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Machine Learning for Predictive Maintenance:
a Multiple Classifier Approach

Gian Antonio Susto, Andrea Schirru, Simone Pampuri, Seán McLoone Senior Member, IEEE,
Alessandro Beghi Member, IEEE

Abstract—In this paper a multiple classifier machine
learning methodology for Predictive Maintenance (PdM) is
presented. PdM is a prominent strategy for dealing with
maintenance issues given the increasing need to minimize
downtime and associated costs. One of the challenges with
PdM is generating so called ’health factors’ or quantitative
indicators of the status of a system associated with a given
maintenance issue, and determining their relationship to op-
erating costs and failure risk. The proposed PdM methodol-
ogy allows dynamical decision rules to be adopted for main-
tenance management and can be used with high-dimensional
and censored data problems. This is achieved by training
multiple classification modules with different prediction
horizons to provide different performance trade-offs in terms
of frequency of unexpected breaks and unexploited lifetime
and then employing this information in an operating cost
based maintenance decision system to minimise expected
costs. The effectiveness of the methodology is demonstrated
using a simulated example and a benchmark semiconductor
manufacturing maintenance problem.

Index Terms—Classification Algorithms, Data Mining, Ion
Implantation, Machine Learning, Predictive Maintenance,
Semiconductor Device Manufacture.

I. INTRODUCTION

The increasing availability of data is changing the
way decisions are taken in industry [17] in important
areas such as scheduling [15], maintenance management
[24] and quality improvement [6], [23]. Machine learning
(ML) approaches have been shown to provide increas-
ingly effective solutions in these areas, facilitated by the
growing capabilities of hardware, cloud-based solutions,
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and newly introduced state-of-the-art algorithms. At the
same time the efficient management of maintenance
activities is becoming essential to decreasing the costs
associated with downtime and defective products [14],
especially in highly competitive advanced manufactur-
ing industries such as semiconductor manufacturing.

Approaches to maintenance management can be
grouped into three main categories which, in order of
increasing complexity and efficiency [22], are as follows:
i. Run-to-Failure (R2F) - where maintenance interventions
are performed only after the occurrence of failures. This
is obviously the simplest approach to dealing with main-
tenance (and for this reason it is frequently adopted),
but it is also the least effective one, as the cost of
interventions and associated downtime after failure are
usually much more substantial than those associated
with planned corrective actions taken in advance. ii.
Preventive Maintenance (PvM) - where maintenance ac-
tions are carried out according to a planned schedule
based on time or process iterations. With this approach,
also referred to as scheduled maintenance, failures are
usually prevented, but unnecessary corrective actions are
often performed, leading to inefficient use of resources
and increased operating costs.
iii. Predictive Maintenance (PdM)1 - where maintenance is
performed based on an estimate of the health status of
a piece of equipment [7]. PdM systems allow advance
detection of pending failures and enable timely pre-
failure interventions, thanks to prediction tools based
on historical data, ad hoc defined health factors, statistical
inference methods, and engineering approaches.

Among statistical inference based methods, those
based on ML are the most suitable for dealing with mod-
eling of high-dimensional problems, such as those aris-
ing in semiconductor manufacturing where hundreds
or thousands of physical variables (pressures, voltages,
currents, flows, etc.) act on the process [10], [26].

In this paper a new PdM methodology based on mul-
tiple classifiers is introduced for integral type faults (the
most frequent in semiconductor manufacturing), a term
which describes the failures that happen on a machine
due to the accumulative ’wear and tear’ effects of usage

1Other authors [8] refer to this class of maintenance approaches as
Condition-Based Maintenance
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and stress on equipment parts. Even if no direct evidence
of process/machine degradation is available, PdM tools
exploit process and logistic variables collected during
production to identify the ’footprint’ of this degradation
in the data. The proposed methodology, referred to as
Multiple Classifier (MC) PdM, can effectively deal with
the unbalanced datasets that arise in maintenance classi-
fication problems, that is datasets where the observations
relating to normal production greatly outnumber the ob-
servations associated with abnormal/faulty production
[22]. It also allows planning of maintenance schedules
using a statistical cost minimization approach.

