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In	 this	Perspective,	we	 summarise	 recent	progress	 in	machine	 learning	 for	 the	 chemical	
sciences.	Machine	 learning	 techniques	 suitable	 for	addressing	 research	questions	 in	 this	
domain	are	outlined,	as	well	as	future	directions.	We	envisage	a	future	where	the	design,	
synthesis,	 characterisation,	and	application	of	molecules	and	materials	 is	accelerated	by	
artificial	intelligence.	

A	powerful	 structure-property	 relationship	 for	molecules	and	materials	 is	provided	by	 the	
Schrödinger	 equation.	 For	 a	 given	 spatial	 arrangement	 of	 chemical	 elements,	 the	
distribution	 of	 electrons	 and	 a	 wide	 range	 of	 physical	 responses	 can	 be	 described.	 The	
development	 of	 quantum	 mechanics	 provided	 a	 rigorous	 theoretical	 foundation	 for	 the	
chemical	bond.	 In	1929,	Paul	Dirac	 famously	proclaimed	 that	 the	underlying	physical	 laws	
for	the	whole	of	chemistry	are	“completely	known”.1	John	Pople,	realising	the	importance	of	
rapidly	developing	computer	technologies,	created	a	program	called	Gaussian	70	that	could	
do	 what	 scientists	 call	 ab	 initio	 calculations:	 predicting	 the	 behaviour,	 for	 molecules	 of	
modest	 size,	 purely	 from	 the	 fundamental	 laws	 of	 physics.2	 In	 the	 1960s,	 the	 Quantum	
Chemistry	 Program	 Exchange	 brought	 quantum	 chemistry	 to	 the	 masses	 in	 the	 form	 of	
useful	practical	tools.3	Suddenly,	experimentalists	with	little	or	no	theoretical	training	could	
perform	quantum	calculations	too.	Using	modern	algorithms	and	supercomputers,	systems	
containing	 thousands	 of	 interacting	 ions	 and	 electrons	 can	 be	 described	 today	 using	
approximations	to	the	physical	laws	that	govern	the	world	on	the	atomic	scale.4–6	

The	field	of	computational	chemistry	has	become	increasingly	predictive	in	the	21st	Century,	
with	 activity	 in	 applications	 ranging	 from	 developing	 catalysts	 for	 greenhouse	 gas	
conversion,	discovering	materials	 for	energy	harvesting	and	storage,	 to	computer-assisted	
drug	design7.	The	modern	chemical	simulation	toolkit	allows	the	properties	of	a	compound	
to	be	anticipated	(with	reasonable	accuracy)	even	before	it	has	been	made	in	the	laboratory.	
High-throughput	 computational	 screening	has	become	 routine,	 giving	 scientists	 the	ability	
to	calculate	the	properties	of	thousands	of	compounds	as	part	of	a	single	study.	In	particular,	
Density	Functional	Theory	 (DFT)8,9	 is	now	a	mature	technique	for	calculating	the	structure	
and	 behaviour	 of	 solids,10	 which	 has	 enabled	 the	 development	 of	 extensive	 databases	
covering	the	calculated	properties	of	known	and	hypothetical	systems	including	organic	and	
inorganic	crystals,	single	molecules,	and	metal	alloys.11–13		

	

	



	
	
	
	

	
2	

The	 emergence	 of	 contemporary	 artificial	 intelligence	 (AI)	 methods	 has	 the	 potential	 to	
significantly	 alter,	 and	 enhance,	 the	 role	 of	 computers	 in	 science	 and	 engineering.	 The	
combination	 of	 big	 data	 and	 AI	 has	 been	 referred	 to	 as	 both	 the	 fourth	 paradigm	 of	
science14	 and	 the	 fourth	 industrial	 revolution,15	 and	 the	 number	 of	 applications	 in	 the	
chemical	domain	is	growing	at	an	astounding	rate.	A	subfield	of	AI	that	has	evolved	rapidly	
in	 recent	 years	 is	 machine	 learning	 (ML).	 At	 the	 heart	 of	 ML	 applications	 lie	 statistical	
algorithms	whose	performance,	much	 like	 that	of	a	novice	 chemical	 researcher,	 improves	
with	experience.	There	is	a	growing	infrastructure	of	machine	learning	tools	for	generating,	
testing,	and	refining	scientific	models.	Such	techniques	are	suitable	for	addressing	complex	
problems	 involving	 massive	 combinatorial	 spaces	 or	 nonlinear	 processes,	 which	
conventional	procedures	either	cannot	solve	or	can	only	tackle	at	great	computational	cost.		

As	the	machinery	for	AI	and	ML	matures,	significant	advances	are	being	made	not	only	by	
those	 in	mainstream	AI	research,	but	also	by	experts	 in	other	fields	(domain	experts)	who	
have	the	vision	and	the	drive	to	adopt	these	approaches	for	their	purposes.	As	we	detail	in	
the	 Learning	 to	 learn	 box,	 the	 resources	 and	 tools	 that	 facilitate	 the	 application	 of	 ML	
techniques	by	non-computer	scientists	mean	that	the	barrier	to	entry	is	lower	than	ever.		

In	the	rest	of	this	Perspective,	we	discuss	progress	in	the	application	of	machine	learning	to	
meet	 challenges	 in	 molecular	 and	 materials	 research.	 We	 review	 the	 basics	 of	 machine	
learning	approaches,	identify	areas	where	existing	methods	have	the	potential	to	accelerate	
research,	and	consider	the	developments	required	to	enable	more	wide-ranging	impacts.		

1. Nuts and Bolts of Machine Learning  
Given	enough	data,	 could	 a	 computer	determine	all	 known	physical	 laws	 (and	potentially	
also	 those	 that	 are	 currently	 unknown)	without	human	 input?	 Yes,	 given	a	 rule-discovery	
algorithm.	 In	 traditional	 computational	 approaches,	 the	 computer	 is	 little	 more	 than	 a	
calculator,	 employing	 an	 algorithm	 provided	 by	 a	 human	 expert.	 By	 contrast,	 ML	
approaches	learn	the	rules	that	underlie	a	dataset	through	assessment	of	a	portion	of	that	
data.	 We	 consider	 in	 turn	 the	 basic	 steps	 involved	 in	 the	 construction	 of	 a	 model,	 as	
illustrated	 in	 Figure	 1;	 this	 constitutes	 a	 blueprint	 of	 the	 generic	 workflow	 required	 for	
successful	application	of	ML	in	a	materials	discovery	process.		

