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Abstract—Networks are complex interacting systems
involving cloud operations, core and metro transport,
and mobile connectivity all the way to video streaming
and similar user applications. With localized and highly en-
gineered operational tools, it is typical of these networks to
take days to weeks for any changes, upgrades, or service
deployments to take effect.Machine learning, a sub-domain
of artificial intelligence, is highly suitable for complex
system representation. In this tutorial paper, we review
several machine learning concepts tailored to the optical
networking industry and discuss algorithm choices, data
and model management strategies, and integration into
existing network control and management tools. We then
describe four networking case studies in detail, covering
predictive maintenance, virtual network topology manage-
ment, capacity optimization, and optical spectral analysis.

Index Terms—Analytics; Artificial intelligence; Autono-
mous networking; Big data; Communication networks;
Machine learning; Optical fiber communication; Telemetry.

I. INTRODUCTION

O ptical communication networks may very well be

regarded as the cornerstone of modern society.

Internet-based applications and classical enterprise facili-

ties both rely on a complex mesh of optical networking in-

frastructure to address connectivity requirements. In order

to support such differentiated service offerings, optical net-

works have incorporated a series of innovations over recent

decades, including the development of lasers, amplifiers,

fibers, coherent detection, and digital signal processing,

to name a few. With recent advances in mobile communi-

cation systems—5G networking [1], together with exten-

sive service-oriented cloud platforms like Uber, Amazon,

etc.—optical transport stakeholders face tremendous

challenges in terms of harmonizing stagnating revenue

streams and growing networking demands [2,3].

The industry has traditionally relied on hardware-

centric innovations and continues to do so successfully—

for instance, via photonic integration, graphene, space

division multiplexing, etc. Figure 1 depicts a typical archi-

tecture of a multi-domain optical network, encompassing

core, metro, and access networks. The various network seg-

ments typically need to work together to support multi-

layer services and applications, either directly or through

a hybrid wireless/wireline infrastructure. This diverse,

dynamic, and complex mesh of networking stacks, together

with future mobility constraints, necessitates smart and

end-to-end service-oriented software frameworks to aug-

ment conventional hardware advancements. To this end,

software-defined networking (SDN)-triggered control and

orchestration has been introduced in the past few years,

allowing for separation of control and data planes in vari-

ous degrees of centralization [4,5]. Furthermore, network

function virtualization (NFV) has been used in tandem

to abstract physical device functionalities. The challenge,

however, is that of augmenting network management

and control tools with adaptive learning and decision-

making across multi-layer and multi-domain network

architectures in a cost- and energy- efficient manner, facili-

tating end-to-end network automation.

Artificial intelligence (AI) is the science of creating intel-

ligent machines capable of autonomously making decisions

based on their perceived environment [6]. Machine learn-

ing (ML), a branch of AI, enables this learning paradigm

(see [7,8]). ML may be used to achieve network-domain

goals ranging from laser characterization [9] to erbium-

doped fiber amplifier (EDFA) equalization [10], predictive

maintenance [11], and failure localization [12,13], as well

as related capital expenditure (CAPEX) and operational

expenditure (OPEX) savings. ML algorithms are character-

ized by a unique ability to learn system behavior from past

data and estimate future responses based on the learned

system model. For a comprehensive survey of AI methods

in optical networks, we refer the reader to [14,15].

With recent improvements in computational hardware

and parallel computing, such as the commercialization of

big data monitoring, storage, and processing frameworks,

maturity of ML algorithms, and introduction of SDN/NFV

platforms, several optical networking challenges may be

partially or fully addressed using ML paradigms. The

key motivations together with underlying application sce-

narios are listed below:

– Heterogeneity: Optical networks are a diverse and dynamic

medium. Service allocations, transmission performance,

optimum configurations, etc. continuously evolve overhttps://doi.org/10.1364/JOCN.10.00D126
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time. While traditionally these were handled based on

static design principles, this approach no longer scales

owing to differentiated and often contrasting service and

operational requirements.

– Reliability: Optical communication infrastructure is typi-

cally built to last. This is achieved via fail-safe designs,

incorporating various engineering and operational mar-

gins, etc. While this approach worked well for traditional

network design and operation, the scale, complexity, and

sheer combinations of equipment types, part numbers, soft-

ware releases, etc., especially in the context of open line

systems (OLS), render this approach practically infeasible.

– Capacity: Link and network capacity throughout optimi-

zation is a typical metric of network design. In fact, it is

one of the most important features in terms of a solu-

tion’s commercial viability. A typical differentiator in ser-

vice-provider-issued requests for proposals is if a certain

configuration can achieve a particular optical reach with

high spectral efficiency. Conventionally, precise engineer-

ing rules are devised in order to fulfill such tasks.

However, the number of configurations supported by

the upcoming generation of optical transceivers does

not play well with this approach.

– Complexity: Optical networks are often built in compli-

cated meshed architectures. In several scenarios, opti-

mum principles are either difficult to model (e.g.,

network planning), or it is impossible to come up with

closed-form analytical models or fast heuristics. This

leads to severe under-utilization of system resources,

resulting in both OPEX and CAPEX overheads.

– Quality Assurance: With growing complexity, the task of

network testing and verification is becoming increasingly

prohibitive. Network operators are neither comfortable

nor ready to deploy live traffic on untested configura-

tions, and the concepts of self-optimization are highly

suited for such problems.

– Data Aspects: An optical network is a sensor pool in itself,

with data ranging from service configurations to mainte-

nance logs. Most of this treasure is largely untapped in

commercial systems. Discovering known and unknown

patterns in a network allowing intelligent and autono-

mous operations can lead to a wealth of optimization

possibilities. Here, ML can help to abstract various

functionalities, enabling data-driven tasks with limited

manual interventions and/or interruptions.

Despite the promise and scale of ML paradigms, the goal

of learning-based optimization— considering the extent of

services, infrastructure, and operational requirements—is

extremely challenging. A few realistic challenges are

listed below:

– There exists no blueprint for how to design and operate

learning-based networks at scale. While ML promises

self-regulated autonomous operation, exploiting and

modeling intrinsic network complexities, its fundamen-

tal advantages are far from clear.

– ML has been successfully used in several domains, and

the choice of data, algorithms, architectures, etc. are

somewhat clear for problems such as image recognition.

However, the selection, complexity, and optimization of

ML algorithms for optical networking problems requires

substantial research efforts.

– Typically, ML requires huge amounts of data. How such

data can be collected, processed (e.g., denoising, sam-

pling, etc.), and transferred is an open problem.

– The concept of ML in networking is a multi-layer multi-

domain problem, involving several entities and stake-

holders. Furthermore, the toolchain to integrate ML

frameworks with network orchestration and SDN/NFV

at scale is missing, and substantial work needs to be done

on network control, management integration, and evalu-

ation efforts.

While addressing all these facets is an enormous under-

taking, in this tutorial, we take the initial steps towards this

overall objective and introduce the major concepts and

applications of ML in optical networking. In Section II

we introduce various aspects of ML, including the general

framework, algorithms, and evaluation techniques. We

follow this up with data management considerations in

Section III and highlight relevant challenges. Section IV

introduces network management architectures incorporat-

ing ML-driven building blocks for network automation.

In Section V we propose several ML use cases, together with
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Fig. 1. Heterogeneous optical network architecture.
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concrete real-world studies. Finally, Sections VI and VII give

an outlook for furthering ML research in optical networking

and draw conclusions, respectively.

II. MACHINE LEARNING

A. Introduction and Workflow

ML is typically thought of as a universal toolbox, ready to

be used for classification problems, identifying a suitable cat-

egory for a new set of observations, and regression tasks, es-

timating the relationship among given data samples. In fact,

it is a diverse field comprised of various constituents and

necessitates: a software ecosystem including data monitoring

and transformation,model selection and optimization, perfor-

mance evaluation, visualization, and model integration, to

name a few. Explicitly, ML refers to computational represen-

tation of a phenomenon aimed at execution of a task, given a

certain performance and based on a given environment.