The remainder of the paper is structured as follows:
Section II provides a brief literature review and an
introduction to ML-based approaches to PdM, while
Section III is dedicated to presenting the proposed MC
PdM methodology. Tuning guidelines and classification
approaches are discussed in Section IV. Then in Section
V, to demonstrate the principles and efficacy of MC
PdM, results are presented comparing MC PdM with
PvM for a benchmark semiconductor manufacturing
maintenance problem, namely, changing of filaments in
ion implantation tools. Finally, in Section VI, concluding
remarks and possible extensions of the work are dis-
cussed.

II. LITERATURE REVIEW

Maintenance issues can be completely different in
nature and the predictive information to be fed to the
PdM module has in general to be tailored to the par-
ticular problem at hand, thus justifying the presence
in the literature of many different approaches to PdM
[12]. However, PdM-related solutions based on ML tech-
niques seem to be among the most popular (see e.g. [5]
and [21] with reference to semiconductor manufacturing
applications).

ML-based PdM can be divided into two main classes:
i. supervised - where information on the occurrence of
failures is present in the modeling dataset;
ii. unsupervised - where logistic and/or process informa-
tion is available, but no maintenance related data exists.

The availability of maintenance information mostly
depends on the nature of the existing maintenance man-
agement policy: in the case of R2F policies the data
related to a maintenance cycle (the production activity
between two successive failure events) is available and
therefore supervised approaches can readily be adopted;
on the other hand, when PvM policies are currently in
place the full maintenance cycle may not be observable
given the fact that maintenance is generally performed
well in advance of any potential failure, and hence only
unsupervised learning approaches are feasible. When
possible, supervised solutions are evidently preferable:
given the wide diffusion of R2F maintenance policies in
industry, and hence the availability of suitable datasets,
we consider in this work a supervised approach to PdM.

From a ML perspective, supervised approaches re-
quire the availability of a dataset S

S = {xi, yi}
n
i=1 , (1)

where a couple {xi, yi} (called observation) contains the
information related to the i-th process iteration. Here,
vector xi ∈ R

1×p contains information related to the p
variables associated with available process or logistic
information. Depending on the type of output y two
classes of supervised problem are possible:
i. if y assumes continuous values a regression problem is
obtained;
ii. if y assumes categorical values a classification problem
results.

In PdM problems, regression-based formulations gen-
erally arise when predicting the Remaining Useful Life
of a process/equipment, directly [2] or indirectly (eg.
through the computation of the conditional reliability
[5]), while classification-based PdM formulations occur
when seeking to discriminate between healthy and un-
healthy conditions of the system being monitored [1].

While classification tools are a natural choice for dis-
tinguishing between faulty and non-faulty process itera-
tions based on observed process data, they do not map
naturally to health factors that can be extrapolated for
maintenance related decision making, unlike for exam-
ple, regression models of Remaining Useful Life. In the
following a methodology based on multiple classifiers is
presented to address this limitation.

III. MULTIPLE CLASSIFIER PDM

A. Classification for PdM

Let us suppose that data regarding N maintenance
cycles are available, for a total of n =

∑N
i=1 ni machine

runs. We define the matrix X ∈ R
n×p containing all the

collectible information

X =
[
x1 x2 . . . xn

]T
(2)

regarding p physical variables or logistic information on
the process or on the tool that are used as inputs to
the PdM module. Information on maintenance events is
contained in the variable Y . If during the run the fault
under consideration takes place, then the observation
is marked as faulty (F), and not faulty (NF) otherwise.
Accordingly:

Y (i) = yi =

{
F if iteration i is faulty
NF if iteration i is not faulty

. (3)

When dealing with R2F data, each maintenance cycle
ends with a failure, hence the available data contains N
samples for class F and n − N samples for class NF .
Based on X and Y , a classifier learns a decision rule f(·)
that assigns one of the two classes {F,NF} to each point
in the input space R

p.
The formulation presented above is weak from a PdM

perspective in two aspects:
1. only the current process iteration is classified, i.e. no
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fault prevention policy can be implemented.
2. no operating cost optimization policy is enforced.

