
One of the most studied pathways in medicine is the
health trajectory leading to heart attacks, known clini-
cally as myocardial infarctions (MIs). MIs are common

and deadly, causing one in six deaths overall in the United
States totaling 400,000 per year (Roger et al. 2011). Because of
its medical significance, MI has been studied in depth, mostly in
the fields of epidemiology and biostatistics, yet rarely in
machine learning. So far, it has been established that prediction
of future MI is a challenging task. Risk stratification has been
the predictive tool of choice (Group 2002, Wilson et al. 1998),
but these methods have produced strata where the baseline risk
is nonnegligible; that is, everyone is still at risk. A much richer
area of study is the identification of risk factors for MI. Com-
mon risk factors have been identified such as age, gender, blood
pressure, low-density lipoprotein (LDL) cholesterol, diabetes,
obesity, inactivity, alcohol, and smoking. Studies have also iden-
tified less common risk factors as well as subgroups with partic-
ular risk profiles (Greenland et al. 2010, Antonopoulos 2002).
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n Electronic health records (EHRs) are an
emerging relational domain with large potential
to improve clinical outcomes. We apply two sta-
tistical relational learning (SRL) algorithms to
the task of predicting primary myocardial
infarction. We show that one SRL algorithm,
relational functional gradient boosting, outper-
forms propositional learners particularly in the
medically relevant high-recall region. We
observe that both SRL algorithms predict out-
comes better than their propositional analogs
and suggest how our methods can augment cur-
rent epidemiological practices.



The canonical method of study in this field is
the identification or quantification of the risk
attributable to a variable in isolation using case-
control studies, cohort studies, and randomized
controlled trials. Case-control or cross-sectional
studies identify odds ratios for the variable (or
exposure) while controlling for confounders to
estimate the relative risk. Cohort studies measure
variables of interest at some early time point and
follow the subjects to observe who develops the
disease. Randomized controlled trials are the gold
standard for determining relative risks of single
interventions on single outcomes. Each of these
methods is highly focused, centered on the goal of
providing the best risk assessment for one particu-
lar variable. One natural question to ask is: by
using machine learning, can we conduct fewer
studies by analyzing the effects of many variables
instead?

A different and crucial limitation of the longitu-
dinal methods is that they make measurements at
fixed points in time. Typically in these studies, data
are collected at the study onset t0 to serve as the
baseline variables, whose values are the ones used
to determine risk. To illustrate this, consider the
Skaraborg cohort study (Bg-Hansen et al. 2007) for
the identification of acute MI mortality risk factors.
The study measured established risk factors for MI
at t0, and then the subjects participated in annual
checkups to assess patient health and determine
whether an MI event had occurred. It is important
to note that, in line with current practice, the sub-
jects who did not possess risk factors at time t0 but
developed them at some later time were considered
as not possessing them in the analysis. If we knew

that these developments had occurred, say from an
electronic health record (EHR), would it be possible
to estimate the attributable risk more precisely? In
the extreme, can we estimate the risk factors and
make reliable predictions without the annual
checkups and the baseline t0 measurements?

More generally, can we bring a machine-learn-
ing perspective to this task that provides new
insights to the study of MI prediction and risk-fac-
tor identification? The answer is yes, and we pres-
ent here a glimpse of the potential machine learn-
ing has to bring to this field (for example, see figure
1). We suggest that the emergence of the EHR as
the new data source for population health analyses
may be able to answer these clinical questions
more efficiently, effectively adding another
method of study to the standard three, as shown in
figure 2. We argue that, using clinical events from
EHRs as a supplement to clinical study data collec-
tion, we can improve risk-stratification and risk-
attribution methods because EHRs provide richer
and temporally precise data. For the prediction
task, we emphasize the evaluation of methods on
statistics that are clinically relevant, specifically on
class separability (for risk stratification) and preci-
sion at high recalls (for use as a screening tool).
Class separability, which can be directly assessed
using ROC curves, is a well-established tool for risk
stratification (Group 2002). Evaluating precision at
high recalls assesses an algorithm’s ability to pre-
dict while disallowing many false negatives, which
is the critical component to a good screening tool.
For predicting MI, a false negative means catego-
rizing a patient as “low-risk” who goes on to have
a heart attack, a costly outcome we wish to avoid.
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Predicted diagnosis Predicted incidence S.D.