Figure 2 depicts a typical workflow of a ML framework—

sometimes referred to as knowledge discovery in databases

(KDD)—focusing on algorithm development and test cycle.

Initially, ML models are constructed in a training phase,

where data is retrieved from historical databases and

pre-processed to remove or normalize outliers, handle

missing data, filter and aggregate parameters, etc. The

next step relates to data transformation, selecting relevant

data features, minimizing redundancies, data format adap-

tation to the given task, etc. This is a crucial step in the

ML workflow, as not all data at hand is necessarily useful

in terms of algorithm performance and complexity—the

curse of dimensionality. The most important steps of model

selection and behavior learning are typically carried out in

tandem. The process involves high-dimensional parameter

optimizations and corresponding evaluations to trade off

performance, complexity, and computational effort. Typically,

some data is sampled from the original data set, termed as

validation data, and is used together with the training data

to independently verify the rules and patterns constructed

in trained models. The goal of the validation stage is to

ensure that ML models are not over- or underfitting the ob-

served data. Note that, depending on the ML family, labeled

data may or may not be required (see the next section for

further details). Finally, the models are exposed to test data,

outcomes are mapped to representative knowledge (e.g., a

particular pattern), and insights are delivered either to a

dashboard or other related software components. Note that

the presented workflow represents a typical procedure; how-

ever, practical constraints may enforce a different order or

amalgamation of some steps, among other variations.

B. Algorithms

ML approaches may be categorized based on objectives of

the learning task, where these objectives may target pattern

identification for classification and prediction, learning for

action, or inductive learning methods. The algorithms

may be further classified into three distinct learning fami-

lies [16], i.e., supervised learning, unsupervised learning,

and reinforcement learning. Semi-supervised learning—or

hybrid learning—is sometimes considered a fourth branch,

borrowing features from the supervised and unsupervised

categories [17].

In this subsection, we introduce the ML families, as de-

picted in Fig. 3. The main goal is to introduce the reader to

typical ML algorithms, together with their most commonly

associated applications, e.g., predictive maintenance based

on supervised learning [18]. Note that the list of algorithms

is not exhaustive and the interested reader can find many

other algorithms in the references provided.

(i) Supervised Learning: Supervised learning (SL) makes

use of known output feature(s), named labels, to derive a

computational relationship between input and output data.

An algorithm iteratively constructs a MLmodel by updating

its weights, based on the mapping of a set of inputs to their

corresponding output features. SL may be further catego-

rized into classification and regression tasks, depending

on whether discrete or continuous output features are used.

In the following, we discuss a few SL algorithms [19].

1) K-Nearest Neighbors: A non-parametric ML algorithm

based on dissimilarity between the samples. For classi-

fication problems, suppose there are n samples,

�X1,Y1�, �X2,Y2�,…, �Xn,Yn� in space R
d, where X

and Y represent input samples and their class labels,

respectively. For a new data point �X,Y�, using a dis-

tance measurement, all the samples would be ordered

by the distances, e.g., jX1 − Xj ≤ … ≤ jXn − Xj. The class

that owns the most samples among the k-nearest sam-

ples of X, where k is a user-defined parameter, is con-

sidered the class of the new data point. In a regression

application, the algorithm is used to predict the value

of a continuous variable, where the predicted outcome

is the average or weighted-distance average of the

k-nearest neighbors.

2) Artificial Neural Networks (ANN): A ML approach com-

prised of one input and one output layer and one or

more hidden layers in between, where each layer could

be composed of several neurons [20]. Features (X) are

fed into the network through the input layer, where

the neurons in the input layer are connected with theFig. 2. Machine learning model construction and test workflow.
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neurons in the next layer, i.e., the first hidden layer, and

so on. The neurons on the output layer are directly con-

nected with the outputs (Y), as shown in Fig. 4.

In a typical fully connected ANN, the nonlinear mapping

between layers could be given by relu�X ×W � b�, where

W represents the weights, b represents the biases of the

connections, and relu is the activation function,max�0, x�.

Further ANN parameter optimizations are carried out

using algorithms like gradient descent, etc. Other types

of neural networks include convolutional neural net-

works, recurrent neural networks, etc. Typical challenges

associated with ANNs relate to choice of number of hid-

den layers and neurons, computational overhead, multi-

dimensional parameter optimizations, etc.

3) Support Vector Machine (SVM): A classification tech-

nique targeted at separating samples of different classes

in a given feature space. The space is divided by maxi-

mizing margins (i.e., gaps) between the classes, where

new data points are classified based on which side of

the gaps they fall on. SVMs could be categorized into lin-

ear and nonlinear SVMs. For linear SVMs, the inputs are

linearly transformed, whereas in the nonlinear case, the

inputs are transformed into another space by a kernel

mapping. A common kernel mapping is the Gaussian

radial basis function, k�xi, xj� � exp�−γjxi − xjj
2�, where

γ > 0, and xi and xj are two samples.

The algorithm is also classified by soft and hard mar-

gins. In a binary classification case, the margins are

considered hard when they are represented by 1 and

−1. When the loss function max�0, 1 − yi�ω × xi − b�� is

maximized, the margins are considered as soft.

Optical networking applications of SL algorithms in-

clude resource optimization by estimation and eventual

prediction of network state parameters for a given set of

configurations (e.g., symbol rates, optimum launch power,

etc.) [21]. Another application is ML-driven fault iden-

tification, based on historical traffic or network function

patterns [11].

(ii) Unsupervised Learning: While SL provides a clean-

slate approach to ML model construction, in practice,

labeled data is neither easily accessible nor abundantly

available. Unsupervised learning (USL) aims to build rep-

resentation of a given data set without any label-driven

feedback mechanisms. USL may be further classified into

clustering of data into similar groups, or association rule

discovery, identifying relationships among features. A few

USL algorithms are discussed below.

1) K-Mean Clustering: An unsupervised ML algorithm,

which partitions all of the samples into k clusters based

on dissimilarity metrics. Considering n samples in

space Rd, �X1,Y1�, �X2,Y2�,…, �Xn,Yn�, k-mean cluster-

ing tries to cluster all the n samples into k classes,

centered by the set S � S1,S2,…,Sk. The objective func-

tion could be defined as argmax
S

P
k
i�1

P
x∈Si

jx − μij
2,

where μi is the mean of all the points in Si.

2) Principal Component Analysis (PCA): Transforms the

original variables into linear uncorrelated variables

based on singular value/eigenvalue decomposition.

Typically used as a dimension reduction approach.

Consider a data matrix X, with zero-mean columns,

where each row in X represents one observation and

each column represents a single attribute. PCA trans-

formation aims to reduce the data matrix X from n di-

mensions into p dimensions by multiplying a weights

matrix W � �w1,…,wp�, where W is obtained by the

Fig. 3. ML families. The first box in each column identifies the main characterization of the ML approach; the second box identifies ex-

amples of algorithms used in the approach; and the third box indicates examples of applications that can take advantage of the approach.

Fig. 4. Illustrative example of a dual-layer ANN architecture.
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objective function argmax WTXTXW. The value ofXTX

is the largest eigenvalue of X, and W is the correspond-

ing eigenvector of X.

3) Self-Organizing Maps (SOM): This is a method for di-

mensionality reduction, where an ANN (the map) is

trained using unsupervised learning to approximate

samples in a high dimensional space. Typical use in-

cludes feature identification in large datasets. In the

training phase, the weights within the network are up-

dated by competitive learning, described by the pseudo-

code in Algorithm 1. s is the current iteration number,

t is the index of the target input data vector in the input

data set D, D�t� is a target input data vector, v is the

index of the node in the map, Wv is the current weight

vector of node v, u is the index of the best matching unit

(BMU) in the map, θ�u, v, s� is a penalizing parameter

based on the distance from the BMU, and α�s� is a learn-

ing coefficient.

