage clustering and the log-likelihood function is defined on these clusters.

8.2 Model-based methods

MetaGeneMark (Zhu et al., 2010) is built on the same principle as the popular HMM-based gene
prediction tool GeneMark, but adapts it to process short DNA fragments. First, training genomes are
used to estimate a polynomial and logistic approximations of oligonucleotide frequencies as a function
of the GC-content. These estimates are then used to set the parameters of the MetaGeneMark gene
finder HMM. FragGeneScan (Rho et al., 2010) is another HMM-based approach that integrates
codon usage bias, start/stop codon patterns as well as an explicit modeling of sequencing errors; it
seems to outperform other solutions and is currently used by the EBI Metagenomics pipeline.

Glimmer-MG (Kelley et al., 2012) relies on Interpolated Markov Models to identify the coding
regions and distinguish them from noncoding DNA. First, binning is performed using SCIMM and
the IMM models are trained within each cluster for gene predictions, which makes this method quite
computationally expensive.

Orphelia (Hoff et al., 2008, 2009) is a two-stage machine learning approach. First, linear dis-
criminants for monocodon usage, dicodon usage and translation initiation sites are used to extract
features from sequences. Second, ORFs are classified as being protein-coding or not by a neural
network that combines these features with ORF length and GC-content. The neural network is
trained on random sub-sequences of a given length of genomes in the reference database.

In addition to the novel computational methods presented in this review a number of integrated
pipelines has been developed such as the EBI Metagenomics Webserver (Hunter et al., 2014) based
on FragGeneScan, RAMMCAP (Li, 2009) based on MetaGene and SmashCommunity based on
GeneMark and MetaGene (Arumugam et al., 2010).

9 Discussion

Applications of machine learning in metagenomics have penetrated all major questions asked in
this field of research. Moreover, this idiom of data analysis has been a major driver in all areas
of metagenomics: OTU clustering, binning, taxonomic assignment, comparative metagenomics and
functional analysis. In turn, these biological applications have triggered many original developments
in machine learning: in the way data are represented, how relevant features are selected and how
prior knowledge is introduced in the algorithm.

Looking at the tables that recapitulate the examined tools, we can notice a clear progression
towards the sophistication of machine learning approaches. Even better, today certain metagenomic
questions can be considered to be essentially solved, in the sense that they can be answered in
a computationally efficient way and tend to produce high quality results. The most noteworthy
example is the taxonomic assignment for bacterial communities in the case of amplicon sequencing
(for the cases where the resolution provided by reference taxonomies is considered to be sufficient
for the study).
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Despite the spectacular technological and methodological advances, the science of metagenomics
still has a large number of questions for which no definitive answer has been provided. Here we
enumerate some of these questions, which in our opinion constitute the major avenues for current
and future research in metagenomics. These questions pertain to both biological and computational
aspects of metagenomics.

• Novel species. Dealing with unknown species complicates both computation and interpretation.
For example, OTU clustering and binning can be efficiently performed; however, interpretation
of the resulting groups is difficult. At the same time, taxonomic assignment is unable to assign
sequences from such species if no sufficiently close taxa exist in the reference databases.

• Whole metagenomic samples. As we have seen, many computational approaches have been
validated on bacterial data. Being able to efficiently and accurately deal with samples con-
taining, for example, host traces, archaea, viruses, fungi, protists and small algae, is still an
open question.

• Functional analysis. Detection of protein-coding genes and consequently their downstream
analysis remain challenging. In particular this involves developing methods able to efficiently
analyse heterogeneous and fragmented data in the presence of sequencing errors.

• Big Data challenge. Machine learning is still seldom deployed in the “Big Data” fashion.
Many authors remark that current methods cannot be applied to datasets with sizes over a
Terabyte. This constitutes a bottle-neck for large-scale environmental studies. An effort in
porting existing methods to modern Big Data machine learning frameworks (e.g., Spark etc.)
or in developing novel ones has to be undertaken.

NGS has catalysed the research in metagenomics, and paved the way for scientists to build
fundamental knowledge on various communities over the past decade. The technical ability to
routinely generate large datasets of sequences from extremely variable communities has enabled
the study of different environments in a less biased way. Part of the solution to the challenges
identified above lies in the technical advances for data generation, especially longer reads. The field
is finally mature enough to think “beyond the metagenomics” and advance our understanding of
microbial communities and different environments by including such aspects as, for example, host-
pathogen interactions, quorum sensing and cell-to-cell interactions. This would require collecting
additional experimental measurements and metadata, and in turn call for yet another generation of
computational methods for what we can call integrative metagenomics.
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