1 Myocardial infarction 0.33/yr
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Manage risk
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Manage risk

Figure 1. A Possible Future EHR Interface for the Physician That Includes Machine-Learning Predictions for the Current Patient.

The diagram shows model results suggesting that the patient is at elevated risk for specific diagnoses. It depicts a tabbed environment, where
the machine-learning system also provides optimal drug regimens, recommends the collection of additional health information such as
laboratory assays, and reminds physicians of steps involved in providing continuing care.



We also focus our methodology on algorithms
with good interpretability, as this is critical for
using the models for risk-factor identification. In
this work we survey a host of established machine-
learning algorithms for their performance on this
task and select the most promising algorithm for
further analysis. We attempt to answer some of
these questions by providing an EHR-based frame-
work for prediction and risk-factor identification.

EHRs are an emerging data source of great poten-
tial use in disease prevention. An EHR effectively
tracks the health trajectories of its patients through
time for cohorts with stable populations (figure 3).
But as of yet they have been used primarily as a
data warehouse for health queries, rather than as a
source for population-level risk assessment and
prevention. This trend is changing, however, as
exemplified by the ongoing Heritage Health Prize
contest, which uses medical claims data to predict
future hospitalization.

Analogously, we can use EHR data to predict
future disease onset and produce personalized risk
scores, with direct potential applications to
improving health care, as described in figure 1.
Risk-stratification models do exist, but they typi-
cally require additional medical intervention, for
example, running laboratory tests required to
quantify risk. Thus, one advantage of risk model-
ing from EHRs is that many of the interventions

required for standard risk stratification are ren-
dered superfluous. While interventions provide
up-to-date information and could improve risk
stratification, a risk profile without them based on
EHR data would be available regardless. As an
example, the Framingham risk score (FRS) assess-
ment of 10-year coronary heart disease (CHD) risk
requires two lipoprotein laboratory assays, blood
pressure measurements, and basic demographic
information (Antonopoulos 2002). The FRS is a
well-established, robust test for evaluating CHD
risk, but a similar risk could be established with
information from the EHR, which might include
overlapping clinical information, without the
additional intervention. Furthermore, the ability
to account for disease occurrences across time
instead of the disease state at an initial time could
help modify risk status. Finally, for less high
impact diseases than MI, the medical field has
focused largely on identifying individual risk fac-
tors for disease. Relational models using EHRs
could then easily produce aggregate risk models
analogous to the FRS. Figure 4 compares the FRS
framework with one based on EHR data.

Accurate predictive models of MI or other major
health events have many more potential applica-
tions. First, such models can be incorporated into
the EHR to provide prompts to clinicians such as,
“your patient is at high risk for an MI and is not cur-
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Figure 2. Machine-Learning Systems Can Augment Current Clinical 

Analyses by Producing Personalized Health Profiles Given Medical Timelines of Incoming Patients.

The clinical analyses typically identify and quantify risk factors that lead to disease; machine-learning models integrate such risk factors
into comprehensive predictive models. Medical history (Hx), drugs prescribed (Rx), and diagnoses (Dx) are abbreviated. Machine-learning
systems are shown in light gray. Current clinical analyses are shown in dark gray.