Algorithm 1: SOM

1: Randomize the node weight vectors in a map

2: repeat (for each episode)

3: Randomly pick an input vector D�t�

4: repeat (for each node in the map)

5: Use the Euclidean distance formula to find the

6: similarity between the input vector and

7: the node’s weight vector

8: Track the node with the smallest distance

9: (termed as the best matching unit, BMU)

10: until all the nodes are traversed

11: Update the weight vectors of the nodes

12: (in the neighborhood of the BMU)

13: by pulling them closer to the input vector

14: Wv�s� 1� � Wv�s� � θ�u, v, s� · α�s� · �D�t� −Wv�s��

15: until s is terminal

USL models may be naturally used for clustering of

transport channels, nodes, or devices, based on their tem-

poral and spatial similarities. Applications include traffic

migration, spectral slot identification, etc. (see, e.g., [22]).

(iii) Reinforcement Learning: Reinforcement learning

(RL) refers to ML mechanisms without an explicit training

phase [23]. RL aims to build and update a ML model based

on an agent’s interaction with its own environment. The

key difference with respect to SL techniques is that labeled

input–output features are not provided, but the relation-

ship is rather learned via application of the initial model

to test data. The most well-known reinforcement learning

technique is Q-learning [24], described below.

1) Q-Learning: This algorithm tries to find the best poli-

cies under specific agent and environmental Q values.

The basic elements of Q-Learning include states

S � s1, s2,…, sn and actions A � a1,a2,…,am. A policy

π is a rule chosen by the agent, and it consists of �si,aj�,

where at state si, action aj is executed. The agent choo-

ses policies based on the value function Q�s,a�.

The pseudo-code for Q-learning is shown in Algorithm 2.

Here, rmeans rewards, which are defined by the agent, γ is

a discount factor, and α is the learning rate. The ε-greedy

policy means that with a given probability ε, the agent will

choose a random action; otherwise, it will choose the action

with maximal Q value.

Algorithm 2: Q-Learning

1: Initialize Q�s,a� arbitrarily

2: repeat (for each episode)

3: Initialize s

4: repeat (for each step of episode)

5: Choose a from s using policy derived

6: from Q (e.g., ϵ- greedy)

7: Take action a, observe r, s0

8: Q�s,a�←Q�s,a��α�r�γmaxa0Q�s0,a0�−Q�s,a��

9: s ← s0

10: until s is terminal

11: until end episodes

One of the core applications of RL algorithms in optical

networks is network self-configuration, including resource

allocation and service (re)configurations—both for physical

and virtual infrastructure (see, e.g., [25]). Network man-

agement frameworks may be extended with RL to come

up with cognitive actions.

C. Evaluations

The ML algorithm evaluation approach impacts the

way a model is constructed and eventually selected among

several competing options. A poorly defined evaluation

criterion may result in an unoptimized model selection

procedure, resulting in erroneous conclusions when com-

paring classifier performances. The key questions to be

answered are how to build models, how to meaningfully

evaluate their performances, and how to determine the

best configurations. In this subsection we focus on the data

and performance aspects of ML model construction and

introduce several evaluation strategies.

(i) Data Aspects: The fundamental aspect of building a

ML model is to separate the available data set into train-

ing, validation, and test sets. The training data is used to

build the model, whereas the validation set is used to inde-

pendently validate the model constructed during the train-

ing phase. Finally, the test data, which is never observed by

the model during its construction process, is used for per-

formance evaluations.

The reason to divide data into these sets is to avoid over-

fitting the training data as depicted in Fig. 5. It can be seen

that as the model approaches convergence—underfitting,

which refers to an overly simplistic model—the training

and validation data sets show similar results; however,

beyond this phase, training errors continue to improve,

whereas validation errors start deteriorating—overfitting,

which refers to an unnecessarily complexmodel. Themodel

that enables the best performance for the validation set is

selected as the optimum model. Based on data character-

istics, various cross-validation approaches may be used to

split the training and validation set for model construction.

For instance, k-fold cross-validation includes splitting the
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data set into k separate sub-sets—as shown in Fig. 6—then

training from k − 1 sub-sets, evaluating the remaining set,

and repeating the procedure until all sub-sets are covered.

Finally, the error metrics from each iteration are averaged

to give overall performance estimation. Typically, k is set to

5 or 10 but may also take other values.

Another caveat is class imbalance, a common problem in

a wide range of ML application areas. This problem usually

appears in the form of dominant negative outcomes and

may be partially resolved via data re-sampling methods.

(ii) Performance Aspects: There exist several evaluation

techniques suited to a diverse set of MLmodels. For the sake

of simplicity, let us assume a two-class classifier, where the

classes represent a set of positive and negative outcomes.

– Confusion matrix: Table I lists the most common evalu-

ation factors, i.e., true negative (TN), false negative (FN),

false positive (FP), and true negative (TN). Such tabular

representation is typically used as an evaluation

approach for binary classifiers. The individual metrics

are then used to calculate various sub-metrics.

– Sensitivity or True positive rate (TPR): TPR � TP∕�TP�

FN� and gives the probability that a true outcome is

actually true.

– Specificity (SPC) or True negative rate: SPC � TN∕

�TN� FP� and gives the probability that a false outcome

is actually false.

– Precision or Positive predictive value (PPV): PPV �

TP∕�TP� FP� and refers to the proportion of true out-

comes given a set of outcomes classified as true.

– False omission rate (FOR): FOR � FN∕�FN� TN� and

refers to the proportion of false negatives given a set

of outcomes classified as false.

– ROC and AUC: The receiver operating characteristic

(ROC) curve is obtained by plotting TPR as a function

of FPR and varying the class decision thresholds. An

ideal classifier would entirely separate the two classes,

resulting in a ROC curve that passes through the top

left (100% sensitivity and specificity), as shown in Fig. 7.

Fig. 5. Underfitting versus overfitting.

Fig. 6. k-fold cross-validation.

TABLE I

CONFUSION MATRIX FOR A BINARY CLASSIFIER

Total Population Positive (True label) Negative (True label)

Predicted Positive TP FP Positive Predictive value (PPV),

Precision = TP/Predicted Positive

Predicted Negative FN TN False Omission Rate

(FOR) = FN/Predicted Negative

True Positive Rate (TPR),

Recall/Sensitivity, probability of

detection = TP/Positive (True label)

False Positive Rate (FPR),

Fall-out, probability of false

alarm = FP/Negative (True label)

Fig. 7. ROC- and AUC-based classifier evaluation. The dotted

and dashed lines are examples of typical ROC curves; the classifier

corresponding to the dashed line provides better performance.
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The area under the curve (AUC) is the area under the

ROC curve, and it represents the precise quality of the

binary classifier, regardless of the decision threshold.

In the case of multi-class problems, binary classification

approaches may not be used to evaluate performance. Below

we describe several evaluation metrics, where y represents

true values, ŷ represents predicted values, and ȳ depicts the

average of the true values. The error e is obtained by y − ŷ.

– Accuracy: The rate of correct predictions made by the

model over a test data set, typically via simple network

management protocol.

– MAE and MAPE: Mean absolute error, mean�jej�, and

mean absolute percentage error, mean�100 × abs�e�∕y�.

– MSE: Mean square error, mean�e2�.

– R2: The ratio between predicted variation and true var-

iations, R2 � SSE∕SST , where SST �
P

i�yi − ȳ�2, and

SSE �
P

i�yi − ŷi�
2. It indicates how close the predicted

values are to the real values.

Note that the presented techniques are not exhaustive

by anymeans but rather an introduction to standard evalu-

ation measures. There are several other approaches pre-

sented in the literature and are typically used based on

the data and the problem at hand.

III. DATA MANAGEMENT

An optical network generates a large amount of hetero-

geneous data streams, which must be fetched, processed,

and analyzed in a timely manner to enable everyday net-

work operations. In order to enable data-driven ML analy-

sis, it is important to explore several aspects of network

data including its extent, monitoring, query mechanisms,

storage, and representation attributes. In this section,

we address these data management features.

A. Sources

The first step in enabling ML-driven network operations

is to understand the variety of network data sources,

ranging from physical layer channel information all the

way to applications and services. In the following, we dis-

cuss the five most common sources of ON data collection.

