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Abstract—Machine Learning (ML) has emerged as an attrac-
tive and viable technique to provide effective solutions for a
wide range of application domains. An important application
domain is vehicular networks wherein ML-based approaches
are found to be very useful to address various problems.
The use of wireless communication between vehicular nodes
and/or infrastructure makes it vulnerable to different types
of attacks. In this regard, ML and its variants are gaining
popularity to detect attacks and deal with different kinds of
security issues in vehicular communication. In this paper, we
present a comprehensive survey of ML-based techniques for
different security issues in vehicular networks. We first briefly
introduce the basics of vehicular networks and different types of
communications. Apart from the traditional vehicular networks,
we also consider modern vehicular network architectures. We
propose a taxonomy of security attacks in vehicular networks and
discuss various security challenges and requirements. We classify
the ML techniques developed in the literature according to their
use in vehicular network applications. We explain the solution
approaches and working principles of these ML techniques in
addressing various security challenges and provide insightful
discussion. The limitations and challenges in using ML-based
methods in vehicular networks are discussed. Finally, we present
observations and lessons learned before we conclude our work.

Index Terms—Vehicular networks, machine learning, security,
privacy, trust.

I. INTRODUCTION

RECENTLY, there has been an increasing interest in
vehicular network architectures, protocols, and applica-

tions [1]–[4]. A vehicular network is an ad-hoc network used
to assist the transportation system in multiple applications
such as road safety, traffic management, speed controlling,
infotainment services on vehicles, assistance to driverless cars,
and so on. To support these applications, several variants
of vehicular networks have emerged which are driven by
modern technologies such as fifth-generation (5G), Internet
of Things (IoT), Software-Defined Networking (SDN), edge-
computing, and cloud-computing. The integration of advanced
technologies demands more intelligent solutions to address the
challenges arising from the diverse nature of vehicular designs.
The automotive industry realizes the need for new protocols
and techniques to be compatible with the new network trends
and variants.

The traditional architecture of vehicular ad-hoc networks
(VANET) used to assist autonomous and non-autonomous ve-
hicles is comprised of on-board unit (OBU), edge devices, road
side unit (RSU), centralized controllers and trusted authority
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(TA). A vehicular network communicates to an edge network
which in turn is connected to a backbone network through a
wired or wireless medium. Data transfer takes place between
vehicles and different levels of networks resulting in different
types of communication [5], i.e. vehicle-to-vehicle (V2V),
vehicle-to-RSU (V2R), infrastructure-to-infrastructure (I2I),
vehicle-to-infrastructure (V2I) and many more. The improved
connectivity and increased number of communication channels
and access points have led to several breakthroughs. At the
same time, they pose several challenges that need to be
considered while designing vehicular solutions, among which
the important ones are security and privacy of data [6].

Vehicular networks are vulnerable to different types of
attacks [7]. A number of cryptographic solutions have been
proposed in the past to deal with different types of security
issues [8]. Some commonly used traditional authentication
techniques such as password protection, key-based authenti-
cation, and biometric security techniques can also be used
to authenticate cars in vehicular networks. However, such
techniques fail to validate whether the transferred value is
spoofed or real. In addition, these techniques are difficult to
achieve high accuracy and implement in low-powered vehicle
security systems. Recently, there has been an immense interest
in using machine learning (ML) to deal with vehicle security to
get faster and highly-accurate attack predictions. ML is one of
the most promising technologies in today’s world of wireless
networks [9]–[11]. A wide range of ML techniques are used
in the literature for different wireless applications [12]. In this
article, we carry out a comprehensive survey to bring out
different security challenges and requirements for vehicular
networks and present an in-depth study of the state-of-the-
art works that use ML algorithms to solve various security
problems. The review papers in the current literature either
consider the security problem in vehicular networks or ML-
based applications in vehicular networks, as shown in Table. I.
Different from such survey works, we present a comprehensive
survey focusing exclusively on ML-based security solutions in
vehicular networks.

