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Abstract—In this paper, a novel machine learning (ML)
framework is proposed for enabling a predictive, efficient
deployment of unmanned aerial vehicles (UAVs), acting as
aerial base stations (BSs), to provide on-demand wireless service
to cellular users. In order to have a comprehensive analysis
of cellular traffic, an ML framework based on a Gaussian
mixture model (GMM) and a weighted expectation maximiza-
tion (WEM) algorithm is introduced to predict the potential
network congestion. Then, the optimal deployment of UAVs is
studied to minimize the transmit power needed to satisfy the
communication demand of users in the downlink, while also
minimizing the power needed for UAV mobility, based on the
predicted cellular traffic. To this end, first, the optimal partition
of service areas of each UAV is derived, based on a fairness
principle. Next, the optimal location of each UAV that minimizes
the total power consumption is derived. Simulation results
show that the proposed ML approach can reduce the required
downlink transmit power and improve the power efficiency by
over 20%, compared with an optimal deployment of UAVs with
no ML prediction.

I. INTRODUCTION

The demand for cellular data is experiencing an unprece-

dented increase. The next generation, 5G wireless cellular

network is estimated to support a 200 fold increase in wireless

data traffic by 2030 [1]. To cope with this exponential in-

crease in demand, there has been growing interest in network

densification for cellular systems as a means to improve

spectrum efficiency and cellular network capacity [2].

The need for additional base stations (BSs) is more pro-

nounced in cellular hotspot areas that exhibit a steep surge in

data demands during temporary events, such as concerts and

football games. To satisfy such temporary surges in traffic, the

use of an unmanned aerial vehicle (UAV) as an aerial BS can

be a more flexible and cost-effective approach, compared with

a traditional, ground BS [3]. A mobile UAV can intelligently

change its position, which is suitable to provide on-demand

wireless service to ground users, thus overcoming coverage

holes and alleviating congestions [4].

In order to deploy UAVs in a timely and flexible manner,

network operators must be able to predict potential hotspots

and congestion events a priori. To this end, there is a need to

apply machine learning (ML) techniques to analyze demand

patterns [5]. The ability of ML to exploit big data analytics

enables a comprehensive prediction of a network’s traffic

amount and data distribution. By using such predictions,

aerial UAV BSs can be optimally deployed to the target

area beforehand thus providing an on-demand, delay-free and

power-efficient wireless service to ground users.

The use of UAVs as cellular BSs has been addressed in

[4], [6]–[10]. Meanwhile, in [4] and [7], the authors studied

the use of UAVs as flying BSs to provide energy-efficient

service to wireless users. Moreover, the work in [8] and [9]

focus on using UAVs as relays, and the work in [10] studies

an energy-efficient trajectory design. However, most of the

existing works assume a time-invariant wireless network, or

a given distribution of cellular users. To properly analyze

an on-demand deployment of UAV BSs, the temporal and

spatial patterns of the cellular traffic data must be predicted

so as to optimally deploy UAVs to satisfy a time-varying data

demand.

There are existing woks, such as [9], [11], and [12],

that apply ML techniques to optimize UAV deployment.

In [9], a neural model is formulated to study the map of

UAVs to each hotspot areas. The authors in [11] studied

the trajectory optimization using neural networks, while a

segmented regression approach is proposed in [12] for UAV

channel modeling, based on the terrain topology. However,

none of these works demonstrates the benefit of applying ML

to deploy UAVs on-demand and improve power efficiency

and network performance. In order to analyze the data traffic

of cellular networks, the authors in [13] studied a BS sleeping

strategy for minimizing power consumption. However, the

authors focused only on a low-traffic cellular network, which

is not scalable for the more practical, congested scenarios.

