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Abstract

Introduction: Stroke is a major cause of death and disability. Accurately predicting stroke outcome from a set of predictive
variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. Logistic
regression models allow for the identification and validation of predictive variables. However, advanced machine learning
algorithms offer an alternative, in particular, for large-scale multi-institutional data, with the advantage of easily
incorporating newly available data to improve prediction performance. Our aim was to design and compare different
machine learning methods, capable of predicting the outcome of endovascular intervention in acute anterior circulation
ischaemic stroke.

Method: We conducted a retrospective study of a prospectively collected database of acute ischaemic stroke treated by
endovascular intervention. Using SPSSH, MATLABH, and RapidminerH, classical statistics as well as artificial neural network
and support vector algorithms were applied to design a supervised machine capable of classifying these predictors into
potential good and poor outcomes. These algorithms were trained, validated and tested using randomly divided data.

Results: We included 107 consecutive acute anterior circulation ischaemic stroke patients treated by endovascular
technique. Sixty-six were male and the mean age of 65.3. All the available demographic, procedural and clinical factors were
included into the models. The final confusion matrix of the neural network, demonstrated an overall congruency of ,80%
between the target and output classes, with favourable receiving operative characteristics. However, after optimisation, the
support vector machine had a relatively better performance, with a root mean squared error of 2.064 (SD: 60.408).

Discussion: We showed promising accuracy of outcome prediction, using supervised machine learning algorithms, with
potential for incorporation of larger multicenter datasets, likely further improving prediction. Finally, we propose that a
robust machine learning system can potentially optimise the selection process for endovascular versus medical treatment in
the management of acute stroke.
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Introduction

Stroke and Endovascular Treatment
Stroke is a major global public health issue and is considered the

third most costly health condition in developed countries [1].

Approximately 800,000 cases of stroke are reported in United

States of America per annum, leading to 200,000 deaths, almost

one of every 16 deaths [2,3]. For those who survive, it is the most

common cause of adult disability in the modern world [2,4],

requiring expensive long term rehabilitation care[2,5–7] amount-

ing to costs estimated at over 60 billion dollars per year in the

United States of America alone [2,5,8]. More than 80% of stroke

cases are ischaemic, with the remainder being haemorrhagic [2].

Urgent reperfusion of the ischemic brain is the primary

treatment aim, either by intravenous thrombolysis or by endovas-

cular interventional techniques [9]. These treatments focus on

vascular recanalisation and restoration of blood flow to the

ischemic tissue [10]. Although there are varying estimates to the

potential number of patients who may benefit from endovascular

intervention, there will likely be expansion of the number of

patients treated using these techniques [2,11,12].

Initial focus was on intraarterial thrombolysis, proposed to be

safe up to 6 hours post ictus in Pro-Urokinase for Acute Cerebral

Thromboembolism II (PROACT-II) trial [1,13]; however, rapid

mechanical clot extraction with decreased time to cerebral

reperfusion has obvious appeal and in fact is theoretically ideal

for platelet poor, fibrin rich, well organized cardiogenic emboli,

refractory to mechanical lysis2. Therefore, subsequent develop-

ments of various mechanical thrombectomy devices has gained

much interest with the theoretical advantage of faster recanalisa-

tion and potential lower rate of hemorrhagic transformation;

possibly leading to an extended time window in stroke intervention

[1].

FDA approval for MERCI Retrieval and Penumbra Stroke

Systems[2,14–19] as the first generation of mechanical thrombec-

tomy devices was followed by introduction of Solitaire and Trevo

as stent retrievers [10]. Introduction of these devices backed up by

the pioneering studies MERCI, multi-MERCI, and Penumbra, as
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well as Pivotal and SWIFT, have further strengthened the

importance of the mechanical techniques in large vessels

occlusion[10,20–26]. However, despite more than 80% recanali-

sation success, randomised controlled trials such as Interventional

Management of Stroke (IMS) - III [1,27], have still failed to show a

significant improvement in the clinical outcome, evaluated by 90

day modified Rankin Scale score[2,10,22,28–33].

The SYNTHESIS trial also failed to show any superiority of

endovascular intervention or even for combined endovascular and

peripheral thrombolysis over traditional intravenous tPA[34–36].

