
Received March 10, 2021, accepted March 22, 2021, date of publication April 22, 2021, date of current version May 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3075066

Machine Learning for Misuse-Based Network
Intrusion Detection: Overview, Unified Evaluation
and Feature Choice Comparison Framework

LAURENS LE JEUNE 1,2, TOON GOEDEMÉ 2, AND
NELE MENTENS 1,3, (Senior Member, IEEE)
1ES&S and imec-COSIC, Department of Electrical Engineering (ESAT), KU Leuven, 3000 Leuven, Belgium
2EAVISE, PSI, Department of Electrical Engineering (ESAT), KU Leuven, 3000 Leuven, Belgium
3Leiden Institute of Advanced Computer Science (LIACS), Leiden University, 2311 Leiden, The Netherlands

Corresponding author: Laurens Le Jeune (laurens.lejeune@kuleuven.be)

This work was supported in part by the COllective Research NETworking (CORNET) and funded by VLAIO under
Grant HBC.2018.0491, and in part by the CyberSecurity Research Flanders under Grant VR20192203.

ABSTRACT Network Intrusion detection systems are essential for the protection of advanced commu-
nication networks. Originally, these systems were hard-coded to identify specific signatures, patterns and
rule violations; now artificial intelligence and machine learning algorithms provide promising alternatives.
However, in the literature, various outdated datasets as well as a plethora of different evaluation metrics
are used to prove algorithm efficacy. To enable a global comparison, this study compiles algorithms for
different configurations to create common ground and proposes two new evaluation metrics. These metrics,
the detection score and the identification score, together reliably present the performance of a network
intrusion detection system to allow for practical comparison on a large scale. Additionally, we present a
workflow to process raw packet flows into input features for machine learning. This framework quickly
implements different algorithms for the various datasets and allows systematic performance comparison
between those algorithms. Our experimental results, matching and surpassing the state-of-the-art, indicate
the potential of this approach. As raw traffic input features are much easier and cheaper to extract when
compared to traditional features, they show promise for application in real-time deep learning-based systems.

INDEX TERMS Intrusion detection, machine learning, neural networks, security.

I. INTRODUCTION

Today, more and more devices are connected to the internet.
Cisco forecasts that by 2023 there will be 29.3 billion devices
connected to the internet [1]. As the attack surface increases,
the need for security rises. For example, in 2015 a mas-
sive brute force attack [2] on Alibaba resulted in the poten-
tial compromisation of 21 million user accounts. In 2016,
Internet-of-Things (IoT) devices infected with theMirai bot-
net were used in a large Distributed Denial of Service (DDoS)
attack against Domain Name System provider Dyn, resulting
in the unavailability of many major internet platforms such as
Spotify, Twitter and Netflix1 [3].
One important link in the chain of protection against

attacks is the intrusion detection system (IDS), responsible

1https://splinternews.com/here-are-the-sites-you-cant-access-because-
someone-took-1793863079

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

for identifying malicious activity and attacks [4]. Network
intrusion detection systems then aim to detect attacks by
investigating network traffic. While they historically func-
tioned through hard-coded rules, more and more research is
being conducted to investigate the application of machine
learning (ML). Academic research proposes many differ-
ent network intrusion detection techniques, also comparing
against other techniques. However, the plethora of publicly
available and potentially outdated datasets, the differences
between those datasets, the variety of evaluation methods and
the occasional unclear reporting of proposed techniques sig-
nificantly complicate making a fair comparison. This paper
aims at solving this issue and sets out a work flow that is
used to run existing solutions on relevant datasets and that is
made open source such that it can easily be applied to future
solutions. Our contribution is four-fold:

• Wegive an overview of themost frequently used datasets
and we summarize the pros and cons of each dataset
(Sect. IV).

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63995

https://orcid.org/0000-0003-0744-4897
https://orcid.org/0000-0002-7477-8961
https://orcid.org/0000-0001-8753-7895
https://orcid.org/0000-0002-9843-9219


L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

• We present existing evaluation methods and their draw-
backs, and we propose newly derived unifying metrics
for fair and reliable comparison of network intrusion
detection performance (Sect. V).

• We provide a profound overview of ML techniques in
the literature for network intrusion detection, with a
focus on recent deep learning (DL) approaches, and
we quantitatively compare and discuss these techniques
based on results reported in related work as well as
our own recalculations (Sect. VI) using our proposed
metrics.

• We propose a workflow that allows for the use of raw
network traffic in machine learning, as raw traffic-based
features are more suitable for real-time application when
compared to traditional machine learning features for
network intrusion detection (Sect. VII). The promising
experimental results for various datasets and algorithms
are comparable to the state-of-the-art.

Before expounding on these contributions, we will first
provide background information on intrusion detection sys-
tems (Sect. II) as well as compare our work against other,
related work (Sect. III).

II. BACKGROUND

Intrusion detection systems are systems that are able to detect
malicious behaviour. This section inspects network intrusion
detection as one of multiple intrusion detection applications,
as well as different approaches to actually build a network
intrusion detection system.

A. INTRUSION DETECTION SYSTEMS

One of the first mentions of detecting malicious activity
was made in 1980 by J.P. Anderson [5], who outlines the
required components for what is now known as an IDS.
In 1987 D. Denning introduced IDES (Intrusion-Detection
Expert System), which was the foundation for many subse-
quent IDSs [6]. Currently, various IDSs are used for various
goals. Host-based intrusion detection systems (HIDS), for
example, aim to detect intrusions in a specific host [4], such
as a computer or a server. Notably, this not only comprises
network-based intrusions, but includes unauthorized use of
the host. AHIDS example is given in [7], in which the anoma-
lous use of applications is detected by monitoring system
calls. Although this technique helps to identify intrusions via
a specific host, it provides no insight into intrusions in other
parts of the network.
By contrast, network-based IDSs (NIDS) detect network

traffic intrusions [4]. Rather than keeping track of one host,
NIDSsmonitor network attacks, by inspecting network traffic
to detect malicious communication through the flows and
generated features of the network packets.
Collaborative IDSs (CIDS) consist of multiple IDS nodes

that exchange information in a centralized, decentralized or
distributed manner [8]. This way, a large network can be
better protected against exceedingly distributed attacks [9].
One of the earlier mentions of such a system is given in

in [10]. Building what effectively is an intrusion detection
network (IDN) allows the different IDS nodes to communi-
cate and pass on useful information. This however unlocks
a new security risk: malicious or compromised IDS nodes
can try to give false feedback, or forgo giving necessary
feedback. Therefore, CIDS research involves verifying the
trustworthiness of a node, e.g. [9], [11], [12].
Recently, a new branch of IDS research has emerged,

investigating the security of the Internet-of-Things (IoT). IoT
nodes require IDS technology different from regular net-
works, for three reasons: The limited resources of IoT nodes,
their specific network topologies and their new communica-
tion protocols [13]. Some examples are [14], [15].
Another increasingly important domain concerns Wireless

Sensor Networks (WSN). These networks are characterized
by infrastructure absence, wireless links, limited physi-
cal protection, a lack of central management and limited
resources as defined in [16]. And while some WSN solutions
are being evaluated on NIDS datasets [17]–[20], WSN envi-
ronments are intrinsically different from the traditional NIDS
environment we consider in this paper, with a fixed, wired
infrastructure and abundant resources.
In practice, IDS implementations can be combinations

of the different types of IDSs. Reference [11] for example
uses different HIDS nodes in a CIDS system, where the
HIDS nodes communicate to improve detection accuracy.
IDSs that combine HIDS and NIDS technology are some-
times called hybrid IDS [21], [22]. Note that hybrid IDS
can also denote an IDS that combines misuse-based and
anomaly-based intrusion detection [14], [23], [24]. This will
be more thoroughly investigated in Sect. II-B. In this paper,
we focus on network-based intrusion detection systems.

B. MISUSE-BASED OR ANOMALY-BASED

Generally, the functioning of any IDS can be described as
being either misuse-based or anomaly-based. Misuse-based2

intrusion detection, also known as knowledge-based [4],
in principle simply means that the IDS knows what cer-
tain attacks look like, and that it detects attacks based on
that knowledge. Therefore, misuse-based intrusion detection
algorithms obtain low false positive rates (see Sect. V) when
inspecting network traffic. Moreover, they can effectively
detect known attacks and label them accordingly, which
facilitates following up on the detection. There is however
one glaring weakness of misuse-based intrusion detection
systems: Their inability to detect unknown and zero-day
attacks. Since they are conditioned to detect known attacks,
other attacks that do not share similarities with them will go
unnoticed.
The counterpart to the misuse-based intrusion detection

is anomaly-based intrusion detection. Anomaly-based or
behaviour-based intrusion detection creates a model of what

2Traditionally, misuse-based approaches were signature-based, matching
traffic against know attack patterns. In this paper, we include supervised
machine learning solutions in this category, as they are trained to recognize
specific attacks.

63996 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

is supposed to be normal network traffic. Intrusions can
be defined as traffic with significant deviations from that
expected behaviour. This means that rather than detect-
ing very specific attacks, anomaly-based intrusion detection
catches abnormal traffic. Because abnormal traffic does not
automatically correspond to an attack, anomaly-based intru-
sion detection is characterized by high false positive rates. As
anomaly-based intrusion detection systems are able to detect
unknown and zero-day attacks however, they remain relevant
for research.
Note that in some literature, (network) anomaly detection

is a term used to designate both misuse-based as well as
behaviour-based intrusion detection. It is therefore advisable
to always verify what exactly is meant by anomaly detec-
tion. In this paper we mainly concentrate on misuse-based
detection, although our metrics can also be applied to
anomaly-based techniques.

III. RELATED WORK

Since much research has gone into network intrusion detec-
tion, many different techniques and algorithms have been
proposed over the years. As a result, there is a need to
categorize and compare different approaches to get a better
understanding of the field. In this section, we go over some
survey papers, ordered by years, in order to investigate what
exists and to state our contribution. The focus in this regard
lies on more recent work, as machine learning and especially
deep learning are fast evolving research fields.
Bhuyan et al. [25] present a categorization of network

anomaly detection methods and systems, encompass-
ing statistical, classification-based, knowledge-based, soft-
computing, clustering-based, ensemble-based, fusion-based
and hybrid approaches. Additionally, they consider several
tools such as nmap or Wireshark that are useful in network
anomaly detection, and they discuss the evaluation of detec-
tion systems. Finally, they conclude by providing recom-
mendations for and stating challenges of network anomaly
detection.

Ahmed et al. [26] consider different methods for anomaly
detection, namely classification, statistical, information
theory-based and clustering-based approaches. Note that
their anomaly detection techniques also includemisuse-based
algorithms such as Support Vector Machines and rule-based
approaches. Additionally, they discuss IDS datasets, and eval-
uate the anomaly detection methods according to their com-
putational complexity, their output format and their attack
priority. However, as this evaluation appears to be limited
to DARPA/KDDCup attacks, its applicability with regards to
more recent datasets is limited.

In [27], Buczak et al. examine machine learning and data
mining techniques for intrusion detection. These techniques
include artificial neural networks, (fuzzy) association rules,
Bayesian Networks, clustering, decision trees, ensemble
learning, evolutionary computation, hidden Markov mod-
els, inductive learning, naive Bayes, sequential pattern
mining and support vector machines. For each of these

techniques, they consider bothmisuse-based detection aswell
as anomaly-detection. Next, they provide an overview of
the computational complexity and streaming capabilities of
each technique. By commenting on IDS performance, on the
difficulty of comparing different detection methods and on
the (re)trainability of models, as well as by proving some
recommendations, they conclude their work.

In [28], the authors provide an overview of machine learn-
ing and deep learning techniques that are being used in cyber-
security, with a focus on network intrusion detection. They
consider Support Vector Machines, k-Nearest Neighbour,
Decision Trees, Deep Belief Networks, Recurrent Neural
Networks and finally Convolutional Neural Networks. In this
overview, they observe three problems: The relative lack of
benchmark datasets, the non-uniformity of evaluation metrics
leading to difficult comparison and finally the insufficient
attention to algorithm efficiency. Moreover, they also remark
some trends in intrusion detection research, namely the study
of hybrid models, the opportunities and challenges deep
learning poses, the increased number of papers comparing
different algorithms as well as their practicability, and the
promise for new benchmark datasets.

Boutaba et al. [23] present a survey on the use of
machine learning for different networking aspects, among
which they include network security. Distinguishing between
misuse-based, anomaly-based, Deep and Reinforcement
Learning-based and hybrid intrusion detection, they consider
36 approaches, mainly evaluated on the KDDCup1999 and
the NSL-KDDdatasets. Overall, they observe a need for more
recent datasets, the lack of anomaly-based detection systems
in real implementations, insufficient real-time implementa-
tions and a general lack of systems fulfilling other specific
requirements. Finally, they concludewith a perspective ofML
for networking in general. Interestingly, they also denote a
need for real-world data instead of synthetic datasets as well
as a need for standard evaluation metrics to accommodate
easier comparison.

Berman et al. [29] present a survey portraying the appli-
cation of deep learning in different cybersecurity problems,
among which network intrusion detection is covered. In their
overview of network intrusion detection, they consider recur-
rent neural networks, convolutional neural networks, deep
neural networks, deep belief networks and autoencoders
and other algorithms. They remark that, among all secu-
rity problems, restricted Boltzmann machines, autoencoders
and recurrent neural networks comprised the most popular
approaches. Moreover, they state that the intrusion detection
ability of a system depends strongly on both the number of
classes as well as the kind of attack, in addition to being
subject to the benign-malicious ratio in the training data.
Finally, they consider the impact of false alarms as well as
missed attacks, and draw attention to the fact that adversaries
might try to actively circumvent protection measures.