rently on an aspirin regimen.” Second, the models
themselves can be inspected in order to identify sur-
prising connections, such as a correlation between
the outcome and the use of certain drugs, which
might in turn provide important clinical insights.
Third, these models can be used in research to iden-
tify potential subjects for research studies. For exam-
ple, if we want to test a new therapy for its ability to
prevent an event such as MI, it would be most
instructive to test it in a population of high-risk sub-
jects, which a predictive model can accurately iden-
tify. Other works have focused on similar prediction
tasks, for example, prediction of CHD, MI risk fac-
tor and biomarker identification, and prediction of
MI in subgroups. The prediction of CHD includes
the FRS and other works, for example, the numer-
ous machine-learning models tested on the UCI
heart disease data set (Detrano and Janosi 1989).
Risk factors specifically for MI continue to be iden-
tified, for example, the characterization of circulat-
ing endotheial cells (Damani et al. 2012). The use of
additional biomarkers in subgroups also helps pre-
dict future MI, as shown in studies involving posta-
cute coronary syndrome (Syed et al. 2011), postan-
gioplasty (Resnic, Popma, and Ohno-Machado
2000), and COX-2 inhibitors (Davis et al. 2008).
However, we do not know of any work that predicts
MI from EHR data. This framework, which can
encapsulate the aforementioned studies, provides
benefits described previously as well as new chal-
lenges, which directs us in our choice of models.

The primary approach we use draws from rela-
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Pt ID

Pt ID Gender Date of Birth

207a3d56 Male 1962.34

Date Laboratory Test Laboratory Value

207a3d56 2010.83 LDL Normal

207a3d56 2008.7 LDL Normal

207a3d56 2007.7 LDL High

207a3d56 2007.7 Cholesterol High

Pt ID Date Vital Type Vital Value

207a3d56 2010.83 BP High

207a3d56 2008.7 BP Normal

207a3d56 2007.7 BMI Overweight

207a3d56 2007.7 BP High
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Figure 3. Example of an EHR. 

The EHR database consists of tables including patient information such as
diagnoses, drugs, labs, and genetic information.

Figure 4. Comparison of EHR and Framingham Heart Study Data.

This diagram compares EHR data extracted to timelines (left) and Framingham Heart Study (FHS) data collection as a time series (right). The
Framingham health cohort requires clinic visits every other year to perform laboratory assays (for example, cholesterol levels), conduct phys-
ical exams (for example blood pressure [BP] measurements), and document medical history (for example, smoking status). The EHR con-
tains FHS data and additional medical information with accurate time stamps, shown on the left. The FRS is recalculated every two years,
whereas one based on the EHR would be updated as new clinical events occur.



tional probabilistic models, also known as statisti-
cal relational learning (SRL) (Getoor and Taskar
2007). Their primary advantage is their ability to
work with the structure and relations in data; that
is, information about one object helps the learning
algorithms to reach conclusions about other
objects. Unfortunately, most SRL algorithms have
difficulty scaling to large data sets. One efficient
approach that yields good results from large data
sets is the relational probability tree (Neville et al.
2003). The performance increase observed moving
from propositional decision trees to forests is also
seen in the relational domain (Anderson and
Pfahringer 2009, Natarajan et al. 2011b). One
method called functional gradient boosting (FGB)
has achieved good performance in the proposi-
tional domain (Friedman 2001). We apply it to the
relational domain for our task: the prediction and
risk stratification of MI from EHRs.

EHR data present significant challenges to cur-
rent machine-learning methodology. If we hope to
augment traditional clinical study analyses, we
must be able to effectively address these chal-
lenges. A few of them are size, time-stamped data,
relational data, and definition shifts over time. We
use relational functional gradient boosting (RFGB)
because it addresses all but the last challenge,
which is difficult for any algorithm to capture.
Notably, it is one of the few relational methods
capable of learning from large data sets. Moreover,
RFGB can efficiently incorporate time by introduc-
ing temporal predicates like before(A, B):- A < B.
Also, unlike most other state-of-the-art SRL algo-
rithms, RFGB allows us to learn structure and
parameters simultaneously and grows the number
of models as needed. Hence, we apply RFGB
(Natarajan et al. 2011b) and relational probability
trees (RPTs) (Neville et al. 2003) to the task of pre-
dicting primary MI. Our goal is to establish that,
even for large-scale domains such as EHRs, rela-
tional methods and in particular RFBG and RPTs
can scale and outperform propositional variants.