This conundrum was made more complicated when the MR-

RESCUE trial demonstrated not only that embolectomy was no

better than standard care, but also a favorable penumbral pattern

on imaging does not necessarily indicates patients who would

benefit from endovascular therapy [37].

This discrepancy between the IMS-III, SYNTHESIS and MR-

RESCUE outcomes and what may have been intuitively expected

is likely related to the multiple potential pitfalls in the design of

these trials which could change the interpretation of the results

[1,38,39]. The most commonly speculated factor is that patient

selection was neither targeted to those who failed IV thrombolysis,

nor to those with large vessel occlusion or large clot burden $

8 mm, who are usually not responsive to chemical treatment

alone; as no vascular imaging was required prior to inclusion into

the studies[1,38–40]. These limitations could certainly influence

the accuracy of the studies in evaluation of the clot retrieval

techniques. On the other hand, stentretrievers, now acknowledged

as more effective devices, were included only very late into the

studies like IMS-III, with less than 1% of cases treated using

Solitaire. Since the release of these preliminary results at least six

additional devices have started premarket testing[1,38–40].

It appears that the situation is different for posterior circulation

involvement. Although causing only 6–10% of large vessel strokes,

posterior circulation occlusions have a relatively different course,

and failure of recanalisation, in particular in comatose patients or

those with basilar trunk involvement results in a very poor

prognosis [2,41]. The BASICS (Basilar Artery International

Cooperation Study) did not show a definite superiority for

intraarterial intervention over intravenous thrombolysis [2,42];

and the overall outcome is quite variable in patients who are

treated with intraarterial or intravenous thrombolysis, in particular

depending on the therapeutic delay [2,43]. On the other hand,

some trials have already demonstrate more than 50% recanalisa-

tion success rate for intraarterial techniques, with relatively good

outcome [2,44].

However, randomized control trials are restricted and limited

by the lower incidence of posterior circulation strokes, and the

results are potentially influenced by the heterogeneity of both the

presentations and the causes; and at this stage the rational for

aggressive treatment is mainly based on anecdotal evidence

[2,22,23,45].

Overall the major obstacle in endovascular intervention of the

ischemic stroke is to establish a set of criteria identifying those

patients who may benefit from intervention, whilst avoiding

potential unwanted catastrophic treatment related complications.

There is currently level I evidence that NIHSS (National

Institute of Health Stroke Score) [46,47] is a quick and relatively

simple guide to estimate the extent and the severity of a stroke, and

probably correlates with the clinical outcome [46]. It is however,

unable to measure the size of established infarction, separate from

the salvageable parenchyma, and is therefore unable to predict

potential outcome after endovascular intervention accurately. This

is consistent with the well known fact that multiple factors

contribute to and influence recanalisation success, including the

extent and site of the vascular occlusion; and that the overall

outcome also depends on patient demographic factors as well as

clinical setting such as the time from onset, duration and the

severity of the presenting neurological insult [10].

The complexity of the all of these factors involved, makes

prediction of the final outcome difficult. On the other hand,

undoubtedly, accurately predicting the outcome from a set of

predictive variables is an important aspect of clinical work, which

can assist in identifying high-risk patients and guide treatment

approaches, thus potentially decreasing morbidity and mortality.

Such a model in prediction of the outcome, not only may be

crucial in prognostication, but can also have future roles in patient

selection for the variety of the treatment options available and the

relevant studies.

Prognostic Modeling and Machine Learning
The usual approach to analyse the stroke outcomes data is to

develop logistic regression models; however, machine learning

algorithms have been proposed as an alternative, in particular for

large-scale multi-institutional data, with the advantage of easily

incorporating newly available data to improve prediction perfor-

mance [48,49].

Machine Learning algorithms can be applied and its trained,

under two major different scenarios; supervised and unsupervised.

In supervised scenario the predicted outputs are known and used

to train the models. In unsupervised machines, the desired output

Table 1. Demographics and gender ratio.

Age and gender distribution of the patients:

Age Gender

Mean 65.3 Female 41

Median 67 Male 66

Mode 80

Std. Deviation 13.8

Minimum 23

Maximum 90

doi:10.1371/journal.pone.0088225.t001

Table 2. Distribution of the occluded vessels.