As far as total operating cost minimization is con-
cerned, two key metrics can be defined, namely2:

1) Frequency of Unexpected Breaks (ρUB) - percentage
of failures not prevented;

2) Amount of Unexploited Lifetime (ρUL) - average
number of process iterations that could have been
run before failure if the preventative maintenance
suggested by the maintenance management mod-
ule had not been performed.

Different costs, cUB and cUL, can be associated with ρUB
and ρUL, respectively, where generally cUB >> cUL, given
that cUB relates to unplanned interruption of produc-
tion. It is not possible to simultaneously minimize both
metrics, rather an optimal trade-off solution is sought
through minimization of the total operating costs, as
defined by the weighted sum

J = ρUBcUB + ρULcUL. (4)

As formulated above, the classification problem is not
suitable for maintenance managements purposes, be-
cause it doesn’t facilitate identification of policies that
minimise J in (4).

From a classification perspective, the formulation de-
scribed in Eq. 3 also suffers from the fact that the dataset
is very unbalanced or skewed, with N samples in class F
and n−N samples in class NF and N ≪ n. Classifica-
tion using unbalanced datasets generally results in poor
prediction accuracy and generalization performance [9].

These issues are addressed by the MC PdM method-
ology presented in the next subsection.

B. MC PdM Concept

A possible approach to preventing unexpected failures
is to consider a different classification problem where,
instead of only labeling the last iteration of a mainte-
nance cycle as F , we label as F the last m iterations.
From a PdM perspective, this approach allows us to
provide more conservative maintenance recommenda-
tions by choosing larger values for the failure horizon
m. Moreover, by assigning more samples to the F class
we reduce the skewness of the dataset (Nm samples in
class F and n−Nm samples in class NF).

This can be repeated for k different values of the hori-
zon m. In the proposed MC PdM approach, k different
classifiers run on the module, each one facing a different
classification problem and therefore providing differ-
ent maintenance management performance outcomes in
terms of ρUB and ρUL.

The MC PdM scheme is depicted in Fig. 1. The j-th
classifier is associated with the labels Y (j), where, con-
sidering the t-th process iteration of the i-th maintenance

2The R2F approach clearly guarantees a total of ρUB = 1 and ρUL =

0, while the performance of PvM and PdM approaches depend on
some tuning parameters as will be illustrated in Section IV

x1

x2

x1

x2

x1

x2

y(1) y(2) y(k)

Classifier 1 Classifier 2 Classifier k

Fig. 1. 2-dimensional example for the k classifiers of the MC PdM
methodology: the labels NF (orange circle) and F (blue plus) change
with failure horizon m resulting in a different classification problem
for each classifier

cycle (of length ni) we have

y
(j)
t =

{
NF if t ≤ ni −m(j)

F otherwise
, (5)

where m(j) ∈ N
+; the associated PdM performance of

the j-th classifier is indicated by ρ
(j)
UB

and ρ
(j)
UL

.
In the presented approach the k classifiers work in

parallel and a maintenance event is triggered by the
decision making logic based on the following operating
costs minimization philosophy: given the current costs
cUB(t) and cUL(t) at time t, the MC PdM suggests a
corrective action when the j∗-th classifier

j∗ = arg min
j=1,...,k

J (j)(t)

= arg min
j=1,...,k

ρ
(j)
UB

cUB(t) + ρ
(j)
UL

cUL(t) (6)

outputs a label F classification.
The training procedure for MC PdM is sketched in

Algorithm 1. The performance of each classifier is eval-
uated using Repeated Random Sub-Sampling Validation
[16], also known as Monte Carlo crossvalidation (MCCV): Q
simulations are performed by randomly splitting the N
maintenance cycles into a training dataset of NTR = ⌊Nq⌋
maintenance cycles and a validation dataset of NVL =
⌈N(1− q)⌉ maintenance cycles, with 0 < q < 1. It has
been shown [20] that MCCV is asymptotically consistent
resulting in more pessimistic predictions of the test
data compared with full crossvalidation. Algorithm 1 is
applicable to any choice of classification algorithm. In
general (as in the case of the two algorithms presented
in Section IV-B) to set up the classifiers the tuning of one
or more hyper-parameters is required. This is achieved
through crossvalidation with the Missclassification Rate
(MCR)