This article makes a few key contributions: First,
we address the challenging problem of predicting
MI in real patients and identify ways in which
machine learning can augment current method-
ologies in clinical studies. Second, we address this
problem using recently developed SRL techniques,
adapt these algorithms to predicting MI, and pres-
ent the algorithms from the perspective of this
task. Third, the task of MI prediction is introduced
to the SRL community. To our knowledge, this is
the first work to use SRL methods to predict MI in
real patients. Fourth, we focus our analysis on
interpretable RPT models, making it easy to discern
the relationship between different risk factors and
MI. Finally, this article serves as a first step to
bridge the gap between SRL techniques and impor-
tant, real-world medical problems.

Learning Algorithms: Relational
Probability Trees and Relational
Functional Gradient Boosting

RPTs (Neville et al. 2003) were introduced for cap-
turing conditional distributions in relational
domains. These trees upgrade decision trees to the
relational setting and have been demonstrated to
build significantly smaller trees than other condi-
tional models and obtain comparable performance.
We use a version of RPTs that employs the TILDE
relational regression (RRT) learner (Blockeel and
Raedt 1998) where we learn a regression tree to pre-
dict positive examples (in this case, patients with
MI) and turn the regression values in the leaves into
probabilities by exponentiating the regression val-
ue and normalizing them. Hence, the leaves of the
RPTs hold the predicted probability that a person
has an MI given the other attributes. We use
weighted variance as the criterion to split on in the
inner nodes. In RRTs, the inner nodes (that is, test
nodes) are conjunctions of literals, and each RRT
can be viewed as defining several new feature com-
binations, one corresponding to each path from
the root to a leaf. The resulting potential functions
from all these different RRTs still have the form of
a linear combination of features but the features are
complex (Gutmann and Kersting 2006).

An example of such a tree is presented in figure
5 (left). The leaves of the learned tree indicate the
probability of the target, in this case coronary
artery calcification (Natarajan et al. 2012), being
greater than 0. The first argument A of every pred-
icate (inner node of the tree) is the subject’s ID and
the last argument of every predicate (except sex)
indicates the year of measurement (year 0 indicates
base measurements). The left branch out of every
node is the true branch, the right branch the false
branch. We use _bw in predicates to indicate that
the value of a certain variable is between two val-
ues. For instance, ldl_bw(A, B, 0, 100, 10) indicates
that the LDL level of subject A is B and is between
0 and 100 in year 10. So the leftmost path indicates
that if the person is a male and his age is between
35 and 45 in year 7 of the study and if LDL level is
greater than 90 in year 0 of the study, then the
probability of his having a coronary artery calcifi-
cation (CAC) level greater than 0 is 0.79.

For relational functional gradient boosting,
assume that the training examples are of the form
(xi, yi) for i = 1, ..., N and yi Œ {0, 1} where yi = 1 indi-
cates MI and x represents the set of all observations
about the current patient i. The goal is to fit a mod-
el P(y|xi) ∝ ey(y,x). The standard method of super-
vised learning is based on gradient descent direct-
ly on the parameters where the learning algorithm
starts with initial parameters 0 and computes the
gradient of the likelihood function. A more gener-
al approach is to train the potential functions
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based on Friedman’s gradient tree boosting algo-
rithm where the potential functions are represent-
ed by sums of regression trees that are grown stage-
wise (Friedman 2001). The key difference from the
standard method is that the gradients are comput-
ed directly on the functions instead of the param-
eters. Thus while the final potential is itself the lin-

ear sum of the gradients, each gradient could be
nonlinear, leading to a more expressive model.

More formally, functional gradient ascent starts
with an initial potential y0 and iteratively adds gra-
dients ∆i. Thus, after m iterations, the potential is
given by ym = y0 + ∆1 + ... + ∆m. Here, ∆m is the
functional gradient at episode m and is
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Figure 5. An Example of a Relational Proability Tree.

The leaves indicate P (target) > 0. The left branch at any test corresponds to the test returning true while the right branch corresponds to
false. This tree was learned in a related project (Natarajan et al. 2012) where the goal was to predict the CAC levels from longitudinal data.
A relational functional gradient boosting schematic is shown (right). Like standard FGB, RFGB induces trees in stagewise manner. In RFGB
the trees are relational regression trees.