– Network probes include both intrusive and non-intrusive

data access, e.g., measured optical power at an oscillo-

scope and deep packet inspection for filtering packets

or collecting statistics, respectively.

– Sensors are the core data sources of optical networks,

whose goal is to measure a physical quantity (device, sub-

systems, systems, and environment). These sensors may

be explicit, e.g., a temperature measure, or implicit to

network equipment, e.g., timing error. Typical examples

of sensor data include received bit error rate, aggregate

traffic rate, virtual network function (VNF) flow informa-

tion, amplifier gain, etc.

– Network logs include alarm and event data sets from

different network devices. Service and support teams

examine these logs to initiate network diagnosis and

action recommendations.

– Control signaling refers to supervisory channel, header

data, etc., typically used for path initialization, link con-

trol, channel setup, etc.

– Network management data is primarily focused on two

types of data sources: first, configuration, topology, and

connectivity data at different network layers, and

second, monitored data (typically via simple network

management protocol [SNMP] MIBs) [26] obtained from

the network sensors described above.

The network data may be further categorized based on

their type and form, as given below.

– Static data refers to condition monitoring at a given time

instant and may include both performance and configu-

ration data.

– Dynamic data refers to time variable quantitative

parameters, for instance, temperature, packet loss rate,

received and transmit power levels, etc.

– Text data includes log files, manuals, design specifica-

tions, device models, etc.

– Multi-dimensional data typically represents image data,

including device snapshots, locations, etc.

Table II lists several optical network data variables and

their corresponding device, subsystem, and system. Note

that here we exclusively focus on network data metrics,

excluding end-user information like transmission control

protocol, user datagram protocol, etc. Different subsets of

presented variables may be used for different ML use

cases. For instance, optical signal-to-noise ratio (OSNR),

bit error rate (BER), and optical power may be used for

physical layer performance optimization, whereas packet

count, traffic load, and flow count may be used for network

reconfiguration applications.

B. Monitoring

Network monitoring comprises accessing the aforemen-

tioned diverse data types. The challenge, however, is that

the network devices are typically provided by a diverse set

of equipment suppliers with unique interfaces, models,

descriptions, etc. Moreover, the traffic itself is extremely

heterogeneous with different formats, wavelength ranges,

etc. Consequently, next-generation networks will represent

a wide variety of rapidly evolving application stacks, con-

suming both physical and virtual resources. Traditional

network management tools are unable to efficiently tap

into this data goldmine because they lack the capabilities

to probe network states in real time, among other issues

related to scalability, vendor lock-in, etc. For instance,

SNMP-based monitoring largely relies on data access at

fixed intervals, managed using trap-based alarms. While

SNMP has served the industry long and well, network

monitoring needs to rise to the new visibility requirements.

On the other hand, model-driven streaming telemetry

is defined by operational needs and requirements set by
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telecom network operators (e.g., OpenConfig, TAPI).

Figure 8 illustrates the core components of model-driven

telemetry. It enables vendor-agnostic network state moni-

toring on a continuous basis using time series data streams

and abstracts data modeling from data transport [27], lev-

eraging advanced open-source initiatives, like YANG—

model—, Google remote procedure call (GRPC)—transport,

etc. Note that the northbound and southbound communi-

cation incorporates data and configuration exchange,

e.g., to transport data to an SDN controller, and triggered

configuration from the same controller. Furthermore,

one of the key differentiators in moving from legacy mon-

itoring (e.g., SNMP) to model-driven telemetry is the use of

subscription-based data access, as opposed to request- or

trap-based desired data selection and retrieval.

Table III lists a few key differences between legacy

SNMP and state-of-the-art streaming telemetry solutions.

On one hand, most telemetry solutions are based on

participation-based standards organizations, whereas

GRPC follows its own open-source development structure.

The key differences arise from the multi-vendor operability

and scale of the projects, e.g., sFlow being a generalized sol-

ution, compared to GRPC focusing on the management and

control planes, etc.

C. Data Storage and Representation

Having discussed data sources and access mechanisms,

data storage and representation also play an important

part in data management frameworks. Due to the growing

size of the network and complexity of the information

sources, the data sources are often scattered across multi-

ple storage and management systems with their own pecu-

liar features. For example, there are storage technologies

such as relational databases that require a dedicated

data model or schema, whereas non-structured query lan-

guage (NoSQL) databases serve the purpose without

any relational model and have better scalability. However,

both these technologies often fail when the volume and

complexity of data becomes tremendously large. Recent

advancements have demonstrated the utility of big-data

technologies; for example, using Hadoop clusters, Spark, or

Teradata to store and process huge amounts of data in a

distributed fashion.

Nonetheless, it is not unusual for a typical network infra-

structure to have its data scattered over these different

heterogeneous data sources or systems that have been

adapted over time to fulfill the requirements of the applica-

tion they serve. This often leads to situations where data

retrieval becomes a bottleneck due to the different represen-

tation schemes, constraints, naming conventions of the

schema elements, formats used within the data models, etc.
Fig. 8. Model-driven telemetry stack. REST, representational state

transfer; RHU, remote hub unit; VNF, virtual network function.

TABLE III

LEGACY VERSUS MODEL-DRIVEN NETWORK TELEMETRY

Technology SNMP sFlow NETCONF GRPC

Models MIBs Structures YANG YANG

Transport UDP UDP SSH HTTP

Encoding ASN.1 XDR XML GPB

Standard IETF sFlow IETF –

Type Pull Push Push Push

Application Generic Generic Large-scale Large-scale

TABLE II

EXAMPLES OF OPTICAL NETWORK DATA SOURCES

Parameter Transmitter Receiver Amplifier ROADM NMS Scope Shelf Switch

Optical power X X X X

BER X

OSNR X X X X X

Amplifier gain X

Fiber type X

Distance X

Line rate X X X

Client rate X X X

Pluggable type X

Traffic load X X

Temperature X X X X X X

Main supply voltage X

Frequency resolution X

Flow count X

Packet count X

Topology X

Header length X
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Most enterprises today have dedicated teams of IT spe-

cialists to develop database queries for the domain experts.

This means that the domain experts always have to pass

their information needs to IT specialists (see Fig. 9), and

this can drastically affect the efficiency of finding the

right data in the right format that can be used for timely

decision-making. From the modeling point of view, the data

model is not the same as the domain model, leading to

inefficiencies in data access protocols (schema, vocabular-

ies, etc.). Clearly, it would be much easier to understand,

analyze, and benefit from the data if it was uniformly

accessible and represented in a domain-specific language.

Recently, ML and graph technologies have been adopted to

create a domain-specific abstraction over the data sources

and make query answering easier for experts [28].

IV. NETWORK AND MODEL MANAGEMENT

In order to make use of advanced MLmodels, these mod-

els need to be integrated into the existing network software

stack. On the other hand, multi-layer and multi-vendor

network control and management is a complex task in it-

self, involving services incorporating cloud operations, core

and metro transport, and mobile front-haul and back-haul

connectivity all the way to heterogeneous user applications

[29]. With localized and highly engineered operational

tools, it is typical of these networks to take several weeks

to months for any changes, upgrades, or service deploy-

ments to take effect. In this context, SDN is considered

a game changer by many, owing to its agility, flexibility,

and scalability, in contrast to traditional control and man-

agement platforms [30]. SDN distances itself from propri-

etary, device-specific operation to open, resource-driven

control, enabling centralized, programmable, and auto-

mated services across multiple domains. The key issue is

that while SDN is progressively getting adopted in the

cloud, the ecosystem around centralized SDN platforms

is ossified to legacy static and hardware-centric operations.

The bottleneck does not necessitate introduction of entirely

new tools, but rather an upgrade of legacy technologies—

service provisioning, activation, fault management, etc.

In order to attain true network automation, centralized

SDN control needs to be augmented with instantaneous

data-driven decision-making using advanced monitoring

and ML tools, feeding management and control planes

alike. In the following we discuss the architecture of such

an evolved platform.