The main contribution of this paper is a novel machine

learning framework that enables operators to predict conges-

tions and hotspot events, and subsequently, deploy temporary

UAV BSs to provide aerial wireless service to mobile users,

while minimizing the UAV power needed for downlink

communications and mobility. We consider a heterogeneous

cellular network, in which ground BSs can offload the

wireless service to aerial UAVs when the predicted data

demand of mobile users exceeds the network capacity. To

guarantee a no-delay wireless service, a Gaussian mixture

model (GMM) is introduced based on a weighted expectation

maximization (WEM) algorithm [14] to predict the cellular

data traffic. Then, the optimal deployment of UAVs is studied

to minimize the power needed for UAV transmission and
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mobility, given the predicted traffic. To this end, we first study

the division of service areas, based on a fairness principle.

Then, we derive the optimal UAV locations that can minimize

the total power consumption of the network. To the best of

our knowledge, this is the first work that leverages ML to

predictively deploy UAVs as aerial BSs. Simulation results

show that the proposed approach can reduce the required

downlink transmit power and improve the power efficiency

by over 20%, compared with an optimal deployment of UAVs

with no ML prediction.

The rest of this paper is organized as follows. Section II

presents the system model and problem formulation. Section

III outlines the proposed ML and UAV deployment frame-

work. Simulation results are presented in Section IV, while

conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a time-variant heterogeneous cellular network

that serves a group of cellular users distributed in a geo-

graphical area A. The cellular network consists of a set I of

I UAVs and a set J of J BSs. Each user can receive data

from both ground BSs and UAVs. Initially, a traditional BS

will be chosen to serve the wireless users. However, if the

downlink of the ground cellular system is overloaded due to

heavy traffic, the ground BS will request the deployment of

UAV BSs to offload some of its users.

Ground BSs and UAVs employ different frequency bands

for downlink communications. Each UAV is equipped with

directional antennas that enable beamforming. Therefore,

interference among UAVs is negligible. Furthermore, each

UAV adopts a frequency division multiple access (FDMA)

technique and assigns a dedicated channel to one of its

downlink users. Hereinafter, we use the notion of an aerial

cell to indicate the service area of each UAV, and aerial

cellular users to indicate users that are served by UAV

cellular BSs.

Each UAV has a limited energy resource, that must be

efficiently used for joint communications and mobility. To

this end, the UAVs should intelligently change their positions

to meet the required users’ data rates, as well as to minimize

their transmission power. However, given the cellular network

is time-variant, the cellular traffic demand will change over

time, which complicates the efficient deployment. To guaran-

tee timely aerial service without having UAVs continuously

moving, the network operator can use ML techniques to

predict its network’s data demand, and then, request the

deployment of UAV BSs to the predicted hotspot areas, before

the congestion occurs.

A. Air-to-ground channel model

Given a typical ground receiver located at (x, y) ∈ A and

a UAV i ∈ I located at (xi, yi, hi), the path loss of the

downlink communication from UAV i to the receiver will be

[15]:

Li(x, y)[dB] = 20 log

(

4πfcdi(x, y)

c

)

+ ξi, (1)

where di(x, y) =
√

(x− xi)2 + (y − yi)2 + h2
i is the dis-

tance between the ground receiver and UAV i, fc is the

carrier frequency, c is the speed of light, and ξi is the average

additional loss to the free space propagation loss which

depends on the environment. If the wireless link between

UAV i and a ground user is line-of-sight (LOS), ξLOS
i ∼

N(µLOS, σ
2
LOS); otherwise, the non-line-of-sight (NLOS) link

has an additional loss of ξNLOS
i ∼ N(µNLOS, σ

2
NLOS). The

NLOS link will experience a high path loss due to shadowing

and reflection. The probability of existence of LOS links

between UAV i and the ground user will then be [15]:

pLOS
i (x, y) =

1

1 + a exp
(

−b[ 180π θi(x, y)− a]
) , (2)

where a and b are constant values which depend on the envi-

ronment, and θi(x, y) = sin−1( hi

di(x,y)
) is the elevation angle

of UAV i with respect to the receiver. Then, the probability

of having a NLOS link is pNLOS
i (x, y) = 1− pLOS

i (x, y) [4].