A. Related Surveys

The use of ML in vehicular networks is gaining significant
attention to address multiple challenges [17]. Several survey
works exist in the literature which cover different security
problems in vehicular networks and discuss challenges with
solutions proposed in the literature. A systematic comparison
of available survey works with our survey work in vehicular
networks is given in Table. I.
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TABLE I
COMPARISON OF SURVEYS ON ML AND/OR SECURITY IN VEHICULAR NETWORKS

Citation Year Title Focused Area Type of Network ML context

[13] 2015 A Security and Privacy Review of VANETs Security and Privacy VANET No

[14] 2016 Trust Management for Vehicular Networks:
An Adversary-Oriented Overview Trust Management VANET No

[15] 2017
A Survey of Attacks and Detection
Mechanisms on Intelligent Transportation
Systems: VANETs and IoV

Attacks VANET and IoV Traditional ML
only

[16] 2018

Security and Privacy in Location-Based
Services for Vehicular and Mobile
Communications: An Overview, Challenges,
and Countermeasures

Security and Privacy in LBS VANET No

[17] 2019 Toward Intelligent Vehicular Networks: A
Machine Learning Framework Decision Making VANET, IoV and

5GVN
ML and DL

[8] 2019
A Survey of Security Services, Attacks, and
Applications for Vehicular Ad Hoc Networks
(VANETs)

Security and Privacy VANET No

[6] 2019 A Survey on Recent Advances in Vehicular
Network Security, Trust, and Privacy Security, Trust and Privacy VANET No

[18] 2019
A Comprehensive Survey on VANET
Security Services in Traffic Management
System

Security and Privacy VANET No

[19] 2019 A Survey on Internet of Vehicles:
Applications, Security Issues & Solutions

Security Attacks and Other
Application VANET and IoV Limited

[20] 2019 A Survey on Security Attacks in VANETs:
Communication, Applications and Challenges

Security and Privacy in
VANET Applications VANET Limited

[21] 2019
Applications of Deep Reinforcement
Learning in Communications and
Networking: A Survey

Control, Caching, Offloading,
Security, Connectivity,

Routing, Scheduling, and Data
Collection

Communication
Network

DRL

[22] 2019 Artificial Intelligence for
Vehicle-to-Everything: A Survey

Safety, Congestion, Demand
and Supply Applications,
Navigations, Security and

Vehicle Platoons

VANET and IoV ML and DL

[23] 2019 Deep Learning for Intelligent Transportation
Systems: A Survey of Emerging Trends

Prediction, Control and
Optimization related

Transportation Applications
ITS DL

[24] 2020
Comprehensive Survey of Machine Learning
Approaches in Cognitive Radio-Based
Vehicular Ad Hoc Networks

Cognitive Radio-based
Vehicular Applications Vehicular Networks

and all of its Variants
ML and DL

[25] 2020 Deep Reinforcement Learning for Intelligent
Transportation Systems: A Survey

Traffic Signal Control,
Autonomous Driving, Energy
Management, Road Control

and other Applications

ITS DRL

[26] 2020 Security, Privacy and Trust for Smart
Mobile-Internet of Things (M-IoT): A Survey

Security, Trust and Privacy in
Mobile-IoT Applications MIoT Limited

[27] 2020
A Survey on the Internet of Things (IoT)
Forensics: Challenges, Approaches, and Open
Issues

Security Attacks IoT Limited

[28] 2020 A Survey of Machine and Deep Learning
Methods for Internet of Things (IoT) Security

Security Threats Types and
Threats Surface IoT ML and DL

[29] 2020 Machine Learning in IoT Security: Current
Solutions and Future Challenges

Authentication and Security
Attacks IoT ML and DL

[30] 2020 Recent Advances and Challenges in Security
and Privacy for V2X Communications Security, Trust and Privacy Vehicular Networks

and all of its Variants
Limited

[31] 2020 Federated Learning for Vehicular Internet of
Things: Recent Advances and Open Issues

Perception, Networking,
Computing and Security Vehicular-IoT FL

[32] 2021 A Survey of Deep Learning Applications to
Autonomous Vehicle Control

Lateral and Longitudinal
Vehicle Control System Autonomous Vehicle

Network
ML and DL

Our
Work 2021 Machine Learning for Security in Vehicular

Networks: A Comprehensive Survey Security, Trust and Privacy Vehicular Networks
and all of its Variants

Wide range of
ML and other
learning types
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In [13], a survey is carried out on security and privacy in
VANET. This work states security challenges and discusses
available solutions for security, authentication, and privacy, but
doesn’t present the use of ML in providing security solutions.
It focuses mostly on using digital signature algorithms for
VANET security.