Data	collection	

Machine	 learning	 comprises	 models	 that	 learn	 from	 existing	 (training)	 data.	 Data	 may	
require	initial	pre-processing,	during	which	missing	or	spurious	elements	are	identified	and	
handled.	 For	 example,	 the	 inorganic	 crystal	 structure	 database	 (ICSD)	 currently	 contains	
188,000	 entries,	which	 have	 been	 checked	 for	 technical	mistakes,	 but	 are	 still	 subject	 to	
human	 and	measurement	 errors.	 Identifying	 and	 removing	 such	 errors	 is	 essential	 if	 ML	
algorithms	are	not	to	be	misled	by	their	presence.	There	is	a	growing	public	concern	about	
the	 lack	 of	 reproducibility	 and	 error	 propagation	 of	 experimental	 data	 published	 in	 peer-
reviewed	 scientific	 literature.	 In	 certain	 fields	 like	 cheminformatics,	 best	 practices	 and	
guidelines	are	established	to	address	these	problems.16		

The	 training	 of	 an	 ML	 model	 may	 be	 supervised,	 semi-supervised	 or	 unsupervised,	
depending	upon	the	type	and	amount	of	available	data.	In	supervised	learning,	the	training	
data	consist	of	 sets	of	 input	and	associated	output	values.	The	goal	of	 the	algorithm	 is	 to	
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derive	a	function	that,	given	a	specific	set	of	input	values,	predicts	the	output	values	to	an	
acceptable	 degree	 of	 fidelity.	 If	 the	 available	 data	 set	 consists	 of	 only	 input	 values,	
unsupervised	learning	can	be	used	in	an	attempt	to	identify	trends,	patterns	or	clustering	in	
the	data.	Semi-supervised	learning	may	be	of	value	if	there	is	a	large	amount	of	input	data,	
but	only	a	limited	amount	of	corresponding	output	values.		

Supervised	 learning	 is	 the	most	mature	and	powerful	of	 these	approaches,	and	 is	used	 in	
most	 ML	 studies	 in	 the	 physical	 sciences,	 for	 example,	 in	 the	 mapping	 of	 chemical	
composition	 to	 a	 property	 of	 interest.	 Unsupervised	 learning	 is	 less	 common,	 but	 can	 be	
used	 for	 more	 general	 analysis	 and	 classification	 of	 data	 or	 to	 identify	 previously	
unrecognised	patterns	in	large	datasets17.	

Data	representation	

Even	though	raw	scientific	data	are	usually	numerical,	the	form	in	which	data	are	presented	
often	affects	learning.	In	many	types	of	spectroscopy,	the	signal	is	acquired	in	time-domain	
but	for	interpretation	it	is	converted	to	a	frequency-domain	with	the	Fourier	transform.	Just	
like	scientists,	a	ML	algorithm	may	learn	more	effectively	using	one	format	rather	than	the	
other.	The	process	of	converting	raw	data	into	something	more	suitable	for	an	algorithm	is	
called	featurisation	or	feature	engineering.		

The	 more	 suitable	 the	 representation	 of	 the	 input	 data,	 the	 more	 accurately	 can	 an	
algorithm	map	it	to	the	output	data.	Selecting	how	best	to	represent	the	data	may	require	
insight	 into	 both	 the	 underlying	 scientific	 problem	 and	 the	 operation	 of	 the	 learning	
algorithm,	 since	 it	 is	not	always	obvious	which	choice	of	 representation	will	 give	 the	best	
performance;	this	is	an	active	topic	of	research	for	chemical	systems.18		

Many	representations	are	available	to	encode	structures	and	properties.	For	example,	the	
Coulomb	matrix19	contains	information	on	atomic	nuclear	repulsion,	as	well	as	the	potential	
energy	 of	 free	 atoms;	 the	 matrix	 is	 invariant	 to	 molecular	 translations	 and	 rotations.	
Molecular	 systems	 also	 lend	 themselves	 to	description	 as	 graphs.20	 In	 the	 solid-state,	 the	
conventional	 description	 of	 crystal	 structures	 by	 translation	 vectors	 and	 fractional	
coordinates	of	the	atoms	is	not	appropriate	for	ML,	since	a	lattice	can	be	represented	in	an	
infinite	number	of	ways	by	choosing	a	different	coordinate	system.	Representations	based	
on	 radial	 distribution	 functions,21	 Voronoi	 tessellations,22	 and	 property-labelled	materials	
fragments23	are	amongst	the	new	ways	in	which	this	problem	is	being	tackled.		

Choice	of	learner	

When	the	data	set	has	been	collected	and	represented	appropriately,	it	is	time	to	choose	a	
model	to	represent	 it.	A	wide	range	of	model	types	(or	 learners)	exists	 for	model	building	
and	prediction.	Supervised	learning	models	may	predict	output	values	within	a	discrete	set	
(e.g.	 the	 categorisation	of	 a	material	 as	 a	metal	 or	 an	 insulator)	 or	 a	 continuous	 set	 (e.g.	
polarisability).	 Building	 a	 model	 for	 the	 former	 requires	 classification,	 while	 the	 latter	
requires	regression.	A	range	of	different	 learning	algorithms	can	be	applied	(see	Figure	2),	
depending	 on	 the	 type	 of	 data	 and	 the	 question	 posed.	 It	 may	 be	 helpful	 to	 use	 an	
ensemble	 of	 different	 algorithms,	 or	 of	 similar	 algorithms	 with	 different	 values	 for	 their	
internal	parameters,	(“bagging”	or	“stacking”)	to	create	a	more	robust	overall	model.		
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Common	algorithms	(learners)	include:		

Naïve	 Bayes25	 is	 a	 collection	 of	 classification	 algorithms	 based	 on	 Bayes’	 theorem	 that	
identify	 the	most	 probable	 hypothesis,	 given	 the	 data	 as	 our	 prior	 knowledge	 about	 the	
problem.	 Bayes’	 theorem	 provides	 a	 formal	 way	 to	 calculate	 the	 probability	 that	 a	
hypothesis	is	correct,	given	a	set	of	existing	data.	New	hypotheses	can	then	be	tested	and	
the	prior	knowledge	updated.	In	this	way	one	can	select	the	hypothesis	(or	model)	with	the	
highest	probability	of	correctly	representing	the	data.	

In	nearest	neighbour	(k-NN)26	methods	the	distances	between	samples	and	training	data	in	
a	 descriptor	 hyperspace	 are	 calculated.	 k-NN	 methods	 are	 so-called	 because	 the	 output	
value	for	a	prediction	relies	on	the	values	of	the	k	nearest	neighbours,	where	k	is	an	integer.	
k-NN	models	can	be	used	in	both	classification	and	regression	models;	 in	classification	the	
prediction	 is	 determined	 by	 the	 class	 of	 the	majority	 of	 the	 k	 nearest	 points,	 while	 in	 a	
regressor	the	value	is	the	average	of	the	k	nearest	points.		

Decision	 trees27	 are	 flowchart-like	 diagrams	 used	 to	 determine	 a	 course	 of	 action	 or	
outcomes.	Each	branch	of	 the	tree	represents	a	possible	decision,	occurrence	or	 reaction.	
The	tree	is	structured	to	show	how	and	why	one	choice	may	lead	to	the	next,	with	branches	
indicating	that	each	option	is	mutually	exclusive.	Decision	trees	comprise	a	root	node,	leaf	
nodes,	 and	 branches.	 The	 root	 node	 is	 the	 starting	 point	 of	 the	 tree.	 Both	 root	 and	 leaf	
nodes	contain	questions	or	criteria	to	be	answered.	Branches	are	arrows	connecting	nodes,	
showing	 the	 flow	 from	 question	 to	 answer.	 Decision	 trees	 are	 often	 used	 in	 ensemble	
methods	(meta-algorithms)	that	combine	multiple	trees	into	one	predictive	model	in	order	
to	improve	performance.	