Occluded Arteries:

Artery Occlusion

1st 2nd 3rd

ACA 0 2 1

MCA- M1 55 21 0

MCA- M2 14 9 2

MCA- M3 1 1 0

MCA/ICA 1 0 0

ICA- Proximal 1 0 0

ICA- Intracranial/distal 22 2 0

ICA- extracranial 11 1 0

ICA- Terminal 1 0 0

CCA 2 0 0

doi:10.1371/journal.pone.0088225.t002
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is unknown, and the objective is to discover structure in the data,

not to generalise a mapping from inputs to outputs [49,50].

Two of the most commonly used machine learning methods

include artificial neural network and support vector machine.

These models are trained supervised, with neural network

algorithms capable of unsupervised training as well [48,49].

Although the technical details of theses algorithms are beyond

the scope of this article, a summary of them follows:

Artificial neural network is a mathematical and computational

model that is inspired by the structure and functional aspects of

biological neural systems [49,50]. It consists of interconnected

nodes, processing information using a connectionist computational

approach. The central connectionist principle proposes that

complex neurological and mental phenomena can be described

by an interconnected network of simple uniform units [50],

adaptively changing their structure based on external or internal

information, which flows during the learning phase, forming a

robust dynamic system modelling the complex relationships

between inputs and outputs or patterns in data[49–51].

From the different topological types of neural networks, the

commonly used feed-forward is a network where connections

between the units do not form a directed cycle or loop, and the

information moves in only one direction, forward, from the input

nodes, through the hidden nodes to the output nodes [50]. Back

propagation algorithm is a supervised learning method divided

into propagation and weight update phases, which are repeated

until the performance of the network is good enough, while the

output values are compared with the correct answer to compute

the value of some predefined error-function [49,50]. This

calculated error is then fed back through the network, adjusting

the weights of each connection accordingly, in order to reduce the

error function [50]. Repeating this process usually eventually

converges to some state where the error of the calculations is

minimised, at which point the network is considered trained for a

certain target function [49].

In comparison to the artificial neural network, the support

vector machine works very differently. It takes a set of input data

and predicts which of the different possible classes comprises the

input, making it a non-probabilistic linear classifier. A set of

training data is given and marked as belonging to one of the

categories. An SVM training algorithm builds a model that assigns

new data into one category or the other.

The example data points are initially mapped as points in space,

Table 3. ICH classification.

Classification of Infarction Haemorrhagic Transformation

Type Name Definition

Asymptomatic HI-1 Haemorrhagic infarction type 1 Small petechiae along the margins of the infarct

HI-2 Haemorrhagic infarction type 2 More confluent petechiae within the infarcted area but without
space-occupying effect

PH-1 Parenchymal haemorrhage type 1 Haematoma in #30% of the infarcted area with some slight
space-occupying effect

PH-2 Parenchymal haemorrhage type 2 Dense haematoma in .30% of the infarcted area with substantial
space-occupying effect or as any haemorrhagic lesion
outside the infarcted area.

Symptomatic Symptomatic intracranial haemorrhage parenchymal haemorrhage type 2 (PH-2) with
neurological deficit

Others IVH Interventricular Haemorrhage

SAH Subarachnoid Haemorrhage

doi:10.1371/journal.pone.0088225.t003

Table 4. Haemorrhagic Transformation.

Type No.

Asymptomatic HI-1 4

HI-2 16

PH-1 1

PH-2 5

Symptomatic 5

Others IVH 0

SAH 0

doi:10.1371/journal.pone.0088225.t004

Figure 1. 90 days mRS histogram.
doi:10.1371/journal.pone.0088225.g001
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so that the examples of the separate categories are divided by a

clear gap that is as wide as possible, and then unknown data is

represented in that same space, and predicted to belong to a

category based on which side of the gap they fall on[49–51]. In

doing so, the algorithm constructs a hyperplane or a set of

hyperplane in an infinite-dimensional space, which can be used for

classification, regression, or other tasks. Intuitively, a good

separation is achieved by the hyperplane that has the largest

distance to the nearest training data points of any class[49–51].

