
Machine Learning for Performance Prediction of Spark Cloud Applications

A. Maros, F. Murai, A. P. Couto da Silva, J. M. Almeida, M. Lattuada, E. Gianniti,

M. Hosseini, D. Ardagna

A. Maros, F. Murai, A. P. Couto da Silva, J. M. Almeida, M. Lattuada, E. Gianniti, M. Hosseini, and
D. Ardagna. Machine learning for performance prediction of spark cloud applications. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD), pages 99–106. IEEE, July 2019

The final publication is available via http://dx.doi.org/10.1109/CLOUD.2019.00028

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or list, or
reuse of any copyrighted component of this work in other works

Machine Learning for Performance Prediction of Spark Cloud Applications

Alexandre Maros, Fabricio Murai,

Ana Paula Couto da Silva, Jussara M. Almeida

Department of Computer Science

Universidade Federal de Minas Gerais, Brazil

{alexandremaros,murai,

ana.coutosilva,jussara}@dcc.ufmg.br

Marco Lattuada, Eugenio Gianniti,

Marjan Hosseini, Danilo Ardagna

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, Italy

{marco.lattuada,eugenio.gianniti,

marjan.hosseini,danilo.ardagna}@polimi.it

Abstract—Big data applications and analytics are employed
in many sectors for a variety of goals: improving customers
satisfaction, predicting market behavior or improving processes
in public health. These applications consist of complex software
stacks that are often run on cloud systems. Predicting execution
times is important for estimating the cost of cloud services and
for effectively managing the underlying resources at runtime.
Machine Learning (ML), providing black box solutions to
model the relationship between application performance and
system configuration without requiring in-detail knowledge of
the system, has become a popular way of predicting the perfor-
mance of big data applications. We investigate the cost-benefits
of using supervised ML models for predicting the performance
of applications on Spark, one of today’s most widely used
frameworks for big data analysis. We compare our approach
with Ernest (an ML-based technique proposed in the literature
by the Spark inventors) on a range of scenarios, application
workloads, and cloud system configurations. Our experiments
show that Ernest can accurately estimate the performance of
very regular applications, but it fails when applications exhibit
more irregular patterns and/or when extrapolating on bigger
data set sizes. Results show that our models match or exceed
Ernest’s performance, sometimes enabling us to reduce the
prediction error from 126-187% to only 5-19%.

Keywords-Performance prediction; Spark; Machine learning

I. INTRODUCTION

Big data applications have become widespread in various

domains, such as natural language processing [1], public

health [2], and social media analytics [3]. These applications

are characterized by very heterogeneous and irregular data

accesses and computation patterns, often built on the top

of massively parallel algorithms. At the same time, cloud

computing platforms, such as Amazon EC2, Google Cloud,

and Microsoft Azure1, have also grown substantially in

popularity in recent years. These platforms offer virtualized

environments, which allow users to dynamically adjust the

allocated resources to match the application’s current needs.

Therefore, they offer a suitable execution environment for

the often highly distributed and variable processing require-

ments of big data applications.

1http://aws.amazon.com, http://cloud.google.com, and
http://azure.microsoft.com, respectively.

For all these reasons, users and enterprises started adopt-

ing cloud services to run their applications as a more cost-

effective alternative to the traditional local server architec-

ture [4]. This type of infrastructure often relies on distributed

programming platforms, such as Apache Spark. Spark is

a fast and general engine for large-scale data processing

whose adoption has steadily increased and which probably

will be the reference big data engine for the next five to

ten years2. Spark facilitates the implementation of a variety

of applications, from relational data processing (e.g., SQL

queries) to machine learning algorithms 3.

Cloud computing services often have an extensive list

of possible configurations that may be allocated for an

application. The user should choose the type of instances

(processing nodes), the total number of cores, among oth-

ers. These choices may drastically affect the application’s

execution time and thus should be carefully planned. The

performance prediction of a given application at a target

configuration becomes then a key task to support the proper

planning and management of the available resources.

There is a great body of work on performance prediction,

most relying on traditional techniques such as analytical

models [5, 6, 7, 8] and simulation [9, 10]. Some studies have

focused specifically on modeling the performance of parallel

applications [11], more recently addressing also specific

characteristics of cloud environments [8]. Yet, these tech-

niques require detailed knowledge of the system, which is

not always available, and often rely on simplifying assump-

tions at the cost of losing accuracy. Thus, they are either

not capable of capturing the intricacies and complexities of

cloud-based big data applications or are too complex for

practical use (i.e., cannot support real-time prediction).

In contrast, some recent studies have exploited supervised

machine learning (ML) models for performance prediction

of large systems [12, 13, 14, 15]. These techniques are

often referred to as black box solutions because they try to

learn from previously collected data and make predictions

without the knowledge of the system internals. Supervised

2http://fortune.com/2015/09/25/apache-spark-survey
3https://databricks.com/blog/2016/09/27/spark-survey-2016-

released.html

ML models require a training phase in which they use exper-

imental data coming from different configurations to learn a

prediction function. The experiments to collect these training

data may be time-consuming. However, model training takes

place offline, and once trained, the prediction of the learned

ML model is fast and usually very accurate.