A. Architecture

(i) Closed Loop Operation: The discussions regarding

SDN have almost exclusively focused on separation of data

and control planes, with little to no attention on the overall

operational feedback loop, including monitoring, intelli-

gence, andmanagement functionalities. Figure 10 captures

this theme and presents a high-level network architecture,

where central offices (CO) consist of intra- and inter-data-

center infrastructure. The intra-data-center resources

comprise storage, computation, and networking, whereas

inter-data center connectivity is provided by a transport

network. Resources—physical or virtual—are continuously

monitored, exposing real-time network states to the ana-

lytics stage, which in turn feeds into the control, orchestra-

tion, and management (COM) system.

This holistic platform not only caters to centralized and

programmable control, but also makes ML-driven deci-

sions to trigger actions, essentially connecting data-driven

automation with policy-based orchestration and manage-

ment. To this end, the COM architecture includes the

NFV orchestrator providing network services, the virtual

infrastructure manager (VIM) coordinating and automat-

ing data center workflows, the network orchestrator adopt-

ing hierarchical control architectures with a parent SDN

controller abstracting the underlying complexity, and a

monitoring and data analytics (MDA) controller that

collates monitoring data records from network, cloud,

and applications and contains ML algorithms.

(ii) Centralized and Distributed: Regarding MDA, a

hybrid architecture may be envisioned, where every CO

includes a distributed MDA agent that collates monitoring

data from the network, cloud, and applications as well as a

centralized MDA controller [31]. The MDA agent exposes

two interfaces toward the MDA controller for collection

Fig. 9. Data storage and representation workflow and technologies.

Fig. 10. Self-driven networking architecture.
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of monitoring and telemetry data. In addition, specific

interfaces for monitoring control allow the MDA agent to

connect with the network nodes. The MDA agent includes

a local module containing data analytics applications for

handling and processing data records. The data analytics

capabilities deployed close to the network nodes enable

local control loops, i.e., localized data analysis, and conse-

quent updated configurations.

The centralized MDA controller abstracts monitored

data via suitable interfaces and implements a ML-based

learning engine, where ML algorithms analyze monitoring

data to discover patterns. Such knowledge can be used to

make predictions and detect anomalies before they nega-

tively impact the network. Such events can be notified

in advance to the corresponding COM module (SDN con-

troller or orchestrator), together with a recommended

action. Note that a recommended action is a suggestion

that the COM module can follow or just ignore and apply

its own policies. The notification might trigger a network

re-configuration, hence closing the loop and adapting the

network to the new conditions.

(iii) Control Loop Examples: It is worth highlighting the

importance of the control loops for network automation, as

they fundamentally change the way networks are operated

today—empowering truly dynamic and autonomous opera-

tion. As examples of control loops, we analyze the following,

in the context of the presented architecture: i) soft-failure

processing and ii) autonomic virtual network topology

(VNT) management.

– Soft-failure processing: Let us focus on the optical layer

where lightpaths might support virtual links (vlinks) in

packet-over-optical multilayer networks. Soft failures can

degrade a lightpath’s quality of transmission (QoT) and in-

troduce errors in the optical layer that might impact the

quality of the services deployed on top of such networks.

Such soft failures affecting optical signals can be detected

by the MDA agents at intermediated nodes analyzing the

optical spectrum acquired by local optical spectrum analyz-

ers (OSA). Note that the acquired optical spectra entail

large amounts of data [e.g., 6400 frequency-power �hf ,pi�

pairs for the C-band for OSAs with 625 MHz resolution],

so local analysis carried out at the MDA agents greatly re-

duces the amount of data to be conveyed to the MDA con-

troller. Upon detection of a soft failure, the MDA agent

notifies the MDA controller, which is able to correlate

notifications received from severalMDAagents and for sev-

eral lightpaths to localize the element that is causing the

failure [13]. Once the failure has been localized, e.g., in an

optical link, a notification is issued to the COM module

responsible for the resources (e.g., SDN controller) together

with the recommended action of re-routing the affected

lightpath excluding the failed resource.

– Autonomic virtual network topology management: VNTs

are commonly created to adapt demand granularity to

the huge capacity of lightpaths. Because demands vary

throughout the day, defining a static VNT where vlinks

are dimensioned with the capacity for traffic peaks leads

to huge capacity over-provisioning; thus, VNTadaptation

to follow demand requirements greatly reduces costs for

network operators. One approach to dynamic manage-

ment is to monitor capacity usage in the vlinks and to

configure thresholds so that when a threshold is ex-

ceeded, the capacity of the vlink can be (reactively) recon-

figured by adding or releasing lightpaths supporting this

vlink. Another option is to monitor the origin-destination

(OD) and reconfigure the VNT accordingly in a proactive

manner [21]. For such proactive VNTadaptation to work,

OD traffic prediction is needed to anticipate demand

changes. OD traffic prediction is based on fitting models

using ML algorithms that use historical OD traffic data

collected by the MDA agents and stored in the MDA con-

troller. Those OD traffic models are also stored in the

MDA controller and are ready to be used for prediction.

Periodically, the SDN controller can request the pre-

dicted OD traffic for the next period, e.g., the next hour,

and use such prediction to create a traffic matrix that is

the input of an optimization problem in charge of finding

the best VNT configuration that meets both current and

predicted capacity requirements.

B. ML Model Life Cycle

Once a ML model is constructed and deployed, the next

step is to maintain this model over its lifetime. This process

largely involves questions related to when and how a model

should be updated. In particular, it is critical to determine the

update cycle of a ML model considering the computational

load and also ascertain the model validity while performing

updates. In the following, we detail both of these aspects.

(i) Data Profile: A rather standard approach is to per-

form model updates at regular intervals, termed constant

update, regularly adapting to evolving network states.

While this simplifies model maintenance, it either suffers

from unnecessary updates—in case network behavior has

not changed significantly—or not an accurate enough

model due to fast-paced changes in underlying network

conditions. An orthogonal methodology is to trigger model

updates when the data profile has changed significantly,

termed adaptive update. This allows for efficient use of

computational resources and adapts to real-time network

behavior. Figure 11 shows an example of a normal and

abnormal distribution for received optical power levels,

triggering a model update.

(ii) Reconstruction: Model reconstruction involves incor-

porating new training data into the ML model. Once a

model update decision has been made, the next step is

Fig. 11. Adaptive model update based on changing data profile,

as opposed to fixed duration periodic updates. (a) Normal distribu-

tion of optical power levels. (b) Abnormal distribution of optical

power levels.
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to decide whether a batch-based or real-time update will be

performed. Batch-based model reconstruction rebuilds the

model with every refresh cycle, discarding previous data.

This can be performed either in a sliding window or a

weighted sliding window mode. Conversely, a real-time up-

date refers to an incremental update of a preexisting model

based on new data. This enables computational savings by

not reconstructing the entire model, where resources have

already been used. Furthermore, a real-time update allows

for efficient data handling, as once the model is recon-

structed there is no need to store the data for future model

development.

V. APPLICATION SCENARIOS

In this section, we introduce several applications of ma-

chine learning in optical networks. Broadly, we consider

network failure, reconfiguration, and performance-related

use cases, discuss the background and relevant prior art,

and follow up with proof-of-concept demonstrations. In par-

ticular, the control loop examples described in the previous

section are detailed, together with two other sample appli-

cations, i.e., physical layer capacity optimization and opti-

cal spectrum analysis. The ML algorithms used for these

applications include regression, SVM, and ANN, imple-

mented using TensorFlow [32] for our proof-of-concept

algorithm development.

A. Predictive Maintenance

With increasing network complexity and heterogeneity,

business economics dictate the need for improved asset

management to reduce, if not eliminate, downtime and

improved resource usage [33]. Typical maintenance ineffi-

ciencies include the following.

– Network assurance agreements are signed, requiring

maintenance cycles and periodic support, without consid-

ering current equipment or network health status.

