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Abstract—Speckle tracking echocardiography (STE) is a well-
established technique to quantify regional myocardial func-
tion. Reliability of STE-derived strain curves, however, depends
strongly on the quality of the acquired B-mode images and can
significantly be influenced by image artifacts. Artifactual images
could lead to tracking errors and as a result, the measured
deformation patterns might be similar to those obtained in
pathology. It would thus be clinically very relevant to get feedback
on the reliability (i.e. quality) of the extracted strain curves. As
such, the aim of this study was to examine the utility of machine
learning in the identification of artifactual strain curves. Our
proposed learning framework was built upon a data imputation
algorithm in order to facilitate the task of classifying (non-
)artifactual curves. The obtained results confirmed the feasibility
of automatic quality assurance of the STE-derived strain curves
via machine learning.

I. INTRODUCTION

Two-dimensional speckle-tracking echocardiography (STE)

[1] has become the modality of choice to assess regional

myocardial deformation. In order to generate strain curves that

well represent myocardial function, however, the STE algo-

rithm should be provided with B-mode images of high quality.

Poor image quality which can be due to artifacts, noise or

clutter may result in strain curves that are not physiologically

meaningful (i.e. artifactual curves). In addition, shadowing

caused by ribs or lung tissue might prevent acquiring images

of all myocardial segments resulting in missing strain curves.

In order to address the latter problem, we recently suggested

to use a data imputation technique [2] for estimating the

missing strain curves based on those that could be measured

from the rest of left ventricular (LV) segments [3]. However,

the former problem remains unresolved and identification of

artifactual measurements is an open problem. Although this

task could be done by visual reading, reliability of the assigned

labels to the strain curves is strongly dependent on expertise

of a cardiologist in reading this curves as well as wall motion

B-mode images. Moreover, readings of expert cardiologists are

subjective, time consuming and intra-/inter-observer variable.

To cope with this problem, a supervised learning approach

has recently been proposed in [4] to automatically identify

non-physiological strain curves by training a classifier with

a group of STE-derived (non-)artifactual curves in order to

learn their major temporal patterns. Although it was shown that

such a learning system is capable to identify non-physiological

strain curves with a good accuracy, direct analysis of the

strain curves for categorizing artifactual from non-artifactual

curves remains challenging given that the patterns of the

artifactual strain curves might be similar to those measured

from pathological LV segments.

With this in mind, we propose in this study a new machine

learning system for the quality assurance of the STE-derived

strain curves by taking advantage of our proposed imputation

approach for aiding a classification system to better discrimi-

nate between the non-artifactual and artifactual curves.

The rest of this paper is organized as follows. Section II

describes the details of data acquisition and the proposed

machine learning framework. Results are presented in Section

III and the obtained results are discussed in Section IV. Finally,

Section V draws conclusions and summarizes the paper.

II. MATERIALS AND METHODS

A. Study Population

In the context of the ASE/EACVI task force on STE

standardization [5], a group of 57 patients was selected from

hospital records based on the following criteria: 1) age >18

years and ability to consent, walk, and lie in supine position

for two hours; 2) a documented myocardial infarction (MI)

within maximum two years before the study; 3) good acoustic

window and regular heart rhythm; and 4) the presence of a late

gadolinium enhancement (LGE) cardiac magnetic resonance

study performed after the MI. Since not all invited patients

could present for the study, five healthy volunteers were

recruited as gap fillers in stand-by from the colleagues of our

laboratory. The study was approved by the ethics commission

of the University Hospitals Leuven, and all subjects gave

written informed consent.

B. Echocardiographic Strain Imaging

Three consecutive cardiac cycles from the apical 4-

and 2-chamber views of the patients were obtained during

breath hold using a Vivid E9 echocardiographic machine

(GE Vingmed Ultrasound, Horten, Norway). Strain measure-

ments were performed using GE’s speckle tracking software

(EchoPac v20.1) based on the 18-segment model of the LV

[6] (i.e. 6 segments per apical view).