This gap is called functional margin, and in general the larger the

margin the lower the generalisation error of the classifier[49–51].

Whereas the original problem may be stated in a finite

dimensional space, it often happens that the sets to discriminate

are not linearly separable in that space. For this reason, it was

proposed that the original finite-dimensional space be mapped

into a much higher-dimensional space, presumably making the

separation easier in that space[49–51]. To keep the computational

load reasonable, the mapping is designed to ensure that dot

products may be computed easily in terms of the variables in the

original space, by defining them in terms of a kernel function

K(x,y) selected to suit the problem. The hyperplanes in the higher

dimensional space are defined as the set of points whose inner

product with a vector in that space is constant[49–51].

Our Study
We aimed to design a prognostic model for the endovascular

intervention in acute ischemic stroke using machine learning

algorithms. We compared and assessed these two advanced

methods in terms of their capability in predicting outcome.

We decided to separate anterior and posterior circulation

strokes and model them independently to avoid potential

inadvertent underlying inhomogeneities.

Methods

This is a retrospective study on a prospectively collected completely de-

identified clinical database, which received approval from the ethics committee

at our institution, and our review board has waived the need for consent

(HREC: QA2011100). The technical details is provided below to facilitate

reproducibility for other datasets if available.

Demographics and clinical details of 107 patients who presented

with acute anterior or posterior circulation stroke to our institution

who underwent endovascular treatment, over a period of

approximately five years, were extracted from a prospectively

maintained stroke database (Table 1).

Patients were all screened for relevant comorbidities at the time

of presentation, including: diabetes mellitus, hypertension, hyper-

cholesterolaemia, atrial fibrillation, history of ischemic heart

disease and previous cerebral stroke or transient ischaemic attack.

Neurological examination was performed for all of the patient

prior to any intervention and the baseline National Institute of

Health Stroke Scores were recorded in the database.

From the initial diagnostic angiogram occluded vessels were

identified (Table 2). In the case of multiple sequential occlusions,

the proximal vessel was used as a data point, and depending on the

extent and segments involved, the artery was categorised as first,

second and third occlusion.

Some of the patients also had IV-tPA prior to endovascular

intervention. Different endovascular recanalisation devices were

used, including Solitaire stent retriever, MERCI and Penumbra

devices.

In addition to mechanical thrombectomy, some cases also

received intraarterial chemical thrombolytic agents; and if present,

associated or post-recanalisation hemodynamically significant

stenoses were also treated with angioplasty or stent insertion.

After treatment of the occluded artery(s), recanalisation success

was scaled using Thrombolysis in Cerebral Infarction (TICI)

Score, by the blinded consensus of the treating neurointervention-

alists. TICI score in conjunction with the number of attempts for

recanalisation, procedure duration, and time of onset to recana-

lisation, as well as patient general anesthesia status, were all

recorded into the database.

All procedural or delayed post-procedural complications were

also recorded, including: arterial perforation and puncture site

haematoma or pseudoaneurysm.

Post-procedure CT scans of the brain at 24–36 h were all

assessed by neuroradiologist and neurointerventionists assessing

for the presence of acute stroke and intracranial haemorrhage.

Intracranial haemorrhagic transformations, were divided into

clinically silent or symptomatic, and then classified into different

categories (Table 3).

Procedural outcome was monitored with modified Rankin

Score, measured 90 days after onset. A final dichotomised good

Figure 2. Relative importance of the model’s variables in
prediction of mRS at 90 days (outcome).
doi:10.1371/journal.pone.0088225.g002

Figure 3. Comparison between predicted and observed
outcome.
doi:10.1371/journal.pone.0088225.g003
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and bad outcome was also recorded for the patients as per mRS,

with less than or equal 2 considered as good.

First, using SPSSH (IBM Corporation), a Standard Linear

Model was designed, using Forward-Stepwise as the model

selection method, and Information Criterion (AICC) as the

criteria for entry. Potential predictors of the mRS as the outcome

measure was identified and a prediction model was formed and

compared with the observed outcome for validation.

Supervised machine learning was then attempted. Initially using

MATLABH (MathWorks Inc.) and its Neural Network Toolbox, a

two-layer Feed-Forward network with sigmoid hidden and linear

output neurons, was designed.