Mahdavifar et al. [30] investigate the application of deep
learning for a number of cybersecurity tasks, namely for mal-
ware detection, intrusion detection, phishing detection, spam

VOLUME 9, 2021 63997



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

detection and website defacement detection. For intrusion
detection, they mainly examine papers that employ genera-
tive deep learning technology, as opposed to discriminative
or hybrid deep learning approaches. Based on the surveyed
papers, the authors also present a generic framework showing
the use of deep learning for cybersecurity. Moreover, they
note the potential of semi-supervised learning,3 as the field
presents lots of such unlabelled data. Besides some other
learning-related remarks, they finally conclude by pointing
out that that deep learning should only be used in fields where
complex non-linear models are required, if sufficient data is
available.
Chaabouni et al. [31] present an overview of NIDS-based

IoT security, considering IoT threats, public datasets and
tools as well as current open-source NIDSs. Additionally,
they also consider machine learning-based approaches which
have been validated for general network intrusion detection
datasets. One of their major remarks is the need for an IoT
IDS dataset that is representative of the real world, with
more attention to the semantic relation between detection
performance and the learning process.
In [32], Ring et al. provide a substantial overview of net-

work intrusion detection datasets, focussing on 15 properties
in the analysis. Their work can serve as a guideline in select-
ing suitable public datasets for a specific goal, as they provide
both a simplified overview as well as a large in-depth table
and discussion. Moreover, they also consider other sources
for data, namely data repositories and traffic generators.
Finally, they draw some conclusions that are relevant for any
other research involving NIDS datasets. For example, they
discuss the unlikeliness of ever creating a perfect dataset,
and recommend using multiple datasets for evaluation. Thus,
while not providing insight regarding performance of specific
algorithms or approaches, their investigation does yield per-
tinent knowledge.
Ferrag et al. [33] provide insight in deep learning tech-

niques for cybersecurity purposes. They discuss 35 public
datasets, classifying them into one of seven categories: Net-
work traffic-based, electrical network-based, internet traffic-
based, virtual private network-based, android apps-based, IoT
traffic-based and internet-connected devices-based datasets.
Besides considering existing deep learning-based intrusion
detection algorithms, they also train and evaluate several deep
learning models for the CSE-CIC-IDS2018 and the Bot-IoT
datasets. The detection performance for these deep neural
network, recurrent neural network, convolutional neural net-
work, restricted Boltzmann machine, deep belief network,
deep Boltzmann machine and deep autoencoder models
appears to be comparable.
In comparison to other surveys, in this paper we focus on a

number of novel things. Firstly, we tackle the issue of compar-
ing between different approaches, potentially across different
datasets, which is a challenge in network intrusion detection

3In semi-supervised learning, the training set comprises a small subset of
labelled samples and a large subset of unlabelled samples.

research [23], [27], [28], [34]. We introduce two metrics that
can be calculated using standardmeasures and allow for fairer
and easier comparison between datasets. Moreover, we also
study the application of machine learning-based network
intrusion detection in constrained, real-time environments,
comparing different techniques for different datasets. We fur-
ther propose a workflow to generate features in such a setting,
and run experiments to validate this workflow as well as to
compare against the state-of-the-art.

IV. DATASETS

Whenever developing machine learning algorithms, it is
paramount to have a dataset at one’s disposal. This
dataset allows for training an algorithm and/or for evaluat-
ing the performance of that algorithm. In this section we
discuss the publicly available data sets that are relevant for
our research, as also listed in Table 1. These datasets usually
contain both feature files as well as raw traffic files.While the
feature files provide manually selected features and labelling,
the raw traffic files provide the unlabelled binary traffic
packets from which those features were extracted. Generally,
the format of such raw traffic files is PCAP (Packet CAPture)
or PCAPNG (PCAP Next Generation).

A. DARPA1998

One of the oldest important intrusion detection datasets is
the 1998 DARPA Intrusion Detection Evaluation Dataset
(DARPA1998) [35], [36] generated by MIT Lincoln Labo-
ratory. For this dataset, the network traffic of over 50 air
force bases during 4 months was examined and then recre-
ated in a simulation. By including attacks corresponding
to the DoS, R2L, U2R and Probe categories, the dataset
simulates intrusion in the network. Concretely, 7 weeks of
simulation were used to generate training data while the final
2 weeks provided test data. Interestingly, these test data con-
tain some attack types (for example mailbomb, UDP Storm

or httptunnel) that are not present in the training data. This
allows for testing whether the NIDS can detect attacks it
has not encountered before. This dataset has been criticized
however, as John McHugh already did in 2000 [37]. While
somewhat outdated in some regards (mentioned traffic flows
are much smaller than today), the critiques remain relevant.
One critique is that not enough proof is given that testing
on the synthesised data is representative of the result in
real-world traffic. Other critiques of McHugh include the
taxonomy and distribution of the attacks or the analysis of
the results. Moreover, [38] detected simulation artifacts in
multiple attributes of network traffic, such as too few dif-
ferent TTL values, high regularity for TCP SYN packets or
source address predictability. Additionally, [39] indicate even
more issues in the DARPA1998 dataset. Besides once again
denoting that the synthetic origin of the data can prove to be a
problem, they argue that tcpdump (the traffic collector used)
might drop packets in heavy traffic. As no examination of
dropped packets was undertaken, it is impossible to account
for these packets. Furthermore, they point out the lack of

63998 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

exact definitions of the attacks. Not every probing action of
a host can immediately be seen as an attack, for example.
However, in DARPA1998, there are no clear specifications of
when for example a probe becomes an attack [39]. Although
being the first real intrusion detection dataset, DARPA1998 is
often used or referred to, in combination with its successor
KDDCup1999.

B. KDDCup 1999

The KDDCup1999 dataset (Knowledge Discovery and Data
Mining Tools Competition) [40], or KDD99 for short, was
created by taking a version of DARPA1998. This version
was then used as the dataset for the KDD99 competition.
KDD99 is a very important benchmark in the intrusion
detection community, still being used for the evaluation of
algorithms in 2019 [41]. This highlights one of the most
important critiques on KDD99 nowadays: It is severely
outdated [27], [34]. Attacks that were relevant 20 years ago,
might not be relevant anymore. Moreover, many new attacks
have been developed since (for example, DDoS attacks are
not featured at all in KDD99). This critique of course also
counts for DARPA1998, of which the data from KDD99 is
derived. Likewise, as KDD99 is based on DARPA1998, some
of the critiques of DARPA1998 also count for KDD99. How-
ever, the critiques of [38] are not applicable to KDD99, as the
features used in KDD99 remain unaffected [39]. In [42] the
unbalanced character of the attacks appears. While dividing
the dataset into 10 seperate parts, they noticed that 4 parts
only contained smurf attacks, and that one part only contained
neptune attacks (both DoS attacks). The presence of so many
issues led to the development of a better version of KDD99,
namely NSL-KDD.

C. NSL-KDD

In [39], various problems of KDD99 are discussed by Taval-
laee et al.. Firstly, they note that 78% of the records in the
training set, as well as 75% of the records in the test set are
duplicated. They argue that this causes a model to become
biased towards the more frequent records in the dataset.
Secondly, as they trained 21 ML models on the data, every
model classified 98% of the training and 86% of the test data
correctly. Tavallaee et al. argue that this signifies that the
dataset is fairly easy to classify. For this reason, it is hard to
actually compare different IDSs on the same dataset, as they
all obtain high scores. Therefore, the authors in [39] present a
new dataset, NSL-KDD. In order to achieve this new dataset,
they first removed redundant records from KDD99. In order
to solve the ease of classification for the dataset, they have
also created a specific, difficult subset of the original dataset.
By including mostly packets that were poorly classified with
the test classifiers, this subset represents the packets that are
hard to classify. Often, it is denoted as NSL-KDD21 or NSL-
KDD-21, since no packets that were correctly classified by
all 21 classifiers are included. The full NSL-KDD dataset
(containing all packets) is also known as NSL-KDD+ or
NSL-KDDC+.

It is important to note that, since it is still based on
DARPA1998, the network traffic featured in NSL-KDD
remains outdated and less relevant for modern networks.
NSL-KDD is the final iteration of the datasets based on
DARPA1998.

D. ISCX2012

In [43], the improved generation of intrusion detection
datasets is investigated. The authors aim to dynamically gen-
erate datasets from specific profiles that simulate agents’ traf-
fic behaviours. This way, it is possible to regenerate certain
configurations or to create different scenarios. ISCX2012 is
the result of generating such a dataset by using α-and
β-profiles in a testbed of physical network devices and
hosts. α-profiles represents human-designed attacks while
β-profiles represent themathematically modelled behavior of
the users of the Information Security Centre of Excellence
(ISCX). The α-profiles comprised 4 large attack scenarios
that were executed during the generation, namely infiltrat-
ing the network from the inside, HTTP DoS attacks using
Slowloris, DDoS attacks using an IRC Botnet and brute force
SSH attacks.

E. UNSW-NB15

Motivated by the growing deprecation of KDD99 and NSL-
KDD,University ofNew-SouthWales researchers in [44] cre-
ated a new dataset striving to improve on the shortcomings of
those benchmark datasets. By generating both normal as well
as malicious traffic using the IXIA PerfectStorm tool4 they
created the UNSW-NB15 dataset. They used the Bro [45]5

and Argus6 systems to extract features from the packet cap-
ture files and additionally calculated more in-depth features
with their own algorithms. The nearly 2 million packet flows
present normal traffic and malicious traffic corresponding
to nine attack classes: Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode and Worms.
The same authors statistically analyze the dataset in [46],
determining that, when splitting the dataset into training
and test sets, both sets are similarly distributed and share
statistical properties. Moreover, they indicate that the fea-
tures are correlated and that UNSW-NB15 is more complex
than KDD99 by comparing classification results on both
datasets.

Results in both other work [47] as well as our experiments
appear to suggest that UNSW-NB15 also is more complex to
classify than both ISCX2012 and CICIDS2017, when com-
paring performances of the same approach for those datasets.

F. CICIDS2017

In [48], the authors list eleven characteristics that are essen-
tial for a valid intrusion detection dataset: attack diversity,
anonymity, available protocols, complete capture, complete

4https://www.ixiacom.com/products/perfectstorm
5Formerly Bro IDS, is now known as Zeek: https://zeek.org/
6https://openargus.org/

VOLUME 9, 2021 63999



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

TABLE 1. Different network intrusion detection datasets.

interaction, complete network configuration, complete traf-
fic, feature set heterogeneity, labelling and metadata. More-
over, they created a modern dataset complying to those
characteristics, the Canadian Institute for Cybersecurity
Intrusion Detection Evaluation Dataset (CICIDS2017).
By setting up 10 benign user agents that generate realis-
tic traffic data, and simultaneously attacking the network
from 4 attack hosts, they simulated a dataset spanning
one workweek. For each day a number of attacks were
applied, resulting in attack data for brute force attacks,
heartbleed attacks, botnets, DoS attacks, DDoS attacks,
web attacks and infiltration attacks. Globally, this results
in 15 attack classes corresponding to these 6 categories.
While this course of action provides a modern and diverse
dataset, there are still some shortcomings. Researchers in [49]
identify 4 issues for CICIDS2017. Firstly, they argue that,
as the dataset is divided over 8 files, it is difficult to
work with. Secondly, the dataset contains a huge amount
of data, with 3119345 instances across those files. Thirdly,
288,805 instances in CICIDS2017 miss either a class label
or other information. Finally, the dataset has serious issues
with class imbalance, with the heartbleed attack containing
as little as 11 instances while there are over 2 million benign
instances. The first three issues can be dealt with easily,
by respectively aggregating the dataset files, sampling the
dataset and by removing instances missing information. For
the class imbalance, the authors suggest combining minority
attack classes belonging to the same attack category. The
three different web attacks can for example be combined
into one web attack class. While this provides relief for some
attack classes, it still does not help in case of the infiltration
class with only 36 instances.
In this section, we discussed the most-used datasets in the

field that are relevant for this paper. Among these datasets,
UNSW-NB15 and CICIDS2017 are most recommended for
use in [32], as they contain a wide range of modern attack
scenarios. ISCX2012 is also suitable, but features somewhat
older network traffic, which has to be kept in mind.

V. EVALUATION METHODS

If different intrusion detection algorithms and implementa-
tions are to be compared, it is important this happens on a
common ground. Besides an understanding of the different

datasets, this also requires evaluation metrics that are usable
for every algorithm with each dataset. In the literature,
we observe that each author makes an own choice from the
plethora of metrics that can be used to evaluate NIDSs: accu-
racy, precision, detection rate, false positive rate, F-measure,
etc. Typically, they are used in two scenarios: The binary
scenario and the multiclass (n-ary) scenario. While metrics
such as the precision are very straightforward to calculate
in a binary scenario, the multiclass scenario requires metric
values for the different classes to be aggregated. In practice,
this can be done using macro averaging (denoted with M),
micro averaging (denoted with µ) and weighted averaging
(denoted with w). Macro averaging considers every class
equally, while both micro averaging and weighted averaging
favor large classes. We present a more in-depth overview
and formulas of these evaluation metrics in appendices A-A
and A-B.
As will be elaborately discussed in Sect. VI-D, one issue in

the field of network intrusion detection is that many authors
report their results in various ways, complicating comparison
between different work. Therefore, we propose two metrics
that reliably evaluate the overall performance of an intrusion
detection system. Thesemetrics, the detection score and iden-
tification score, are ideally used in tandem.