(1)

where hm is the learning rate. Note that in the
functional gradient, the expectation Ex,y [..] cannot
be computed as the joint distribution P(x, y) is
unknown. Functional gradient boosting methods
treat the data as a surrogate for the joint distribu-
tion. Instead of computing the functional gradi-
ents over the potential function, they are instead
computed for each training example i given as (xi,
yi). Now this set of local gradients forms a set of
training examples for the gradient at stage m.

Dietterich, Ashenfelter, and Bulatov (2004) sug-
gested fitting a regression tree to these derived
examples, that is, fit a regression tree hm on the
training examples [(xi, yi), ∆m (yi ; xi)]. They point
out that although the fitted function hm is not
exactly the same as the desired ∆m, it will point in
the same direction, assuming that there are
enough training examples. So ascent in the direc-
tion of hm will approximate the true functional gra-
dient. The same idea has later been used to learn
several relational models and policies (Natarajan et
al. 2011b, Sutton et al. 2000, Kersting and
Driessens 2008, Natarajan et al. 2011a, Gutmann
and Kersting 2006). The functional gradient with
respect to y(yi = 1; xi) of the likelihood for each
example (xi, yi) can be shown to be:

where I is the indicator function, that is, 1 if yi = 1
and 0 otherwise. This expression is fairly intuitive.
Consider for example a subject who had an MI and
hence is a positive example. If the current model
predicts that he or she is likely to have MI with
probability 0.6, his/her weight is 1 − 0.6 = 0.4
which means that the next model should push the
example toward 1. On the other hand, if the sub-
ject is a negative example and the current model
predicts his/her probability of having an MI as 0.3,
then his/her weight is −0.3, indicating that the
next model should push this example toward 0.
We fit RRTs at each step instead of a regression tree
as is traditionally done in FGB.

This idea is illustrated in figure 5 (right). As can
be seen, first a tree is learned from the training
examples and this tree is used to determine the
weights of the examples for the next iteration
(which in this case is the difference between the
true probability of being true and the predicted
probability). Once the examples are weighted, a
new tree is induced from the examples. The trees
are then considered together and the regression
values are added when weighing the examples and
the process is repeated. The key idea underlying
the present work is to represent the distribution
over MI as a set of RRTs on the features.

!m = "m#Ex,y[$/$%m&1log P(y | x;%m&1)]

!log P(yi ;xi )
!"(yi =1;xi )

= I(yi =1;xi )#P(yi =1;xi ),

Experimental Methods
Figure 6 shows an outline of the experimental set-
up. We analyzed 31 years of deidentified EHR data
on 18,386 subjects enrolled in the Personalized
Medicine Research Project (PMRP) at Marshfield
Clinic (McCarty et al. 2005; 2008). The PMRP
cohort is one of the largest population-based
biobanks in the United States and consists of indi-
viduals who are 18 years of age or older, who have
consented to the study, and who have provided
DNA, plasma, and serum samples along with
access to their health information in the EHR.
Most of the subjects in this cohort received most,
if not all, of their medical care through the Marsh-
field Clinic integrated health-care system.

Within the PMRP cohort, 1153 cases were select-
ed using the first International Classification of
Diseases, Ninth Revision (ICD9) code of 410.0
through 410.1. Cases were excluded if the incident
diagnosis indicated treatment for sequelae of MI or
“MI with subsequent care.” The age of the first case
diagnosis was recorded and used to right-censor
EHR data from both the case and the matching
control one month prior to the case event. In oth-
er words, all facts linked to the case and the
matched controls after the case age — one month
prior to case diagnosis — were removed so that
recent and future events could not be used in MI
prediction.

To achieve a 1-1 ratio of cases to controls (that is,
positive and negative examples), cases were
matched with controls based on the last age
recorded in the EHR. For many matches, this cor-
responds to a case who is alive being matched to a
control of the same age. For others it means match-
ing someone who died from a heart attack to
someone who died from other causes or was lost to
followup. Matching on last reported age was cho-
sen to control for differences in health trajectories
across age groups.