MCR[%] = Percentage of missclassified samples

employed as a performance indicator.
Fab integration and on-line operation of the MC PdM

module are described in Fig. 2. Estimates of ρUB and
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Algorithm 1: MC PdM Training

Data: X , Y , k, q1, q2, Q1, Q2,
{
m(j)

}k

j=1

Result: Classifiers
{
f (j)

}k

j=1
and PdM performances

1. Let ρUB = [ · ] and ρUL = [ · ] (empty vectors)
for j = 1 to k do

2. Compute Y (j) as in Eq. 5 for i = 1 to Q1 do
3. Randomly split the maintenance cycles
between training and validation samples,
keeping the ratio q1
4. Compute the MCR of the classifier with
different hyper-parameters

5. Chose the hyper-parameters based on the
averaged MCR over the Q1 simulations
6. Compute f (j) with the selected
hyper-parameters
for i = 1 to Q2 do

7. Randomly split the maintenance cycles
between training and validation, keeping the
ratio q2
8. Compute f (j) with the selected
hyper-parameters
9. Compute ρUB and ρUL of f (j)

10. Compute ρ∗
UB

and ρ∗
UL

as averaged over the
Q2 simulations
11. ρUB = [ρUB; ρ

∗
UB

] and ρUL = [ρUL; ρ
∗
UL
]

Fig. 2. Overview of how the MC PdM module integrates with the
Fab

ρUL are provided by the historical and simulation per-
formances of the PdM module, while cUB and cUL are
provided by the user, and may be changed at each
evaluation of the PdM module (i.e. unexpected breaks
are much more costly during highly intense production
periods than during normal production periods).

While undesirable from a operating cost perspective,
when an unexpected break occurs during operation of a
PdM module it means that a full maintenance cycle has
been observed, and hence valuable new data is available
with which to update the MC PdM module and related
performance metrics. Therefore, as illustrated in Fig. 2, it
is important to retain the facility to update the MC PdM
module following deployment.

IV. IMPLEMENTATION DETAILS

A. Failure Horizon Selection

Performance of the MC PdM methodology increases
with the number of classifiers, k, since each classifier pro-
vides more information on the health status of the pro-
cess. Unfortunately k cannot be considered as a degree
of freedom in the MC PdM design since it is constrained
by the available computational and storage capabilities
and by the algorithm chosen for the classification. In
the following we propose two strategies for defining the
failure horizons of the k classifiers.

The k classifiers are distributed in order to have
equally spaced failure horizons in terms of the number
of process iterations; thus the k horizons employed in
(5) are assigned as follows

m(j) =

⌊
(j − 1)(M1 − 1)

k − 1

⌉
+ 1 for j = 1, . . . , k (7)

where ⌊u⌉ is the closest integer to u and M1 > 0 specifies
the maximum failure horizon and is chosen based on the
lengths of the maintenance cycles in the training dataset.

An alternative approach for selecting the failure hori-
zons is to express them as the percentage of a main-
tenance cycle, rather than a fixed number of process
iterations. Thus, in this second approach we have

y
(j)
t =

{
NF if t ≤

⌊
ni

(
1−m(j)

)⌉

F otherwise
, (8)

with

m(j) =
(j − 1)M2

k − 1
for j = 1, . . . , k (9)

where M2 ∈ (0, 1].
We remark that the choice of criteria used to define

the failure horizons depends on the nature of the fault
under investigation and, as such, there is no a-priori best
solution.

B. Classification Algorithms

The MC PdM methodology presented does not im-
pose any restrictions on the classification algorithm that
can be adopted for the individual classifiers. Here, we
consider two well known and widely used classification
techniques, namely: Support Vector Machines (SVMs)
and k-Nearest Neighbors (k-NN). This choice is moti-
vated by the fact that it provides a comparison between
two contrasting types of classifier; a powerful, but com-
putationally complex to estimate, model based classifier
(SVM); and a low-complexity non-parametric classifier
(k-NN). In the following the two selected classifiers are
briefly presented.