A. DETECTION SCORE

The main task of any intrusion detection system is to reliably
detect intrusion. In the most basic sense, this comes down
triggering an alarm whenever an attack is detected. In the
case of network intrusion detection with a normal class and
an attack class, we define the detection score (DS) as the
F-measure with the attacks as positive class: DS = F1. This
is the case for anomaly-based approaches, as these generally
identify attacks in normal traffic without elaborating into dif-
ferent attack classes. However, in the case of multiple attack
classes, this calculation no longer is straightforward. Rather
than aggregating individual F-measures per class, we propose
a method to map the multiclass confusion matrix to a binary
class confusion matrix, which would allow for the use of
the binary F-measure as DS. This mapping is demonstrated
in Fig. 1, with more information about confusion matrices in
appendix A-C. Specific to this approach is that any predicted
attack that corresponds with any true attack is considered

64000 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

a true positive, even if the attack classes differ. We reason
that any detected legitimate attack is beneficial, even if the
attack is initially detected for the wrong reasons. Thus, the DS
allows for assessing the base performance of a NIDS, namely
its ability to detect attacks. In our implementation, we con-
sider the F-measure to account for both the precision and
detection rate of an NIDS. The detection rate outlines the
ability to not miss any attacks, while the precision serves to
limit false alarms. Both properties are required for a real-life
NIDS, as it should neither miss attacks nor produce too many
false alarms. While it is possible to use either metric instead
of the F-measure in the calculation of the DS, we argue that
both should be kept in mind concurrently. In the scenario that
either precision or recall is more important than the other,
the Fβ -measure can be used instead. We will only consider
β = 1, where precision and recall are equally important.
In order to evaluate actually identifying (attack) classes,

we also propose the identification score.

FIGURE 1. Mapping of attack classes to binary.

B. IDENTIFICATION SCORE

The second task of an NIDS is the classification of detected
attacks into different attack classes, as correctly identifying
attacks helps in formulating a response. However, network
intrusion detection datasets suffer from class imbalance:
Minority classes are underrepresented in the dataset, while
majority classes are overrepresented. On the one hand,
the results for the majority classes will dictate the over-
all outcome for weighted averages. This provides a reli-
able overview of the overall performance, but might mask
poor performance for a minority class. On the other hand,
as macro averages do consider minority classes, they can
mask a good overall performance in the case of poorly
detected minority classes. For network intrusion detection,
both the overall performance as well as the performance per
class are important. Therefore, only using one instead of
both aggregation approaches could unreliably display perfor-
mance. As also discussed in Sect. VI-D, most other works
only report weighted averages, forgoing the macro averages.
Therefore, we propose the identification score (IS), which
we define as the harmonic mean of the weighted average
F-measure and the macro average F-measure:

IS = H (F1w,F1M ) =
2 · F1w · F1M
F1w + F1M

(1)

Since the IS is a harmonic mean, it will penalize small
values of either F1w of F1M , only resulting in a high value
if both inputs are also high. It will lie between 0 and 1, but a
value of for example 0.9 already indicates that at best, both
averages F1w and F1M have a value of 0.9. However, for
unbalanced classes, one average may be significantly higher
than 0.9. In such a case, the other value must be significantly
lower than 0.9. Smaller values for the IS can therefore indi-
cate that either one average is very small, or that both values
are equally small. Both situations are undesirable.

The IS is not the only metric that aims to handle class
imbalance. For example, Receiver Operating Characteris-
tic (ROC) or Precision-Recall (PR) curves with an Area
Under Curve (AUC) value [50] use thresholding to evaluate
the performance of a dataset. According to [51], theMatthews
Correlation Coefficient (MCC) is the least biased metric for
binary classification that takes into account both classifi-
cation successes and errors. In principle, training a model
implies minimizing the misclassification cost [52]. For IDSs
in particular, this cost encompasses not only the impact of
intrusion, but also operational costs and the hostility of the
environment [53]. It is however hard to find this cost, as it
depends on uncertain parameters. When comparing against
such other evaluation approaches, there is a clear difference
with the IS. First, unlike for ROC or PR, no thresholding is
required in the calculation. This is valuable in a setting where
not all data to apply thresholding are present, for example
when comparing results of various authors that did not pro-
vide their models. Moreover, comparing to many different
curves in one or more graphs can quickly become cluttered,
complicating the comparison process. MCC similarly heavily
depends on a confusion matrix to be computed, which is not
always provided by authors. It also incorporates the number
of true negatives (normal traffic that does not raise alarms),
which is not really relevant to the performance of network
intrusion detection systems. The advantage of the IS, when
compared to other metrics, is that it can easily be deduced
when the F-measures for each individual class, as well as
the class weights are known. These values are among the
most reported evaluation metrics.7 Moreover, as mentioned
in section V-A, the F-measure also accounts for both the false
alarms (in the precision) and missed attacks (in the recall).

VI. STATE-OF-THE-ART ALGORITHMS

Many different methods are used to perform network intru-
sion detection on specialized datasets, of which some datasets
are discussed in Sect. IV. This paper however does not
strive to exhaustively list every network intrusion detection
technique, as that would be nearly impossible, but rather to
provide an overview of the current state-of-the-art for ML
approaches. This overview is further divided into two major
segments: Traditional machine learning and deep learning.
While both are important and relevant, the main focus will

7The overall accuracy similarly is very often reported, but far less insight-
ful for unbalanced classification,

VOLUME 9, 2021 64001



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

lie on deep learning. Tables 2 and 3 give the performance
of the algorithms that are discussed in the remainder of
this section, for the datasets introduced in Sect. IV. The
tables report performance following two methods: The first
provides the accuracy and weighted averages for precision,
detection rate (DR), false positive rate (FPR) and F-measure
as originally reported, if applicable. Secondly, whenever pos-
sible, we calculated the performance following our proposed
metrics: DS and IS. In order to visualize the effect F-measures
have on the IS, we also provide their weighted and macro
averages. Before discussing different machine learning tech-
niques however, we will first consider what features are used
in network intrusion detection problems in the next section.

A. FEATURES

Feature selection and extraction is essential for any machine
learning task. For network intrusion detection, proposed tech-
niques can grossly be divided into two groups relating fea-
ture usage: One group starts from provided features, while
the other extracts their own features. The first group uses
dataset-specific features, that were extracted at the dataset’s
conception, manually selected by experts. Most methods
using these features simply apply normalization for numeri-
cal features and one-hot encoding for the categorical features.
For example, the 41 features provided in KDD99 are usually
preprocessed into 122-dimensional input vectors. If the pre-
processing for a specific study is very similar to this process,
we will not discuss it here. However, the second group of
research encompasses all other approaches that significantly
modify the provided features or extract completely new fea-
tures. If for example a research uses raw traffic header bytes
as features, that will be discussed here.

B. TRADITIONAL MACHINE LEARNING METHODS

In this section, we will discuss traditional ML-based NIDSs,
namely Support Vector Machines, Decision Trees and Ran-
dom Forests, Extreme learning Machines, Restricted Boltz-
mannMachines and some other approaches. We strive to give
a very general overview of what is being done.

1) SUPPORT VECTOR MACHINES

Even to date, one of the most prevalent ML-based intrusion
detection techniques is the Support Vector Machine (SVM).
SVMs are classifiers that work by finding the hyperplane
separating classes with a maximal margin [86].

In 2003, researchers explored the use of Robust
SVMs to classify process and session data from the
DARPA1998 dataset [87]. Starting from the observation
that datasets supposedly clean usually contain some noise
consisting of malicious traffic, they strove to design a robust
classifier trainable on noisy data. By modifying the con-
straints and objective function of the SVM, they obtained a
recall of 100% with a FPR of 8% where the reference SVM
was unable to even reach a recall of 100% without having
the FPR reach 100% as well. The authors in [63] describe
another way to deal with dataset issues, proposing a modified

K-means approach to generate a high-quality dataset from
KDD99. By using a distance threshold, they add a cluster
centroid to the set whenever a sample exceeds this thresh-
old for every other centroid. Furthermore, they construct a
multi-level classifier, detecting a traffic class at each level.
Notably, they use an Extreme Learning Machine (ELM)
rather than an SVM to detect Probe attacks, as they argue an
ELM is better suited for that task. With every other classifier
being an SVM, they achieved state-of-the-art results. In [81],
the authors use SVM andMultilayer Perceptron classifiers on
UNSW-NB15, while employing the feature dimensionality
reduction approaches Principal Component Analysis (PCA)
and a chi-squares test. They achieve both a high accuracy and
F-measure of above 90%, surpassing other work on the same
dataset.

In [88], the authors strive to implement a stable and
accurate incremental SVM learning scheme. This allows for
manageable retraining in real-time to counteract increasing
training set and training time. By using reserved sets with
weighted non-support vectors, they can retrain the classifier
without having to use the entire training set. Moreover, they
also modify the RBF kernel to further reduce training and
testing speed and increase reliability.

2) DECISION TREES AND RANDOM FORESTS

Decision trees give structure to a set of rules, derived from and
using the input features for, among other things, classifica-
tion [89]. Random forests (RF) then combine many different
decision trees for the same problem and take an ensem-
ble of their results to achieve a more robust classifier [90].
In [54], the RF approach is used to construct a misuse-based
classifier, an anomaly-detector and a hybrid approach eval-
uated on KDD99. For the misuse-based approach, a RF is
used as a classifier to differentiate between normal traffic
and intrusion, resulting in a reported error rate of 7.07%.
By using the proximity of samples of traffic in the RF, out-
liers can be detected for anomaly detection with a reported
DR of 65% and FPR of 1%. Finally, by running all traffic
unclear to themisuse-classifier through the anomaly-detector,
the authors propose a hybrid IDS approach with an overall
DR of 94.7%.

As NIDS datasets suffer from class imbalance, Wei
Zong et al. [83] propose a two-stage approach for network
intrusion detection. After over-sampling the minority classes
and down-sampling the majority classes, they first classify
input data into a minority class or other. This other class is
then classified into the different majority classes in the second
step. Both classifiers are RF, but can be exchanged for other
techniques. After testing on UNSW-NB15, they achieve a
result comparable to the best result in the analysis of that
dataset [46].

Combining ensemble methods and DL, the authors in [65]
aim to achieve high detection performance with a low training
time. They apply both Multi-Grained Traversing as well as
Cascade Forest in an effort to surpass the work they compare
against, which succeeds.

64002 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

TABLE 2. State-of-the-art results for ML-based NIDSs. Values in italics are originally reported rather than recalculated. F1w and F1M in binary scenarios
are only relevant for IS calculation. The best value for each calculated metric is in bold.

3) EXTREME LEARNING MACHINES

Extreme Learning Machines (ELM) are single hidden layer
feedforward neural networks that use randomly generated

input weights and calculated output weights. They excel
in their high training speed while providing adequate gen-
eralization [91]. Yuanlong Yu et al. [61] aim to improve

VOLUME 9, 2021 64003



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

TABLE 3. Continued: State-of-the-art results for ML-based NIDSs.

unbalanced multiclass classification by designing a cascaded
scheme of binary ELM classifiers, in which each ELM is
trained on KDD99 to detect one class. While retaining high
performance on the majority classes, they succeed in improv-
ing the classification of the minority classes.
Yi Yu et al. [67] propose a Dual Adaptive Regular-

ized Online Sequential ELM (DA-ROS-ELM) to allow for
real-time training of the output weights. They report a high
accuracy while maintaining a high training speed.

4) RESTRICTED BOLTZMANN MACHINES

Restricted Boltzmann Machines (RBM) are generative mod-
els consisting of a visible and a hidden layer [92]. They can be
used for both unsupervised learning as well as classification.
The authors in [80] implemented an RBM that is trained and
evaluated on a balanced subset of ISCX2012, achieving an
accuracy and a DR of about 88%.
In [93], a Discriminative RBM is used to perform classifi-

cation with an accuracy of about 84.65% on KDD99.

5) OTHER APPROACHES

Traditional ML is not limited to SVMs, decision trees and
neural networks. For example, Genetic Algorithms (GA)
are usually used in combination with other approaches to
improve their performance: In [41], [94] genetic algorithms
are used to improve SVM performance, while [66] improve
the functionality of a MLP.
Rather than using DL, in [73] Manuel Lopez-Martin et al.

employ shallow neural networks for intrusion detection. They
apply three different kernel approximation methods to project
the input features to a higher dimension, in order to be able
to linearly separate the classes in the neural network.

Other, older techniques include Hidden Markov Machines
[95], k-Nearest Neighbours [96] and clustering [97].

C. DEEP LEARNING METHODS

DL-based NIDSs, as opposed to regular ML approaches, use
a multitude of subsequent hidden network layers to perform
complex calculations. These networks can range from regu-
lar multilayer perceptrons to convolutional neural networks
and (auto)encoders. Each of these architectures has its own
strengths and weaknesses regarding the detection of intru-
sions in network data. In the following sections we discuss
the different architectures and relevant techniques proposed
in research.