Kernel	 methods	 are	 a	 class	 of	 algorithms;	 whose	 best	 known	 members	 are	 the	 support	
vector	machine	 (SVM)	and	kernel	 ridge	regression	 (KRR).28	The	name	“kernel”	comes	from	
use	 of	 the	 kernel	 function,	 a	 “trick”	 that	 transforms	 input	 data	 into	 a	 high-dimensional	
representation,	 where	 the	 problem	 is	 easier	 to	 solve.	 In	 a	 sense,	 a	 kernel	 is	 a	 similarity	
function	 provided	 by	 the	 domain	 expert.	 It	 takes	 two	 inputs	 and,	 from	 them,	 creates	 an	
output	that	quantifies	how	similar	they	are.	

Artificial	 neural	 networks	 (ANNs)	 and	 deep	 neural	 networks	 (DNNs)29	 loosely	 mimic	 the	
operation	of	the	brain,	with	artificial	neurons	(the	processing	unit)	arranged	in	input,	output	
and	 hidden	 layers.	 In	 the	 hidden	 layers,	 each	 neuron	 receives	 input	 signals	 from	 other	
neurons,	integrates	those	signals,	and	then	uses	the	result	in	a	straightforward	computation.	
Connections	between	neurons	have	weights,	 the	values	of	which	 represent	 the	network’s	
stored	knowledge.	Learning	is	the	process	of	adjusting	the	weights	so	that	the	training	data	
are	reproduced	as	accurately	as	possible.	

Whatever	 the	 model,	 most	 learners	 are	 not	 fully	 autonomous,	 requiring	 at	 least	 some	
guidance.	 The	 values	 of	 internal	 variables	 (hyperparameters)	 are	 estimated	 beforehand	
using	systematic	and	random	searches,	or	heuristics.	Even	modest	changes	in	the	values	of	
hyperparameters	may	substantially	improve	or	impair	learning,	and	the	selection	of	optimal	
values	 is	 often	 problematic.	 Consequently,	 the	 development	 of	 automatic	 optimisation	
algorithms	 is	 an	 area	 of	 active	 investigation,	 as	 is	 their	 incorporation	 into	 accessible	
packages	for	non-expert	users	(see	Table	1).		
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Model	optimisation		

When	the	 learner	 (or	 set	of	 learners)	has	been	chosen	and	predictions	are	being	made,	a	
trial	model	must	be	evaluated	to	allow	for	optimisation	and	ultimate	selection	of	the	best	
model.	Three	principal	sources	of	error	arise	and	must	be	taken	 into	account:	model	bias,	
model	variance,	and	irreducible	errors.	

Total	Error	=	Bias	+	Variance	+	Irreducible	Errors	

Bias	 is	 the	error	 from	 incorrect	assumptions	 in	 the	algorithm	and	can	 result	 in	 the	model	
missing	 underlying	 relationships.	 Variance	 on	 the	 other	 hand	 is	 sensitivity	 to	 small	
fluctuations	in	the	training	set.	Even	well-trained	ML	models	may	contain	errors	arising	from	
noise	 in	 the	 training	 data,	 measurement	 limitations,	 calculation	 uncertainties,	 or	 simply	
outliers	 or	missing	 data.	 Poor	model	 performance	 usually	 indicates	 a	 high	 bias	 or	 a	 high	
variance,	as	illustrated	in	Fig.	3.		

High	 bias	 (underfitting)	 occurs	 when	 the	 model	 is	 not	 flexible	 enough	 to	 adequately	
describe	 the	 relationship	 between	 inputs	 and	 predicted	 outputs,	 or	 when	 the	 data	 are	
insufficiently	 detailed	 to	 allow	 the	 discovery	 of	 suitable	 rules.	 High	 variance	 (overfitting)	
occurs	 when	 a	 model	 becomes	 too	 complex;	 typically	 this	 occurs	 as	 the	 number	 of	
parameters	is	increased.	The	diagnostic	test	for	overfitting	is	that	the	accuracy	of	a	model	in	
representing	training	data	continues	to	improve,	whilst	the	performance	in	estimating	test	
data	plateaus	or	declines.		

	
The	 key	 test	 for	 the	 accuracy	of	 a	machine	 learning	model	 is	 its	 successful	 application	 to	
unseen	data.	A	widely-used	method	 to	determine	 the	quality	of	 a	model	 is	 to	withhold	a	
randomly-selected	portion	of	data	during	training.	This	withheld	data	set,	known	as	a	test	
set,	 is	 shown	 to	 the	model	 once	 training	 is	 complete	 (Figure	 3).	 The	 extent	 to	which	 the	
output	 data	 in	 the	 validation	 set	 is	 accurately	 predicted	 then	 provides	 a	measure	 of	 the	
effectiveness	of	training.	Cross-validation	is	reliable	only	when	the	samples	used	for	training	
and	validation	are	representative	of	the	whole	population,	which	may	present	problems	if	
the	sample	size	 is	 small,	or	 if	 the	model	 is	applied	 to	data	 from	compounds	 that	are	very	
different	 to	 those	 in	 the	 original	 dataset.	 A	 careful	 selection	 of	methods	 to	 evaluate	 the	
transferability	and	applicability	of	a	model	are	required	in	such	cases.		

	

2. Accelerating the Scientific Method 
Whether	through	the	enumeration	and	analysis	of	experimental	data,	or	the	codification	of	
chemical	intuition,	the	application	of	informatics	to	guide	laboratory	chemists	is	advancing	
rapidly.	 In	this	section,	we	explore	how	ML	is	helping	to	progress,	and	reduce	the	barriers	
between,	the	areas	of	chemical/materials	design,	synthesis,	characterisation	and	modelling.		
We	finally	describe	some	of	the	important	developments	 in	the	field	of	AI	for	data-mining	
existing	literature.	

Guiding	chemical	synthesis			

Organic	 chemists	 were	 amongst	 the	 first	 scientists	 to	 recognise	 the	 potential	 of	
computational	 methods	 in	 laboratory	 practice.	 E.J.	 Corey's	OCSS	 program,33	developed	
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more	than	50	years	ago,	was	an	attempt	to	automate	retrosynthetic	analysis.	In	a	synthetic	
chemistry	route,	the	number	of	possible	transformations	per	step	can	range	from	around	80	
to	several	thousand,34	which	compares	to	the	order	of	tens	of	potential	moves	at	each	game	
position	in	chess.35	In	chemical	synthesis,	human	experts	are	required	to	specify	conditional	
and	 contextual	 rules,	which	 exclude	 large	 sets	 of	 potential	 reagents	 at	 a	 given	 step,	 thus	
limiting	 the	 number	 of	 choices	 available	 to	 the	 algorithm.	 The	 contextual	 rules	 (typically	
many	thousands	of	them)	are	of	the	utmost	importance	if	a	machine	relying	on	a	traditional	
algorithm	 is	 to	 compete	with	an	expert.	Recent	breakthroughs	 in	 the	Chematica	program	
have	shown	that	computers	can	be	more	efficient	than	humans	in	these	tasks.32		

The	combination	of	extremely	 complex	 systems	and	huge	numbers	of	potential	 solutions,	
arising	from	competing	objective	functions	(cost,	purity,	time,	toxicity	etc.)	make	synthetic	
chemistry	 ill-suited	 to	 the	 application	 of	 traditional	 algorithmic	 approaches.	 However,	
because	of	this	complexity,	synthesis	is	one	area	of	research	that	can	benefit	most	from	the	
application	of	artificial	intelligence.		