Figure 4. Network performance, for seven scale (left/top) and dichotomised mRS models (right/bottom). Legend: Blue-Training, Green-
Validation, Red-Test, Dashed Lines-Best, Vertical Axis-MSE, Horizontal Axis-Epochs.
doi:10.1371/journal.pone.0088225.g004

Table 5. 90 days mRS.

Modified Rankin Score (mRS)

Mean 2.57

Median 2

Mode 0

Std. Deviation 2.21

Minimum 0

Maximum 6

doi:10.1371/journal.pone.0088225.t005
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The data was then randomly divided into 70, 15 and 15

percents subsets and the network was trained using Levenberg-

Marquardt algorithm, validated and tested using the modified

Rankin score as outcome; with the performance of the model

monitored using Mean Squared Error. Prediction errors were also

depicted on a histogram.

In addition, for comparison, the network was also trained using

the dichotomised mRS, .2 or #2, to evaluate a binary classifier

for potential good and poor outcomes.

For the seven scale mRS network, linear regressions were also

performed between the observed and estimated outcome, over the

training, validation and test datasets independently using Theil–

Sen estimator.

However, with the dichotomised model being a binary classifier,

Receiver Operating Characteristic curves were calculated to

illustrate the performance of the system over each dataset as its

discrimination threshold is varied. In addition, confusion matrices

or contingency tables were also calculated, allowing better

representation of the performance of the network.

The designed network and its calculated weighting matrix was

then saved to be imported into the Simulink Toolbox of

MATLABH (MathWorks Inc.) for outcome prediction of the

future data.

Subsequently to assess the capabilities of other supervised

machine learning systems, the dataset with scaled and dichot-

omised mRS were imported into the data-mining program,

RapidminerH (Rapid-I Inc.). The filtered data was then given to

the input training port of a nested cross-validation operand, with

the relative number of validation of 10% and a shuffled sampling

type, as well as ‘‘Leave One Out’’.

The cross-validation operand consisted of two components,

training and testing. The testing component contained a Support

Vector Machine, with ANOVA Kernel, which is defined by raised

to power ‘‘d’’ of summation of ‘‘exp(2g (x–y))’’ where ‘‘g’’ is

gamma and ‘‘d’’ is the degree. ‘‘g’’ and ‘‘d’’ were set to be 1 and 2

in our machine.

The size of the cache for kernel evaluations was set to be 200

megabytes. The complexity constant (‘‘C’’) which sets the

tolerance for misclassification, was set to be zero. The convergence

Figure 5. Error Histogram, for seven scale (left/top) and dichotomised mRS models (right/bottom). Legend: Blue-Training, Green-
Validation, Red-Test, Orange Line-Zero Error, Vertical Axis-Instances, Horizontal Axis-Error.
doi:10.1371/journal.pone.0088225.g005
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epsilon, which is an optimizer parameter specifying the iterations

stop point, was set to 0.001, with maximum iteration set to be

100000. In our machine, the loss function positive and negative

complexity constant was set to 1.0. The insensitivity constant,

epsilon as well as the epsilon for positive and negative deviations,

were all set to be zero.

The model calculated in this machine is passed onto the testing

component of the parent x-validation operand and then applied

on to the test dataset.

The performance of the machine was monitored by a classic

performance monitor operand and was reported as the mean

squared error as well as its root. In addition, accuracy of the

machine was also assessed by aggregation of a hidden confusion

matrix constructed by evaluating different models on different test

sets.

The designed model is finally incorporated into an apply

operand ready for the prediction of the outcome of the future

patients.

Results

Average of the patients’ baseline stroke score was 17.7 (SD:

67.9).

44 of our patients also had IV-tPA prior to endovascular

intervention. The remainder of the patients did not receive tPA

due to a variety of contraindications.

81% of the procedures were performed under generalized

anesthesia, and our three neurointerventionalists (BY, PJM and

RJD) performed 24, 48, 35 cases respectively, as the primary

operator.

Solitaire stent retriever was used in the majority of the cases 73,

MERCI and Penumbra devices were used in 17 and 2 cases

respectively. In some cases instrumentation was repeated up to 6

times to improve recanalisation.