– Network operators need to allocate effort to monitor and

raise issues with support teams. This is typically done

after a failure has occurred. Furthermore, in case of early

support requests, repairs are quick fixes due to lack of a

global operational perspective.

– Even in the case of data gathering and processing, most

of the analysis is manual and only used for post-failure

diagnostic purposes.

– The entire cycle is based on a few highly experienced

individuals, with issues related to single-point-of-failure,

non-transferable skills, product variations, etc.

Typical examples of network faults may include cooling

unit failure, laser degradation, subsystem control unit fail-

ure, etc. Early detection of equipment failure states and

consequent remedial actions can prevent network down-

time and enable scheduled preventive maintenance. The

general functional hierarchy of a fault management system

is given in Fig. 12, ranging from detection of a potential

failure, all the way to resolution processes [12]. Most

commercial equipment tolerates some errors until auto-

matically tearing down the connection when some system

thresholds are exceeded. While a restoration procedure

could be initiated to recover the affected traffic, it would

be desirable to anticipate such events and re-route the

lightpath before it is disrupted. In case rerouting is neces-

sitated, failure localization is required so as to exclude the

failed resources from path computation. In addition, proac-

tive failure detection would also allow time to plan the

re-routing procedure, e.g., during off-peak hours.

In this use case, we address failure detection and locali-

zation blocks and demonstrate an analytics-enabled fault

discovery and diagnosis (FDD) architecture, capable of pro-

actively detecting and localizing potential faults (anomalies)

as well as determining the likely root cause—based on SDN-

integrated knowledge discovery [34]. The network segment

consisted of ADVA FSP 3000 modules, carrying a (moni-

tored) 100Gb/s transport service. Here we follow a two-stage

fault detection approach, where, in the first stage, the opti-

cal power levels are monitored as level-I data, and, in the

second stage, localized level-II subscription-based monitor-

ing consists of amplifier gain, shelf temperature, current

draw, and internal optical power. The dual-stage approach

allows for reduced monitoring and processing overhead

compared to the all-at-once monitoring approach. The en-

semble fault discovery and diagnosis framework is initiated

within the SDN controller, as shown in Fig. 13(a), eventually

triggering distributed analysis [Fig. 13(b)].

After initial data acquisition (aggregated in hourly bins),

the algorithm is executed in two phases. In the first phase,

Fig. 12. Fault management functional hierarchy.

(a)

(b)

Fig. 13. SDN-integrated fault discovery (detection) and diagno-

sis. (a) System-level FDD. (b) Node-level FDD.
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the records are partitioned, and we execute the generalized

extreme studentized deviation test (GESD), a sequential-

processing-based modification of Grubb’s test [35], for

deviation and classification tests (memory of 11 units),

and neural network (backpropagation trained, in a 7(input)

× 5(hidden) × 1(output) neuron configuration using tanh

activation) based true fault detection. The ANN inputs re-

present positive and negative fault label values (a sequence

of zeros and ones), including the indicated fault identified

by GESD. The role of the ANN network is to make true

abnormality decisions based on these fault label patterns.

The engine performs first-level layer 0 monitoring via

SDN abstraction through the southbound interface (SBI).

It detects potential faults and localizes them to relevant

network ports. The outcome is then distributed to a net-

work maintenance application (RESTful), and also to the

domain controller via SBI (Netconf). Second-level func-

tional blocks include local fault discovery, followed by the

root cause analysis, which maps metric fault measures to

available node topology and lists potential root causes in a

priority log.

After first-level detection of power level anomalies (not

shown for the sake of conciseness), the second-level localized

analysis is triggered. Figure 14(a) shows sample test points

for these features, including temperature, amplifier gain,

intermediate stage power, and current draw profiles, where

the associated changes in a feature indicate the potential

root cause. Figure 14(b) shows the distance metric, based

on shape-based clustering [36], amongst the probable fault

root causes, identifying the response of other features with

respect to each others’ changes. The shorter the length along

an ellipse’s minor axis, the higher the similarity between the

two features; the rightwards tilt represents positive correla-

tion, and vice versa. Note that the diagonal shows a line seg-

ment (minor axis of length zero), representing a perfect

match, as the same feature is present on both the x axis

and y axis. A high association is found between temperature

and current draw as increasing temperature necessitates

higher fan speed, whereas on the other hand, a decreasing

draw may increase the temperature. Furthermore, a strong

anti-correlation is identified between temperature and

power, followed by relatively weaker dependency between

current draw and power. Power may be ruled out as a poten-

tial fault because it starts deteriorating after the other two

features; current and temperature are the two remaining

causes, which may be processed further.

B. Autonomic Virtual Network Topology Management

Figure 15(a) shows an initial VNT where every vlink is

supported by a 100 Gb/s lightpath in the underlying optical

layer; the MPLS path for OD 6→7 is also shown. Let us

assume that a 90% capacity threshold is configured in the

vlinks, and in the event of a threshold violation, the capacity

of some of the vlinks is increased. In our example, as OD

traffic 6→7 increases, two threshold violations—for vlinks

1→6 and 1→7—will be issued, resulting in increased VNT

capacity [Fig. 15(b)]. It is worth noting that the MPLS path

for OD 6→7 is not affected by the VNT reconfiguration. As

shown, the threshold-based reconfiguration can adapt the

VNT capacity to traffic changes, such that the resources in

the optical layer are allocated only when vlinks need to

increase their capacity. However, the same number of tran-

sponders are required as in the static VNT approach; for

instance, two transponders are installed in routers 6 and 7

and another four in router 1 reserved for vlinks 1→6

and 1→7.

Let us now assume that instead of monitoring vlink

capacity usage, OD traffic is monitored in the nodes. By an-

alyzing such monitoring data it could be observed that OD

6→7 is responsible for the registered traffic increment. In

this case, let us assume that new vlinks can be created/

removed in addition to increasing the capacity of the

existing ones such that the VNT is actually changed. We

propose an approach where OD traffic is periodically ana-

lyzed and the current VNT is reconfigured accordingly.

An example that follows this approach is illustrated in

Fig. 15(c), where the OD traffic 6→7 is predicted for the next

(a) (b)

Fig. 14. (a) Localized fault discovery at the node. (b) Local feature similarity analysis for root cause analysis.

Danish Rafique and Luis Velasco VOL. 10, NO. 10/OCTOBER 2018/J. OPT. COMMUN. NETW. D137



hour and a new vlink between nodes 6 and 7 can be created

by establishing a lightpath, rerouting 6→7 traffic. Note that

with this solution there are two fewer required transponders

in router 1 compared to the previous approach.

(i) Proactive VNT Reconfiguration: Proactive VNT adap-

tation anticipates demand changes, consequently enabling

better resource management with respect to reactive strat-

egies. The VNT reconfiguration problem can be defined

based on traffic prediction (VENTURE) [21], which can

be formally stated as the following:

Given:

• The current VNT represented by a graph G�N,E0�, N

being the set of routers and E0⊆E the set of current

vlinks. Set E is the set of all possible vlinks connecting

two routers,

• the set P with the optical transponders available in the

routers; every transponder with capacity B,

• the current traffic matrix D,

• the predicted traffic matrix OD.

Output: The reconfigured VNT G⋆�N,E⋆�, where E⋆⊆E,

and the paths for the traffic are on G⋆.

Objective: Maximize current and predicted traffic matri-

ces, whileminimizing the total number of transponders used.

Since we are targeting VNT adaption to current and

future traffic conditions, predictive traffic models that

can accurately anticipate OD traffic are needed to define

traffic matrices.

(ii) OD Traffic Estimation Models: The model estimation

approach that we follow here is fitting ANN models.

Different ANNs need to be fitted to separately predict

the bitrate of each OD traffic flow. Each ANN receives

as input p previous data values from the monitoring data

repository and returns the expected average bitrate μ and

the bitrate variance σ2 at time t. Other variables, like the

confidence interval at 95%, can be obtained by combining μ

and σ2 predictions.