We here aim at investigating the cost-benefits of using su-

pervised ML models in the performance prediction of Spark

applications. Specifically, given a set of features extracted

from a target Spark application (e.g., size of the input data)

and from a platform configuration (e.g., number of cores),

we want to predict with reasonable accuracy the application

execution time when running on the target platform. Our

goal is to learn a prediction model based on data (i.e., sets

of features and execution times) from prior executions of

the same application under various configurations.

The aforementioned problem can be framed as a regres-

sion task. The ML literature includes several algorithms for

solving regression problems [16]. To our knowledge, the

state-of-the-art in using ML algorithms to predict the perfor-

mance of Spark applications is the work by Venkataraman et

al. [12]. The proposed solution, referred to as Ernest model,

exploits only four features which are functions of the dataset

size and of the number of cores and relies on non-negative

least squares (NNLS) regression.

In other words, we address the following question: To

which extent can we offer more accurate predictions by

exploiting other regression algorithms and/or other features?

To that end, we consider four classic ML techniques, namely

linear regression (LR), neural network (NN), decision tree

(DT), and random forest (RF) [16], and build two different

approaches. Our first approach, referred to as black box,

relies only on features that capture knowledge available

prior to the application execution, similarly to the Ernest

model (but, as mentioned, using different ML methods). Our

second approach, referred to as gray box, includes a richer

set of features capturing more details of the application

execution (e.g., number of tasks running within a single

stage, their average execution time, etc.). We evaluate both

approaches, comparing them against the Ernest model, on

different scenarios, covering different application workloads

and platform configurations, and also investigating the im-

pact of the size of the training set on prediction accuracy.

Our experimental results show that the Ernest model is

able to accurately estimate the performance of very regular

applications (errors are in the range 1.5-10.5%), but its

accuracy falls short when the application presents more

irregular behavior or dataset extrapolation capabilities are

required (error up to 187%). In contrast, our approach is

able to address these scenarios by providing highly accurate

predictions (the largest error is less than 20%). Moreover,

our experiments reveal that there is no clear winner among

the four ML techniques tested, and different techniques have

to be explored to select the best one for the scenario.

II. RELATED WORK

The performance analysis and prediction of big data

applications running on the cloud can be tackled from

different perspectives. The most traditional ones rely on

analytical models [5, 6, 7, 8] and simulation [9, 10]. Yet,

recent studies have employed supervised machine learning

models for performance prediction [12, 13, 14, 15], which

is the focus of this paper. One such example is a regression

model proposed by the Spark creators [12]. The model uses

a reduced set of features, which are functions of the data set

size and of the number of cores. The estimation of the model

parameters was based on non-negative least squares. The

black-box prediction models we apply in our work exploit

variants of the features used by the Ernest model. Yet, in-

stead of non-negative least squares we use the more general

ℓ1-regularized least squares for parameter estimation, and

we also consider a set of alternative regression techniques.

Mustafa et al. [13] proposed a prediction platform for

Spark SQL queries and machine learning applications,

which, similarly to our gray box models, also exploits

features related to each stage of the Spark application.

This implies the existence of previous knowledge of the

application profile. However, some of these features (e.g.,

numbers of nonShuffledRead, shuffledReadRecords and in-

putPartitions4) are at a lower level compared to ours, and

thus require a finer-grained analysis of the Spark log to be

computed. The authors reported prediction errors of 10% for

SQL queries and about 25% for machine learning jobs. As

we will show, our approach achieves better accuracy, and our

experimental design considers more recent Spark workloads,

including deep learning use cases.

CherryPick [15] is a system that leverages Bayesian

optimization to find near-optimal cloud configurations that

minimize cloud usage costs for MapReduce and Spark appli-

cations. Unlike other studies, the goal was not to accurately

predict applications performance, but rather design a model

that is accurate enough to distinguish the best configuration

from the rest. Similar ideas were also exploited in the design

of Hemingway [14], which embeds the Ernest model and

is specialized in the identification of the optimal cluster

configuration for Spark MLlib based applications.

In a related, but different direction, Nguyen et al. [17]

proposed a strategy to generate training data to fit a perfor-

mance model. The model is meant to be used for predicting

which Spark settings yield the smallest application execution

time (i.e., capacity planning). In contrast, we here compare

alternative ML models and feature sets in the task of

predicting the performance of an application running on

a given configuration. Yet, given the significantly higher

accuracy we achieve with respect to the state of art method,

we argue that the proposed solution can be beneficial for

addressing the capacity planning problem as well [18].

4https://spark.apache.org/docs/latest/rdd-programming-guide.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html

III. MACHINE LEARNING MODELS

In this section, we present the proposed regression models

as well as the Ernest [12] model, here taken as reference.

Each model learns a function that estimates the execution

time of an application starting from its characteristics and

from infrastructure settings. In this work, we consider three

classes of applications: SQL based workloads, traditional

machine learning algorithms, and SparkDL (Deep Learning

pipelines for Spark). SparkDL relies also on TensorFlow [19]

as an external library for deep network models evaluation.

Details of the applications will be presented in Section IV-A.

We here aim at designing models that produce accurate

estimates of execution time. In the future, we plan to use

these estimates to drive decisions on the best size of a cluster

before it is deployed, i.e., for determining the minimum

amount of resources that must be allocated to meet deadline

constraints. Next, we present the regression techniques and

the features used by each considered model.