Deep	 learning	 approaches,	 which	 most	 commonly	 rely	 on	 many-layered	 ANNs	 or	 a	
combination	 of	 ANNs	 with	 other	 learning	 techniques	 such	 as	 Boltzmann	 machines,	 are	
showing	 particular	 promise	 for	 predicting	 chemical	 synthesis	 routes	 by	 combining	 rules-
based	 expert	 systems	 with	 neural	 networks	 that	 rank	 the	 candidates,36	 or	 rank	 the	
likelihood	 of	 a	 predicted	 product	 by	 applying	 the	 rules.37	 One	 ANN	 that	 learned	 from	
chemical	literature	examples	was	able	to	achieve	a	level	of	sophistication	such	that	trained	
chemists	 could	 not	 distinguish	 between	 computer	 and	 human	 expert	 designed	 routes.34	
However,	 a	 severe	drawback	of	 rules-based	 systems	 is	 that	 they	have	difficulty	operating	
outside	their	knowledge	base.	

Alternatives	 to	 rules-based	 synthesis	 prediction	 have	 also	 been	 proposed,	 based	 on	 so-
called	 ‘sequence-to-sequence’	 approaches,	 rooted	 in	 the	 relationships	 between	 organic	
chemistry	and	linguistics.	By	casting	molecules	as	text	strings,	these	relationships	have	been	
applied	 in	 several	 chemical	 design	 studies.38,39	 In	 sequence-to-sequence	 approaches	 a	
model	is	fed	an	input	of	products	and	then	outputs	reactants	as	a	SMILES	string.40	A	similar	
approach	has	also	been	applied	to	retrosynthesis.41	Future	developments	 in	areas	such	as	
one-shot	learning	(as	recently	applied	to	drug	discovery)42	could	lead	to	wider	application	in	
fields	like	natural	product	synthesis,	where	training	data	are	scarce.	

Beyond	 the	 synthesis	 of	 a	 target	 molecule,	 ML	 models	 can	 been	 applied	 to	 assess	 the	
likelihood	 that	 a	 product	will	 crystallise.	 By	 applying	 feature	 selection	 techniques,	Wicker	
and	Cooper	developed	a	 two-parameter	model,	 capable	of	predicting	 the	propensity	of	 a	
given	molecule	to	crystallise	with	an	accuracy	of	~	80%.43	Crucially	this	model	had	access	to	
a	 training	 set	 of	 more	 than	 20,000	 crystalline	 and	 non-crystalline	 compounds.	 The	
availability	of	such	open-access	databases	is	pivotal	for	the	further	development	of	similar	
predictive	models.44	Another	 study	 trained	a	model	 to	predict	 the	 reaction	 conditions	 for	
new	organically	templated	inorganic	product	formation	with	a	success	rate	of	89%.45	

A	less	explored	avenue	of	ML	is	how	to	best	sample	the	set	of	possible	experimental	set-ups.	
Active	 learning	 predicts	 the	 optimal	 future	 experiments	 required	 to	 better	 understand	 a	
given	problem.	 It	was	recently	applied	 to	understand	the	conditions	 for	 the	synthesis	and	
crystallisation	of	complex	polyoxometalate	clusters.46	Starting	from	initial	data	on	failed	and	
successful	experiments,	the	ML	approach	then	directed	future	experiments	and	was	shown	



	
	
	
	

	
7	

to	be	capable	of	covering	six	times	as	much	crystallisation	space	as	a	human	researcher	in	
the	same	number	of	experiments.		

Computational	assistance	for	 the	planning	and	direction	of	chemical	synthesis	has	come	a	
long	way	since	the	early	days	of	hand-coded	expert	systems.	Much	of	this	progress	has	been	
achieved	 in	 the	 past	 five	 years.	 Incorporation	 of	 AI-based	 chemical	 planners,	 with	 great	
advances	 in	 robotic	 synthesis46	 promises	 a	 rich	 new	 frontier	 in	 the	 production	 of	 new	
compounds.	

Assisting	multi-dimensional	characterisation		

The	 structure	 of	 molecules	 and	 materials	 is	 typically	 deduced	 by	 a	 combination	 of	
experimental	methods,	such	as	X-ray	and	neutron	diffraction,	magnetic	and	spin	resonance,	
and	vibrational	spectroscopy.	Each	approach	has	a	certain	sensitivity	and	length-scale,	and	
information	 from	 each	method	 is	 complementary.	 Unfortunately,	 it	 is	 rare	 that	 data	 are	
fully	 assimilated	 into	 a	 coherent	 description	 of	 atomic	 structure.	 Analyses	 of	 individual	
streams	often	result	 in	conflicting	descriptions	of	the	same	compound.47	A	solution	would	
be	to	 incorporate	real-time	data	 into	the	modelling	with	results	 that	are	then	returned	to	
the	experiment,	forming	a	feedback	loop.48	ML	offers	the	promise	of	a	unifying	framework	
allowing	synergy	of	synthesis,	imaging,	theory	and	simulations.		

The	power	of	ML	methods	 for	enhancing	 the	 link	between	modelling	and	experiment	has	
been	 demonstrated	 in	 the	 field	 of	 surface	 science.	 Combining	 ab	 initio	 simulations	 with	
multi-stage	 pattern	 recognition	 systems	 that	 use	 convolutional	 neural	 networks	 Ziatdinov	
and	co-workers	were	able	 to	characterize	complex	surface	 reconstructions.49	ML	methods	
have	also	shown	recent	promise	in	areas	such	as	microstructural	characterisation50	and	the	
identification	 of	 interesting	 regions	 in	 large	 complex	 neutron	 scattering	 3D	 volumetric	
datasets.51	 A	 different	 example	 of	 ML	 opening	 new	 avenues	 in	 an	 area	 of	 complicated	
characterisation	 is	 phase	 transitions	 of	 highly-correlated	 systems;	 neural	 networks	 have	
been	trained	to	encode	phases	of	matter	and	thus	identify	transitions.52		

Enhancing	theoretical	chemistry		

Modelling	 is	 now	 commonly	 considered	 as	 an	 equally	 important	 component	 to	 synthesis	
and	 characterisation	 for	 successful	 programmes	 of	 research.	 Using	 atomistic	 simulations,	
the	 properties	 of	 a	molecule	 or	material	 can,	 in	 principle,	 be	 calculated	 for	 any	 chemical	
composition	and	atomic	structure.	In	practice,	the	computations	rapidly	grow	in	complexity	
as	 the	size	of	 the	system	 increases,	so	considerable	effort	 is	devoted	to	 finding	short-cuts	
and	approximations	that	might	allow	one	to	calculate	properties	to	an	acceptable	degree	of	
fidelity,	without	the	need	for	unreasonable	amounts	of	computer	time.		