One interesting analysis is the required training data (de-

noted as Y), as monitoring traffic during the right period of

time is crucial to produce quality models while minimizing

the time for newmodel availability. To evaluate this, we con-

ducted experiments where μ and σ2 are estimated and evalu-

ated varying jYj. Figure 15(d) shows the maximum error for

σ2 and μ estimations for different values of jY j between 2

days and 3 months. Although μ can be estimated with less

than 5%maximum error in about 10 days, a maximum error

of 60% is observed for σ2 for the same duration. To decrease

themaximumerror, jYj needs to be increased up to 2months

to keep maximum prediction errors under 20%.

Figures 16(a) and 16(b) show one day of monitoring traffic

data for two different traffic profiles, as well as the predic-

tion of the μ model and the confidence interval at 95%

obtained by combining the μ and σ2 models (dashed lines).

In addition, it is interesting to investigate the performance

of an ANNmodel to smooth changes in the data. Figure 16(c)

shows such adaptation to an evolutionary traffic scenario,

where daily traffic pattern changes smoothly day by day.

One can observe how the ANNmodel adapts from the initial

(red) to the final (blue) traffic pattern while keeping its origi-

nal accuracy without refitting.

(iii) Illustrative Results: Let us now apply the ANN traf-

fic modeling approach to predict the OD bitrate of a core

VNT, used as the input of the VENTURE optimization

problem. Let us assume that VENTURE is triggered peri-

odically, so per-OD prediction of maximum traffic for the

next period is needed.
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Fig. 15. (a)–(c) Reactive and proactive adaptation. Numbers in

the inset represent link capacity in gigabits per second (Gb/s).

(d) Maximum prediction error versus days of monitoring.
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Fig. 16. (a) and (b) Prediction of min/max/avg for two different traffic profiles, and (c) ANN adaptation to smooth evolutionary bit rate.
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For evaluation purposes, we compare the number of op-

tical transponders required for static VNT management

that is configured for peak traffic versus the number

required with dynamic VNT reconfiguration. When no pre-

dictions are available, the optimization problem is trig-

gered when a capacity threshold configured in the vlinks

is exceeded, named threshold-based. All approaches were

applied to a full-mesh 14-node VNT, where the initial capac-

ity of each vlink ranges from 100 to 200 Gb/s. We ran sim-

ulations in an event-driven simulator based on OMNeT++.

To measure the effect of volumetric and directional changes

in traffic, we implemented traffic generators that inject

traffic following the profiles in Figs. 16(a) and 16(b). The

threshold-based model was configured with 90% threshold.

Regarding OD traffic prediction, ANN models for μ and σ2

were trained on a dataset with monitoring data belonging

to the previous weeks. Maximum OD traffic prediction

was considered targeting zero blocking probability.

Figure 17 plots, for each approach, the maximum tran-

sponder usage as a function of the load. Both the static- and

the threshold-based approach show constant transponder

usage for loads lower than 0.5, incrementing as a func-

tion of increasing load. For low loads, the capacity of vlinks

in the fully meshed VNT is 100 Gb/s—in both cases—and

is increased to 200 Gb/s for high loads under the static

approach. The threshold-based approach, however, is able

to manage the use of transponders by flexibly using

available transponders to increment the capacity of vlinks

running out of capacity. This allows it to achieve transpon-

der savings up to 11% with respect to the static VNT

approach. Interestingly, transponder usage scales linearly

with the load with the predictive approach. Compared to

the threshold-based approach, the predictive approach

enables savings between 8% and 42%.

C. Physical Layer Capacity Optimization

An optical network is a mesh of individual entities con-

tributing to the ensemble network behavior. One of the fun-

damental tasks in network operation is physical layer

capacity planning. Traditionally, this has been achieved

by precise engineering rules devised by subject experts,

and the outcomes were configured for the lifetime of the

network. While this approach made sense considering net-

work size and limited configuration possibilities, it is re-

strictive in terms of data cooperation across the network

for global optimization opportunities and suffers from

limited scalability.

Recently published work has focused on predicting QoT

based on measured BER and Q factor [37–39]. In this use

case we instead aim to predict the optimum modulation

format based on features such as symbol rate, channel load,

number of spans, etc. In particular, we consider various

multi-layer perceptron (MLP) architectures and show the

performance in terms of classification accuracy and train-

ing time [40].

Figure 18 shows the setup considered in this work.

At the transmit side, we considered typical features like

channel symbol rate, pulse shaping filter roll-off, optimum

launch power, and channel load on a given point-to-

point optical link. The optical transmission channel was

modeled using the Gaussian noise (GN) approach de-

scribed in Ref. [41]. The back-to-back OSNR penalties

were considered to be 0.5, 1, 2, and 3 dB for dual polariza-

tion quadrature amplitudemodulation (DP-mQAM), where

m � 2, 4, 16, and 64, respectively, accounting for optical

and electrical component limitations. All of the considered

features are listed in Fig. 18. We used GN simulations to

generate our well-characterized data set, where the train-

ing data consisted of 6 × 104 unique records, validation

data consisted of 2 × 104 records, and the test data set

consisted of 2 × 104 records. The ANN classifier was a

feedforward model with supervised learning based on the

backpropagation algorithm, termed MLP, and was trained

on the 11 input features and 1 output feature listed in

Fig. 18(a). The output feature was a multi-level categori-

cal variable representing the four modulation formats

mentioned above. The different MLP architectures con-

sidered were a single layer with 5 neurons (MLP_A), a

single layer with 10 neurons (MLP_B), a single layer with

Fig. 17. Maximum used transponders versus load. Fig. 18. Network setup and ML input and output parameters.
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100 neurons (MLP_C), and two layers with 100 and 10

neurons, respectively (MLP_D).

Performance evaluation was carried out as a function

of epochs, as shown in Fig. 19(a). The curves represent

optimization behavior on validation data, as the test-data

model was chosen based on convergence obtained on this

validation set. It can be seen that all of the MLP architec-

tures follow a similar saturation behavior after a certain

number of epochs. MLP_A achieves 93.6% accuracy after

6000 epochs, followed by MLP_B with 95.8% accuracy and

5000 epochs, MLP_Cwith 97.1% accuracy after 3000 epochs,

and MLP_D with 98.36% accuracy after only 2000 epochs.

Clearly, MLP_D enables a significant 6% accuracy gain with

three times fewer required number of epochs. Figure 19(b)

shows the corresponding elapsed time to obtain the opti-

mum model for the four classifiers. Interestingly, the least

complex to themost complex configuration follows a linearly

decreasing model training time, ranging from ∼75 seconds

to∼20 seconds. This behaviormay be attributed to the lower

number of required epochs for the more complex models,

ascertaining that the more complex architecture does not

significantly contribute to the training time. Nonetheless,

MLP_D achieves an impressive ∼98% classification accu-

racy, making it—or even a more complex architecture—a

suitable choice for the modulation classification problem in

optical networks.

The current use case may be extended to cooperative

physical layer capacity optimization, consuming multi-layer

traffic characteristics and performancemetrics. For instance,

in case of traffic congestion due to network load or link fail-

ures, the infrastructure layermay automatically adapt to the

change, rather than leaving the remedial actions only to

higher layers. On the other hand, traditional conservative

capacity planningmay be replacedwithML-driven solutions,

self-adapting the capacity to a given network state.

D. Optical Spectrum Analysis

Optical signals typically undergo filtering effects due to

laser drifts, narrow spectral grids, etc., eventually leading

to QoT degradation. The optical signal spectrum is a useful

indicator of such behavior, as these deteriorations result in

spectral narrowing or clipping effects [42,43]. In this sub-

section, we identify degrading QoT due to filtering effects

using ML, exploiting the baseline optical signal behavior of

its central frequency being symmetric around the center

of the assigned spectrum slot.

(i) Filter Effects: Figure 20 shows an example of the op-

tical spectrum of a 100 Gb/s DP-QPSK modulated signal.