2 cases received urokinase, 4 tissue plasmin activator, and 4

plasmin, as adjunct intraarterial chemical thrombolytic agents.

Overall recanalisation has been very successful with TICI 2b or

3 demonstrated on the final angiographic run in approximately

50% of cases. Significant associated and post-recanalisation

arterial stenosis was also noted in some cases, with 23 patients

requiring angioplasty, with 10 patients eventually stented.

On average procedures have taken 82.3 minutes (SD: 639.0).

The time of onset to recanalisation was on average 339.7 minutes

(SD: 691.8).

Immediate procedural complications including arterial perfora-

tion or puncture site haematoma and pseudoaneurysm were

uncommon, only seen in 1 and 2 cases respectively.

31 patients were diagnosed with intracranial haemorrhage on

the delayed post procedural CT, with a wide spectrum of locations

and severities, from subarachnoid hemorrhage to asymptomatic or

large intra-parenchymal bleedings (Table 4).

The average of mRS at 90 days was 2.57 (SD: 62.21), with

median of 2 and mode of 0 (Figure 1 & Table 5).

Figure 6. Linear fit between the estimated and observed outcome.
doi:10.1371/journal.pone.0088225.g006
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Standard Modelling
The information criterion and accuracy of the proposed linear

model were calculated as 119.67 and 43.5% respectively (Figure 2).

The most influential predictor was baseline NIHSS, with relative

predictive value of 0.4 (Figure 3).

Artificial Neural Network
The best validation performance was 6.94 and 2.98, at epoch 6

and 5 for seven scale and dichotomised mRS models respectively

(Figure 4).

Gradient of 1.30561027 and 3.03861021 were calculated at

epoch 12 and 11 for seven scale and dichotomised mRS models

respectively.

Error histograms were calculated as the difference between the

target and output which are equivalent of observed and estimated

outcome, from the training, test and validation datasets, for seven

scale and dichotomised mRS models (Figure 5).

Using Theil–Sen estimator, the root of the Coefficient of

Determination calculated as 0.95, 0.47 and 0.32 for each subset

respectively. However, overall network estimated and observed

outcome for the whole dataset, demonstrate a relatively good

linear correlation with an R of 0.79 in a linear regression (Figure 6).

Overall, favourable ROC curves; however, the test ROC curve

is relatively poor, with the estimated area under curve (AUC) of

0.6.

The contingency table, with each column representing the

instances of the predicted outcome and each row demonstrating

the observed outcome, confirming acceptable model sensitivity

and specify (Figure 7).

Support Vector Machine
For the scaled mRS outcome, our support vector machine, had

a good performance with a mean squared error of 4.489 (SD:

62.438) and the estimated root at 2.064 (SD: 60.480). Also, the

system accuracy was assessed by ‘‘mikro’’, calculated as 2.128.

On the other hand, system’s MSE and ‘‘mikro’’ were calculated

as 0.262 (SD: 60.068), and 0.514, respectively in prediction of the

dichotomised outcome, with the precision of 80% in prediction of

the poor outcome and an overall precision of 87% and model

accuracy of approximately 70% (Table 6).

Best performance of the scaled mRS model was in prediction of

the patients’ prognosis with mRS of 3, with a class precision of

Figure 7. Over all ROC curve and Confusion Matrix for the dichotomised outcome network.
doi:10.1371/journal.pone.0088225.g007

Table 6. Model precision of support vector machine in
prediction of the dichotomised intervention outcome.

Outcome True Poor True Good Class Precision

Predicted Poor 27 7 79.41%

Predicted Good 26 47 64.38%

Class Recall 50.94% 87.04% 87.04%

doi:10.1371/journal.pone.0088225.t006
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100% and the least precise prediction was for those patient with

mRS of 6, which was only approximately 25%.

Estimated machine’s performance was improved even further

when the cross validation operand set to work with ‘‘Leave Out

One’’ sampling rather than ‘‘Shuffled’’, with a MSE of 4.347 (SD:

64.425) and rMSE of 1.809 (SD: 61.037) for the scaled mRS

outcome, and 0.286 (SD: 60.367) and rMSE of 0.441 (SD:

60.302) for the for the dichotomised model.