Approaches	based	on	DFT	have	been	successful	in	predicting	properties	of	many	classes	of	
compounds,	offering	generally	high	accuracy	at	reasonable	cost.	However,	the	Achilles	heel	
of	DFT	remains	the	exchange-correlation	functional	that	describes	non-classical	interactions	
between	 electrons.	 There	 are	 notable	 limitations	 of	 current	 approximations	 for	 weak	
chemical	 interactions	(e.g.	 layered	materials),	highly	correlated	(d	and	f	electron)	systems,	
and	the	latest	generation	of	quantum	materials	(e.g.	iron	pnictide	superconductors),	which	
often	require	a	more	expensive	many-body	Hamiltonian.	Drawing	from	the	growing	number	
of	 structure-property	 databases	 (Table	 2),	 accurate	 universal	 density	 functionals	 can	 be	
learned	 from	 data.53,54	 Early	 examples	 include	 the	 Bayesian	 error	 estimation	 functional	
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(BEEF)55	as	well	as	combinatorially-optimised	DFT	functionals.56	Going	beyond	the	standard	
approach	 to	 DFT,	 the	 need	 to	 solve	 the	 Kohn-Sham	 equations	 is	 by-passed	 by	 learning	
density-to-energy	and	density-to-potential	maps	directly	from	training	systems.57	

Equally	challenging	 is	 the	description	of	chemical	processes	across	 length	and	time	scales,	
for	example,	the	ubiquitous	corrosion	of	metals	 in	the	presence	of	oxygen	and	water.	The	
description	of	realistic	chemical	interactions	(bond	forming	and	breaking)	including	solvents,	
interfaces,	 and	 disorder	 is	 still	 limited	 by	 the	 computational	 cost	 of	 quantum	mechanical	
approaches.	 The	 task	 of	 developing	 transferrable	 analytic	 forcefields	 is	 a	 well-defined	
problem	 for	 machine	 learning.58,59	 It	 has	 been	 demonstrated	 that,	 in	 simple	 materials,	
approximate	 potential	 energy	 surfaces	 learned	 from	 quantum	mechanical	 data	 can	 save	
orders	of	magnitude	in	processing	cost.60,61	Whilst	the	combination	of	methods	with	varying	
levels	 of	 approximation	 is	 promising,	 much	 work	 is	 needed	 in	 the	 quantification	 and	
minimisation	 of	 error	 propagation	 across	 methods.	 In	 this	 context,	 initiatives	 for	 error	
estimation	such	as	the	DAKOTA	package62	are	critically	important.	

Targeting	discovery	of	new	compounds		

Until	now	we	have	considered	how	ML	can	be	used	to	enhance	and	integrate	the	areas	of	
synthesis,	characterisation	and	modelling.	However,	ML	can	be	used	to	reveal	new	ways	to	
discover	 compounds.	 Models	 that	 relate	 system	 descriptors	 to	 desirable	 properties	 are	
already	used	 to	 reveal	 structure-property	 relationships.63,64	 So	 far,	 the	 fields	of	molecular	
(primarily	 pharmaceutical/medicinal)	 and	 materials	 chemistry	 have	 experienced	 different	
degrees	of	uptake	of	ML	approaches	to	 the	design	of	new	compounds,	 in	part	due	to	 the	
challenges	of	representing	the	crystal	structure	and	morphology	of	extended	solids.		

Crystalline	solids			

The	application	of	ML	to	the	discovery	of	functional	materials	is	an	emerging	field.	An	early	
report	in	1998	applied	ML	to	the	prediction	of	new	magnetic	and	optoelectronic	materials,65	
but	 the	 number	 of	 studies	 has	 only	 risen	 significantly	 since	 2010.66–68	 The	 complexity	 of	
games	like	“Go”	is	reminiscent	of	certain	problems	in	materials	science,69,70	for	example	the	
description	 of	 on-lattice	 interactions	 that	 govern	 chemical	 disorder,	 magnetism,	 and	
ferroelectricity.	Even	for	small	unit	cell	representations,	the	number	of	configurations	of	a	
disordered	 crystal	 can	 quickly	 exceed	 the	 limitations	 of	 conventional	 approaches.	 An	
inverse-design	procedure	 illustrated	how	such	a	combinatorial	 space	 for	an	alloy	could	be	
harnessed	 to	 realise	 specific	 electronic	 structure	 features.71	 Similar	 inverse	 design	
approaches	have	also	been	applied	in	molecular	chemistry	to	tailor	ground	and	excited	state	
properties.72	

Prediction	 of	 the	 likelihood	 of	 a	 composition	 to	 adopt	 a	 given	 crystal	 structure	 is	 a	 good	
example	 of	 a	 supervised	 classification	 problem	 in	ML.	 Some	 recent	 examples	 involve	 the	
prediction	 of	 how	 likely	 a	 given	 composition	 is	 to	 adopt	 the	 so-called	 Heusler	 and	 half-
Heusler	 crystal	 structures.	 One	 method	 predicts	 the	 likelihood	 a	 given	 composition	 will	
adopt	 the	 Heusler	 structure	 and	 is	 trained	 on	 experimental	 data.73	 This	 approach	 was	
applied	 to	 screen	 hypothetical	 compositions	 and	 successfully	 identified	 12	 new	 gallide	
compounds,	 which	were	 subsequently	 experimentally	 verified.	 Similarly,	 a	 random	 forest	
model	 was	 trained	 on	 experimental	 data	 to	 learn	 the	 probability	 that	 a	 given	 ABC	
stoichiometry	would	adopt	the	half-Heusler	structure.74		
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As	an	alternative	to	learning	from	experimental	data,	calculated	properties	can	be	used	as	a	
training	 set	 for	ML.	Moot	 and	 co-workers	 showed	 how	 assessing	 the	 degree	 of	 similarity	
between	electronic	band	structures	could	yield	improved	photocathodes	for	dye-sensitised	
solar	cells.75	A	ML	model,	trained	to	reproduce	energies	for	the	elpasolite	crystal	structure	
(ABC2D6),	was	applied	to	screen	all	2×106	possible	combinations	of	elements	that	satisfy	the	
formula,	 revealing	 chemical	 trends	 and	 identifying	 128	 new	materials.76	 Such	models	 are	
expected	 to	 become	 a	 central	 feature	 in	 the	 next	 generation	 of	 high-throughput	 virtual	
screening	procedures.		

It	 is	 notable	 that	 the	majority	 of	 crystal	 solid	ML	 studies	 to	date	have	 concentrated	on	 a	
particular	crystal	structure	type.	This	 is	because	of	the	difficulty	of	representing	crystalline	
solids	 in	 a	 format	 which	 can	 easily	 be	 fed	 to	 a	 statistical	 learning	 procedure.	 By	
concentrating	 on	 a	 single	 structure	 type,	 the	 representation	 is	 inherently	 built	 into	 the	
model.	Developing	 flexible,	 transferrable	 representations	 is	one	of	 the	critical	areas	 in	ML	
for	crystalline	solids	(see	section	2	subsection	“Data	representation”).	As	we	will	see	below,	
the	use	of	ML	 in	molecular	chemistry	 is	more	advanced	 than	 in	 the	solid	 state,	 to	a	 large	
extent	 this	 is	 due	 to	 greater	 ease	 with	 which	 molecules	 can	 be	 described	 in	 a	 manner	
amenable	to	algorithmic	interpretation.	