1) MLP

Multilayer Perceptrons (MLP) can be regarded as a base-
line neural network structure. While many more complex
or elaborate techniques are used, MLPs remain relevant and
are used in NIDSs. Liu Zhiqiang et al. [82] use a 10-layer
MLP to binarily classify the traffic of UNSW-NB15. With an
accuracy of 99.5% and FPR of 0.47%, they obtain very high
results. The authors of [55] achieved similarly high results
by using a 4-layer MLP on KDD99, achieving an accuracy
of 99.08%. However, they do not report whether this concerns
binary or multiclass classification.

Chunlin Lu et al. [66] apply a genetic algorithm along with
a Dempster-Shafer (DS) decision fusion in an effort to better
leverage the potential of back-propagated neural networks.
After removing 12 features with little influence from the
KDD99 dataset, they group the remaining features in three
subsets that are used to train a neural network with one hidden
layer. By fusing the outputs of these three networks with

64004 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

the DS-model, the resulting GABP-model (Genetic Algo-
rithm BackPropagation) achieves state-of-the-art results.
In [47] an extensive research is conducted, developing

a DNN that can be used for NIDS and HIDS and is
tested on KDD99, NSL-KDD, UNSW-NB15, WSN-DS [98],
CICIDS2017 and Kyoto [99]. By comparing different con-
figurations of a DNN for these different datasets and against
other ML approaches, the authors provide an insightful
overview of performance. It must be noted however that not
the entirety of CICIDS2017 has been included in the research,
as classes such as Infiltration appear to be excluded.

MLPs are also often used as baseline comparison for a new
technology, for example in [67], [69].

2) CNN

Starting from the inception of AlexNet [100] in 2012, Convo-
lutional Neural Networks (CNN) have been used in diverse
settings for diverse purposes. Some important domains
include image recognition [101], object detection [102] and
Natural Language Processing [103]. Their success in these
domains can be partially attributed to their ability to inter-
pret spatial characteristics. Therefore, CNNs have also been
applied in intrusion detection applications in recent years.
Generally, convolution layers for the processing of traffic

data are 1-dimensional or 2-dimensional. In [71], 1D con-
volutional layers are used to perform binary classification
on data from NSL-KDD, MAWILab [104] and Kyoto [99].
Kwon et al. test three different configurations using either
one, two or three 1D convolutional layers as well asmax pool-
ing layers and fully connected layers. From their experiments,
they conclude that the shallow model with only one convolu-
tion layer consistently outperforms the other models. With
F-measures of about 76% for NSL-KDDTest+, about 63%
for NSL-KDDTest21 and a little over 60% for MAWILab,
it does not outperform other algorithms for the same datasets.
For Kyoto, their results fluctuate heavily and are hard to
draw conclusions from. Another example of 1D-convolution
can be found in [76], where the authors use a custom 1D
CNN to classify the entirety of NSL-KDD. With high FPRs
and relatively low accuracies and DRs, the system fails to
distinguish itself from similar technology however.

Besides 1D, CNNs can also use 2D convolution on
input data. This means that features are turned into 2D
images that are classified. How these images are gener-
ated, varies between different implementations. In [105],
the 41 NSL-KDD features are turned into binary vectors.
By using 10-bit vectors for the discretized numerical features
and n-bit vectors for categorical features, where n is the
number of categories, an 8-bit grayscale 8 × 8 image can be
created. Using ResNet50 and GoogLeNet, they reach accu-
racies of 80% on both NSL-KDD+ as well as NSL-KDD21.
However, as they receive false positive rates of respectively
99.81% and 100%, their results for NSL-KDD21 are not
very useful. For this dataset, their implementations simply
report each data sample as an attack. Researchers in [70]
argue that using this grayscale encoding provides numerical

features with 1.25 pixels (10 bits, 8 bits per pixel), while 2-bit
categorical features only account for 0.25 pixels in the image.
Moreover, they also argue that discretizing numerical features
in 10 values provides too rough an estimation of their actual
value. Therefore, they propose RGB-like encoding where
numerical features range between 1 and 224−1. The categor-
ical features are one-hot encoded by using 0 × 000000 and
0xffffff instead of 0 and 1. In their experiments, they report
a considerable improvement when compared to the grayscale
encoding technique, obtaining F-measures of about 82% on
NSL-KDD+, about 75% on NSL-KDD21, about 86% on
UNSW-NB15 and about 82% onCICIDS2017.We are unable
to provide calculated metrics for more insight, as insufficient
information is given in their article.

Another approach to using KDD99 features is given
in [58], where the authors use VGGNet to classify 11 × 11
images derived from those features. This approach results in
an accuracy of 98.34%, on parwith other techniques proposed
on the same dataset.

The authors of [85] take the image generation one step fur-
ther by no longer using precalculated features, but by instead
using fragments of the raw packets themselves. In their exper-
iments, they evaluate three different methods of feature gen-
eration by using packet headers, payloads or a combination
of both. Header features for example are a string of the
first 50 bytes of 5 subsequent packets in a network flow,
separated by an 0 × 00, resulting in a 16 × 16 grayscale
image. Correspondingly, payload features contain the 51st to
the 100th byte of 5 subsequent packets, generating different
16 × 16 images. Unlike the header and payload features,
the combination generates 22 × 22 images by concatenat-
ing the first 96 bytes of 5 subsequent packets and adding
0 × 00s accordingly. Note that packets belong to a flow if
they share their source and destination addresses, their source
and destination ports and the protocol used. Besides their
novel feature generation, they also apply a specific Parallel
Cross-Convolutional neural Network (PCCN) to better clas-
sify the highly imbalanced classes of CICIDS2017. While
reporting results for each attack class, they only differentiate
between those attacks as they do not include normal traf-
fic. Therefore, it is impossible to draw definite conclusions
about the algorithm’s ability of detecting attacks in normal
network traffic.We have implemented this algorithm for three
datasets with normal traffic included, and present the results
in Sect. VII-B

In [106], researchers examine the possibilities of transfer
learning for intrusion detection. Concretely, the authors first
train a base CNN on UNSW-NB15, which then remains fixed
to train a second CNN that is added onto the first. The
aggregate of both CNNs is then trained on NSL-KDD and
tested for NSL-KDD+ and NSL-KDD21.

3) RNN, GRU AND LSTM

Recurrent Neural Networks (RNN), Gated Recurrent Net-
works (GRU) and Long-Short Term Memory (LSTM) have
successfully been applied in areas such as Natural Language

VOLUME 9, 2021 64005



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

Processing [107], traffic forecasting [108] or remaining use-
ful life estimation [109]. LSTM [110] and GRU [111] are
alternative gate units that can replace the standard gate unit
of RNN. They share the ability to take the temporal aspect
of data into account: data samples are processed based on
preceding samples [112]. Consequently, their use for intru-
sion detection has also been investigated. More specifically,
as they are able to inspect time series of variable length,
they might be able to identify attacks based on their rela-
tion to the previously transmitted packets. One very early
example of this is [113], where a RNN analyzes audits in
a HIDS in 1992. For NIDSs, early uses of RNN include
[56], [59] where specific RNN models are used to classify
the KDD99 dataset. [56] uses, among others, Jordan/Elman
recurrent networks [114], [115] to train on on a very small
subset of KDD99. With a 91.91% overall detection rate,
a corresponding false alarm rate of 8.08% and comparable
results for MLP and PCA-based approaches on binary classi-
fication, the algorithm does not quite meet the requirements
for real-life implementation.
The authors of [59] use a partially connected RNN archi-

tecture, employing KDD99 for training and testing. They
report a DR of 94.1% while maintaining a FPR of 0.38%
on multiclass classification, outperforming similar research
at the time. More recently, Chuanlong et al. employed a
RNN to perform classification on the NSL-KDD dataset [68].
By testing out a number of different network configurations,
they obtained to optimal accuracies. Concretely, they show
binary classification accuracies of 83.28% for NSL-KDD+

and 68.55% for KDD21, and multiclass accuracies of 81.29%
for NSL-KDD+ and 64.67% for NSL-KDD21. As the results
for NSL-KDD+ hover only slightly above 80%, it is clear that
there is still room for improvement for this approach.
Not only the basic RNN sees use in intrusion detection

research, the more advanced LSTM option has also shown
its potential. For example in [116], a LSTM Sequence to
Sequence (LSTM-Seq2Seq) model is used for NSL-KDD
and Kyoto-Honeypot data. This model consists of an encoder
turning an input sequence into a fixed-length context vector,
and a decoder giving the probability of the input sequence
being either benign or an attack by analyzing the context
vector. As the deep version of the model, featuring multiple
LSTM layers, has an F-measure of over 99% for NSL-KDD
and 100.0% for Kyoto, it appears to be very effective. Evi-
dently, this greatly outperforms all other algorithms that were
also tested in the study, being Fully Connected Network and
Variational Autoencoder. However, no confusion matrices
or source code are provided to more deeply analyze these
results.
Another example of the potential of LSTM is given

in [117], once again for NSL-KDD. Among a large selection
ofML algorithms, LSTM surpasses its competition by obtain-
ing accuracies of 89% onKDDTest+ and 83% onKDDTest21.
[60] experimented with many different configuration settings
for the use of LSTM for KDD99, testing both the use of all
features as well as the possibility of reducing the number of

features with a J4.8 decision tree. While using all features,
an accuracy of 93.82% is obtained. Important to note how-
ever, are the very low DR values for attacks U2R and R2L in
this model. Reducing the number of features to respectively
8 or 4 then results in accuracies of 93.69% and 93.72%.
Although the overall accuracy is maintained, the detection of
minority classes U2R and R2L is increasingly inhibited. Con-
sequently, even if it is proven that KDD99 can be classified
using a very small number of features, the performance for
minority classes needs to be considered.

Another research focusing on the use of LSTMs for
KDD99 is [118], where the authors use a small subset of the
dataset consisting of 1000 normal samples and 300 samples
for each attack except the very underrepresented U2R. This
approach results in acceptable detection of normal and DoS
attacks, but only a limited number of the other attacks is
detected. The overall DR of 98.96% is comparable to the
state-of-the-art, but the FPR of 7.78% remains too high.

4) CNN + RNN

With CNNs exploring the spatial characteristics and RNNs
considering the temporal aspect of traffic data, a combina-
tion of both methods has great potential. In [57], CNNs are
used to generate feature maps from the base 41 features of
KDD99. After a maxpooling operation, these new features
are then presented as input features to the recurrent model.
With either a RNN, GRU or LSTM as recurrent network,
the ideal configuration is sought. For binary classification,
the CNN with 2 LSTM layers, an accuracy of 99.7% and
F-measure of 99.8% outperforms other solutions. In multi-
class classification, the CNN with 3 LSTM layers obtains
the highest accuracy of 98.7%. It is however not possible to
give any weighted averages, as the weight of each class is
not clearly specified. More extensive research is conducted
in [79], in which HierArchical Spatial-Temporal features are
used to create an IDS (HAST-IDS). Defining HAST-I and
HAST-II as configurations that process either an entire flow
or a limited number of packets in a flow, enables intrusions
in DARPA1998 and ISCX2012 to be detected. HAST-I uses a
CNN to classify m× n flow images created by concatenating
the first n one-hot encoded m-dimensional bytes of a flow.
Similarly, HAST-II generates r×p×q images concatenating
the first q one-hot encoded p-dimensional bytes of a packet,
it then repeats this step for r packets. However, after applying
a CNN to generate features, HAST-II uses an LSTM to tem-
porally analyze the sequence of packets as opposed to only
using a CNN to analyze the entire flow. After determining the
ideal values for n, q and r, the authors in [79] achieve high val-
ues for accuracy, DR and FPR. The results for DARPA1998
are not discussed here for two reasons: HAST-IDS would be
the only relevant investigation to use the dataset. and HAST-II
does not use DARPA1998 as r is 1 or 2 for over 63% of flows.
For ISCX2012, HAST-I achieves an accuracy of 99.69%,
a DR of 96.91% and a FPR of 0.22%. Similarly, the results
for HAST-II, show an equivalent detection performance with
a near negligible FPR of 0.02%.

64006 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

5) DBN

Deep Belief Networks can be viewed as stacks of RBMs
that evade the disadvantages of backpropagation in DL by
using unsupervised learning [119]. In [75], DBNs are used
for NSL-KDD to achieve an accuracy of 97.45%. Similarly,
authors in [62] apply a DBNwith logistic regression to detect
intrusions in KDD99. By removing duplicate samples from
the training set and designing a 4-layer network, they achieve
an accuracy of 97.9%.
Yang et al. [77] modify the density peak clustering algo-

rithm (DPCA) [120] to better suit complex intrusion detection
datasets. After dividing the training data into clusters, they
train aDBNon each cluster and calculate a fuzzymembership
matrix for each test sample related to the clusters. They then
use this membership to aggregate the outputs of the different
DBNs for a test sample. The resultingModified Density Peak
Clustering Algorithm and Deep Belief Networks (MDPCA-
DBN) approach is tested on NSL-KDD and UNSW-NB15,
yielding high results. Calculating the same metrics on the
confusion matrices they provide produces somewhat lower
values.