A. Overview of Model Techniques

The reference model, Ernest [12], is based on linear

regression, with coefficients estimated through non-negative

least squares (NNLS). This is a variant of the least squares

algorithm with the added restriction that coefficients must

be non-negative. This restriction ensures that each term

provides a non-negative contribution to the overall execution

time, preventing estimation of negative execution times.

As alternative to Ernest, we consider four classic ML

models for regression: ℓ1-regularized linear regression

(LASSO)5, neural network, decision tree, and random forest.

Linear regression (LR) was chosen for being easily inter-

pretable. Decision tree (DT) and random forest (RF), in turn,

capture non-linear relationships in the data besides allowing

interpretability as well. Lastly, neural networks (NN) can

capture non-trivial interactions among the input features

albeit less interpretable. Investigating different models is

important to analyzing the performance differences across

applications and identifying the solution that is best for

each scenario. We refer to [20] for a description of the

aforementioned regression techniques.

B. Sets of Features

Table I shows the features used by the analyzed models. In

addition to those exploited by the Ernest model, we consider

two feature sets which differ by the required level of detail of

the application execution. Each feature set is used as input to

each of the four regression techniques presented in Section

III-A (LR, NN, DT, RF), thus producing eight models. We

distinguish these models by the feature set used, referring

to them as black box and gray box models.

The Ernest and the black box models use only features

which are based on the number of cores and on the input

5The ℓ1-regularized least squares method does not require non-negative
parameters, being thus more general than the NNLS method used in Ernest.

data size, which are available a priori (before execution

starts). The black box models use variants of the features

exploited by Ernest. The data size and the number of

cores are respectively the most basic information about

application and infrastructure. The logarithm of the number

of cores encodes the cost of reducing operations in parallel

frameworks [21]. Lastly, the ratio of data size to the number

of core captures the time spent in parallel processing.

The gray box models leverage features available a priori

and features only available a posteriori. The latter are asso-

ciated with the Spark DAG (directed acyclic graph), which

represents the sequence of stages executed by Spark when

running an application6. Features associated with the DAG

can be extracted from the application logs after execution

completion, and thus may be used to predict the application

execution time. In general, since the relationship between

these metrics and running time only holds for the same DAG,

the DAG structure of an application must be fixed across

different numbers of cores to be able to build a model to

predict its performance.

The information provided by the DAG was encoded as

features as follows. For each stage of the DAG, we extracted

the number of tasks, the maximum and the average execution

time of the tasks, the maximum and the average shuffle time,

the maximum and the average number of bytes transmitted

among the stages. Such information can be easily extracted

by parsing Spark logs of previous executions. Moreover, for

SparkDL, not only the number of cores assigned to Spark

executors but also the inverse of the total number of cores

available in the cluster are included as features. It is worth

noting that our SparkDL runs were performed without the

usage of GPUs to accelerate TensorFlow computation since

the embedded deep network models are used for inference

and are already trained. In the scenario we considered, the

performance speedup achieved by GPUs would not justify

the additional cost of virtual machines instances.

We emphasize that while full information for all data

points in the training set was used to learn the gray box

models, we use only the information available before the

runs to evaluate these models on the test set. Specifically,

DAG-related features in the test set were replaced by their

respective averages from the training data. The rationale is

that when using an ML model for prediction, we cannot

use these features’ actual values to estimate completion time

since they are only available a posteriori.

IV. EXPERIMENTAL SETUP

In this section, we first describe the applications used

as workloads in our experiments (Section IV-A) and tar-

get platforms on which these applications were executed

(Section IV-B). We then discuss the splitting of data into

6https://data-flair.training/blogs/dag-in-apache-spark/

https://data-flair.training/blogs/dag-in-apache-spark/

Table I: Sets of features used by different models analyzed.

Model Features

Ernest [12]

- Ratio of data size to number of cores

- Log of number of cores

- Square root of ratio of data size to number of cores

- Ratio of squared data size to number of cores

Black box models

- Ratio of data size to number of cores

- Log of number of cores

- Data size

- Number of cores

- Number of TensorFlow cores (SparkDL only)

Gray box models

All black box models features and:

- Number of tasks

- Max/avg time over tasks

- Max/avg shuffle time

- Max/avg number of bytes transmitted between stages

- Inverse of number of TensorFlow cores (SparkDL only)

training and test sets (Section IV-C), model parameteriza-

tion (Section IV-D) and the metrics used to evaluate them

(Section IV-E).

A. Workloads

To evaluate the accuracy of the performance prediction

models, we consider three applications, which are represen-

tatives of different types of workloads: a query (Query 26

from the TPC-DS industry benchmark7), an ML benchmark

(K-means from Sparkbench8), and an ad-hoc benchmark for

image processing we developed based on SparkDL library
9. We ran each application in various scenarios, as shown

below, to build our training and test sets.