Molecular	science		

The	 QSAR	 (Quantitative	 Structure-Activity	 Relationship)	 approach	 is	 now	 a	 firmly	
established	tool	for	drug	discovery	and	molecular	design.	With	the	development	of	massive	
databases	of	assayed	and	virtual	molecules,77,78	methods	for	rapid,	reliable	virtual	screening	
of	 these	 molecules	 for	 pharmacological	 (or	 other)	 activity	 are	 required	 to	 unlock	 their	
potential.	QSARs	can	be	described	as	the	application	of	statistical	methods	to	the	problem	
of	finding	empirical	relationships	of	the	type	Pi	=	k’(D1,D2,	…,	Dn),	where	Pi	is	the	property	of	
interest,	 k’	 is	 a	 (most	 commonly	 linear)	 mathematical	 transformation	 and	 the	 Di	 are	
calculated	or	measured	structural	properties.79	ML	has	a	long	history	in	the	development	of	
QSARs,	stretching	back	over	half	a	century.80		

Molecular	science	is	benefitting	from	cutting	edge	algorithmic	developments	in	ML	such	as	
generative	adversarial	networks	(GANs)81	and	reinforcement	learning	for	the	computational	
design	of	novel	putative	biologically	active	compounds.	 In	a	GAN,	 two	models	are	 trained	
simultaneously:	a	generative	model	G	captures	the	distribution	of	data,	and	a	discriminative	
model	D	estimates	the	probability	that	a	sample	came	from	the	training	set	rather	than	G.	
The	training	procedure	for	G	is	to	maximize	the	probability	of	D	making	an	error	(Figure	4).	
The	ORGAN	(Objective-Reinforced	Generative	Adversarial	Networks)82	model	 is	 capable	of	
generating	novel	organic	molecules	from	scratch.	Such	a	model	can	be	trained	to	produce	
diverse	molecules	that	contain	specific	chemical	features	and	physical	responses,	through	a	
reward	mechanism	that	resembles	classical	conditioning	in	psychology.	Using	reinforcement	
learning,	 one	 could	bias	 newly	 generated	 chemical	 structures	 towards	 those	with	desired	
physical	and	biological	properties	(de	novo	design).	
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Reclaiming	the	literature	

A	 final	 area	 for	 which	 we	 consider	 the	 recent	 progress	 of	 ML	 (across	 all	 disciplines)	 is	
tapping	into	the	vast	wealth	of	knowledge	that	already	exists.	While	the	scientific	literature	
provides	a	wealth	of	information	to	researchers,	it	is	increasingly	difficult	to	navigate	due	to	
the	 proliferation	 of	 journals,	 articles,	 and	 databases.	 Text	 mining	 has	 become	 a	 popular	
approach	to	identify	and	extract	information	from	unstructured	text	sources.	This	approach	
can	 be	 used	 to	 extract	 facts	 and	 relationships	 in	 a	 structured	 form	 to	 create	 specialised	
databases,	 to	 transfer	 knowledge	 between	 domains,	 and	 more	 generally	 to	 support	
research	 decision-making.83	 Text	 mining	 is	 applied	 to	 answer	 many	 different	 research	
questions,	ranging	from	the	discovery	of	novel	drug–protein	target	associations,	or	analysis	
of	high	throughput	experiments,	to	developing	systematic	materials	databases.84	Due	to	the	
heterogeneous	 nature	 of	 written	 resources,	 the	 automated	 extraction	 of	 relevant	
information	is	far	from	trivial.	To	address	this,	text	mining	has	evolved	into	a	sophisticated	
and	specialised	field	where	text	processing	and	machine	learning	techniques	are	combined.		

In	the	cases	where	supplemental	data	is	provided	with	a	publication,	it	is	made	available	in	
various	formats	and	databases,	often	without	validated	or	standardised	metadata.	The	issue	
of	data	and	metadata	 interoperability	 is	key.	There	are	some	leading	examples	of	forward	
looking	 initiatives	 that	are	pushing	accessible,	 reusable	data	 in	 scientific	 research,	 such	as	
The	Molecular	Sciences	Software	Institute	(http://molssi.org)	and	the	Open	Science	Monitor	
(https://ec.europa.eu/research/openscience).	

3. Frontiers in Machine Learning  
Many	opportunities	exist	for	further	breakthroughs	in	ML	to	provide	even	greater	advances	
in	the	automated	design	and	discovery	of	molecules	and	materials.	Here	we	highlight	some	
frontiers	in	the	field.	

1. More	 knowledge	 from	 smaller	 data	 sets.	 ML	 approaches	 typically	 require	 large	
amounts	of	data	for	learning	to	be	effective.	While	this	is	rarely	an	issue	in	fields	such	as	
image	 recognition,	 in	 which	 millions	 of	 input	 data	 sets	 are	 available,	 in	 chemistry	 or	
materials	 science.	We	 are	 often	 limited	 to	 hundreds	 or	 thousands,	 if	 not	 fewer,	 high-
quality	 data	 points.	 We	 researchers	 need	 to	 become	 better	 at	 making	 the	 data	
associated	 with	 our	 publications	 accessible	 in	 computer	 readable	 form.	 Another	
promising	 solution	 to	 the	 problem	 of	 limited	 datasets	 is	 meta-learning,	 where	
knowledge	 is	 learned	within	and	across	problems.85	New	developments	such	as	neural	
Turing	machines86	or	 imitation	learning87	are	enabling	the	realisation	of	this	process.	A	
Bayesian	framework	has	recently	been	reported	to	achieve	human-level	performance	on	
one-shot	 learning	problems	with	limited	data88,	which	has	consequences	for	molecular	
and	materials	science	where	data	is	sparse	and	generally	expensive	and	slow	to	obtain.		

2. Efficient	 chemical	 representations.	 The	 standard	description	of	 chemical	 reactions,	 in	
terms	of	composition,	structure	and	properties	has	been	optimised	for	human	learning.	
Most	machine	 learning	approaches	 for	chemical	 reactions	or	properties	use	molecular	
or	atomic	descriptors	to	build	models,	the	success	of	which	is	determined	by	the	validity	
and	 relevance	of	 these	descriptors.	A	 good	descriptor	must	be	 simpler	 to	obtain	 than	
the	 target	 property	 and	 of	 as	 low	 dimensionality	 as	 possible.89	 In	 the	 context	 of	
materials,	 useful	 descriptors90	 and	 new	 approaches	 for	 adapting	 simple	 existing	
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heuristics	 for	machine	 learning	have	been	outlined;91	however,	much	work	 remains	 to	
develop	powerful	new	descriptions.	In	the	field	of	molecular	reactions	exciting	advances,	
such	as	the	use	of	neural	networks	to	create	fingerprints	for	molecules	in	reactions	are	
leading	 to	 advances	 in	 synthesis	 prediction.92	 As	 has	 been	 demonstrated	 by	 the	
successful	 adoption	 of	 the	 concept	 of	 molecular	 fragments,23	 the	 field	 of	 crystalline	
materials	 design	 can	 learn	 much	 from	 advances	 in	 molecular	 nomenclature	 and	
representation.	Chemists	have	a	lot	to	learn	from	a	field	of	representation	learning	i.e.,	
learning	representations	of	the	data	that	make	it	easier	to	extract	new	information	and	
knowledge.		