An expert cardiologist assessed the tracking quality of each

segment by visually comparing the tracking result with the un-

derlying myocardial motion and categorized its corresponding

strain curve as artifactual or not. After the visual assessment,
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Fig. 1. Structure of the proposed machine learning framework to assess
the quality of the segmental strain curves. After imputing the measured
curves (a), the imputed curves and their corresponding measured curves were
concatenated (b) to highlight their (dis)similarities. The concatenated curves
were then statistically modeled (c) and the extracted features from them finally
used to classify the strain curves into artifactual or not (d).

34 of the 57 subjects in the database were labeled as artifactual

(i.e. ≈ 60%) in that they showed an artifactual strain curve in

at least one LV segment. Around 15% of the segmental strain

curves of these 34 subjects were artifactual which formed

≈ 10% of all strain curves in the database.

C. Preprocessing

In order to account for the differences in the number of time

points of the strain curves, which could be due to differences

in frame rate and/or heart rate, a temporal alignment based

on linear interpolation was performed. Systolic and diastolic

phases were interpolated separately by considering the aver-

age number of points for that phase over all subjects. The

segmental curves had 22±3 and 39±10 temporal instances

during systole and diastole, respectively. After the temporal

alignment, all segmental curves had 22 systolic and 39 dias-

tolic, i.e. in total 61, time points.

D. Strain Curve Imputation

The core of the proposed machine learning framework (Fig.

1) is to use a data imputation technique [2]. The idea is that for

testing the quality of a given strain curve, it can be considered

missing and then be imputed using a set of non-artifactual

strain curves. The measured curve and its imputed version can

afterwards be contrasted in order to examine their similarity.

Our hypothesis is that similarity between the patterns of an

artifactual curve and its imputed version is less than that of

a non-artifactual curve and its imputed trace given that the

reference set used for imputation is only composed of non-

artifactual curves (see Fig. 1(b)). This difference between the

similarities of the measured and imputed curves of the non-

artifactual and artifactual strain data can be assessed by a

classifier to automatically categorize the strain curves of these

two groups.

We used the k-nearest neighbor imputation (KNNimpute)

technique [7] in the structure of our proposed framework (Fig.

1(a)) given its promising performance in imputing echocar-

diographic strain (rate) curves as shown previously in [3]. In

order to impute the segmental strain curves of each subject,

a group of subjects without artifactual curves was taken from

the rest of the subject in the database to serve as the reference

imputation set. As suggested in [3], all segmental strain curves

of each subject (i.e. 12 curves of the apical 4- and 2-chamber

views) were concatenated in a fixed order and imputation was

performed separately for each curve of a given subject by

removing the corresponding curves in the reference set.

The examined KNN values were taken from the interval of

[1, 9] where the reason for testing small KNNs was the fact

that by using large values, the imputed curves become too

smooth [3].

E. Statistical Modeling

After performing the imputation phase, the measured and

imputed segmental curves were concatenated (Fig.1(b)) and

Principal Component Analysis (PCA) [8] was used to statis-

tically model their major (dis)similarity patterns (Fig.1(c)),
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called principal components (PCs). A subset of the most

important PCs were preserved and the concatenated curves

were projected onto the space spanned by these PCs to obtain a

set of features required for building a classifier. The examined

PCs were taken from the interval of [1, 40].

F. Automatic Classification

The distance-weighted k-nearest neighbor (DWKNN)

method [9] was used as the classifier in our experiments

(Fig.1(d)). The features extracted via PCA modeling were

given to DWKNN in order to discriminate artifactual from

non-artifactual strain curves by taking KNNs from the [1, 70]

interval.