By inspection, we can observe that a signal is properly con-

figured when i) its central frequency is around the center of

the allocated frequency slot; ii) its spectrum is symmetrical

with respect to its central frequency; and iii) the effect of

filter cascading is limited to a value given by the number

of filters that the signal has traversed. However, when a

filter failure occurs, the spectrum is distorted, and the dis-

tortion can fall into two categories: i) the optical spectrum

is asymmetrical as a result of one or more filters being mis-

aligned with respect to the central frequency of the slot

allocated for the signal (filter shift, FS) and ii) the edges

of the optical spectrum look excessively rounded for the

number of filters, as a consequence of the bandwidth of

a filter being narrower than the frequency slot width allo-

cated for the signal (filter tightening, FT).

To detect the above-mentioned distortions, an optical

spectrum (represented by an ordered list of “frequency,

power” hf ,pi pairs) can be processed to compute relevant

signal points that facilitate its diagnosis. Before processing

an optical spectrum, it is normalized to 0 dBm. Next, a

number of signal features are computed as follows [13]:

• equalized noise level, denoted as sig (e.g., −60 dB +

equalization level),

(a)

(b)

Fig. 19. (a) Classifiers’ performance. (b) Training time. Fig. 20. Example of optical spectrum and signal features.
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• edges of the signal, computed using the derivative of the

power with respect to the frequency, denoted as ∂,

• the mean μ and the standard deviation σ of the central

part of the signal, computed using the edges from the

derivative (f c_∂� Δf ),

• family of power levels computed with respect to μ − kσ,

denoted as kσ,

• a family of power levels computed with respect to

μ − kdB, denoted as dB.

Using these power levels, two cutoff points can be gen-

erated and denoted as f1�·� and f2�·� (e.g., f 1sig, f 1∂,

f 1dB, f 1kσ). Additionally, the assigned frequency slot is de-

noted as f 1slot, f 2slot. Other features are also computed as

linear combinations of the ones mentioned above.

These features are used as input for the subsequent fail-

ure detection and identification modules. Although rel-

evant metrics are computed from an equalized signal,

signal distortions due to filter cascading have not been cor-

rected yet. As mentioned above, this effect might result in

an incorrect diagnosis of a potential filter problem. To over-

come this, we apply a correction mask to the measured

signal. Such correction masks can be easily obtained by

means of theoretical signal filtering effects or experimental

measurements.

The two considered filter failure scenarios are illustrated

in Fig. 21, where the solid line represents the optical spec-

trum of the normal signal expected at the measurement

point, and the solid area represents the optical spectrum

of the signal with failure. In case of filter shift, a

10 GHz shift to the right was applied [Fig. 21(a)], whereas

the signal is affected by a 20 GHz FT in Fig. 21(b).

(ii) ML Algorithms for Failure Detection and

Identification: In this application we make use of classifi-

cation and regression algorithms. In case of classification,

the objective is to classify unknown received data, e.g., an

optical signal, and decide whether the signal belongs to the

normal class, the FS class, or the FT class, whereas regres-

sion is used to estimate the magnitude of a failure. Once

the optical spectrum of a signal has been acquired, and

processed as described above, failure analysis is carried

out. Figure 22 summarizes the workflow that returns

the detected class of the failure (if any) and its magnitude.

While ML algorithms are suitable for this task, we selected

SVM for classification and linear regression for prediction.

(iii) Illustrative Results: In this section, we numerically

study the proposed workflow using a testbed modeled in

VPI Photonics, where the optical spectrum database was

generated for training and testing the proposed algorithms.

In this study, we focus on the caseswhere failure is limited to

the first node. A large database of failure scenarios with dif-

ferent magnitudes (magnitude of 1 to 8 GHz for FS and 1 to

15 GHz for FT, both with 0.25 GHz step size) was collected.

Figures 23(a) and 23(b) show the accuracy of identifying

FS and FT, respectively, in terms of the failure magnitude.

Every point in Figs. 23(a) and 23(b) is obtained by consid-

ering all of the observations belonging to that particular

failure magnitude, and above. This representation reveals

the true accuracy of the classifier while considering failures

with magnitude above certain thresholds. For instance, the

accuracy of detecting FS in a data set comprising observa-

tions larger than 1 GHz (it comprises failures up to 8 GHz

in which there are equal number of observations per each

magnitude) is around 96%. On the other hand, the accuracy

of the classifier becomes 100% for failures larger than

5 GHz.

Once the failures are detected, the filter shift estimator

(FSE) and filter tightening estimator (FTE) can be launched

to return the magnitude of the failures. In our case, the

estimators were able to predict the magnitude of failures

with very high accuracy, with mean square error (MSE)

equal to 0.09091 and 0.00583 for FSE and FTE, respectively.

VI. FUTURE WORK AND INDUSTRIAL PERSPECTIVE

While we presented several aspects of application of ML

in optical networking, numerous challenges remain unad-

dressed. In particular, future work should consider the(a) (b)

Fig. 21. Example of filter failures considered in this paper: (a) FS

and (b) FT.

Apply

Correction Mask
Extract Signal 

Features

Classifier

Magnitude 

Estimator

(FS)

Magnitude 

Estimator

(FT)

No Failure

Failure Detected 

(Class and 

Magnitude)

Optical

Spectrum

Fig. 22. Workflow for filter failure detection and identification.
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Fig. 23. Accuracy of the proposed method for (a) FS and (b) FT

identification.
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following research and practical issues to enable industry-

wide adoption:

– As network hardware is slowly evolving towards an open

and interoperable system, it is imperative that ML-

driven solutions, regardless of vendors, products, and

services, follow standardization processes.

– One of the key issues with applications of ML is the lack

of available data sets. ML models using low-quality data

may result in delayed technology introduction or com-

plete abandonment. In particular, industry players

should make an effort to produce anonymized data sets

available to the larger community.

– While it is tempting to apply a series of ML algorithms to

a given problem, care must be taken to trade off complex-

ity and computational effort with performance. ML

methods are still evolving, and a ready-made optimized

solution may not be available at this point in time.

– When designing new frameworks and software architec-

tures, care must be practiced to offer scalable solutions.

This should range from applications, services, etc. to

back-end storage facilities.

– The applications discussed may broadly be categorized as

either network- or performance-related classification and

pattern detection/prediction. As networks evolve towards

data-dependent self-driven architectures, securing access

to network data, authenticationmechanisms, attack detec-

tion, and containment, etc. also need to evolve beyond con-

ventional methods. As such, network security defines an

orthogonal application of ML-related solutions.

VII. CONCLUSION

Traditional networks suffer from largely static opera-

tional and optimization practices that limit their scalabil-

ity and efficiency. Machine learning provides a collection of

techniques to fundamentally adapt to the dynamic network

behavior. This tutorial has aimed to establish a reference

for the practical application of machine learning in the

optical networking industry. We have discussed several

aspects, as summarized below:

• Machine Learning Paradigms: We introduced the funda-

mental concepts of ML, ranging from simple workflows

to algorithm families and their evaluation methods.

Several optical networking applications were tied to

standard algorithms, where some were detailed in later

sections.

• Data Management: Network data sources were elabo-

rated, together with advanced monitoring and telemetry

framework discussions. Furthermore, storage and repre-

sentation aspects were highlighted with respective

challenges.

• Network and Model Management: Novel architecture, in-

cluding monitoring and data analytics, was presented,

extending the conventional SDN control and manage-

ment framework. We also discussed the operational life

cycle of a deployed ML model, together with update

strategies.

• Case Studies: Based on the discussed use cases, it be-

comes apparent that ML techniques can enable substan-

tial benefits for optical network design, operation, and

maintenance. Proactively detecting soft failures by mon-

itoring multi-domain signaling or looking at unique

optical signal properties would help increase network

reliability. Traffic and network states may be used to

improve resource utilization at the physical layer or

trigger virtual link creation at higher layers.

While the application of ML for optical networks is still

in its infancy, these learning-based techniques provide a

promising platform for end-to-end network automation.

We hope that this paper will contribute to the understand-

ing of multi-disciplinary concepts and help improve net-

work resource utilization and operational reliability.
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