Consequently, the average path loss from UAV i to the

ground reciever at (x, y) in the linear scale can be given as

L̄i(x, y) = pLOS
i (x, y)LLOS

i (x, y) + pNLOS
i (x, y)LNLOS

i (x, y).
(3)

Therefore, the downlink capacity that UAV i can provide to

a mobile user located at (x, y) will be:

Ri(x, y) = Wi log2

(

1 +
Pi(x, y)Gi(x, y)/L̄i(x, y)

Win0

)

, (4)

where Wi is the transmission bandwidth of UAV i, Pi(x, y)
is the transmission power, Gi(x, y) is the antenna gain of

UAV i, and no is the average noise power spectral density.

For tractability, we assume a perfect beam alignment between

the UAV and the mobile receiver, and each UAV has the same

antenna gain. Therefore, Gi(x, y) = G, which is a constant

for all i ∈ I and (x, y) ∈ A. Assume that the total available

bandwidth of UAV i is Bi and the number of mobile users

associated with UAV i is Ni, then the downlink bandwidth

of each channel will be Wi = Bi/Ni.

The number Ni of aerial users that are served by UAV i
within its aerial cell is given by:

Ni = N

∫ ∫

Ai

f(x, y) dx dy, (5)

where N =
∑

i∈I
Ni is the total number of aerial users, Ai

is the service area of UAV i, and f(x, y) is the distribution

of aerial users. In order to provide a universal wireless

service, the aerial cells of all UAVs should fully cover the

geographical area A without overlap. That is, ∪i∈IAi = A,

and for i 6= j and i, j ∈ I, Ai ∩Aj = ∅. However, note that,

the value of N and the user distribution f(x, y) will change,

according to the offloading requests from ground BSs.

B. Cellular traffic analysis

To provide an on-demand service, network operators need

to change the UAVs’ locations frequently, according to the

offload requests from ground BSs, to satisfy the instant traffic

demand. However, such continuous movement will consume



excessive power. To efficiently deploy UAVs while guaran-

teeing a no-delay wireless service, a dataset of the cellular

traffic history can be exploited by the network operator for

traffic prediction. This dataset, represented by a matrix Q,

records discrete data during each time period T for M days:

Q = [N(x, y, t), D(x, y, t)|∀t ∈ T , (x, y) ∈ A], (6)

where T = {T, 2T, · · · , 24M} is a discrete set of time, and

the unit of T is hour. The first item N(x, y, t) represents the

number of aerial users that are offloaded from a BS at (x, y)
to a UAV during a time interval from t to t + T , and the

second item D(x, y, t) denotes the amount of cellular traffic

that a UAV needs to provide for the aerial users from a BS

at (x, y) during the period from t to t+ T .

Let N be the total number of aerial users, D be the total

amount of aerial cellular traffic, f(x, y) be the spatial distri-

butions of aerial users, and g(x, y) be the spatial distribution

of aerial data traffic in A. Without a comprehensive analysis

of Q, the values of N , D, f(x, y) and g(x, y) will change

over time, based on the offloading requests of ground BSs,

which causes a frequent movement of UAVs to meet the

instant traffic demand, and excessive power consumed on

mobility.

Therefore, our goal is to develop a centralized ML ap-

proach to predict N and f(x, y) based on N(x, y, t), and D
and g(x, y) based on D(x, y, t), such that at the beginning

of each period T , network operators can optimally deploy

UAVs to minimize the power consumptions, while during

each interval the locations of UAVs remain fixed.

C. Data rate requirement

Given the predicted information on the total amount of

aerial cellular traffic D, and the distribution of aerial cellular

traffic g(x, y), the average data rate requirement within a

service area Ai of UAV i can be given by

αi =
1

T

∫ ∫

Ai

D · g(x, y) dx dy. (7)

Since the communication capacity of UAV i should be greater

than or equal to the rate demand of all users in its aerial cell

Ai, we formulate the data rate requirement as follows,
∫ ∫

Ai

Ri(x, y) dx dy ≥ αi, (8)

i.e.,

Ri(x, y) ≥
Dg(x, y)

T
. (9)

We define β(x, y) = Dg(x,y)
T as the average minimum data

rate requirement for the aerial user at (x, y). Based on (4) and

(9), the minimum transmit power that UAV i should provide

to communicate with the user at (x, y) will be:

Pmin
i (x, y) =

Bin0L̄i(x, y)

GNi

(

2β(x,y)Ni/Bi − 1
)

. (10)

Note that, the values of Ni and β(x, y) in (10) will depend

on the output of the cellular traffic analysis.