3. Quantum	 learning.	 While	 classical	 computing	 processes	 bits	 that	 are	 either	 1	 or	 0,	
quantum	computers	use	the	quantum	superposition	of	states	to	process	qubits	that	are	
both	1	and	0	at	the	same	time.93	This	parallelisation	leads	to	an	exponential	speedup	in	
computational	efficiency	as	the	number	of	(qu)bits	used	increases.94	Quantum	chemistry	
is	a	strong	candidate	to	benefit,	because	solving	Schrödinger’s	equation	on	a	quantum	
computer	has	a	natural	fit.95	One	of	the	challenges	for	quantum	computing	is	knowing	
how	to	detect	and	correct	errors	that	may	occur	in	the	data.	Despite	significant	efforts	in	
industry	 and	 academia,	 no	 error-corrected	 qubits	 has	 been	 built	 so	 far.	 Quantum	
machine	learning	explores	the	application	of	ML	approaches	to	quantum	problems,	and	
vice	 versa,	 the	 application	 of	 quantum	 computing	 to	ML	 problems.	 The	 possibility	 of	
exponential	speedups	 in	optimisation	problems	means	that	quantum	machine	learning	
has	enormous	potential.	In	problems	such	as	optimising	synthetic	routes96	or	improving	
a	 given	 metric	 (e.g.	 optical	 absorption	 for	 solar	 energy	 materials)	 where	 multiple	
acceptable	 solutions	 exist,	 loss	 of	 qubit	 fidelity	 is	 less	 serious	 than	 when	 certainty	 is	
required.	The	physical	sciences	could	prove	a	particularly	rich	field	for	quantum	learning	
applications.97,98	

4. Establishing	new	principles.	Automatic	discovery	of	scientific	laws	and	principles99-100	by	
inspection	 of	 the	 weights	 of	 trained	 ML	 systems	 is	 a	 potentially	 transformational	
development	 in	 science.	 Although	 models	 developed	 from	 machine	 learning	 are	
predictive,	 they	 are	 not	 necessarily	 (or	 even	 usually)	 interpretable;	 there	 are	 several	
reasons	for	this.	First,	the	way	in	which	a	ML	model	represents	knowledge	rarely	maps	
directly	onto	forms	that	scientists	are	familiar	with.	Given	suitable	data,	an	ANN	might	
discover	 the	 Ideal	 Gas	 Law,	 pV=nRT,	 but	 the	 translation	 of	 connection	 weights	 to	 a	
formula,	typically	through	statistical	learning,	is	not	trivial,	even	for	a	law	this	simple.	A	
more	 subtle	 issue	 exists:	 the	 laws	 that	 underlie	 the	 behaviour	 of	 a	 material	 might	
depend	upon	knowledge	that	scientists	do	not	yet	possess,	e.g.	a	many-body	interaction	
giving	 rise	 to	 a	new	 type	of	 superconductivity.	 If	 an	advanced	ML	 system	was	able	 to	
learn	 key	 aspects	 of	 quantum	 mechanics,	 it	 is	 hard	 to	 envisage	 how	 its	 connection	
weights	 could	 be	 turned	 into	 a	 comprehensible	 theory	 if	 the	 scientist	 lacked	
understanding	of	a	 fundamental	 component	of	 it.	 Finally,	 there	may	be	 scientific	 laws	
which	at	heart	are	so	complex	that,	were	they	to	be	discovered	by	a	ML	system,	would	
be	too	challenging	for	even	a	knowledgeable	scientist	to	understand.	A	ML	system	that	
could	discern	and	use	such	laws	would	truly	be	a	computational	black	box.	
	

As	 scientists	 embrace	 the	 inclusion	 of	machine	 learning	with	 statistically	 driven	 design	 in	
their	research	programmes,	the	number	of	applications	is	growing	at	an	extraordinary	rate.	
This	 new	 generation	 of	 computational	 science,	 supported	 by	 a	 platform	 of	 open	 source	
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tools	 and	 data	 sharing,	 has	 the	 potential	 to	 revolutionise	 the	 molecular	 and	 materials	
discovery	process.	
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NAME	 DESCRIPTION	 URL	
GENERAL	PURPOSE	MACHINE	LEARNING	FRAMEWORKS	

CARET	 Package	for	machine	learning	in	R	 topepo.github.io/caret	
DEEPLEARNING4J	 Distributed	deep	learning	for	Java	 deeplearning4j.org	

H2O.AI	 Machine	learning	platform	written	in	Java	
that	can	be	imported	as	a	Python	or	R	

library	

h2o.ai	

KERAS	 High-level	neural	networks	API	written	in	
Python	

keras.io	

MLPACK	 Scalable	machine	learning	library	written	
in	C++	

mlpack.org	

SCIKIT-LEARN	 Machine	learning	and	data	mining	
member	of	the	‘scikit’	family	of	toolboxes	

built	around	the	SciPy	Python	library	

scikit-learn.org	

STATISTICS	AND	
MACHINE	LEARNING	

TOOLBOX	

Machine	learning	library	for	MATLAB	 mathworks.com/machinelearning	

WEKA	 Collection	of	machine	learning	algorithms	
and	tasks	that	can	be	applied	directly	or	

from	Java	code	

cs.waikato.ac.nz/ml/weka	

	 	 	
MACHINE	LEARNING	TOOLS	FOR	MOLECULES	AND	MATERIALS	

AMP	 Package	to	facilitate	machine-learning	for	
atomistic	calculations	

bitbucket.org/andrewpeterson/a
mp	

ANI	 Neural	network	potentials	for	organic	
molecules	with	python	interface		

github.com/isayev/ASE_ANI		

COMBO	 Python	library	with	emphasis	on	scalability	
and	efficiency	

github.com/tsudalab/combo	

DEEPCHEM	 Python	library	for	deep	learning	of	
chemical	systems	

deepchem.io	

GAP	 Gaussian	Approximation	Potentials	 libatoms.org/Home/Software	

MATMINER	 Python	library	for	assisting	machine	
learning	in	materials	science	

hackingmaterials.github.io/matmi
ner	

NOMAD	 Collection	of	tools	to	explore	correlations	
in	materials	datasets				

analytics-toolkit.nomad-coe.eu	

PROPHET	 Code	to	integrate	machine	learning	
techniques	with	quantum	chemistry	

approaches	

github.com/biklooost/PROPhet	

TENSORMOL	 Neural	network	chemistry	package	 github.com/jparkhill/TensorMol	
	

	
Table	 1.	 A	 collection	 of	 publically-accessible	 learning	 resources	 and	 tools	 relating	 to	
machine	learning.		



	
	
	
	

	
14	

NAME DESCRIPTION URL 
COMPUTED	STRUCTURES	AND	PROPERTIES	

AFLOWLIB Distributed	properties	repository	from	high-
throughput	ab	initio	calculations	of	inorganic	

materials	

aflowlib.org	

COMPUTATIONAL	MATERIALS	
REPOSITORY 

Infrastructure	to	enable	collection,	storage,	
retrieval	and	analysis	of	data	from	electronic	

structure	codes	

cmr.fysik.dtu.dk	

GDB Databases	of	hypothetical	small	organic	
molecules		

gdb.unibe.ch	

HARVARD	CLEAN	ENERGY	
PROJECT 

Computed	properties	of	candidate	organic	solar	
absorber	materials	

cepdb.molecularspace.org	

MATERIALS	PROJECT Computed	properties	of	known	and	hypothetical	
materials	carried	out	using	a	standard	calculation	

scheme	

materialsproject.org	

NOMAD Input	and	output	files	from	calculations	using	a	
wide	variety	of	electronic	structure	codes	

nomad-repository.eu	

 	 	
OPEN	QUANTUM	MATERIALS	

DATABASE 
Computed	properties	of	mostly	hypothetical	

structures	carried	out	using	a	standard	
calculation	scheme	

oqmd.org	

NREL	MATERIALS	DATABASE Computed	properties	of	materials	for	renewable	
energy	applications	

materials.nrel.gov	

TEDESIGNLAB Experimental	and	computed	properties	to	aid	the	
design	of	new	thermoelectric	materials	