As CHD, of which MI is a primary component,
is the leading cause of mortality in the United
States, risk factors are well studied (Antonopoulos
2002, Greenland et al. 2010, Manson et al. 1992,
Wilson et al. 1998), and those represented in the
EHR were included in our experiments. We includ-
ed major risk factors such as cholesterol levels
(total, LDL, and HDL in particular), gender, smok-
ing status, and systolic blood pressure, as well as
less common risk factors such as history of alco-
holism and procedures for echocardiograms and
valve replacements. Drugs known to have cardiac
effects were included, notably the coxibs and tri-
cyclic antidepressants. As EHR literals are coded in
hierarchies, we chose to use the most specific level
of information, which often split established risk
factors into multiple subcategories. The risk factors
were chosen a priori as opposed to employing algo-
rithmic feature selection (for example, the feature
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selection inherent in decision trees) to shrink the
feature size from hundreds of thousands (exclud-
ing genetic data) to thousands for computational
reasons and so that algorithms without inherent
feature selection would perform comparably. The
feature values came from relational tables for diag-
noses, medications, labs, procedures, vitals, and
demographics.

Patient relations were extracted to temporally
defined features in the form of “patient ever had x
Œ X” or “patient had x Œ X within the last year.”
For laboratory values and vitals, both of which
require an additional literal for the result of the
test, the result was binned into established value
categories (for example, for blood pressure, we cre-
ated five binary features by mapping the real value
to {critically high, high, normal, low, and critical-
ly low}). This resulted in a total of 1528 binary fea-
tures.

The cases and controls were split into tenfolds
for cross-validation in a ninefold train set to one-
fold test set. Although we did choose a one-to-one
ratio of cases to controls, in general this would not
be the case, so we chose to assess the performance

of the algorithms with the area under the ROC
curve (AUC-ROC), accuracy, and by visualizing the
results with a precision-recall plot. Also, precision
at high recalls {0.95, 0.99, 0.995} were calculated
to assess a model’s usefulness as a screening tool.
The p-values were calculated comparing the RFGB
model with the comparison methods using a two-
sided paired t-test on the tenfold test sets, testing
for significant differences in accuracy and preci-
sion at a recall of 0.99.

The key question is whether the relational algo-
rithms consistently produced better predictions
than their corresponding propositional variant.
Thus we compared RFGB models to boosted deci-
sion trees (AdaBoostM1 (Ada); default parameters)
and RPTs with decision tree learners (J48; C = 0.25,
M = 2). We also included other common models:
Naive Bayes (NB; default parameters), tree-aug-
mented naive Bayes (TAN; SimpleEstimator), sup-
port vector machines (SVMs; linear kernel, C 1.0;
radial basis function kernel, C 250007, G 0.01),
and random forests (RF; 10 trees, default parame-
ters). All propositional learners were run using
Weka software (Hall et al. 2009). In our secondary
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analysis, we varied both the experimental setup
and the RFGB parameters to investigate the effect
on their predictive ability. First, we altered the
case-control ratio {1:1, 1:2, 1:3}, holding the num-
ber of cases fixed. Second, we altered the maxi-
mum number of clauses (for internal node splits)
allowed per tree {3, 10 (default), 20, 30}. Third, we
altered the maximum depth of the tree {1 (stump),
5}. Finally, we altered the number of trees {3, 10
(default), 20, 30}. We also compared the results
among these analyses if they contained the same
maximum number of parameters (for example, 30
parameters: 3 trees  10 clauses, 10 trees  3 claus-
es).

Results
The best cross-validated predictor of primary MI
according to AUC-ROC was the RFGB model as
shown in table 1. RFGB outperformed the other
tree learners, forest learners, and SVMs. The RPT
model did not score as well, ranking in the middle
of the propositional learners. It is of note that the
RFGB and RPT models significantly outperformed
their direct propositional analogs (Boosted Tree
and Tree models, respectively). The Bayesian mod-
el (NB; TAN) scores may be somewhat inflated
because only features known to be CHD risk fac-
tors were specifically chosen for this analysis. They
may be more prone to irrelevant feature noise, as
those models include all features into their final
models.