Sakiz et al. [15] survey the literature related to attacks in
VANETs and Internet of Vehicles (IoVs). This work mentions
the use of ML to solve different attack problems. It briefly
summarizes the attack prevention mechanisms which use
cryptography and ML in their framework. Only the traditional
supervised and unsupervised ML approaches are discussed.
Also, this work does not discuss privacy and trust issues
in vehicular networks. A trust management-focused work is
proposed in [14] for vehicular networks. This work presents an
adversary-oriented overview of trust management techniques.
The authors classify the security frameworks into two cate-
gories; cryptography and trust. This survey differentiates and
explains possible relations of trust and cryptography. Further, it
briefly explains trust-based solutions with a tabular comparison
of existing techniques. None of these techniques considers
the use of ML techniques. It concludes that existing trust
mechanisms are not enough in multiple VANET scenarios and
it calls for future work on more intelligent mechanisms.

Asuquo et al. [16] present a review on the security and
privacy of location-based services (LBS) in vehicular net-
works. This work elaborates on open challenges on location
privacy in vehicular networks. It classifies the work in the
literature on location privacy into two groups, cryptographic
mechanisms (like signature, key-based cryptography, hashing
and so on) and privacy-enhancing schemes (like mixed zones,
obfuscation, silent period and so on). It further explains these
two groups comprehensively with a tabular comparison. In
addition, it also mentions the drawbacks of such schemes in
different vehicular scenarios. It does not consider any ML-
based solutions.

Recently, researchers have started to explore more into
vehicular networks and their applications. Liang et al. [17] dis-
cuss briefly the use of ML frameworks in providing solutions
to address the challenges of high-mobility vehicular networks
and their variants including, IoV and 5G-based vehicular
networks (5GVN). The dynamics of high-mobility networks
covered in [17] include network topology, channel estimation,
traffic prediction, trajectory prediction, congestion control, and
so on. It also outlines the use of ML for intrusion detection in
connected vehicles. Most of the works presented in this survey
are about network optimization in high mobility scenarios.
Sheikh et. al [8] perform a survey on the security problems
in VANET. It details the basics of VANET architecture and
its security challenges in a comprehensive way. It briefs the
state-of-the-art methods used for security and authentication
problems. This work focuses on symmetric cryptography,
asymmetric cryptography, identity-based cryptography, and
signature schemes. However, the scope of this survey does
not cover ML for security problems. Lu et. al [6] study
recent advances on security, privacy, and trust management in
VANET. This survey starts with a brief background of VANET
architecture and related security challenges. It discusses differ-

ent attacks over security services and available cryptographic
methods. Apart from security services, it elaborates on the
challenges that VANET face related to location privacy. It also
describes the significance of trust management in VANET and
elaborates trust models available in the literature to accomplish
this task. This work does not cover the importance or use
of ML algorithms for securing VANET. A similar kind of
work is done in [18] where authors describe the state-of-the-
art methods used to secure and preserve privacy in a VANET
architecture. This work also presents a classification taxonomy
for attacks and authentication mechanisms in VANETs with a
major focus on authentication mechanisms.

An in-depth survey of IoV is presented in [19], where
authors compare it with VANET. The authors categorize IoV
applications into four categories including, safety, comfort and
infotainment, traffic efficiency, and health care, and briefly
discuss their usage in driving coordination and emergency
warning. An elaborative discussion is made on attacks over
IoV networks. But the context of ML is minimally explored
in this work. Another application-based survey to discuss
vehicular attacks is carried out in [20]. Similar to [19], this
work also explores the area of ML and other learning types
only a little.