6) AUTOENCODERS

Autoencoders are DL networks that allow for unsupervised
learning. Generally, they consist of two parts: An encoder
and a decoder. The encoder first encodes the input data,
typically to a lower dimension. This encoded data is then
decoded back to its original dimension, the result of which
should be equal to the original input data. In the field of
intrusion detection, autoencoders are usually combined with
other mechanisms to improve detection. The autoencoders
then serve as dimensionality reduction devices that generate
features that can be more efficiently processed by the follow-
ing classifier. For example in [72] a sparse autoencoder (SAE)
is trained on NSL-KDD features in order to improve both the
classification accuracy as well as the processing time of the
SVM intrusion detector. The resulting detection performance
is on par with other approaches for NSL-KDD, but lacks a
reported FPR. While the autoencoder in this set-up presents
DL, the SVM in practice still is a traditional ML technique.
In [84] this principle is extended, using either a SAE

or Principle Component Analysis (PCA) to reduce the fea-
tures’ dimensions before classification. Between the Random
Forest (RF), Bayesian Network (BN), Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA)
classifiers, the RF classifier obtained the most promising
results. After also applying Uniform Distribution Based Bal-
ancing (UDBB) to combat class imbalance, the authors reach
near perfect detection performance for CICIDS2017.
Researchers in [78] investigate the use of transfer learning

for their SAE, implementing it as the neural network in their
Deep neural network and adaptive Self-Taught-based Trans-
fer Learning (DST-TL) approach. They use layers trained on
power forecasting data of Europeanwind farms and argue that
NSL-KDD data has the same time-series-based and unpre-
dictable nature. While they obtain results comparable to the

state-of-the-art, the transfer-learning approach only is a slight
improvement compared to the same architecture trained from
scratch.

In [74], researchers try to improve the classification of
network traffic by incooperating Stacked AutoEncoders for
feature encoding. Each stacked autoencoder consists of 3
autoencoders that are trained on normal traffic. By then taking
the error vector of a stacked autoencoder, they obtain a mea-
sure of the deviation from normal traffic behaviour. Multiple
error vectors from different stacked autoencoders are then
assembled as the channels of a 1D-image that is classified
using a CNN.

Instead of using stacked regular autoencoders, in [64] the
authors define a Non-symmetric Deep Autoencoder (NDAE)
in which only the encoding phase is utilised. Using this
structure to reduce the dimensionality, they performed RF
classification on KDD99 and NSL-KDD obtaining state-of-
the-art results.

Another application of autoencoders is given in [121],
where Stacked Denoising Autoencoders are used to learn
useful features from traffic data. More specifically, they first
extract session-based features from the raw network traffic.
These features include session metadata and 983 payload
bytes, and are used as input for the SDA. However, during
training these input data are first corrupted by setting some
units to zero, in order tomore robustly process noisy data. The
authors then combine normal traffic of ISCX2012with botnet
attacks from CTU-13 [122] to train the system, obtaining
accuracies of 99.48% on binary classification and 98.11%
in a multiclass scenario, surpassing other configurations they
explored. However, as no further information is given regard-
ing the merging of two different datasets, it is hard to draw
further conclusions.

Besides these examples, some authors also use autoen-
coders in comparison with other algorithms such as in [116]
where the LSTM-SeqSeq model surpassed all other models,
including the autoencoders. Similarly, the autoencoder-based
designs in [117] are surpassed by LSTM and CNN
alternatives.

D. DISCUSSION

In order to be able to compare approaches, Tables 2
and 3 present the results for the KDD99, NSL-KDD+,
NSL-KDD21, ISCX-2012, UNSW-NB15 and CICIDS2017
datasets. Following these results, we can make a number of
observations.

Firstly, the need for standardized result reporting becomes
apparent. Clearly, we observe that every author uses different
evaluation measures to report performance. Moreover, when
reporting multiclass results, researchers use various averag-
ing approaches. While globally the weighted average appears
to be most prevalent, some authors calculate this in a different
way. This can be seen in how some reported metrics deviate
from our calculated metrics, for example for [65] or [77].
Moreover, some authors only provide very limited reporting
regarding the different metrics, often disregarding to report

VOLUME 9, 2021 64007



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

the precision, DR, FPR or F-measure. While they sometimes
alleviate this by explicitly reporting other metrics such as a
Receiving Operator Characteristics curve (ROC-curve), that
is not always the case. If for example the provided confusion
matrices for NSL-KDD21 in [69] are disregarded, the FPRs
of practically 100% resulting in very poor ISs do not stand
out. Transparently reporting these metrics allows for a better
performance assessment.
Secondly, some trends are visible in the data, as data

suggest that binary classification is generally more accu-
rate than multiclass classification, following the DS val-
ues. Moreover, trends regarding dataset complexity can be
suggested. Clearly, NSL-KDD21 is significantly harder than
NSL-KDD+. CICIDS2017 appears to be reasonably manage-
able, while UNSW-NB15 and KDD99 remain challenging
even for very recent techniques.
Thirdly, the issue of dataset imbalance remains important.

While not directly clear in weighted averages, metrics such
as the average F-measure and the IS reveal that not all classes
are well classified, even in the case of otherwise high results.
Upon closer inspection for specific architectures, this appears
to be caused by attacks such as U2R and R2L in KDD99.
These attacks are so underrepresented that systems fail to
accurately learn their pattern or behaviour. Although the
authors all report very high (> 90%) scores on accuracy and
DR, our IS measure clearly provides a more nuanced view.
Fourthly, even very recent research is still only being vali-

dated on datasets such as KDD99 and NSL-KDD. As argued,
these flawed and outdated datasets are a very poor represen-
tation of contemporary network traffic. The relatively limited
amount of research on more recent datasets such as UNSW-
NB15 and CICIDS2017 in comparison underlines this issue.
Finally, our proposed evaluation metrics allow for a more

straightforward comparison between results, requiring only
1 or 2 values to be investigated while giving a clear overview
of the performance of the different techniques. Take for exam-
ple the results reported in [59] or [60]: While it is possible
to investigate the results of individual papers by looking up
specific graphs or confusion matrices, this is hardly practical
on a larger scale. For large scale comparisons, it is necessary
to use only one or a few metrics that can be applied to each
method. When using the metrics provided by the authors,
their results appear to be very good, while in practice their
methods performed poorly for certain classes, as demon-
strated in their low identification scores. This trend can be
seen throughout the tables: Using only reported metrics con-
ceals certain issues, while the combination of DS and IS

indicates whenever something is amiss. However, actually
identifying the root of such issues will most likely require
actually investigating the original work. As such, our pro-
posed metrics are excellent tools for large-scale comparisons
of different work, but they do not replace individual metrics
that assess specific properties and can be counselled in a
follow-up investigation.
When we observe the trend of our unified measures over

the last years, we see network intrusion detection has made

clear and significant progress to date, however there remain
evident challenges for the future. These challenges are in line
with the challenges first formulated in [34], and remain rele-
vant for practical applications. The important challenges we
address in the following section are the difficulty of feature
extraction and comparison across datasets.

VII. WORKFLOW AND COMPARATIVE EXPERIMENTS

Currently, most of themachine learning-based NIDS research
is conducted on complete datasets using precomputed fea-
tures. This approach, however, is not representative of
real-time environments. In an on-line, high-speed networking
environment, an NIDS needs to be able to inspect incoming
traffic at high rates, lest it causes congestion or does not
inspect all traffic. A system might therefore not have ample
time to capture an entire flow for analysis, which is necessary
to find some of the necessary features. For example, in the
UNSW-NB15 features, sload indicates the number of source
bits per second, and ct_flow_http_mthd tracks the number of
Hypertext Transfer Protocol (HTTP) methods in the traffic.
Tracking such features in real-time is problematic for a num-
ber of reasons:

1) Memory efficiency: As it is unknown when the flow
will end, it is unknown how long the NIDS needs to
keep specific data in memory. If many different flows
are being transmitted simultaneously, the systemwould
need to keep many features in memory, exceeding the
available memory capacity or occupying memory that
is necessary in other parts of the detection pipeline.

2) Calculation overhead: Many features need to be cal-
culated from incoming data flows, requiring time
and resources not going to the actual detection
process. For example, most of the 48 features in
UNSW-NB15 require counters, timers or application
layer interpretation of data.

3) Detection delay: Following the principle of keeping a
flow in memory until it has been completely transmit-
ted would also imply to delay detection until that point
in time. For flows that are spread over a longer period,8

it takes too much time before an attack is detected.

An attacker could easily abuse the system by starting many
flows and never ending them to throttle IDS resources, or by
having an attack flow that never stops in order to avoid detec-
tion. In practice, one workaround is to set (timing) thresholds
that determine when to process an ongoing flow. This would
however introduce noise in the detection process, as this pro-
cess would be based on the original, non-thresholded features
instead of their thresholded counterparts. While methods
might exist to implement an NIDS based on those traditional
features, in this section we explore a different approach: Raw
network traffic-based features.

For this approach, raw network packets and flows are used
as ML features, rather than their derived characteristics. One
example of this is the work presented in [85], where the

8Some flows in UNSW-NB15 are spread over more than 2 hours.

64008 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

first n bytes of 5 consecutive packets in the same flow are
used to form a square image. As this image is directly fed
into a CNN, the only feature selections are the number of
packet bytes and the number of packets to include. Clearly,
using this approach minimizes feature extraction overhead.
Instead of keeping track of many potentially long lasting
flows, the first n bytes of incoming packets are used instead.
This introduces another advantage, namely that these features
are dataset agnostic: They can be extracted from any network
traffic, thus allowing for evaluation on different datasets.
On the contrary, traditional features are dataset-dependent,
complicating inter-dataset comparisons.

Starting from this observation, we built a workflow9

to alleviate the comparison of raw traffic-based network
intrusion detection algorithms. This workflow features the
use of different recent and publicly available datasets,
namely ISCX2012, UNSW-NB15, CICIDS2017. Moreover,
we implemented novel algorithms such as HAST-II, [79]
and PCCN [85] for each of these datasets. Both algo-
rithms boast high reported performance, for ISCX2012 and
CICIDS2017 respectively. Implementing them in our exper-
iments allows for easy comparison of on three different
datasets. This section will discuss the functioning of the
workflow and present results of the comparison between dif-
ferent configurations of raw traffic-based network intrusion
detection algorithms.

A. PROPOSED WORKFLOW

Our workflow is inspired by the workflow presented in [85],
but is more elaborate and generic. It also uses other meth-
ods to extract the relevant data, for example custom Python
code instead of tshark10 for parsing, and will be made fully
available online. In order to be manageable, the workflow
is divided into 3 large steps: Network traffic processing to
extract and label flows, feature extraction and intrusion detec-
tion, as visualized in Fig. 2a.
Typically, raw dataset traffic is stored inside PCAP and

PCAPNG files11 that first need to be decoded before they
can be used. Decoding PCAP files yields a chronological
sequence of packets with additional metadata such as times-
tamps. Extracted packets can then be sorted according to their
IP source and destination addresses as well as their TCP/UDP
source and destination ports and their protocol number. These
5 parameters, sometimes referred to as 5-tuple, constitute a
flow identifier (flow ID).
After sorting all packets according to their flow ID, they

need to be labelled. The datasets used in this workflow pro-
vided labelling information in a unidirectional fashion for
flows based on their flow ID. If a flow ID is represented
by (A, B, x, y, p), where A and B are source and destination
addresses, x and y are source and destination ports and p is the

9Software code publicly available at https://gitlab.com/EAVISE/raw-
traffic-nids

10https://www.wireshark.org/docs/man-pages/tshark.html
11Not the case for KDD99 and NSL-KDD, which is why these datasets

cannot be included in this workflow and the described experiments.

transport layer protocol, the unidirectionally labelled flows
comprise both the (A, B, x, y, p) as well as the (B, A, y, x, p)
traffic. As different flows may have identical flow IDs, in the
case that they were transmitted at different points in time,
it is required to distinguish between packets of different flows
with the same flow ID. By only selecting the first k packets
for a flow ID, where k is number of forward or backward
packets specified for each flow, we differentiate between dif-
ferent flows. These k packets are then removed from the tree,
assuring that the next packets correspond to the next flow.
This approach depends on the chronological order of packets
in PCAP(NG) files. Note that for some flows, the indicated
number of forward and backward packets differs from the
actual captured packets. Similarly, some flow IDs featured
in the labelling information are not featured at all in captured
traffic files. Both inconsistencies might introduce some noise
in the dataset.

Once all eligible12 individual flows have been labelled,
the required features for each flow can be extracted in the sec-
ond step of the workflow. While this procedure is specific
for each feature extraction strategy, all extraction strategies
utilize the packet bytes in a flow. For both PCCN [85] and
HAST-II [79], these bytes are structured in 2D images, with
HAST-II also creating sequences of such images.

Finally, after acquiring the features, the corresponding ML
algorithms can be trained, validated and tested in the final
step. For PCCN this algorithm is a CNN while for HAST-II a
CNN and an LSTM are combined.

B. EXPERIMENTS AND RESULTS

We implemented the proposed workflow, and extracted the
required features from the raw flow data as described for
PCCN [85] and HAST-II [79]. All code is written in Python,
using PyTorch for the implementation of the ML algo-
rithms. The train/validation/test split of the dataset was
75%/15%/10%. The initial learning rate of each experi-
ment was 0.01 or 0.001, which was divided by 10 every
time the loss stagnated for 10 epochs. Every experiment
used a batch size of 256, and ran for at least 35 epochs,
depending on how fast it converged. The specific hyper-
parameters for each experiment can be retrieved from
https://gitlab.com/EAVISE/raw-traffic-nids. In an effort to
reduce class imbalance, a constraint was introduced during
training. This constraint limits the maximum number of train-
ing samples to use per class, in order to get a more even distri-
bution during training. No changes were made in the testing
distribution. Besides introducing these constraints, we also
aggregated the samples of the three separate web attacks in
CICIDS2017 to further combat class imbalance. The results
following these experiments are presented in Table 4 and
visualized in Fig. 2b.