tedesignlab.org	

ZINC Commercially	available	organic	molecules	in	2D	
and	3D	formats	

zinc15.docking.org	

 	 	
EXPERIMENTAL	STRUCTURES	AND	PROPERTIES 

CHEMBL Bioactive	molecules	with	drug-like	properties	 ebi.ac.uk/chembl	
CHEMSPIDER Royal	Society	of	Chemistry’s	structure	database	

featuring	calculated	and	experimental	properties	
from	a	range	of	sources	

chemspider.com	

CITRINATION Computed	and	experimental	properties	of	
materials	

citrination.com	

CRYSTALLOGRAPHY	OPEN	
DATABASE 

Structures	of	organic,	inorganic,	metal-organic	
compounds	and	minerals	

crystallography.net	

CSD Repository	for	small-molecule	organic	and	metal-
organic	crystal	structures	

www.ccdc.cam.ac.uk	

ICSD Inorganic	Crystal	Structure	Database	 icsd.fiz-karlsruhe.de	
MATNAVI Multiple	databases	targeting	properties	such	as	

superconductivity	and	thermal	conductance	
mits.nims.go.jp	

MATWEB Datasheets	for	various	engineering	materials	
including	thermoplastics,	semiconductors	and	

fibres	

matweb.com	

NIST	CHEMISTRY	WEBBOOK High	accuracy	gas-phase,	thermochemistry	and	
spectroscopic	data	

webbook.nist.gov/chemistry/	

NIST	MATERIALS	DATA	
REPOSITORY 

Repository	to	upload	materials	data	associated	
with	specific	publications	

materialsdata.nist.gov	

PUBCHEM Biological	activities	of	small	molecules	 pubchem.ncbi.nlm.nih.gov	

Table	 2.	 A	 representative	 collection	 of	 publically-accessible	 structure	 and	 property	
databases	for	molecules	and	solids	that	can	be	used	to	feed	machine	learning	approaches.		
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Figure	legends	
	
Figure	 1	 Illustration	 of	 a	 machine	 learning	 workflow	 applied	 to	 interpret	 real	 world	
observations.	 It	 consists	 of	 four	 basic	 steps:	 (i)	data	 collection	 –	 acquisition	 of	 data	 from	
experiment,	 simulations	or	 other	 sources;	 (ii)	data	 representation	 –	 processing	of	 data	 to	
ensure	its	correctness,	integrity	and	transformation	into	a	form	suitable	for	ML;	(iii)	choice	
of	 learner	–	selection	of	the	types	of	ML	model	used	to	represent	the	problem;	(iv)	model	
optimisation	–	rigorous	testing	of	the	resultant	model(s)	to	minimise	error	and	choose	the	
optimal	representation.		

	

Figure	 2	 Classes	 of	 machine	 learning	 techniques	 (following	 Ref.	 24)	 and	 examples	 of	
problems	that	can	be	posed	to	them	by	a	curious	scientist.		Whilst	evolutionary	algorithms	
are	often	 integrated	 into	machine	 learning	procedures,	 they	 form	part	of	a	wider	class	of	
stochastic	search	algorithms.			
	

Figure	3	Errors	 that	 arise	 in	machine	 learning	approaches,	 both	during	 the	 training	of	 a	
new	model	(blue	line)	and	the	application	of	a	built	model	(red	line).	A	simple	model	may	
suffer	 from	high	bias	 (underfitting),	while	a	complex	model	may	suffer	 from	high	variance	
(overfitting)	 leading	 to	 a	 bias-variance	 trade-off.	 The	 model	 shown	 here	 is	 built	 on	 an	
example	from	kaggle.com,	available	at	https://keeeto.github.io/blog/bias_variance/.	
	
	
Figure	4	The	Generative	Adversarial	Networks	 (GAN)81	approach	to	molecular	discovery.	
Two	 models	 G	 (generator)	 and	 D	 (discriminator)	 play	 a	 continuous	 “game”,	 where	 the	
generator	 is	 learning	 to	 produce	 more	 and	 more	 realistic	 samples,	 which	 can	 vary	 in	
structure	 and	 composition,	 and	 the	 discriminator	 is	 learning	 to	 get	 better	 and	 better	 at	
distinguishing	fake	data	from	real	data.	
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Box	1	
	
Learning	to	Learn	

One	 of	 the	 most	 exciting	 aspects	 of	 machine	 learning	 techniques	 is	 their	 promise	 to	
democratise	molecular	and	materials	modelling,	by	reducing	the	computer	power	and	prior	
knowledge	required	for	entry.	Just	as	Pople’s	Gaussian	software	made	quantum	chemistry	
more	accessible	to	a	generation	of	experimental	chemists,	ML	approaches,	if	developed	and	
implemented	 correctly,	 can	 broaden	 routine	 application	 of	 computer	 models	 by	 non-
specialists.	 The	accessibility	of	ML	 technology	 relies	 critically	on	 three	 factors:	open	data,	
open	 software	 and	 open	 education.	 There	 is	 an	 increasing	 drive	 to	 open	 data	within	 the	
physical	sciences	and	the	best	practice	has	been	outlined	in	recent	articles.30,31	Some	of	the	
open	 software	 being	 developed	 is	 listed	 in	 Table	 1.	 There	 are	 also	many	 excellent	 open	
education	resources,	such	as	massive	open	online	courses	(MOOCs)	available.		

http://www.fast.ai	 is	 a	 course	 that	 aims	 to	 “make	 neural	 nets	 uncool	 again”!	One	 of	 the	
great	advantages	of	fast.ai	 is	that	the	novice	user	starts	to	build	working	machine	learning	
models	 almost	 immediately.	 The	 course,	 however,	 is	 not	 for	 absolute	 beginners,	 and	
requires	 a	 working	 knowledge	 of	 computer	 programming	 and	 high-school	 level	
mathematics.	

https://www.datacamp.com	 offers	 an	 excellent	 introduction	 to	 coding	 for	 data-driven	
science,	and	covers	many	practical	analysis	tools	relevant	to	chemical	datasets.	This	course	
features	extremely	useful	interactive	environments	to	develop	and	test	code	and	is	suitable	
for	non-coders,	as	it	teaches	the	student	Python	at	the	same	time	as	ML.	

Academic	MOOCs	are	the	best	locations	for	those	who	wish	to	get	more	involved	with	the	
theory	 and	 principles	 of	 AI	 and	 ML,	 as	 well	 as	 the	 practice.	 The	 Stanford	 MOOC	
(https://www.coursera.org/learn/machine-learning)	 is	 popular,	 with	 excellent	 alternatives	
available	 from	 sources	 such	 as	 https://www.edx.org	 (Learning	 from	 Data)	 and	
https://www.udemy.com	(Machine	Learning	A-Z).	The	underlying	mathematics	 is	the	topic	
of	a	course	 from	 Imperial	College	 (https://www.coursera.org/specializations/mathematics-
machine-learning).	

Data	blogs	and	podcasts.	Many	ML	professionals	run	informative	blogs	and	podcasts	dealing	
with	specific	aspects	of	ML	practice.	These	are	useful	resources	for	general	interest	as	well	
as	broadening	and	deepening	knowledge.	There	are	too	many	to	provide	an	exhaustive	list	
here,	 but	 we	 do	 recommend	 https://machinelearningmastery.com	 and	
http://lineardigressions.com	to	get	started. 
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