Consequently, the total transmit power of all UAVs needed

to satisfy the data demand of all aerial users in A will be:

Pc =
∑

i∈I

∫ ∫

Ai

Pmin
i (x, y) dx dy. (11)

Without loss of generality, we assume that the maximum

transmission power of UAVs is sufficient to meet the data

demand of aerial users. Meanwhile, the total power for each

UAV i ∈ I to move from its current location (xo
i , y

o
i , h

o
i ) to

the new location (xi, yi, hi) will be:

Pt = γ
∑

i∈I

[

(xo
i − xi)

2 + (yoi − yi)
2 + (ho

i − hi)
2
]

1

2 , (12)

where γ is the rate of energy consumption a UAV needs to

move by one meter.

Then, the second objective is to jointly find the optimal

location and the partition of the service area Ai for each

UAV i ∈ I, such that the total power used for downlink

transmissions and mobility can be minimized, i.e.,

min
Ai,xi,yi,hi

Pc + Pt, (13a)

s. t.

∫ ∫

Ai

Pmin
i (x, y) dx dy

P a
i

= κ, ∀i ∈ I, (13b)

∪i∈I Ai = A, (13c)

Ai ∩ Aj = ∅, ∀i 6= j ∈ I, (13d)

where P a
i is the available power of UAV i, and κ is a

constant for all i ∈ I. The first constraint represents a fairness

principle, whereby the ratio of the data traffic offloaded to

each UAV equals to the ratio of the available power of each

UAV. The second and third constraints guarantee that the

service areas of all UAVs fully cover A without overlap.

Note that, without an ML analysis, the function Pmin
i , as

well as Pc, will change, based on the offloading requests of

ground BSs. Thus, the network operator needs to reorganize

the aerial cellular system to meet the instant traffic demand

frequently. However, with the predicted information of cel-

lular traffic, the optimal problem (13) is fixed within each

period T . Therefore, at the beginning of each interval, UAVs

are deployed according to the solution of (13), and within

the period, the location and aerial cell of each UAV remain

unchanged.

III. PROPOSED PREDICTION AND UAV DEPLOYMENT

FRAMEWORK

Next, we propose a novel approach to address the afore-

mentioned problems. First, a centralized ML approach will be

proposed to predict the values of N , D, f(x, y) and g(x, y)
for each time interval T . With the prediction information,

the power minimization problem in (13) will be solved to

optimally deploy each UAV.

A. Cellular traffic prediction

In order to have a robust and practical analysis, we use the

real dataset 1 of City Cellular Traffic Map [16], which records

1Our approach can accommodate other datasets without loss of generality.



the time, the location of each BS, the number of mobile users,

and the total amount of data that each BS serves during each

hour, from Aug. 19 to Aug. 26, 2012, in a median-size city

in China. We assume that the maximum number of mobile

users that each BS can serve within one hour is a fixed

number of Nm, and the maximum amount of cellular data

is a constant Dm for all BSs. Thus, a new dataset is gen-

erated to capture the traffic of the aerial cellular network as

Q
′

= [N(x, y, t)−Nm, D(x, y, t)−Dm|∀t ∈ T , (x, y) ∈ A],
in which N(x, y, t)−Nm is the number of aerial users from

hour t to t+ 1, and D(x, y, t)−Dm is the amount of aerial

cellular traffic. For notation simplicity, hereinafter, we use

Q to denote the aerial traffic dataset, instead of Q
′

. Since

N(x, y, t) and D(x, y, t) have an analogous data structure,

a similar approach will be applied to analyze N(x, y, t) and

D(x, y, t). For simplicity, we keep the following discussion

only on D(x, y, t). Therefore, the objective is to use ML to

formulate the temporal and spatial pattern of D(x, y, t).
There are three key assumptions in the following ML

analysis. First, due to the periodicity of human activity, the

cellular traffic presents a repetitive daily pattern [17]. Based

on this observation, we assume that the total cellular traffic

during a specific hour of different days follows the same

distribution. Therefore, we divide the dataset into 24 subsets,

by merging the data of the same hour from different days.