1) Support Vector Machines: SVMs are probably the
most popular approach to classification, thanks to their
high classification accuracy, even for non-linear prob-
lems, and to the availability of optimized algorithms for
their computation [3].

Consider the problem where two classes of data (F
and NF in the problem at hand) have to be classified;
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we initially consider the separable case, where the two
classes can be linearly separated. Suppose that a training
dataset S as in Eq. (1) is available and the values {−1, 1}
are assigned to the two classes which the data belong to,
for example

yi =

{
1 if i-th sample ∈ F
−1 if i-th sample ∈ NF

We define the hyperplane F0 in the R
p space as

F0 = {x |f(x) = xβ + β0 = 0} , (10)

where β ∈ R
p with norm ‖β‖ = 1. The classification is

then based on the choice of f(x) (and consequently of
F0): for a new sample xnew /∈ S , we classify

ŷnew =

{
1 (Class F ) if f(xnew) > 0
−1 (Class NF ) if f(xnew) < 0

(11)

Since, by assumption, the two classes are separable,
then it is possible to find a function f(x) s.t.

yif(x) > 0 ∀i;

The hyperplane yielding the largest margin Π between
the two classes is chosen: this can be rephrased as the
maximization problem

max
β,β0,‖β‖

Π

subject to yif(x) ≥ Π, i = 1, . . . , n.
(12)

We refer the interested reader to [4] for details on how
(12) is solved.

In real classification problems, classes are often non-
separable, i.e., the two categories overlap: SVMs can still
be used in this case by allowing some samples to be
on the ’wrong’ side of the separation line. With respect
to the separable case the optimization problem (12) is
changed by modifying the constraint to:

y (xiβ + β0) ≥ Π− ξ∗i = Π(1− ξi) ∀i, (13)

where the slack variables ξi have to satisfy the conditions:
ξi ≥ 0 (the points on the wrong side of their margin are
labeled with ξ∗i > 0, while the points on the correct side
have ξ∗i = 0) and

∑n
i=1 ξi ≤ C ∈ R. The optimization

problem is now (see [4] for a detailed solution):

min
β,β0

1
2 ‖β‖+ γ

n∑

i=1

ξi

subject to

{
y (xiβ + β0) ≥ 1− ξi, ∀i
ξi ≥ 0

,

(14)

where the regularization parameter γ governs the trade-
off between the margin width and the sum of values of
the slack variables.

SVMs are usually employed in combination with
Kernel Methods to further enhance the classification
performance by allowing non-linear solutions. The
computational cost for training a nonlinear SVM is
generally between O(n2) and O(n3), depending on
the algorithm employed for its computation. For more
detailed presentations on SVMs we refer interested
readers to [19] and [25].

Fig. 3. Schematic of a generic Ion Implanter tool. The tool can be
divided into three main parts: the Source ©, the Beamline Area �, the
End Station �

2) k-Nearest Neighbours: k-NN is probably the simplest
approach to classification as it requires just computation
of distances between samples.

In the k-NN procedure each point of the input space is
labelled according to the labels of its k closest neighbour-
ing samples (where distances are computed according to
a given metric, often the Euclidean norm).

The only parameter that requires tuning in k-NN is k,
the value of the number of samples in the considered
neighbourhood: the choice of k is usually data-driven
(often decided though cross-validation). Larger values
of k reduce the effect of noise on the classification, but
make decision boundaries between classes less distinct
[28].

Optimized algorithms for computing k-NN have a
computational cost of O(log n).

V. EXPERIMENTAL RESULTS

A. Use Case

We test the proposed MC PdM methodology for re-
placing tungsten filaments used in Ion Implantation [13],
one of the most important processes in semiconductor
manufacturing fabrication. Ion Implantation is used to
modify the electrical properties of wafers by injecting
doping atoms. It is often considered a ’bottleneck’ in
production lines due to the high cost of the tool, making
it a critical operation for throughput [11].