Query 26 is an interactive query, representative of SQL-

like workloads, which includes a small number of tasks and

stages (i.e., 10). It was run for various input data set sizes:

250 GB, 750 GB, and 1000 GB.

The K-means clustering algorithm is the core of many ML

applications. It is an unsupervised learning technique that is

used on its own but also to perform preliminary analyses in

some classification tasks. As other ML algorithms, K-means

is an iterative workload, usually characterized by larger

execution time variability. It was run for Spark dataframes

with 100 features, with values uniformly distributed in the

[0,1] range and the number of rows varying in 5, 10, 15 and

20 million. We found that the DAG was the same for all the

data sizes, containing exactly 15 stages.

Lastly, the SparkDL based workload is an example of a

high-level deep learning application on Spark. It is a binary

image classification using InceptionV3 as featurizer and

linear SVM as classifier. The number of images in the input

varied in 1000, 1500 and 2500 while the number of stages

is 8. As anticipated in Section III-B, the SparkDL benchmark

is characterized by additional features and, hence, is the

most complex of the three considered workloads. SparkDL

heavily relies on TensorFlow which affects the application

completion times. When SparkDL runs, the number of

7http://www.tpc.org/tpcds
8https://codait.github.io/spark-bench
9https://github.com/databricks/spark-deep-learning.

cores allocated to Spark workers can be limited, but spark-

submit parameters cannot control the number of cores for

TensorFlow, which uses all the cores available in the cluster.

For this reason, also the TensorFlow number of cores (which

corresponds to the number of cores available in the cluster)

was included in the feature set of both black and gray box

models while its inverse is used in the gray box models only.

B. Hosting Platforms

We ran Spark applications on two platforms, Microsoft

Azure and a private IBM Power8 cluster, which are repre-

sentatives of different computing environments. As a public

cloud, Microsoft Azure is potentially affected by resource

contention. Thus, application executions might experience

more variability. In contrast, IBM Power8 was fully dedi-

cated to run our benchmarks without any other concurrent

activity (thus with no resource contention).

Query 26 and SparkDL were executed on Microsoft Azure

using the HDInsight service with workers based on 6 D13v2

virtual machines (VMs), each with 8 CPU cores and 56

GB of memory running Spark 2.2.0 on Linux. SparkDL

application requires, in addition, that TensorFlow and Keras

are available on the Spark cluster: versions 1.4.0 and 2.1.5

were used, respectively. The executors memory was set to 10

GB. K-means was run on a Power8 deployment that includes

Hortonworks distribution 2.6, same as Microsoft Azure, with

4 VMs, each with 12 cores and 58 GB of RAM, for a

total of 48 CPU cores available for Spark workers, plus a

master node with 4 cores and 48 GB of RAM. The executors

memory, in this case, was set to 4GB.

For Query 26 and K-means, we ran experiments varying

the number of Spark cores between 6 and 44 cores (step

of 2), repeating the execution with the same configuration 6

times. For SparkDL, we varied the number of cores between

2 and 48 (step of 2), repeating each experiment with the

same configuration (i.e., the number of images and cores) 5

times. By considering different workloads, hosting platforms

and setup configurations, we build a rich set of scenarios to

test our prediction models.

C. Training and Test Sets

To learn and evaluate the ML models, data coming from

the experiments are split into training and test sets. The

former is used to learn the model, whereas the latter is used

to evaluate its accuracy. Since hyper-parameters tuning is

performed for each ML technique (see Section IV-D), a sub-

set of the training data is used for cross-validation to reduce

over-fitting. For each workload, we evaluate the accuracy

of the prediction models in terms of core interpolation and

data size extrapolation capabilities, acknowledging the fact

that the data available for learning the models (training set)

might have been obtained via experiments on setups different

from the one for which the prediction is needed (test set).

Figure 1 and Table II summarize the scenarios considered.

http://www.tpc.org/tpcds
https://codait.github.io/spark-bench
https://github.com/databricks/spark-deep-learning.

4 8 12 16 20 24 28 32 36 40 44

Number of cores

C1
C2
C3
C4
C5
C6

Train/CV Cores Test Cores

(a) Query 26

4 8 12 16 20 24 28 32 36 40 44 48

Number of cores

C1
C2
C3
C4
C5
C6
C7

Train/CV Cores Test Cores

(b) K-means

0 4 8 12 16 20 24 28 32 36 40 44 48

Number of cores

C1
C2
C3

Train/CV Cores Test Cores

(c) SparkDL

Figure 1: Core interpolation scenario: train-test split in each case for Query 26, K-means and SparkDL.

In the core interpolation scenarios, we consider runs with

the same dataset size (reported in Table II) and verify the

capabilities of the trained models of interpolating the number

of cores. Figure 1 shows the various scenarios (y-axis) of

core interpolation built for each workload based on different

splits of the data into training and test sets: in each row

(case number), blue boxes represent configurations for which

the data were used as part of the training set (and cross-

validation) and red crosses indicate configurations used as

part of the test set10. We designed scenarios such that larger

case numbers are associated with harder predictions, as

their training data include samples from a smaller range of

experiments w.r.t. the number of cores.

For example, for both Query 26 and K-means, scenario

C1 is built by alternating configurations in the sequence of

the number of cores (x-axis) as training and test data. For

Query 26, data from experiments with the number of cores

equal to 6, 10, . . . , 40 and 44 are put in the training data

(blue boxes) while the remaining samples are included in

the test set (red cross). We gradually incremented the gap

between the number of cores of consecutive configurations

included in the training data. We varied the gap in cases 4,

5, 6, and 7 to assess its impact on model accuracy. Since

there is a large difference in the application completion time

in the runs where the number of cores is small, we always

included the data for the smallest number of cores in the

training set. For SparkDL, we proceeded along the same

lines but limiting the number of cases to three.