12Not all traffic flows in a PCAP(NG) file are labelled, as some TCP/IP
flows remain unlabelled. All other traffic, such as for example Internet
Message Control Protocol (ICMP) packets, is disregarded and not even
included in the sorting and labelling phase.

VOLUME 9, 2021 64009



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

FIGURE 2. Proposed workflow for raw traffic-based feature extraction (left) and experimental results as well as other published results
(right).

TABLE 4. Experimental results for each dataset, feature extraction strategy and ML network. The best value for each metric is emboldened. Constraint
indicates the maximum number of samples per class during training.

C. DISCUSSION

From the results, it is clear that using the PCCN approach
yields the highest results, with both the header-based as
well as the header and payload-based approaches (HePa)
reaching very high DS and IS values. HePa appears to be
about 1% better regarding the IS when compared to the
header approach for CICIDS2017 and UNSW-NB15. This
however is not the case for ISCX2012, as both approaches
are very near 100%. Furthermore, the HAST-II approach
obtains significantly worse results in comparison, as for
unconstrained training these models classify everything as
normal traffic. While applying constraints alleviates this
issue somewhat, the PCCN-based approaches still excel.
This can be partially attributed to the number of features
generated in the HAST-II approach. HAST-II only uses the

first 6 packets in a flow, while all PCCN-based approaches
use all available flow packets. Concretely, the number of
HAST-II features in a dataset is proportional to the number
of flows in that dataset, while the number of PCCN features
is proportional to the number of packets. Therefore, while
both approaches generate a very large amount of benign
features, only PCCN approaches generate sufficient attack
features. Besides these observations, it is also clear that the
results for UNSW-NB15 are significantly lower than those
obtained for CICIDS2017 and ISCX2012. As this can also
be observed in [47] and for the comparative Tables 2 and 3,
UNSW-NB15 is more challenging, and thus of higher aca-
demic interest. When comparing the experimental results
against the corresponding results in tables 2 and 3, it is clear
that raw traffic-based network intrusion detection is able to

64010 VOLUME 9, 2021



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

competewith detectionmethods based on traditional features.
However, the raw traffic-based approach also raises some
concerns: The first n bytes of packets in a flow may not
contain the information that is necessary for reliable detec-
tion. Moreover, it might be possible that different datasets
(or networking environments) are different in such a way
that they require different features. More ideally, it might
be possible to combine both raw traffic-based as well as
certain traditional features into one approach, in an effort to
provide more information in a format that can be efficiently
extracted. More research is necessary to investigate this
avenue.

VIII. CONCLUSION

In this paper we provide an overview of the state of
the art of ML-based network intrusion detection, and dis-
cuss a number of issues within this area. These issues
include the non-standardized reporting of results as well
as the outdatedness and imbalance of most network intru-
sion detection datasets. We propose the detection score and
identification score metrics as reliable methods of fair eval-
uation, and strongly encourage their use in future work.
We also enrolled these metrics in our comparison of both
existing work as well as our own experiments and show
that they are able to accurately display NIDS performance.
Finally, we extended the work of previous research by
implementing previously published raw traffic-based detec-
tion approaches in a new workflow for multiple datasets
to compare against other research. These experiments show
promising results, and provide more insight in the ability
of ML algorithms for real-time network intrusion detection
purposes.
Future work on NIDSs should consider the challenges we

discuss in this paper. This may include further investigation
of the use of alternative features, as well as the ability of
an NIDS to work in a real-world scenario, not only for syn-
thesized datasets. Addressing these issues will significantly
contribute to the adoption of ML-based network intrusion
detection.

APPENDIX A

EVALUATION METRICS BACKGROUND

In this appendix, we introduce the metrics that are commonly
used for network intrusion detection evaluation (A-A). More-
over, we also consider the averaging options in a multiclass
scenario (A-B). Lastly, we concisely describe the function
and construction of a confusion matrix.

A. BINARY CLASSIFICATION

For a dataset of arbitrary size, each element belongs to a
specific class. The entity of classes can either be binary
or n-ary. In the case of binary classification, an element is
either benign or an attack. Usually, the attack is denoted
as positive, while the benign class is negative. Considering
this, a true positive (tp) is an element of a positive class
that is predicted to be positive by an algorithm. Similarly,

true negatives (tn) are elements of a negative class that are
correctly predicted to be negative. On the contrary, false
positives (fp) or false negatives (fn) are elements that are
respectively negative or positive, but are wrongly predicted
to be their opposites. By indicating tp, tn, fp and fn to have
a value equal to the number of corresponding elements after
a series of classifications or predictions, five metrics can be
defined.

The accuracy simply is the fraction of elements that was
predicted correctly:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(2)

Precision, sometimes also denoted as Positive Predictive
Value, signifies the fraction of elements that were correctly
predicted of all elements predicted to be attacks.

Precision =
tp

tp+ fp
(3)

While precision resembles how many elements were cor-
rectly classified as positive, the detection rate (DR) indicates
how many attacks were detected, as shown in Eq. 4. In the
literature, this metric is also referred to as recall, sensitivity
or true positive rate.

DR =
tp

tp+ fn
(4)

On the contrary, the false positive rate (FPR) shows the
amount of attacks that would have gone unnoticed in the same
scenario. It is defined in Eq. 5.

FPR =
fp

tn+ fp
(5)

Finally, the F-measure, F1-score or F-score provides the
harmonic mean of the precision and the recall. This measure
penalizes low values of either precision or recall, requiring
both to be high to result in a high output value.

F1 =
2 · Precision · Recall

Precision+ Recall
(6)

The F-measure can also be generalized to the Fβ -measure,
where the β value can be used to tweak the weight of either
the precision or the recall relative to the other metric.

Fβ =

(

1 + β2
) Precision · Recall

(

β2 · Precision
)

+ Recall
(7)

In eq. 7, the weight of the precision is altered.

B. n-ARY CLASSIFICATION

While these metrics are straightforward in a binary situation,
caution is required in scenarios where attacks are repre-
sented in multiple classes. As the metrics are calculated for
each class individually by considering each other class as
negative, a number of values is obtained for every metric.
These values then have to be aggregated into a singe value
reflecting the performance of the classification task for that
metric.

VOLUME 9, 2021 64011



L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

Commonly, three averaging approaches serve this purpose,
namely micro-averaging (denoted with µ), macro-averaging
(denoted with M) and weighted averaging (denoted with w)
Consider the precision for binary classification as given in
Eq. 3, used in a multiclass scenario with l classes, including
normal traffic. In micro-averaging, the resulting Precisionµ

consists of the sum of the tp per class divided by the sum of
all tp and fp per class [123].

Precisionµ =

∑l
i=1 tpi

∑l
i=1(tpi + fpi)

(8)

The macro averaged precision then simply is the arithmetic
mean of all precision values:

PrecisionM =

∑l
i=1

tpi
tpi+fpi

l
(9)

Finally, for a dataset of N samples, where ni is the number
of samples for class i, the weighted average of the precision is:

Precisionw =

l
∑

i=1

tpi

tpi + fpi
·
ni

N
(10)

While weighted and micro averages are biased towards
larger classes, macro averages consider each class to be
equal [123]. From this point, we will only consider weighted
and macro averages, as micro averages are very similar to
weighted averages but appear less often in NIDS literature.
While we only provide the equations for the precision, we can
similarly average recall and F-measure results.

C. CONFUSION MATRIX

Confusion matrices are a useful tool to present and eval-
uate the classification performance of any classification
algorithm. Each column in the square matrix presents the
number of samples that were predicted as members of a
corresponding class. Each row then describes to what actual
class those samples belonged. Ideally, the matrix is a diagonal
matrix, which means that all samples are predicted correctly.
A confusion matrix structure is given in Fig. 1, where we
demonstrate how to map the multiclass scenario to a binary
scenario as described in Sect. V.

REFERENCES

[1] (Mar. 2020). Cisco Annual Internet Report—Cisco Annual Internet

Report (2018–2023) White Paper—Cisco. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] (Feb. 2016). Massive Brute-Force Attack on Alibaba Affects

Millions. [Online]. Available: https://www.infosecurity-magazine.
com/news/massive-bruteforce-attack-on

[3] (Oct. 2016). Dyn Analysis Summary of Friday October 21 Attack.
[Online]. Available: https://web.archive.org/web/20200620203923/ and
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

[4] H. Debar, ‘‘An introduction to intrusion-detection systems,’’ in Proc. Con-
nect, 2002, pp. 1–18.

[5] J. P. Anderson, ‘‘Computer security threat monitoring and surveillance,’’
James P. Anderson Co., Washington, DC, USA, Tech. Rep., 1980.

[6] D. E. Denning, ‘‘An intrusion-detection model,’’ IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[7] S.Wunderlich, M. Ring, D. Landes, and A. Hotho, ‘‘Comparison of system
call representations for intrusion detection,’’ in Proc. Int. Joint Conf., 12th
Int. Conf. Comput. Intell. Secur. Inf. Syst. (CISIS), 10th Int. Conf. Eur.

Transnational Educ. (ICEUTE), F. M. Álvarez, A. T. Lora, J. A. S. Muñoz,
H. Quintián, and E. Corchado, Eds. Cham, Switzerland: Springer, 2020,
pp. 14–24, doi: 10.1007/978-3-030-20005-3_2.

[8] E. Vasilomanolakis, S. Karuppayah,M.Mühlhäuser, andM. Fischer, ‘‘Tax-
onomy and survey of collaborative intrusion detection,’’ ACM Comput.

Surv., vol. 47, no. 4, pp. 1–33, Jul. 2015, doi: 10.1145/2716260.
[9] C. Duma, M. Karresand, N. Shahmehri, and G. Caronni, ‘‘A trust-aware,

P2P-based overlay for intrusion detection,’’ in Proc. 17th Int. Conf.

Database Expert Syst. Appl. (DEXA), 2006, pp. 692–697.
[10] G. B. White, E. A. Fisch, and U. W. Pooch, ‘‘Cooperating security man-

agers: A peer-based intrusion detection system,’’ IEEENetw., vol. 10, no. 1,
pp. 20–23, Jan. 1996.

[11] C. J. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, ‘‘Trust man-
agement for host-based collaborative intrusion detection,’’ in Manag-

ing Large-Scale Service Deployment, F. De Turck, W. Kellerer, and
G. Kormentzas, Eds. Berlin, Germany: Springer, 2008, pp. 109–122.

[12] W. Li, W. Meng, Y. Wang, J. Han, and J. Li, ‘‘Towards securing
challenge-based collaborative intrusion detection networks via message
verification,’’ in Information Security Practice and Experience, C. Su and
H. Kikuchi, Eds. Cham, Switzerland: Springer, 2018, pp. 313–328.

[13] B. B. Zarpelão, R. S Miani, C. T. Kawakani, and S. C. de Alvarenga,
‘‘A survey of intrusion detection in Internet of Things,’’ J. Netw. Comput.
Appl., vol. 84, pp. 25–37, Apr. 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804517300802

[14] S. Raza, L. Wallgren, and T. Voigt, ‘‘SVELTE: Real-time intru-
sion detection in the Internet of Things,’’ Ad Hoc Netw., vol. 11,
no. 8, pp. 2661–2674, Nov. 2013. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1570870513001005

[15] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan,
and A.-R. Sadeghi, ‘‘DÏoT: A federated self-learning anomaly detec-
tion system for IoT,’’ 2018, arXiv:1804.07474. [Online]. Available:
https://arxiv.org/abs/1804.07474

[16] K. Khan, A. Mehmood, S. Khan, M. A. Khan, Z. Iqbal, and
W. K. Mashwani, ‘‘A survey on intrusion detection and prevention
in wireless ad-hoc networks,’’ J. Syst. Archit., vol. 105, May 2020,
Art. no. 101701. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1383762119305089

[17] B. Riyaz and S. Ganapathy, ‘‘A deep learning approach for effective intru-
sion detection in wireless networks using CNN,’’ Soft Comput., vol. 24,
no. 22, pp. 17265–17278, Nov. 2020, doi: 10.1007/s00500-020-05017-0.

[18] R. Vijayanand and D. Devaraj, ‘‘A novel feature selection method using
whale optimization algorithm and genetic operators for intrusion detection
system in wireless mesh network,’’ IEEE Access, vol. 8, pp. 56847–56854,
2020.

[19] M. Safaldin, M. Otair, and L. Abualigah, ‘‘Improved binary gray wolf
optimizer and SVM for intrusion detection system in wireless sen-
sor networks,’’ J. Ambient Intell. Humanized Comput., vol. 12, no. 2,
pp. 1559–1576, Jun. 2020, doi: 10.1007/s12652-020-02228-z.

[20] S. M. Kasongo and Y. Sun, ‘‘A deep learning method with wrapper
based feature extraction for wireless intrusion detection system,’’ Com-
put. Secur., vol. 92, May 2020, Art. no. 101752. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820300365

[21] S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. Anthony,
and V. Chang, ‘‘From intrusion detection to an intrusion response system:
Fundamentals, requirements, and future directions,’’ Algorithms, vol. 10,
no. 2, p. 39, Mar. 2017.