Second, we assume that the traffic amount between each

hour of one day is independent. Therefore, given the 24 sub-

datasets, 24 independent models will be built to study the

pattern of each objective value of each hour. Furthermore, we

assume that the temporal feature of D(x, y, t) is independent

from the spatial distribution. As a result, two separate models

will be studied to identify the temporal feature D(t) and the

spatial feature g(x, y) of D(x, y, t) for each hour.

The model to capture the temporal and spatial charac-

teristics of D(x, y, t) relies on a GMM, which assumes

that the data distribution can be modeled by the sum of

multiple Gaussians with different weights as [18] p(x) =
∑K

k=1 πkN (x|µk,Σk), where x is a general data point, p(x)
is the probability distributed at x, K is the number of

individual Gaussian models in GMM, and
∑K

k=1 πk = 1,

πk ∈ [0, 1] is the mixing coefficient for each Gaussian.

1) Spatial distribution model: First, we study the mod-

eling approach of the spatial feature g(x, y) of D(x, y, t).
Given a time t ∈ {1, 2, · · · , 24}, the data distribution of the

cellular traffic from t to t+ 1 can be calculated by

gt(x, y) =
D(x, y, t)

∫ ∫

A
D(x, y, t) dx dy

. (14)

Then, a dataset Gt is formed by all the distribution gt(x, y)
of M days for the specific hour t, and we seek to build a

GMM to capture a pattern of data distribution for time t as

gt(x) =

Kt

∑

k=1

πt
kN (x|µt

k,Σ
t
k), (15)

where x = (x, y) is the location vector. To find the parame-

ters of Kt, πt
k, µt

k, and Σ
t
k, for a given t ∈ {1, 2, · · · , 24},

Algorithm 1 Proposed algorithm to find parameters of the

spatial distribution model gt(x, y)

Input: Gt for a given t
Output: {πk}, {µk} and {Σk}, for each k ∈ {1, · · · ,K}

Part I: Weighted K-means for parameter initialization
Input: Gt

Output: K, {µk}k∈{1,2,··· ,K}
A. For K = Kmin : Kmax

1. Randomly choose K initial values of {µk}k∈{1,··· ,K},
2. Loop:

a. Calculate the weighted distance of each data point to each µk by
D(x, y, t)|x− µk|,

b. Assign each data point x to cluster k∗, such that
k∗ = argmink D(x, y, t)|x− µk|,

c. Recalculate µk by averaging the values of data points belonging
to cluster k as µk =

∑
Ck

D(x, y, t)x/
∑

Ck
D(x, y, t),

d. Check convergence: if {µk}k∈{1,2,··· ,K} changes.
B. Choose the value of K that minimizes the ratio of intra-cluster to inter-

cluster distance [18].

Part II: Weighted EM iteration
Input: Gt, K, {µk}k∈{1,2,··· ,K}

Output: {πk}, {µk} and {Σk}, for each k ∈ {1, · · · ,K}
1. Initialize Σk to be an identical matrix, and πk = 1/K.
2. E step: Calculate the posterior probability for each data point xn

belonging to each cluster k by

rnk = πkN (xn|µk,Σk)/
∑K

i=1
πiN (xn|µi,Σi),

3. M step: Recalculate the parameters using the posterior probability rnk

a. µk =
∑N

n=1
D(x, y, t)rnkxn/Nk

b. Σk =
∑N

n=1
D(x, y, t)rnk(xn − µk)(xn − µk)

T /Nk

c. πk = Nk/K
where Nk =

∑N
n=1

D(x, y, t)rnk .
4. Check the convergence by (16). If not converged, return to E step.

and k ∈ {1, · · · ,Kt}, first, a classification approach based

on a weighted K-means method is used to group the data x

into K clusters, and the weight D(x, y, t) is the data amount

at x = (x, y). Then, the WEM algorithm will be used to

find the optimal parameters of GMM. The convergence of

the WEM iterative approach can be evaluated by the log

likelihood function as

lnL(Σ,µ, π) =
∑

n

ln
∑

k

πkD(xn)g
t(xn|Σk,µk), (16)

whose value will increase as the iteration time increases. Our

detailed approach is summarized in Algorithm 1.