G. Parameter Settings with Cross-Validation

We used cross-validation (CV) to tune the parameters of

the different modules of the proposed framework. To find

the optimal number of KNNs for imputation, the leave-one-

patient-out CV technique was used. The reason for adopting

this CV approach was the need for using as many subjects

as possible for creating the reference imputation set to have

well-estimated strain curves. The Monte Carlo CV technique,

however, was used to find the optimal number of PCs for the

statistical modeling and KNNs for the automatic classification

by randomly sampling 70% of the subjects in the training

set and the remaining 30% in the testing set and repeating

this process 200 times. This way of CV allowed us to use

the subjects of both artifactual and non-artifactual classes in

the testing set and examine the performance of the proposed

approach many times (i.e. more than the number of subjects

in the database) to reduce variance in the estimations.

III. RESULTS

Fig. 2 shows the obtained classification results using the

optimal parameters for imputation (KNN = 3), statistical

modeling (PC = 3) and classification (KNN = 40). Performing

receiver operating characteristic (ROC) analysis in each round

of the CV process, the optimal parameters were considered

to be those which resulted in the best average area under the

curve (AUC). Accuracy, sensitivity and specificity rates were

then obtained by selecting optimal cutoff points on the ROC

curves.

The proposed machine learning framework yielded an aver-

age AUC of 70± 6% and accuracy, sensitivity and specificity

rates of 64± 10%, 64± 15% and 64± 12%, respectively.

IV. DISCUSSION

This study sought to investigate the feasibility of automatic

quality assurance of the STE-derived strain curves via machine

learning where the key idea was to use a data imputation

technique to aid discriminating the non-artifactual curves

from the artifactual ones. Considering the following practical

challenges that the proposed machine learning approach had

to face, its performance was promising:

• providing a reliable ground-truth for training the learning

algorithm was difficult given that the cardiologist’s de-

cisions in assigning (non-)artifactual labels to the strain

Fig. 2. Area under the curve (AUC) of the DWKNN classifier (mean and
standard deviation) obtained with the optimal parameters of the proposed
machine learning approach. The corresponding accuracy (AC), sensitivity (SE)
and specificity (SP) rates were computed by selecting optimal cutoff points
on the ROC curves.

curves were subjective and could also suffer from the

intra- and inter-observer variability;

• the learning algorithm was trained using a small set of

artifactual strain curves (i.e. ≈ 10% of the database) since

in practice, the majority of the measured strain curves are

non-artifactual;

• the patterns of the artifactual curves can be similar to

those of curves extracted from infarcted/diseased seg-

ments.

While the first two challenges might be addressed by

carefully reading the strain curves by one or more expert

cardiologists and collecting a larger set of artifactual strain

curves, the latter is more difficult to be solved.

In order to better understand the difficulty of discriminating

the artifactual strain curves from the non-artifactual traces,

examples of the measured and imputed strain curves are

shown in Fig. 3. It can be seen that the patterns of the

artifactual curves measured from healthy segments are similar

to those of the non-artifactual curves measured in infarcted

segments. The same also holds true for the artifactual and

non-artifactual curves measured from the infarcted segments.

Despite these similarities, however, the idea of concatenating

the measured and imputed curves appeared to be useful in

making these curves distinguishable. Another observation that

can be made is that the imputed curves of the non-artifactual

group (either healthy or infarcted) mimicked the patterns of

their corresponding measured curves while the patterns of the

measured and imputed artifactual curves are more distinct.

This is intuitive and expected given that the reference impu-

tation set was only composed of the non-artifactual curves.

V. CONCLUSIONS

In this study, we have proposed a machine learning al-

gorithm for automatic identification of the STE-derived ar-
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Fig. 3. Examples of the (non-)artifactual strain curves measured from healthy and infarcted myocardial segments (in the left side of each image) and their
corresponding imputed traces.

tifactual strain curves by building upon a recently proposed

approach for imputing missing echocardiographic strain data.

Despite the practical challenges that the proposed algorithm

faced, the obtained classification results confirmed the feasibil-

ity of the automatic quality assurance of the strain curves. The

clinical implication of these results is significant since having

feedback on the quality of the measured strain curves will

facilitate their interpretation and thus increase their diagnostic

value.
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