A deep reinforcement learning (DRL)-focused survey is
presented in [21]. The scope of this survey is not specific
to vehicular networks. In addition, this survey briefly covers
network control, caching, offloading, routing, scheduling, and
connectivity applications along with one section on DRL
usage in maintaining network security. Later, Tong et. al [22]
carried out an ML-specific survey for vehicular communi-
cation networks. It explores the use cases including, safety,
comfort, network congestion, demand and supply applications,
navigations, security, and vehicle platoons. This work provides
limited discussion on ML-based attack detection/prevention
techniques. Hossain et. al [24] present a comprehensive survey
of ML approaches in vehicular applications. However, the
scope of this survey is limited to cognitive radio-based (CR-
based) vehicular networks. This work considers the amalga-
mation of ML in CR-VANET as a major research domain
in the near future. This survey presents an overview of ML,
VANET, and CR. It briefly describes the application and
use of ML methods in various aspects of CR-VANETs. It
includes spectrum sharing, spectrum mobility management,
security issues, road safety, traffic congestion, resource allo-
cation, spectrum-aware routing, and infotainment. This work
addresses security threats only very briefly, focusing on the
attacks in the CR environment. Veres et. al [23] explore a wide
range of ML-based architectures and their use in transportation
networks. In [23], several network dynamics are investigated
that include, destination prediction, demand prediction, traffic
flow prediction, travel time estimation, transportation mode
prediction, traffic signal control, navigation, demand serving,
combinatorial optimization, and so on. This work does not
address the problem of transportation security or the use of
ML in this domain.

Haydari et. al [25] survey the use of reinforcement learning
(RL) and DRL in optimal traffic signal control, autonomous
driving, energy management, road control, and other intel-
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ligent transportation system (ITS) applications. This work
does not cover the area of security. A security, privacy, and
trust-focused review paper is presented in [26]. This paper
surveys a broad domain of mobile-IoT applications in which
vehicular networks are one of such applications. In addition,
ML-based solutions are not widely discussed in this work.
Similar to this, another work on IoT security is presented
in [27] with a little focus on ML-based solutions. There are
some works in the literature which consider ML and deep
learning (DL) in the survey on IoT security [28], [29]. In
[28], authors briefly discuss security threat types and threats
surface in IoT applications. A layer-based classification of
literature on IoT security is presented with a very limited
discussion on transportation/vehicular applications. Similar to
[28], [29] also present layer-based attacks in IoT. The scope of
ML and DL solutions in this work includes malware analysis,
authentication, intrusion detection, and attack detection. This
work also covers a wide range of applications of IoT and a
limited discussion on transportation applications. A vehicular
communication-specific work for security, privacy, and trust
management is presented in [30], but ML-based solutions are
not the focus of this work.

Recently, a survey on federated learning in vehicular-IoT
is presented in [31]. This work briefly introduces federated
learning, its properties, and provides a comparison from other
learning types. This work also reports the literature on using
FL in other wireless IoT applications which can support vehic-
ular usage. The existing research related to FL in vehicular IoT
is classified into three different layers including, perception,
networking, and application layes. This work studies a wide
range of applications with a limited focus on the security
and privacy of vehicular IoT networks. However, this work
considers the use of FL as a promising research direction for
future vehicular applications in terms of security, privacy, and
incentive. Kuutti et. al [32] recently present a deep learning
(DL)-focused survey on the use of intelligent mechanisms in
vehicle control systems. This work carries out a thorough work
on the use of DL for different types of control systems in
vehicular networks. It considers the use of DL in vehicular
networks as promising that could achieve excellent perfor-
mance. The works cited therein handle safety issues along
with control problems. However, this survey does not provide
any discussion on security problems.

B. Our Contribution

Different from the above-mentioned surveys, we present
an in-depth study of the state-of-the-art on the use of ML
techniques for security in vehicular networks. A wide range of
security problems that include attacks, privacy, trust, intrusion
detection, and driver identification/fingerprinting are discussed
in this paper. Our work focuses on vehicular network security
that comprehensively summarizes the works specifically from
the perspective of ML-based solutions. We first present the ba-
sics of vehicular networks and their variants with the adoption
of various technologies such as 5G, SDN, IoT, edge comput-
ing, and cloud computing that enable intelligent transportation
applications. We present security challenges and requirements

for vehicular networks. We propose a taxonomy of attacks
at different levels of vehicular networks. The significance of
different ML techniques such as DL, RL, transfer learning
(TL), and federated learning (FL) are elaborated in this survey.
We summarize and contrast each work and present a holistic
view in the form of tables for different security issues. We
present the limitations and challenges, in using ML techniques
for vehicular security. We summarize the lessons learned to
provide useful insights.