2) Temporal distribution model: Given a time t, the total

aerial traffic amount in the system from t to t + 1 can be

calculated by Dt =
∑

(x,y)∈A
D(x, y, t). By gathering the

data Dt of M days, we have a dataset Dt = {Dt
1, · · · , D

t
M}.

The GMM that captures the temporal pattern of Dt is

p(Dt) =
∑V t

v=1 π
t
vN (Dt|µt

v,Σ
t
v). The approach to model

the temporal distribution Dt for D(x, y, t), is similar to

the algorithm in Algorithm 1. However, both the K-means

and EM algorithm do not add weight to each data point.

As a result, by ignoring all D(x, y, t) used in Table 1 and

substituting its value by one, Algorithm 1 can be applied

to find the temporal pattern Dt. The mixture Gaussian

model p(Dt) is a probability density function (pdf) over the

cellular data amount, from which we can get the cumulative

distribution function (CDF) as Ct(d) =
∫ d

−∞
p(Dt) dDt.

The predicted data amount can be estimated by the CDF



with a threshold. For example, with a threshold of 60%, the

predicted traffic amount over the aerial networks can be given

by Dt = C−1
t (0.6). The ML analysis of the temporal feature

N(t) and the spatial feature f(x, y) of N(x, y, t) can follow

the approach of Algorithm 1.

B. On-demand, optimal UAV deployment

In order to optimally deploy UAVs to minimize the total

power, problem (13) is formulated, which jointly considers

the aerial cell partition and the UAVs’ locations. With the

prediction information, network operators only need to move

UAVs at the beginning of each time interval, according to the

solution of (13). However, solving (13) is challenging due to

the mutual dependence between (xi, yi, hi) and Ai with Ni

and β(x, y). For tractability, we solve (13) in two sequential

steps. First, given the current location of each UAV i ∈ I,

we seek to find the optimal partition of the service area Ai

for each UAV, that minimizes the power for transmissions.

Then, for each UAV i, given its fixed service area Ai, the

optimal location is derived to minimize the required power

for downlink communications and mobility.

1) Optimal partition of service areas: Given the current

location of each UAV i ∈ I, we aim to find the best

partition of service areas {Ai}i∈I , such that the total power

for downlink communications of all UAVs is minimized. The

optimal partition problem can be formulated as follows,

min
Ai

Pc, (17a)

s. t.

∫ ∫

Ai

Pmin
i (x, y) dx dy = κP a

i , ∀i ∈ I, (17b)

∪i∈I Ai = A, (17c)

Ai ∩ Aj = ∅, ∀i 6= j ∈ I. (17d)

To solve this problem, we use our previously developed

gradient-based method in [19, Theorem 1, Algorithm 1].

2) Optimal locations: Given the optimal partition of the

service area {Ai}i∈I , the power minimization problem can

be reduced into I subproblems for each UAV i ∈ I as

min
xi,yi,hi

P c
i + P t

i . (18)

Based on [4, Theorem 1], we focus on two scenarios in the

following discussions. One is a high-altitude UAV, where

h2
i ≫ (x−xi)

2 +(y− yi)
2, and the other is the low-altitude

UAV, where h2
i ≪ (x−xi)

2+(y−yi)
2. In scenario one, the

value of θi in (2) is approximately 90◦, thus, pLOS
i (x, y) ≈ 1

and L̄i(x, y) ≈ LLOS
i (x, y). Then, Pi can be rewritten as

P c
i ≈ Oi

∫ ∫

Ai

Zi(x, y)
(

d2i (x, y) + 100.1ξ
LOS
i

)

dx dy,

(19)

where Oi =
(

4πfc
c

)2
Bin0

GNi

is a coefficient that does not

depend on (x, y), and Zi(x, y) = 2β(x,y)Ni/Bi − 1. It is

obvious that Pi is a convex function with respect to xi and yi.
By setting the first partial derivatives to be zero, we have the