In the data size extrapolation scenarios, we put the runs

with the largest dataset size (spanning across all available

cores configurations) in the test set while the runs with the

other dataset sizes in the training data, as shown in the two

rightmost columns of Table II. Moreover, training sets are

further reduced by removing runs according to the same

schema presented for core interpolation. By doing so, in

these experiments we evaluate at the same time the core

interpolation and the data size extrapolation capabilities. In

other words, these experiments differ from the core interpo-

10Since the experiments with Query 26 on 20 cores presented some
anomalies, we chose to remove them from the training and testing data
(see Figure 1a).

Table II: Workload data sizes in different scenarios

Workload
Core Interpolation Data Extrapolation

Training Test Training Test

Query 26 [GB] 750 750 250, 750 1000

K-means [Rows] 15 15 5, 10, 15 20

SparkDL [Images] 1500 1500 1000, 1500 2000

lation scenarios because: (i) the dataset sizes in training and

test sets are no longer the same, (ii) in the test set we also

include observations where the number of cores is the same

as in some observations of the training set (but again with

different dataset sizes).

D. Hyper-parameter Tuning

An inhouse Python library was developed on the top

of PyTorch 0.4.011 (for neural network training) and of

scikit-learn 0.19.112 (for all the other techniques) to explore

different values of hyper-parameters as shown in Table III.

For every algorithm, we used the Mean Squared Error (MSE)

to select the values that led to the best model. The hyper-

parameters more frequently used are reported in bold in the

table. For black box models, this evaluation was done via 5-

fold cross-validation, while gray box models, which require

much longer training times due to the larger feature set, were

parameterized based on hold-out cross-validation.

To prevent over-fitting, a regularization term is added to

LR (Linear Regression) and NN (Neural Network). For LR,

LASSO was chosen providing ℓ1-norm. The use of intercept

and the penalty constant α are the set of available hyper-

parameters and are shown in Table III

For the NN algorithm, the ℓ2 penalty Frobenius norm

[22] was used. Also rectified linear unit function ReLU was

selected in general as the best activation function. In all

cases, the training data size was not large; therefore, we set

the number of minibatches to 1 in order to consume the

whole input at once. The main hyper-parameter considered

to evaluate the performance was the optimizer. Adam and

Stochastic Gradient Descent (SGD) were evaluated as possi-

ble candidates. The former was selected as our experiments

showed that it converges much faster than the latter. The

number of epochs was set to 10,000.

11https://pytorch.org
12https://scikit-learn.org

Table III: Hyper-parameters for ML techniques

Linear Regression (LR)

Hyper-Parameter Values

Penalty α 0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0

Fit intercept True, False

Neural Network (NN)

Hyper-Parameter Values

Layers n 1, 2, 3

Perceptrons/Layer all combinations in [3, 4, 5]n

Activation Functions sigmoid, ReLU, tanh

ℓ2 Penalty 0.0001, 0.001, 0.01, 0.05, 0.1

Learning Rate 0.001, 0.01, 0.1

β1 0.7, 0.8, 0.9

Minibatches 1

Optimizer Adam, SGD

Decision Tree (DT) & Random Forest (RF)

Hyper-Parameter Decision Tree Random Forest

Max Depth 3, 5, 10, No Limit 3, 10, 20, No Limit

Max Features auto, sqrt, log auto, sqrt, log

Min samples to split 2.0 2.0

Min samples per leaf 1%, 5%, 10%, 20%, 30% 1, 2, 4

Criterion MSE, fMSE, MAE MSE, MAE

Trees NA 5, 10, 50, 100

DT and RF share many hyper-parameters and their values,

therefore, are grouped in Table III. Max Depth is the

maximum depth of the tree which is specified to avoid

over-fitting. Max Features is used to select the number of

available features to consider when searching for the best

split. A value of auto implies a maximum number of features

equal to the total number of features. Values of sqrt and log

imply a maximum equal to the square root and the base-2

logarithm of the number of features, respectively. Minimum

Samples to Split/per Leaf is used for setting, respectively,

the minimum number of samples required to split a node

and the minimum percentage/number of samples required

to be a leaf. Criterion is the function used to measure

the quality of a split: MSE stands for mean square error

(minimizes ℓ2 loss), fMSE stands for mean squared error

with Friedman’s improvement score for potential splits and,

last, MAE stands for mean absolute error (minimizes ℓ1
loss). Parameter number of trees, the number of trees in

the forest, only applies to RF. A range of values is explored

to analyze diminishing return effects on the error.

E. Performance Metrics

We evaluate the performance of each model based on

the mean absolute percent error (MAPE) of the predicted

response time, as it is more widely used in the performance

literature [23] than MSE (used for hyper-parameter tuning).