[22] K. Kim, M. E. Aminanto, and H. C. Tanuwidjaja, Network Intrusion
Detection Using Deep Learning (Springer Briefs on Cyber Security
Systems and Networks). Singapore: Springer, 2018. [Online]. Available:
http://www.springer.com/series/15797 and http://link.springer.com/10.
1007/978-981-13-1444-5

[23] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, ‘‘A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,’’ J. Internet Services Appl., vol. 9, no. 1, pp. 1–99,
Dec. 2018.

[24] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, ‘‘New
anomaly network intrusion detection system in cloud environment based
on optimized back propagation neural network using improved genetic
algorithm,’’ Int. J. Commun. Netw. Inf. Secur., vol. 11, pp. 61–84,
Apr. 2019.

64012 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-030-20005-3_2
http://dx.doi.org/10.1145/2716260
http://dx.doi.org/10.1007/s00500-020-05017-0
http://dx.doi.org/10.1007/s12652-020-02228-z


L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

[25] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, ‘‘Network anomaly
detection: Methods, systems and tools,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 303–336, 1st Quart., 2014.

[26] M. Ahmed, A. N. Mahmood, and J. Hu, ‘‘A survey of network
anomaly detection techniques,’’ J. Netw. Comput. Appl., vol. 60,
pp. 19–31, Jan. 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1084804515002891

[27] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine
learning methods for cyber security intrusion detection,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[28] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang, ‘‘Machine learning and deep learning methods for cybersecu-
rity,’’ IEEE Access, vol. 6, pp. 35365–35381, 2018.

[29] D. Berman, A. Buczak, J. Chavis, and C. Corbett, ‘‘A survey of deep
learning methods for cyber security,’’ Information, vol. 10, no. 4, p. 122,
Apr. 2019, doi: 10.3390/info10040122.

[30] S. Mahdavifar and A. A. Ghorbani, ‘‘Application of deep learning to
cybersecurity: A survey,’’ Neurocomputing, vol. 347, pp. 149–176,
Jun. 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0925231219302954

[31] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
‘‘Network intrusion detection for IoT security based on learning tech-
niques,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2671–2701,
3rd Quart., 2019.

[32] M.Ring, S.Wunderlich, D. Scheuring, D. Landes, andA.Hotho, ‘‘A survey
of network-based intrusion detection data sets,’’ Comput. Secur., vol. 86,
pp. 147–167, Sep. 2019, doi: 10.1016/j.cose.2019.06.005.

[33] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, ‘‘Deep
learning for cyber security intrusion detection: Approaches, datasets,
and comparative study,’’ J. Inf. Secur. Appl., vol. 50, Feb. 2020,
Art. no. 102419. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S2214212619305046

[34] R. Sommer and V. Paxson, ‘‘Outside the closed world: On using machine
learning for network intrusion detection,’’ in Proc. IEEE Symp. Secur.

Privacy, Los Alamitos, CA, USA, May 2010, pp. 305–316.
[35] 1998 DARPA Intrusion Detection Evaluation Dataset. Accessed:

Jan. 5, 2021. [Online]. Available: https://www.ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset

[36] R. Lippmann, R. Cunningham, D. Fried, I. Graf, K. Kendall, S. Webster,
and M. Zissman, ‘‘Results of the DARPA 1998 offline intrusion detec-
tion evaluation,’’ in Proc. 2nd Int. Workshop Recent Adv. Intrusion

Detection, Jan. 1999, pp. 1–29. [Online]. Available: http://www.raid-
symposium.org/raid99/

[37] J. McHugh, ‘‘Testing intrusion detection systems: A critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln laboratory,’’ ACM Trans. Inf. Syst. Secur., vol. 3, no. 4,
pp. 262–294, Nov. 2000, doi: 10.1145/382912.382923.

[38] M. V. Mahoney and P. K. Chan, ‘‘An analysis of the 1999 DARPA/Lincoln
laboratory evaluation data for network anomaly detection,’’ in
Recent Advances in Intrusion Detection, G. Vigna, C. Kruegel, and
E. Jonsson, Eds. Berlin, Germany: Springer, 2003, pp. 220–237.

[39] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ‘‘A detailed analysis
of the KDD CUP 99 data set,’’ in Proc. IEEE Symp. Comput. Intell. Secur.
Defense Appl., Jul. 2009, pp. 1–6.

[40] KDD Cup 1999 Data. Accessed: Jan. 5, 2021. [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[41] H. Xu, Q. Cao, H. Fu, C. Fu, H. Chen, and J. Su, ‘‘Application of support
vector machine model based on an improved elephant herding optimiza-
tion algorithm in network intrusion detection,’’ in Artificial Intelligence,
K. Knight, C. Zhang, G. Holmes, and M.-L. Zhang, Eds. Singapore:
Springer, 2019, pp. 283–295.

[42] L. Portnoy, E. Eskin, and S. Stolfo, ‘‘Intrusion detection with unlabeled
data using clustering,’’ in Proc. ACM CSS Workshop Data Mining Appl.

Secur. (DMSA), 2001, pp. 5–8.
[43] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, ‘‘Toward

developing a systematic approach to generate benchmark datasets for
intrusion detection,’’ Comput. Secur., vol. 31, no. 3, pp. 357–374,
May 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167404811001672

[44] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[45] V. Paxson, ‘‘Bro: A system for detecting network intruders in
real-time,’’ Comput. Netw., vol. 31, nos. 23–24, pp. 2435–2463,
Dec. 1999. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128699001127

[46] N. Moustafa and J. Slay, ‘‘The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the compar-
ison with the KDD99 data set,’’ Inf. Secur. J., Global Perspective, vol. 25,
nos. 1–3, pp. 18–31, Apr. 2016, doi: 10.1080/19393555.2015.1125974.

[47] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran,
A. Al-Nemrat, and S. Venkatraman, ‘‘Deep learning approach
for intelligent intrusion detection system,’’ IEEE Access, vol. 7,
pp. 41525–41550, 2019.

[48] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), Portugal, Jan. 2018,
pp. 108–116.

[49] R. Panigrahi and S. Borah, ‘‘A detailed analysis of CICIDS2017 dataset for
designing intrusion detection systems,’’ Int. J. Eng. Technol., vol. 7, no. 3,
pp. 479–482, 2018.

[50] P. Branco, L. Torgo, and R. P. Ribeiro, ‘‘A survey of predictive modeling
on imbalanced domains,’’ ACM Comput. Surv., vol. 49, no. 2, pp. 1–50,
Nov. 2016, doi: 10.1145/2907070.

[51] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, ‘‘The impact
of class imbalance in classification performance metrics based on the
binary confusion matrix,’’ Pattern Recognit., vol. 91, pp. 216–231,
Jul. 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320319300950

[52] A. P. Bradley, ‘‘The use of the area under the ROC curve in the
evaluation of machine learning algorithms,’’ Pattern Recognit., vol. 30,
no. 7, pp. 1145–1159, Jul. 1997. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0031320396001422

[53] A. A. Cardenas, J. S. Baras, and K. Seamon, ‘‘A framework for the
evaluation of intrusion detection systems,’’ in Proc. IEEE Symp. Secur.

Privacy (S&P), May 2006, p. 15.
[54] J. Zhang, M. Zulkernine, and A. Haque, ‘‘Random-forests-

based network intrusion detection systems,’’ IEEE Trans. Syst.,

Man, Cybern. C, Appl. Rev., vol. 38, no. 5, pp. 649–659,
Sep. 2008.

[55] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, ‘‘Method of intrusion detection
using deep neural network,’’ in Proc. IEEE Int. Conf. Big Data Smart

Comput. (BigComp), Feb. 2017, pp. 313–316.
[56] R. Beghdad, ‘‘Training all the KDD data set to classify

and detect attacks,’’ Neural Netw. World, vol. 17, pp. 81–91,
Jun. 2007.

[57] R. Vinayakumar, K. P. Soman, and P. Poornachandran, ‘‘Applying con-
volutional neural network for network intrusion detection,’’ in Proc.

Int. Conf. Adv. Comput., Commun. Informat. (ICACCI), Sep. 2017,
pp. 1222–1228.

[58] L. Zhang, M. Li, X. Wang, and Y. Huang, ‘‘An improved network intru-
sion detection based on deep neural network,’’ IOP Conf. Ser., Mater.

Sci. Eng., vol. 563, Aug. 2019, Art. no. 052019, doi: 10.1088%2F1757-
899x%2F563%2F5%2F052019.

[59] M. Sheikhan, Z. Jadidi, and A. Farrokhi, ‘‘Intrusion detection using
reduced-size RNN based on feature grouping,’’ Neural Comput. Appl.,
vol. 21, no. 6, pp. 1185–1190, Sep. 2012, doi: 10.1007/s00521-010-0487-
0.

[60] R. C. Staudemeyer, ‘‘Applying long short-term memory recurrent neu-
ral networks to intrusion detection,’’ South Afr. Comput. J., vol. 56,
pp. 136–154, Jul. 2015.

[61] Y. Yu, Z. Ye, X. Zheng, and C. Rong, ‘‘An efficient cascaded method
for network intrusion detection based on extreme learning machines,’’
J. Supercomput., vol. 74, no. 11, pp. 5797–5812, Nov. 2018.

[62] K. Alrawashdeh and C. Purdy, ‘‘Toward an online anomaly intrusion
detection system based on deep learning,’’ in Proc. 15th IEEE Int. Conf.

Mach. Learn. Appl. (ICMLA), Dec. 2016, pp. 195–200.
[63] W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, ‘‘Multi-level hybrid

support vector machine and extreme learning machine based on modified
K-means for intrusion detection system,’’ Expert Syst. Appl., vol. 67,
pp. 296–303, Jan. 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0957417416305310

[64] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, ‘‘A deep learning approach to
network intrusion detection,’’ IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 1, pp. 41–50, Feb. 2018.

[65] B. Hu, J. Wang, Y. Zhu, and T. Yang, ‘‘Dynamic deep forest: An ensemble
classification method for network intrusion detection,’’ Electronics, vol. 8,
no. 9, p. 968, Aug. 2019, doi: 10.3390/electronics8090968.

[66] C. Lu, L. Zhai, T. Liu, and N. Li, ‘‘Network intrusion detection
based on neural networks and D-S evidence,’’ in Image and Video

Technology—PSIVT 2015 Workshops, F. Huang and A. Sugimoto, Eds.
Cham, Switzerland: Springer, 2016, pp. 332–343.

VOLUME 9, 2021 64013

http://dx.doi.org/10.3390/info10040122
http://dx.doi.org/10.1016/j.cose.2019.06.005
http://dx.doi.org/10.1145/382912.382923
http://dx.doi.org/10.1080/19393555.2015.1125974
http://dx.doi.org/10.1145/2907070
http://dx.doi.org/10.1088%2F1757-899x%2F563%2F5%2F052019
http://dx.doi.org/10.1088%2F1757-899x%2F563%2F5%2F052019
http://dx.doi.org/10.1007/s00521-010-0487-0
http://dx.doi.org/10.1007/s00521-010-0487-0
http://dx.doi.org/10.3390/electronics8090968


L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

[67] Y. Yu, S. Kang, and H. Qiu, ‘‘A new network intrusion detection algo-
rithm: DA-ROS-ELM,’’ IEEJ Trans. Electr. Electron. Eng., vol. 13,
no. 4, pp. 602–612, Apr. 2018. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/tee.22606

[68] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[69] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, ‘‘Intrusion detection
using convolutional neural networks for representation learning,’’ in
Neural Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao, and
E.-S. M. El-Alfy, Eds. Cham, Switzerland: Springer, 2017, pp. 858–866.

[70] T. Kim, S. C. Suh, H. Kim, J. Kim, and J. Kim, ‘‘An encoding technique
for CNN-based network anomaly detection,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2018, pp. 2960–2965.

[71] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, ‘‘An empirical
study on network anomaly detection using convolutional neural networks,’’
in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018,
pp. 1595–1598.

[72] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, ‘‘Deep learning
approach combining sparse autoencoder with SVM for network intrusion
detection,’’ IEEE Access, vol. 6, pp. 52843–52856, 2018.

[73] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Shal-
low neural network with kernel approximation for prediction prob-
lems in highly demanding data networks,’’ Expert Syst. Appl., vol. 124,
pp. 196–208, Jun. 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0957417419300843

[74] N. Chouhan, A. Khan, and H.-U.-R. Khan, ‘‘Network anomaly
detection using channel boosted and residual learning based deep
convolutional neural network,’’ Appl. Soft Comput., vol. 83, Oct. 2019,
Art. no. 105612. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1568494619303928

[75] M. Z. Alom, V. Bontupalli, and T. M. Taha, ‘‘Intrusion detection using
deep belief networks,’’ in Proc. Nat. Aerosp. Electron. Conf. (NAECON),
Jun. 2015, pp. 339–344.

[76] Y. Ding and Y. Zhai, ‘‘Intrusion detection system for NSL-KDD dataset
using convolutional neural networks,’’ in Proc. 2nd Int. Conf. Comput.

Sci. Artif. Intell. (CSAI). New York, NY, USA: Association for Computing
Machinery, 2018, pp. 81–85, doi: 10.1145/3297156.3297230.

[77] Y. Yang, K. Zheng, C. Wu, X. Niu, and Y. Yang, ‘‘Building an effective
intrusion detection system using the modified density peak clustering
algorithm and deep belief networks,’’ Appl. Sci., vol. 9, no. 2, p. 238,
Jan. 2019, doi: 10.3390/app9020238.