Fig. 1: Total and average required power for data transmission.

optimal locations for UAV i that minimize the transmission

power P c
i as

x∗
i =

∫ ∫

Ai

x Zi(x, y) dx dy
∫ ∫

Ai

Zi(x, y) dx dy
, (20a)

y∗i =

∫ ∫

Ai

y Zi(x, y) dx dy
∫ ∫

Ai

Zi(x, y) dx dy
. (20b)

Although the objective function P c
i + P t

i is convex with

respect to xi and yi, deriving a closed-form solution of (18),

which minimizes both the transmit and mobility power for

each UAV, is challenging. However, it is easy to find the

optimal solution of (18) based on a gradient-based algorithm.

Using a similar approach, we can find the optimal location

for scenario two.

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a UAV cellular network

operating in a 5 GHz frequency band for downlink commu-

nications. The total available bandwidth for each UAV is 10
MHz. The noise power spectral is set to −174 dBm/Hz. For

each UAV, the antenna gain is 10 dB, and the rate of energy

consumption for moving per meter is γ = 0.1 Joules per

meter. For ML, we use 7
8 of the dataset to train the model,

and the remaining 1
8 data is used to evaluate the performance.

Fig. 1 shows the total and average communication power

per UAV required to satisfy the users’ data demands for

two scenarios: the proposed approach and a solution with

no ML predictions. In each case, the proposed optimal

partition of service areas and the optimal location deployment

are employed. Fig. 1 shows that, as the number of UAVs

increases, both the total required power and the average

communication power will decrease. When more UAVs are

available, each aerial BS can serve a smaller coverage area,

yielding a lower average path loss. Therefore, the needed total

transmit power decreases, given a fixed amount of the total

cellular traffic. As the total required transmit power decreases,

the average power reduces accordingly. Fig. 1 further shows

that compared with the solution without ML predictions, the



Fig. 2: Average power efficiency of UAV wireless communications
over total power consumption.

Fig. 3: Required transmit power as a function of the total band-
width.

proposed approach yields a significant improvement of power

consumptions. The power reduction varies from 20.68% to

24.40%, as the number of UAVs increases from 9 to 36.

Fig. 2 shows the power efficiency, defined as the average

percentage of the transmit power Pc out of total power

Pc + Pt. As the number of UAVs increases, the power

efficiencies in both scenarios will decrease. Here, we note that

UAV mobility will often require more power than wireless

transmission. By deploying more UAVs, network operator is

more likely to send a UAV to meet an instant communication

in a relatively far hotspot area, which causes more power

consumed for mobility. Also, as shown in Fig. 1, more UAVs

requires using a less communication power Pc, which further

reduces the power efficiency. Moreover, Fig. 2 shows that

compared with the solution without ML, the proposed method

can improve the power efficiency of UAV communication by

up to 22.34%.

Fig. 3 shows the required transmit power as a function of

the total bandwidth, assuming nine UAVs. As the available

bandwidth increases, the transmit power will decrease. How-

ever, a wider bandwidth results in a higher noise power, which

prevents the reduction of transmit power, especially when the

bandwidth is greater than 5 MHz. For such noise-sensitive

system, a lower spectrum efficiency cannot save additional

power.

V. CONCLUSION

In this paper, we have proposed a novel approach for

predictive deployment of UAV aerial BSs to provide an

on-demand wireless service to the cellular users. We have

formulated a power minimization problem to optimize the

partition of the service area of each UAV, while minimizing

the UAV power needed for downlink communications and

mobility. In order to predict hotspots, a novel ML framework

based on GMM and WEM has been developed. The results

have shown that the proposed ML approach can reduce the

required downlink transmit power, and improve the average

power efficiency by over 20%, compared with an optimal

deployment of UAVs with no ML prediction.
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