The components of a typical Implanter tool are illus-
trated in Fig. 3. The filament is part of the Ion Source
section of the tool. During the process, the filament is
heated and electrons are ’boiled’ off the heated filament.
The electrons are then accelerated in the beamline area
and impinge on the target wafers in the End Station.
The tungsten filament must be frequently replaced. Ev-
ery time a filament is changed, the tool is down for
approximately 3 hours making this the most important
maintenance issue for process engineers working on the
tool.

Several factors may influence the working duration of
a filament. For example, it is known that high values
of pressure, voltage and filament current can drastically
reduce the lifetime of the filament. The operations of
cleaning, installation and degasification can also have a
fundamental impact on filament ’health’ and duration.
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Physical/Electrical Variable Quantity
Current 9

Current Transfer Ratio 1
Deceleration 1

Flow 1
Number of Scans 1

Plasma Gun Emission 1
Position 2
Pressure 3

Quantity of Electric Charge 2
Scan Speed 1
Tilt Angle 2

Voltage 7

TABLE I
RECORDED TOOL VARIABLES

Type Based on: Acronym

PvM
Mean µ PvM-µ
Median η PvM-η

PdM
Linear SVM PdM-lin

Gaussian Kernel SVM PdM-rbf

MC PdM
k-NN MC PdM-knn
SVM MC PdM-svm

TABLE II
TESTED MAINTENANCE MANAGEMENT TECHNIQUES

B. Data Description

The available data consists of N = 33 maintenance
cycles, with the filament maintained using a R2F policy
(i.e. each maintenance cycle consists of the data for the
implanter tool from the installation of a new filament to
the point that the filament breaks and the tool is stopped
for maintenance), for a total of n = 3671 batches.

A total of 31 variables, as listed in Table I, were
recorded from the ion-implantation tool during the n
runs. These variables have a time series evolution during
each run, with some presenting with a non-uniform
sampling rate from observation to observation. In or-
der to construct a design matrix to feed the classifiers,
features must be extracted. A classical approach [18] to
extracting such features is to rely on statistical moments.
In this work we extracted 6 features for each of the
31 time series, namely: maximum, minimum, average,
variance, skewness and kurtosis. After constant variables
are discarded a total of p = 125 input variables are
retained in the dataset.

C. Comparison of SVM and kNN Based Approaches

The MC PdM approach has been tested on the prob-
lem described above using the classification algorithms
described in Section IV-B. We use MC PdM-knn and
MC PdM-svm to denote MC PdM implemented with
k-NN and SVM, respectively. In the case of SVM, we
have employed Radial Basis Function (RBF) kernels to
implement the non-linear classification boundaries in
the linear framework presented in Section IV-B (at the
expense of a more complicated tuning procedure, see
[4]). A linear SVM implementation, denoted PdM-lin, is
also considered.

The maintenance strategies investigated are
summarized in Table II. A number of approaches
are compared to MC PdM as follows:

1) A simulated PvM policy: PvM policies are usually
based on the mean µ or median η of the maintenance
cycle lengths and on the definition of an optimal action
threshold τ∗µ or τ∗η . Once τ∗µ is computed, then the PvM
maintenance is triggered if

fµ = iterations since last maintenance > µ− τ∗µ , (15)

and similarly for the median. The PvM policy based on
the mean (PvM-µ) is outlined in Algorithm 2 (the version
based on the median, PvM-η, is a natural extension).

Algorithm 2: PvM module

Data: Y , cUB, cUL
Result: Maintenance Rule (defined by τµ∗), ρµ

UB
, ρµ

UL

and Jµ(Tµ)
1. Compute µ, the mean number of process
iterations in a maintenance cycle
2. Define a set of threshold values Tµ ∈ R

d

3. Let ρµUB = [ · ] and ρµUL = [ · ] (empty vectors)
for j = 1 to N do

4. Compute ρµ
UB

and ρµ
UL

for all entries in Tµ

5. ρµUB = [ρµUB; ρ
µ
UB

] and ρµUL = [ρµUL; ρ
µ
UL
]

6. ρµ
UB

= Mean(ρµUB) and ρµ
UL

= Mean(ρµUL)
7. Compute Jµ(τµ) for all entries in Tµ: Jµ(Tµ)
8. Let τµ∗ = minτµ∈Tµ Jµ(τµ)