Also, it allows us to consolidate results across experiments

with different execution times. MAPE measures the relative

error (in absolute terms) of the prediction with respect to the

true response times, i.e., MAPE (%) = 100
N

N
∑

k=1

∣

∣

∣

yk − ŷk

yk

∣

∣

∣
,

where N is the number of data points, yk is the response

time measured on the operating system, and ŷk is the pre-

dicted response time from the learned model. For each setup,

10 runs were executed for the LR, DT and RF algorithms,

and average MAPE across all 10 runs are reported. For

Table IV: ML Models training times (in minutes)

LR NN DT RF

training time 1 908 3 56

Table V: MAPE (%) of execution time estimates on Power8

for Query 26 (core interpolation; fixed data size of 750 GB

for all datasets).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 20.6 63.4 12.3 18.8 8.4 1.0 6.7 2.4 1.5

C2 16.7 72.6 16.1 19.9 7.9 1.2 20.1 6.0 1.6

C3 18.0 98.5 36.3 18.9 11.2 1.2 3.1 8.0 1.7

C4 21.7 300.6 18.9 27.2 12.9 1.1 4.4 9.7 1.6

C5 35.7 229.7 30.8 35.0 12.5 1.2 23.0 12.0 1.6

C6 27.0 414.1 26.3 32.3 8.9 1.2 5.4 6.9 1.7

NN, which has much longer training times, we performed

a single run (i.e., random train-test split). For each of the

gray box models (which include all features from black box

models plus some others), Table IV reports the average time

to perform the full training campaign (including the hyper-

parameter tuning phase). Experiments were run on a Ubuntu

18.04 Virtual Machine with 8 cores and 10 GB of memory

hosted within an Intel Xeon Silver 4114 Ubuntu 16.04 server

with 20 cores and 48 GB of memory.

V. EXPERIMENTAL RESULTS

In this section, we present our prediction results for each

workload on two sets of scenarios, namely core interpolation

and data extrapolation. For each set, we report results

for every case described in Section IV-C. We discuss the

accuracy of the models described in Section III, referring to

each of them as gray box or black box, and, within each

category, specifying the ML technique employed (LR, NN,

DT or RF). We compare them against the reference model

(Ernest) with respect to MAPE on the test set.

A. Results for Query 26

Tables V and VI show the MAPE results for core inter-

polation and data extrapolation scenarios, respectively, for

Query 26. In both cases, we generally observe that: (i)

MAPE of black box models is smaller than that of their

gray box counterparts, (ii) Ernest performs relatively well

– MAPE within 1.5 − 1.7% for interpolation and within

7.3 − 8.0% for extrapolation, and (iii) best results are ob-

tained by black box LR model, which achieves even smaller

MAPE values than Ernest. DT and RF yield larger MAPE

on the extrapolation scenarios, which can be explained by

the fact that their execution time predictions are based on

the averages of observed values from the training set.

B. Results for K-means

Tables VII and VIII show the results for core interpolation

and data extrapolation scenarios, respectively, for K-means.

In contrast to the results for Query 26, we generally observe

that (i) Ernest performs extremely poorly in both sets of sce-

narios, (ii) for interpolation, black box RF achieves the best

Table VI: MAPE (%) of execution time estimates on Power8

for Query 26 (data extrapolation; 250 GB, 750GB for

training and 1000GB for testing).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 38.2 28.6 7.0 39.6 15.6 3.9 9.9 19.4 7.5

C2 42.5 23.5 24.8 33.6 16.0 4.0 10.3 16.6 7.4

C3 39.0 36.7 11.2 37.2 21.1 3.7 7.8 19.0 7.3

C4 42.2 33.3 13.5 35.4 25.5 4.0 25.4 23.5 7.3

C5 32.5 12.4 9.8 35.1 19.0 4.4 31.8 17.3 7.6

C6 37.0 24.8 24.8 37.3 17.3 4.9 18.1 19.5 8.0

Table VII: MAPE (%) of execution time estimates on

Power8 for K-means (core interpolation; 15M points for

training and 15M points for test).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 27.7 184.3 77.9 24.8 16.0 50.8 38.3 5.0 126.7

C2 28.7 225.0 109.6 54.7 16.9 46.3 18.1 13.7 148.1

C3 22.9 278.3 435.7 26.0 18.5 42.1 10.3 14.0 161.3

C4 33.8 300.6 445.1 26.3 21.4 41.9 23.6 14.2 176.5

C5 27.1 543.4 1146.1 22.5 22.9 42.3 31.3 19.3 187.0

C6 33.9 414.1 170.8 91.3 15.2 48.2 10.6 12.0 159.9

C7 22.6 363.1 626.0 31.3 17.4 41.8 33.2 14.8 178.1

Table VIII: MAPE (%) of execution time estimates on

Power8 for K-means (data extrapolation; 5M, 10M, and 15M

points for training and 20M points for test).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 24.0 20.2 22.9 27.1 19.8 40.0 32.5 12.5 93.4

C2 35.6 16.0 121.3 20.7 14.5 39.6 29.1 16.5 107.8

C3 66.7 31.9 134.1 32.6 14.4 41.4 28.0 16.5 119.6

C4 28.8 24.2 118.9 25.8 13.3 31.8 68.4 16.0 127.9

C5 42.0 34.0 27.5 26.7 15.3 25.7 60.0 19.5 121.4

C6 75.7 37.7 37.1 24.2 11.0 52.6 26.7 14.9 109.8

C7 32.6 43.1 148.1 42.6 20.8 34.5 96.4 17.9 129.5

results, and (iii) for extrapolation, gray box LR outperforms

its black box counterpart more often than not. Although DT

and RF achieve the best results on extrapolation, this may

not hold true in cases when the data size of observations

in the test set is much larger (or smaller) than that of the

observations in the training set (i.e., differences are more

extreme than those than captured by our scenarios). In those

cases, we expect the other models to outperform DT and RF.