The precision-recall curves for the algorithms are
shown in figure 7 (SVMs are omitted as their out-
puts do not admit a ranking over examples). Med-
ically, the most important area is the region of
high recall (that is, sensitivity) because typically
the cost of leaving a condition undiagnosed is
high. In other words, the expected cost of a false
positive is much smaller than a false negative
because a false positive incurs the costs of addi-
tional interventions, while a false negative incurs
costs of untreated human morbidity, and usually
expensive, delayed treatments. Given that we can-
not accept models with many false negatives (that
is, low recall), we look to the high-recall region for
the best performing algorithm, and RFGB gives the
highest precision as shown in table 1.

In our secondary analysis, when changing the
case-control ratio we observed an increase in the
AUC-ROC as well as the expected increase in accu-
racy and decrease in precision shown in table 2.
We suspect the improvement in AUC-ROC may be
attributed to the larger population size, as for
example CC 1:3 has twice as many examples as CC
1:1. RFGB performance improved with increases
with forest size, with the greatest gains coming
between using 3 and 10 trees, and no overfitting
was observed using our largest 50-tree forest.1 Vary-

ing the number of clauses or tree depth made no
visible difference in RFGB performance, at least
when holding the number of trees fixed at 10. Per
parameter, we found that increasing forest size
improved prediction more than increasing indi-
vidual tree sizes, as we see by comparing equal-
parameter rows in table 2.

Figure 8 shows an example tree produced in the
RFGB forest. Direct interpretation of the tree can
lead to useful insights. In the example above, the
tree indicates that patients are more likely to have
a future MI event if they have had a normal non-
HDL cholesterol level reading in the last year com-
pared to patients who have had normal cholesterol
readings not in the last year. Now, since it is
implausible that the measurement itself is causing
MI, it could be considered a proxy for another “risk
factor,” which in this case could be physician con-
cern, as frequent lipoprotein measurements may
display a concern for atherosclerosis-related illness.
The set of trees can also be converted into a list of
weighted rules to make them more interpretable
(Craven and Shavlik 1996).

The density plot in figure 9 shows the ability of
RFGB and RPT models to separate the MI class
from the controls. It is clear from the far left region
of the RFGB graph that we can accurately identify
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Figure 7. Precision-Recall Curves.

Vertical lines denote the recall thresholds {0.95, 0.99, 0.995}. RFGB (dashed)
and RPT (dotted) are bolded. RFGB outperforms all other algorithms in the
medically relevant region (high recall). At recall = 0.9, the ordering of algo-
rithms (best to worst) is: RFGB, Random Forests, TAN, NB, RPT, Boosted Trees,
J48.



a substantial fraction of controls with few cases by
thresholding around 0.25, or more stringently at
0.05. This region captures an algorithm’s utility as
a screening tool, where we see that RFGB signifi-
cantly outperforms the others.

Discussion and Conclusion
In our work, we presented the challenging and
high-impact problem of primary MI from an EHR
database using a subset of known risk factors. We
adapted two SRL algorithms in this prediction
problem and compared them with standard
machine-learning techniques. We demonstrated
that RFGB is as good as or better than proposition-
al learners at the task of predicting primary MI
from EHR data. Each relational learner does better
than its corresponding propositional variant, and
in the medically relevant, high-recall region of the
precision-recall curve, RFGB outperforms all the
other methods that were considered.

One additional layer of complexity not
addressed in this experiment is the use of other

relational information such as hierarchies. EHRs
have hierarchies for diagnoses, drugs, and labora-
tory values, and it is important to be able to cap-
ture detail at each level. For example, characteris-
tic disease progression pathways stem from
infarctions of different heart walls, but at a high
level, the presence of any MI leads to standard
sequelae. Relational domains can easily incorpo-
rate this knowledge into hierarchical “is a” rela-
tions, whereas propositional learners must create
new features for every level. The challenge for rela-
tional tree-based learners is that the search algo-
rithm is greedy; identifying high-level relations
requires traversing several “is a” relationships first,
and thus they might not be found in a greedy
search. Expanding internal nodes to longer clauses
has been implemented with some success (Natara-
jan et al. 2011b, Anderson and Pfahringer 2009),
although this does have the effect of rapidly
increasing the number of features to consider dur-
ing branching. The use of SRL algorithms could
also allow the use of relations like patient physi-
cians and providers, which form complex relations
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 AUC-ROC Accuracy p P@R=0.95 P@R=0.99 P@R=0.995 p(P@R=0.99) 