The ‘‘mikro’’ indicator of accuracy, was calculated as 2.085 and

0.535, with the ‘‘Leave Out One’’ sampling for the scaled mRS

and dichotomised outcome predictor machines, respectively.

Conclusions

We showed, despite a small dataset, that there was promising

accuracy, approaching 70%, of predicting outcome. There is the

likely potential of further improving prediction by the incorpora-

tion of larger multicenter datasets.

There has been recent interest in adopting machine learning

techniques in the prediction of the outcome of stroke patients. A

recent study proposed spatial regularisation of the diffusion-

weighted images acquired at the acute stage using support vector

machine with a Graph encoding the voxels’ proximity, and

concluded significant accuracy in prediction of the motor outcome

at 90 days, showing that poor motor outcome is associated with

the changes in the corticospinal bundle and white matter tracts

originating from the premotor cortex [52].

Another study has proposed use of machine learning in

individualised stroke treatment decision making by accurate

identification of the extent of salvageable tissue on MRI in rats,

based on measurement of a perfusion-diffusion mismatch and

calculation of infarction probability. This study has compared

generalized linear model (GLM), generalized additive model,

support vector machine, adaptive boosting, and random forest;

proposing that assessment of the heterogeneity of infarction

probability with imaging based algorithms enables estimation of

the extent of potentially salvageable tissue after acute ischemic

stroke [53].

Conversely, attempts to prove the effectiveness of the invasive

stroke treatments have shown inconsistent results. However, more

than ever before, endovascular treatments of acute ischemic stroke

are opening their way into the mainstream management of the

acute stroke, in particular for those patient with contraindication

for IV thrombolysis or large vessel occlusions[10,54–58].

To our knowledge there is no comprehensive multifactorial

study in humans, attempting to apply machine learning algorithms

in acute ischemic stroke outcome prediction, after invasive

endovascular management. Undoubtedly numerous factors, in-

cluding extensive clinical features, can influence the final stroke

outcome with varying significance and mechanisms, making

conventional modelling challenging and perhaps inaccurate.

Machine learning models however, being, relatively indepen-

dent of the unknown potential underlying interactions between

these factors, are probably able to simulate the eventual result of

such a complex system.

Such models can be of extreme use not only for prognostication

and in predicting the outcome under different circumstances, but

also in near future as an assistant in clinical decision making in

particular identifying those patients who may benefit from a

variety of possible treatment options, including more aggressive

management, like endovascular interventions.

Limitations
Parallel to the all abovementioned advantages of the machine

learning algorithms, there are important underlying assumptions

and limitations that should not be forgotten. These models

although can be accurate, and perhaps useful in answering the

Figure 8. Ultimate goal is to design a system capable of proposing a dichotomised outcome for each patient with and without
endovascular intervention.
doi:10.1371/journal.pone.0088225.g008
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primary question, but more or less behave as a ‘‘black box’’

requiring large training datasets to improve their performance,

with the true underlying relationships between influential factors

remaining undiscovered to the user [48,49,51].

This inherent need for large training datasets may affect the

accuracy of the machines in studies, like the current study, when

only representative training data is used. In addition, with no clear

understanding of the true predictors, an overcorrected conserva-

tive design may lead to the models being over-fitted by irrelevant

demographics or clinical factors, thus increasing the random error

and covering the desired signal with noise, a phenomenon which

may explain the poor ROC curve for the test group, in this study.

To avoid this, techniques like cross-validation, regularization,

pruning or Bayesian model comparison, can be used to indicate

the tipping point when further training no longer results in a better

performance; or alternatively decision tree learning methods can

be employed, providing more interpretable models [48,49,51].

Future Work
All of the underlying methodological and computational

complexities aside, our long term goal is to design an easy to use

online system, allowing for relative prediction of the clinical

outcome based on the demographics and clinical findings, which

can be used as a guide in making appropriate therapeutic decisions

(Figure 8).

Such a system has the potential for fine adjustment from the

continuous training provided via handling large-scale national or

international multi-institutional users, with the advantage of easily

incorporating newly available data to improve prediction perfor-

mance.
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