[78] A. S. Qureshi, A. Khan, N. Shamim, andM. H. Durad, ‘‘Intrusion detection
using deep sparse auto-encoder and self-taught learning,’’ Neural Comput.
Appl., vol. 32, pp. 1–13, Mar. 2019.

[79] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
‘‘HAST-IDS: Learning hierarchical spatial-temporal features using deep
neural networks to improve intrusion detection,’’ IEEE Access, vol. 6,
pp. 1792–1806, 2018.

[80] T. Aldwairi, D. Perera, and M. A. Novotny, ‘‘An evaluation of the
performance of restricted Boltzmann machines as a model for anomaly
network intrusion detection,’’ Comput. Netw., vol. 144, pp. 111–119,
Oct. 2018. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128618306005

[81] N. Aboueata, S. Alrasbi, A. Erbad, A. Kassler, and D. Bhamare, ‘‘Super-
vised machine learning techniques for efficient network intrusion detec-
tion,’’ in Proc. 28th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2019, pp. 1–8.

[82] L. Zhiqiang, G. Mohi-Ud-Din, L. Bing, L. Jianchao, Z. Ye, and L. Zhijun,
‘‘Modeling network intrusion detection system using feed-forward neural
network using UNSW-NB15 dataset,’’ in Proc. IEEE 7th Int. Conf. Smart
Energy Grid Eng. (SEGE), Aug. 2019, pp. 299–303.

[83] W. Zong, Y.-W. Chow, and W. Susilo, ‘‘A two-stage classifier approach
for network intrusion detection,’’ in Information Security Practice and

Experience, C. Su and H. Kikuchi, Eds. Cham, Switzerland: Springer,
2018, pp. 329–340.

[84] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid,
‘‘Features dimensionality reduction approaches formachine learning based
network intrusion detection,’’ Electronics, vol. 8, no. 3, p. 322, Mar. 2019.

[85] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng, and X. Wang, ‘‘PCCN:
Parallel cross convolutional neural network for abnormal network traffic
flows detection in multi-class imbalanced network traffic flows,’’ IEEE
Access, vol. 7, pp. 119904–119916, 2019.

[86] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[87] W. Hu, Y. Liao, and V. R. Vemuri, ‘‘Robust support vector machines for
anomaly detection in computer security,’’ in Proc. Int. Conf. Mach. Learn.
Appl. (ICMLA), M. A. Wani, K. J. Cios, and K. Hafeez, Eds., Los Angeles,
CA, USA, Jun. 2003, pp. 168–174.

[88] Y. Yi, J. Wu, and W. Xu, ‘‘Incremental SVM based on reserved set
for network intrusion detection,’’ Expert Syst. Appl., vol. 38, no. 6,
pp. 7698–7707, Jun. 2011. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0957417410015046

[89] S. Murthy, ‘‘Automatic construction of decision trees from data: A multi-
disciplinary survey,’’ Data Mining Knowl. Discovery, vol. 2, pp. 345–389,
Mar. 2000.

[90] T. K. Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, Aug. 1995, pp. 278–282.

[91] G.-B. Huang, Q.-Y. Zhu, andC.-K. Siew, ‘‘Extreme learningmachine: The-
ory and applications,’’ Neurocomputing, vol. 70, nos. 1–3, pp. 489–501,
Dec. 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231206000385

[92] G. E. Hinton, ‘‘A practical guide to training restricted Boltzmann
machines,’’ in Neural Networks: Tricks of the Trade. Berlin,
Germany: Springer, 2012, pp. 599–619, doi: 10.1007/978-3-642-35289-
8_32.

[93] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, ‘‘Net-
work anomaly detection with the restricted Boltzmann machine,’’ Neu-
rocomputing, vol. 122, pp. 13–23, Dec. 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231213005547

[94] M. R. G. Raman, N. Somu, K. Kirthivasan, R. Liscano, and
V. S. S. Sriram, ‘‘An efficient intrusion detection system based on
hypergraph–genetic algorithm for parameter optimization and feature
selection in support vector machine,’’ Knowl.-Based Syst., vol. 134,
pp. 1–12, Oct. 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950705117303209

[95] R. Jain and N. S. Abouzakhar, ‘‘Hidden Markov model based anomaly
intrusion detection,’’ in Proc. Int. Conf. Internet Technol. Secured Trans.,
Dec. 2012, pp. 528–533.

[96] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, ‘‘CANN: An intrusion
detection system based on combining cluster centers and nearest
neighbors,’’ Knowl.-Based Syst., vol. 78, pp. 13–21, Apr. 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0950705115000167

[97] K. Leung and C. Leckie, ‘‘Unsupervised anomaly detection in
network intrusion detection using clusters,’’ in Proc. ACSC, 2005,
pp. 1–10.

[98] I. Almomani, B. A. Kasasbeh, and M. Al-Akhras, ‘‘WSN-DS: A dataset
for intrusion detection systems in wireless sensor networks,’’ J. Sensors,
vol. 2016, pp. 4731953:1–4731953:16, Aug. 2016.

[99] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, and K. Nakao, ‘‘Sta-
tistical analysis of honeypot data and building of kyoto 2006+dataset
for NIDS evaluation,’’ in Proc. 1st Workshop Building Anal. Datasets

Gathering Exper. Returns Secur. (BADGERS). New York, NY, USA: Asso-
ciation for ComputingMachinery, 2011, pp. 29–36, doi: 10.1145/1978672.
1978676.

[100] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[101] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[102] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You
only look once: Unified, real-time object detection,’’ in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 779–788.

[103] Y. Kim, ‘‘Convolutional neural networks for sentence classifica-
tion,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.

(EMNLP). Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 1746–1751. [Online]. Available: https://www.aclweb.
org/anthology/D14-1181

[104] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, ‘‘MAWILab: Com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,’’ in Proc. 6th Int. Conf. Co-NEXT. New York,
NY, USA: Association for Computing Machinery, 2010, pp. 1–12, doi:
10.1145/1921168.1921179.

64014 VOLUME 9, 2021

http://dx.doi.org/10.1145/3297156.3297230
http://dx.doi.org/10.3390/app9020238
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1007/978-3-642-35289-8_32
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/1921168.1921179


L. Le Jeune et al.: Machine Learning for Misuse-Based Network Intrusion Detection

[105] Z. Li, Z. Qin, K. Huang, X. Yang, and S. Ye, ‘‘Intrusion detec-
tion using convolutional neural networks for representation learning,’’
in Neural Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao, and
E.-S. M. El-Alfy, Eds. Cham, Switzerland: Springer, 2017, pp. 858–866.

[106] P. Wu, H. Guo, and R. Buckland, ‘‘A transfer learning approach for
network intrusion detection,’’ in Proc. IEEE 4th Int. Conf. Big Data Anal.
(ICBDA), Mar. 2019, pp. 281–285.

[107] H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and
R. Ward, ‘‘Deep sentence embedding using long short-term memory net-
works: Analysis and application to information retrieval,’’ IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 24, no. 4, pp. 694–707,
Apr. 2016.

[108] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, and J. Liu, ‘‘LSTM network:
A deep learning approach for short-term traffic forecast,’’ IET Intell.

Transp. Syst., vol. 11, no. 2, pp. 68–75, Mar. 2017.
[109] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, ‘‘Remaining useful life

estimation of engineered systems using vanilla LSTM neural networks,’’
Neurocomputing, vol. 275, pp. 167–179, Jan. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231217309505

[110] S. Hochreiter and J. J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 80–1735, 1997.

[111] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[112] I. Sutskever, J. Martens, and G. Hinton, ‘‘Generating text with recurrent
neural networks,’’ in Proc. 28th Int. Conf. Mach. Learn. (ICML). Madison,
WI, USA: Omnipress, 2011, pp. 1017–1024.

[113] H. Debar, M. Becker, and D. Siboni, ‘‘A neural network component for an
intrusion detection system,’’ in Proc. IEEE Comput. Soc. Symp. Res. Secur.
Privacy, May 1992, pp. 240–250.

[114] M. I. Jordan, ‘‘Serial order: A parallel distributed processing approach,’’
in Neural-Network Models of Cognition (Advances in Psychology),
vol. 121, J. W. Donahoe and V. P. Dorsel, Eds. North-Holland,
1997, ch. 25, pp. 471–495. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0166411597801112, doi: 10.1016/
S0166-4115(97)80111-2.

[115] J. L. Elman, ‘‘Finding structure in time,’’ Cognit. Sci., vol. 14, no. 2,
pp. 179–211, Mar. 1990. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1207/s15516709cog1402_1

[116] R. K. Malaiya, D. Kwon, J. Kim, S. C. Suh, H. Kim, and I. Kim,
‘‘An empirical evaluation of deep learning for network anomaly detec-
tion,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Mar. 2018,
pp. 893–898.

[117] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal,
and K. Han, ‘‘Enhanced network anomaly detection based on deep neural
networks,’’ IEEE Access, vol. 6, pp. 48231–48246, 2018.

[118] J. Kim, J. Kim, H. L. Thi Thu, and H. Kim, ‘‘Long short term
memory recurrent neural network classifier for intrusion detection,’’
in Proc. Int. Conf. Platform Technol. Service (PlatCon), Feb. 2016,
pp. 1–5.

[119] G. Hinton, Deep Belief Nets. Boston, MA, USA: Springer, 2010,
pp. 267–269, doi: 10.1007/978-0-387-30164-8_208.

[120] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find
of density peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496,
Jun. 2014.

[121] Y. Yu, J. Long, and Z. Cai, ‘‘Session-based network intrusion detection
using a deep learning architecture,’’ in Modeling Decisions for Artificial
Intelligence, V. Torra, Y. Narukawa, A. Honda, and S. Inoue, Eds. Cham,
Switzerland: Springer, 2017, pp. 144–155.

[122] S. García, M. Grill, J. Stiborek, and A. Zunino, ‘‘An empirical
comparison of botnet detection methods,’’ Comput. Secur., vol. 45,
pp. 100–123, Sep. 2014. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167404814000923

[123] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of per-
formance measures for classification tasks,’’ Inf. Process. Manage.,
vol. 45, no. 4, pp. 427–437, Jul. 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0306457309000259

LAURENS LE JEUNE received the B.Sc. and
M.Sc. degrees in electronics and ICT engineer-
ing technology in a joint program of KU Leuven,
Leuven, Belgium, and Hasselt University, Diepen-
beek, Belgium, in 2018 and 2019, respectively.
He is currently pursuing the Ph.D. degree in
engineering technology with KU Leuven. For his
master’s thesis, he investigated the classification
of camera trap wildlife footage for biodiversity
research. In his Ph.D. research, he works for

the Embedded Systems and Security (ES&S) as well as the Embedded
and Artificially Intelligent Vision Engineering (EAVISE) research groups.
He is also investigating the application of deep learning technology for
hardware-accelerated real-time network intrusion detection. His research
interests include machine learning and deep learning, FPGAs, network secu-
rity, and intrusion detection.

TOON GOEDEMÉ studied electrical engineer-
ing at KU Leuven. He received the Ph.D. degree
in vision-based topological navigation from KU
Leuven, in December 2006, under the guidance
of Prof. L. Van Gool and T. Tuytelaars. After-
wards, he started teaching at the Technical Uni-
versity De Nayer, Sint-Katelijne-Waver, where he
founded his research group Embedded and Arti-
ficially Intelligent Vision Engineering (EAVISE),
in 2008. Nowadays, his group is integrated in the

KU Leuven and consists of three professors (Joost Vennekens, Patrick Van-
dewalle, and himself), four postdocs and about 20 researchers, playing a vital
role in the transfer of computer vision and AI know-how from academic
research towards the industry. Since 2014, he has been an Associate Pro-
fessor with KU Leuven. He is the (co)author of more than 190 international
publications and was a project leader of more than 75 industrially co-founded
research projects. Together with his team, he won several awards, such as
the Best Paper Award at Embedded Vision Workshop CVPR 2015, the Best
Demo Award at BNAIC 2015, the Best Paper Award at CGVCVIP 2016,
the Willy Asselman Award for research achievements in 2016, and the Best
Paper Award at Embedded Vision Workshop ECCV 2020. He is also an
Associate Editor of the IET Computer Vision journal and the MDPI Journal
of Imaging.

NELE MENTENS (Senior Member, IEEE)
received the master’s and Ph.D. degrees from
KU Leuven, in 2003 and 2007, respectively. She
was a Visiting Researcher with Ruhr University
Bochum, in 2013, and with EPFL, in 2017. She is
currently a Professor with Leiden University and
KU Leuven. She is the (co)author in over 100 pub-
lications in international journals, conferences,
and books. She was/is the PI in around 20 finished
and ongoing research projects with national and

international funding. Her research interests include the domains of config-
urable computing for security, hardware acceleration of network security
applications, and security in constrained environments. She serves as a
program committee member for renowned international conferences on
security and hardware design, such as NDSS, Usenix Security Symposium,
CHES, DAC, DATE, FPL, and ESWEEK. She was the General Co-Chair of
FPL, in 2017, the Program Chair of EWME and PROOFS, in 2018, and the
ProgramChair of FPL and CARDIS, in 2020. She also serves as an Associate
Editor for IEEE TRANSACTIONS ON INFORMATION FORENSICS and SECURITY and
IEEE Circuits and Systems Magazine.

VOLUME 9, 2021 64015

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1007/978-0-387-30164-8_208