Tree J48 0.744 0.716 4e-5 0.500 0.500 0.500 6e-7 

Boosted Trees 0.807 0.753 1e-4 0.634 0.572 0.532 4e-4 

Random Forests 0.826 0.785 4e-1 0.669 0.593 0.525 2e-3 

NB 0.840 0.788 8e-1 0.680 0.513 0.500 1e-4 

TAN 0.830 0.768 6e-3 0.662 0.518 0.500 2e-4 

SVM (linear) 0.704 0.704 5e-6 -- -- -- -- 

SVM (rbf) 0.761 0.761 1e-2 -- -- -- -- 

RFGB 0.845 0.791 -- 0.688 0.655 0.625 -- 

RPT 0.792 0.738 4e-6 0.622 0.595 0.578 4e-5 

Table 1. RFGB Gives the Highest Precision.

Area under the ROC curve, accuracy and corresponding p-value(RFGB versus all), precision at recalls (P@R), and p-val-
ue(RFGB versus all, P@R = 0.99). Bold indicates best performance.

 AUC-ROC Accuracy P@R=0.99 

CC 1:1;1:2;1:3 .84; .87; .88 .79; .80; .82 .66; .51; .43 

Trees 3;20;30 .80; .85; .85 .74; .80; .80 .61; .67; .66 

Clauses 3;20;30 .85; .85; .85 .79; .79; .79 .66; .66; .66 

Tree depth 1;5 .85; .85 .79; .79 .66; .66 

Table 2. Secondary Analyses.

RFGB performance as case-control (CC) ratio, number of clauses, trees, and tree depth are modified. Default number of
clauses = 10 and trees = 10.



less “patient-disease” oriented but ones that still
may be central to patient care. Questions regard-
ing disease heritability could also be addressed
through relational family-based analyses.

The design of analyses using predictive models
and EHR data also warrants some discussion. Natu-
rally, some patients will not seek frequent care, so
the information recorded in the EHR about them
will be sparse. This could potentially include the
lack of a reported MI when one actually occurred.
If we had not chosen to conduct a case-control type
of analysis, we would likely have increased the bias
of our findings toward patients with rich clinical
history being more likely to have a recorded MI,
simply because they have more medical encounters
documented in the EHR. However, by adopting this
design, we may have decreased our performance
due to class imbalance and subsampling the nega-
tive class. Also, this design required us to select a

future time at which MIs occur in cases. We chose
to predict MIs one month in advance, and other
durations could have been chosen instead.

Given our initial success, we plan to extend our
work by including more potential risk factors for
learning (that is, include all the measurements on
all the patients). This will be challenging as the
number and frequencies of the measurements will
differ greatly across patients. In our current model,
we used time as the last argument of our predi-
cates. While there is a vast body of work in learn-
ing and reasoning with temporal models in propo-
sitional domains, the situation is not the same for
relational models. We plan to investigate a princi-
pled approach to learning and reasoning with rela-
tional dynamic models that will allow physicians
to monitor the cardiovascular risk levels of patients
over time and develop personalized treatment
plans. Finally, we plan to build a complete

Articles

WINTER 2012   43
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Figure 8. The First Learned Tree in the RFGB Forest.

Given a patient A and his or her censor age B (that is, for cases, one month before the patient’s first MI; for controls, the censor age of the
corresponding case), if A had a normal non-HDL cholesterol measurement at time C, take the left branch, otherwise take the right branch.
Assuming we take the left branch, if the measurement C was within one year of the censor age, take the left branch again. The leaf regres-
sion value is the best estimate of the residual of the probability of the covered examples given the model at that iteration. The whole RFGB
forest is available at our website.2



machine-learning system for identifying risk fac-
tors across many diseases given the longitudinal
data available in the EHR and plan to deploy it in
a real clinical setting to identify its ability to
improve patient outcomes.
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