C. Results for SparkDL

Finally, results for SparkDL are shown in Tables IX

and X for the core interpolation and data extrapolation

scenarios, respectively. For interpolation, the black box DT

and RF tend to yield the best predictions, although LR also

performs well, achieving smaller MAPE than Ernest. The

gray box models do not provide significant improvements

(except for a few cases) but often incurs great degradation in

MAPE. In contrast, for extrapolation, the additional features

estimated by gray box models combined with non-linear

models (notably NN and RF) very often improve upon

their black box counterparts. However, the black box LR

is still the model with best performance, achieving a MAPE

roughly 5 times smaller than that obtained by Ernest.

Table IX: MAPE (%) of execution time estimates on Azure

for SparkDL (core interpolation; 1500 images for training

and 1500 images for testing).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 5.2 28.7 4.7 4.5 5.1 7.3 4.6 5.1 10.5

C2 5.8 5.7 13.3 4.8 5.5 6.2 8.6 5.7 6.3

C3 8.9 7.5 5.4 6.0 5.5 5.5 5.7 4.9 5.7

Table X: MAPE (%) of execution time estimates on Azure

for SparkDL (data extrapolation; 1000 and 1500 images for

training and 2500 images for testing).

Gray Box Models Black Box Models
Ernest

DT LR NN RF DT LR NN RF

C1 37.0 10.7 25.7 34.7 35.9 7.5 34.1 36.7 43.5

C2 36.3 10.0 31.4 37.0 41.5 7.6 15.3 41.9 37.4

C3 36.9 14.7 9.9 34.5 41.0 7.8 33.3 41.1 36.8

VI. DISCUSSION

The previous section presented the prediction accuracy of

each model on three quite different workloads for various

scenarios. Ernest performs well (MAPE < 11%) in the

simplest scenarios considered (i.e., Query 26 and core inter-

polation for SparkDL). Yet, in the other scenarios, the large

MAPE values yielded by the model make it unsuitable for

production environments. In fact, in the worst case, the error

reaches up to 187%, showcasing the need for new techniques

to overcome Ernest’s limitations. Our goal was to compare

alternative techniques against the simple linear regression

(with NNLS estimation) applied by Ernest, investigating the

extent to which the additional information (i.e., features)

used by gray box models increases prediction accuracy.

From the previous results, we observe that no single ML

technique outperforms all the others in every scenario. More-

over, even a slight change in the composition of training

and test sets (i.e., considering a different case number) may

impact the technique that performs best. For example, in the

data extrapolation experiments with K-means, the best gray

box model is the one with LR as regression technique in

cases C1, C2, C3 and C4, with RF in cases C5 and C6, and

with DT in the last case (C7). Similarly, the best black box

model is obtained with RF in cases C1 and C7, and DT in

the remaining five cases.

The comparison between the best gray box models and the

reference Ernest model leads to two different situations. In

scenarios where applications are characterized by regularity

(i.e., Query 26 and SparkDL with fixed data size), Ernest

yields very good results with MAPE values smaller than

10%, whereas the best gray box model generally achieves

worse performance (MAPE of best models is in the range

7.0-30.8%). Yet, in the remaining scenarios, which are char-

acterized by a larger variability in the application execution

times, the best gray box model outperforms the Ernest model

by a large margin. The MAPE range of the latter is 37.4-

187.0% while the largest error of the best gray box model

is only 33.9% (C6 of core interpolation with K-means).

However, recall that gray box models do use DAG-related

features which are not available for the test instance at

prediction time (a priori), and thus are replaced by the

averages from the training data. Thus, even though the gray

box models are able to outperform Ernest in some scenarios,

such feature approximations may indeed cause accuracy

degradation, as it hides significant differences that may exist

between runs in the training and test sets. Black box models,

in turn, extract features only from information available

before an application starts execution (i.e., available at

prediction time), and thus do not suffer from this issue.

Also, our results show that the best black model always

outperforms the results of the Ernest method (possibly due to

the use of more effective ML techniques) and almost always

outperforms the results of the gray box model, despite using

fewer features. Thus, this approach is preferable over the

others. In the worst case (C5 of core interpolation with K-

Means) the MAPE of the best black box model is only

19.3%, which is quite suitable in a production environment.