2) An SVM Classification distance-based PdM system:
This is based on the PdM approach developed in [24]
and involves exploiting the distance from a computed
SVM decision boundary to define a metric for the dis-
tance an observed sample is from a faulty situation.
The assumption is that the more stress on a machine,
the closer statistically we get to a faulty situation and
hence the distance from the separation boundary of the
two SVM classes decreases. The resulting PdM module
recommends that a corrective action be performed when

f(x) < τ ∈ R
+, (16)

and different choices of τ affect the performance of the
PdM in terms of ρUB and ρUL. We consider here both
linear SVM (PdM-lin) and RBF kernel SVM (PdM-rbf)
classifiers.

D. Settings and Results

The parameters employed in the simulations of the
MC PdM methodology are

• k = 10;
• M1 = 85.

These values have been selected manually for illustra-
tive purposes. Setting M1 = 85 ensures that the PdM
modules produce no unexpected breaks, while selecting
k = 10 gives sufficient diversity in performance in terms
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Fig. 4. Average ρUL over Q2 Monte Carlo simulations with the various
maintenance management approaches

of ρUL and ρUB to be effective. The criterion described
in Eq. (5) and Eq. (7) was used to select the failure
horizon for each classifier as this was found to provide a
better distribution of results in terms of ρUL and ρUB than
the one described in Eq. (8) and Eq. (9). In the interest
of compactness, the results of this investigation are not
included here.

As described in Algorithm 1, prior to application
the hyper-parameters of the MC PdM classifiers must
be tuned using cross-validation techniques. This also
applies to the SVM classification distance based PdM
approach. In the case of linear SVMs, only one parameter
has to be optimised, namely, the variable γ in Equation
(14), while for RBF SVMs two parameters need to be
tuned (γ and the variance of the Gaussian kernels). In
the case of k-NN the parameter k (the size of the neigh-
bourhood) has to be set. The parameters we employed
in the cross-validation procedure are:

• q1 = q2 = 0.7;
• Q1 = Q2 = 1000.

Cross-validation outcomes are not detailed here due to
space constraints, but we report the fact that the optimal
value for the parameter k in MC PdM-knn is consistently
equal to 1 in the simulations. This may be due to the high
dimensionality of the problem.

In Fig. 4 and 5 the average performance of the various
maintenance approaches is reported in terms of ρUL and
ρUB for different values of m over Q2 Monte Carlo simu-
lations. The thresholds of the PvM and PdM approaches
are scaled to facilitate comparison with the MC PdM
approaches. The linear scaling has been applied after ρUL
and ρUB has been computed with the various approaches
so that their performances are in a similar range when
plotted in Fig. 4 and Fig. 5.

It can be appreciated how PdM and MC PdM outper-
form PvM approaches for both metrics. In the case of ρUL
the MC PdM classifiers achieve similar performance to
the PdM approaches, with PdM-rbf marginally superior
for low values of m and MC PDM-svm marginally
superior for higher values. The improves performance
with higher m can be ascribed to the fact that these
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Fig. 5. Average ρUB over Q2 Monte Carlo simulations with the various
maintenance management approaches
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Fig. 6. Optimal value of J for the various maintenance strategies as
a function of the ratio of the costs cUL/cUB (averaged results over Q2

Monte Carlo simulations)

classifiers are estimated using more balanced (i.e. less
skewed) datasets. In the case of ρUB, MC PdM-svm
consistently achieves the best results. Overall when con-
sidering both ρUL and ρUB MC PdM-svm guarantees
better performance than MC PdM-knn, but this is at
the expense of a much more time consuming tuning
procedure.