Finally, the black box LR model produces the best results

for Query 26, in spite of Ernest’s good performance on this

application. Indeed, the black box LR model outperforms

Ernest in all scenarios analyzed, which indicates the benefits

of using a different parameterization technique as well as

slightly different feature set. However, there are scenarios

where Ernest performs well (i.e., core interpolation with

SparkDL), for which the best black box models are indeed

DT and RF, though the black box LR performs quite

similarly. The latter is indeed the best model also in data

extrapolation scenario with SparkDL: it achieves MAPE

values in the range 7.5-7.8%, while Ernest yields values

in the range 36.8-43.5%. Yet, there is no clear winner in

the K-means experiments. For core interpolation, the best

results are produced with RF in all cases but C6, for which

NN is the best performer. For data extrapolation, the best

technique is DT in 5 out of 7 cases and RF in the others.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the accuracy of alternative

supervised ML techniques and different feature sets in the

performance prediction of Spark applications. Experimental

results on a rich set of different scenarios demonstrated

that our black box models are able to achieve at least the

same accuracy of Ernest and, in many scenarios, even more

accurate predictions. The percentage error is reduced from

126.7-187.0% to only 5.0-19.3% when applications present

irregular patterns and/or when it is needed to extrapolate the

application behavior on larger data sets. However, we also

showed that there is not a single ML technique that always

outperforms the others, hence different techniques have to

be evaluated in each scenario to choose the best model. As

future work, we plan to study the performance of Spark

deep learning applications when GPU-based clusters are

used and develop capacity planning solutions to identify, at

deployment time, the minimum cost cluster configuration so

as to guarantee application runs within an a priori deadline.

ACKNOWLEDGEMENTS

This work has been partially supported by the project ATMOSPHERE
(https://atmosphere-eubrazil.eu), funded by the Brazilian Ministry of Sci-
ence, Technology and Innovation (Project 51119 - MCTI/RNP 4th Co-
ordinated Call) and by the European Commission under the Cooperation
Programme, Horizon 2020 (grant agreement no 777154).

REFERENCES

[1] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[2] R. Fang, S. Pouyanfar, Y. Yang, S.-C. Chen, and S. S. Iyengar,
“Computational health informatics in the big data age: A survey,”
ACM Comput. Surv., vol. 49, no. 1, pp. 12:1–12:36, Jun. 2016.

[3] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social
media big data analytics: A survey,” Computers in Human Behavior,
2018.

[4] C. Low, Y. Chen, and M. Wu, “Understanding the determinants of
cloud computing adoption,” Industrial Management & Data Systems,
vol. 111, no. 7, pp. 1006–1023, 2011.

[5] R. D. Nelson and A. N. Tantawi, “Approximate analysis of fork/join
synchronization in parallel queues,” IEEE TC, vol. 37, no. 6, pp. 739–
743, 1988.

[6] V. Mak and S. Lundstrom, “Predicting performance of parallel com-
putations,” IEEE TPDS, vol. 1, no. 3, pp. 257–270, 1990.

[7] S. K. Tripathi and D.-R. Liang, “On performance prediction of parallel
computations with precedent constraints,” IEEE TPDS, vol. 11, pp.
491–508, 2000.

[8] D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti, M. Gribaudo,
T. B. M. Pinto, A. Guimarães, A. P. Couto da Silva, and J. M.
Almeida, “Performance prediction of cloud-based big data applica-
tions,” in ICPE ’18, 2018, pp. 192–199.

[9] M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering
tools for system modeling,” SIGMETRICS Performance Evaluation

Review, vol. 36, no. 4, pp. 10–15, 2009.
[10] K. Wang and M. M. H. Khan, “Performance prediction for apache

spark platform,” in HPCC-CSS-ICESS, 2015, pp. 166–173.
[11] D. Ardagna, S. Bernardi, E. Gianniti, S. K. Aliabadi, D. Perez-Palacin,

and J. I. Requeno, “Modeling performance of hadoop applications: A
journey from queueing networks to stochastic well formed nets,” in
ICA3PP, 2016, pp. 599–613.

[12] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced
analytics.” in NSDI, 2016, pp. 363–378.

[13] S. Mustafa, I. Elghandour, and M. A. Ismail, “A machine learning
approach for predicting execution time of spark jobs,” Alexandria

Engineering Journal, vol. 57, no. 4, pp. 3767 – 3778, 2018.
[14] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Heming-

way: Modeling distributed optimization algorithms,” CoRR, vol.
abs/1702.05865, 2017.

[15] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,
and M. Zhang, “Cherrypick: Adaptively unearthing the best cloud
configurations for big data analytics,” in NSDI, 2017, pp. 469–482.

[16] M. J. Zaki and W. Meira Jr, Data mining and analysis: fundamental

concepts and algorithms. Cambridge University Press, 2014.
[17] N. Nguyen, M. M. H. Khan, and K. Wang, “Towards automatic tuning

of apache spark configuration,” in CLOUD, 2018, pp. 417–425.
[18] E. Gianniti, M. Ciavotta, and D. Ardagna, “Optimizing quality-aware

big data applications in the cloud,” IEEE TCC, pp. 1–16, 2018.
[19] M. Abadi et al., “TensorFlow: Large-scale machine learning on

heterogeneous distributed systems,” 2016.
[20] C. M. Bishop, Pattern recognition and machine learning. Springer,

2006.
[21] P. S. Pacheco, An introduction to parallel programming. Morgan

Kaufmann, 2011.
[22] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The

Johns Hopkins University Press, 1996.
[23] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,

Quantitative System Performance. Prentice-Hall, 1984.

https://atmosphere-eubrazil.eu