In Table III the average classification accuracy (100% -
MCR), precision and recall are reported for the various

kNN SVM
m Accuracy Precision Recall Accuracy Precision Recall

1 98.51 69.27 61.69 98.52 69.34 62.96
10 98.47 64.09 67.85 98.47 63.14 70.84
20 98.39 58.00 75.42 98.37 56.61 77.77
29 98.29 53.22 81.72 98.33 54.46 85.79
38 98.15 48.27 87.03 98.16 48.85 88.95
48 97.95 43.31 91.09 97.95 43.36 92.94
57 97.74 39.44 95.30 97.74 39.61 98.15
66 97.52 35.96 97.76 97.57 36.96 99.63
76 97.26 32.74 99.36 97.26 32.86 100.00
85 97.03 30.23 99.94 97.08 30.08 100.00

TABLE III
AVERAGE ACCURACY, PRECISION AND RECALL FOR THE MC PDM

MODULES (PERCENTAGE RESULTS) OVER Q2 MONTE CARLO

SIMULATIONS
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classifiers that make up MC PdM-knn and MC PdM-
svm. In computing these values a process iteration with
a broken filament is considered as the positive condition,
while an uninterrupted process iteration is considered
as the negative condition. It can be observed that as the
fault horizon m increases, precision decreases (more false
positives, i.e. unexploited lifetime) while recall increases
(less false negatives, i.e. unexpected breaks).

In Fig. 6 the performance of the six maintenance ap-
proaches is plotted as a function of the ratio of the costs,
cUL/cUB. Here, J is the minimum total cost achieved with
each approach and is computed based on the average
Monte Carlo results reported in Fig. 4 and 5. The values
of the costs ratio cUL/cUB were chosen with the aid of
process experts in order to have plausible results for the
problem at hand.

These results highlight that MC PdM-svm consistently
guarantees better performance than any of the other
approaches considered. This is the most important out-
come of the present work, since it demonstrates that
the proposed maintenance methodology achieves the
lowest operating costs while at the same time being
robust to different choices of ρUL and ρUB. MC PdM-knn
consistently delivers lower operating costs than classical
PvM techniques and exhibits comparable performance to
PvM-svm, especially for low values of the ratio cUL/cUB.

VI. CONCLUSIONS

A novel multiple classifier PdM system for integral
type faults has been presented. The multiple ML clas-
sifiers work in parallel to exploit the knowledge of the
tool/logistic variables at each process iteration in order
to enhance decision making. The proposed tool guar-
antees improved maintenance management decisions in
terms of minimising operating cost and can be applied
to any maintenance problems characterised by integral
type faults provided R2F historical data is available or
can be collected.

The MC PdM module is robust to variations in the
operating costs associated with unexpected breaks and
unexploited equipment part lifetime that can occur over
time. It also allows the user to dynamically change main-
tenance policy based on current costs and needs of man-
ufacturing production. Process engineers are provided
with a tool that enables them to adjust the performance
and the action policy so that the total operating cost is
minimized. Moreover, the presence of several classifiers
allows the proposed tool to be employed as a health
factor indicator in a more natural and straightforward
fashion that with other PdM approaches. Specifically, the
k classifiers provide an estimate of the current status of
the maintenance issue, enhancing process understand-
ing and allowing cost aware maintenance management
decisions at any time.

The proposed methodology has been demonstrated for
a semiconductor manufacturing Ion-Implanter related
maintenance task and shown to guarantee better perfor-
mance than classical PvM approaches and a single SVM

classifier distance based PdM alternative. It has also been
shown in this case study that SVMs offer superior per-
formance to k-NN classifiers when implementing MC-
PdM, and that in general MC-PdM-knn also consistently
outperforms PvM approaches.

The high dimensionality of datasets typical of PdM
problems encountered in semiconductor manufacturing
and other manufacturing industries, suggests that par-
simonious (or sparse) classification approaches such as
Relevance Vector Machines [27] could provide competi-
tive results. This will be the subject of a future extension
of the present work.

We have seen how the choice of the fault horizon m
strongly affects the performance of the corresponding
classifier in MC PdM. It may be the case that some areas
of the [ρUB, ρUL] space are more ’interesting’, given the
associated costs, than others in the context of minimis-
ing total operating costs. One approach to cope with
this issue is to employ a two steps procedure, where
classifiers assigned to an uninteresting area of [ρUB, ρUL]
are reallocated in the second training iteration to more
relevant areas of the cost space.
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