C. Structure of our Survey Work
The rest of this survey is organized as follows (as shown

in Fig. 1). First, it describes the basics of vehicular networks
in Section II that includes network architecture, variants of
vehicular networks, types of communication used for transfer
of data between different entities, and taxonomy of security
attacks and requirements. The detailed classification of widely-
used ML approaches in vehicular network security is explained
in Section III. Section IV reviews the literature employing
ML strategies for providing different security and privacy
solutions. It briefly explains and compares different solutions
and provides a tabular form of solutions. Section V highlights
the limitations and challenges in using ML-based solutions for
vehicular network security. Section VI presents observations
and lessons learned from the works presented in this survey.
Finally, we conclude our work in Section VII.

II. VEHICULAR NETWORKS

In this section, we describe the basic architecture (Section
II-A) of vehicular networks and its usage with different related
fields (Section II-B). We discuss different communication
methods (Section II-C) used between different entities to
provide connectivity in vehicular networks. We then present
different security attacks and requirements (Section II-D) in
vehicular networks.

A. Vehicular Network Architecture
The traditional architecture of vehicular networks helps to

assist autonomous and non-autonomous vehicles. It is com-
prised of different components that include OBU, RSU, cellu-
lar base-station (BS), backbone network, and TA, as shown in
Fig. 2. The OBUs are installed on the vehicles with necessary
components for sensing different vehicular parameters such
as speed, velocity, location coordinates, and proximity with
different objects/vehicles. The RSU and/or cellular BS serve
as an interface for vehicles with the backbone network. To
transfer data from a vehicle to RSU, different wireless proto-
cols can be used. Among them, the most common protocols
used for short-range communication in vehicular applications
are DSRC (Dedicated Short Range Communications) [33] and
WAVE (Wireless Access in vehicular Environments) IEEE
802.11p [34]. A cellular BS is used when a vehicle is far from
the range of DSRC/WAVE. The RSU connects with different
components of the backbone network using wired or wireless
connectivity. This results in different kinds of communications
within a network which are explained in Section II-C. The key
function of TA is to use basic authorization techniques for the
vehicles willing to register within a network.
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STRUCTURE OF THIS SURVEY
Section I Introduction

Section IA Related Surveys

Section IB Our Contribution

Section IC Structure of our Survey

Section II Vehicular Networks
Section IIA Vehicular Network Architecture

Section IIB Vehicular Networks and its Variants

Section IIC Types of Communication

Section IID Security Attacks and Requirements

Section III A Brief Overview of Machine Learning
Section IIIA Supervised Learning

Section IIIB Unsupervised Learning

Section IIIC Reinforcement Learning

Section IIID Deep Learning

Section IIIE Federated Learning

Section IIIF Transfer Learning

Section IV ML-based Security Solutions
Section IVA Driver Identification/Fingerprinting

Section IVB Attack Detection

Section IVC Misbehaviour or Intrusion Detection

Section IVD Trust Computation

Section IVE Privacy Protection

Section V Limitations, Challenges and Open Issues
Section VA Adversarial Machine Learning

Section VB Latency Limitation in ML-based Solutions

Section VC Energy Constraint in ML-based Solutions

Section VD Computation-cost in ML-based Solutions

Section VI Observations and Lessons Learned

Section VII Conclusion

Fig. 1. Structure of this Survey

Fig. 2. An illustrative architecture of vehicular networks.

B. Evolution of Vehicular Networks and its Variants

With the technological advances such as IoT and 5G, vehic-
ular networks have gone through an evolutionary process from
VANET to IoV [35]. IoV provides intelligence by integrating
an environmental understanding of surrounding things such as
human (driver) actions and activities. This results in a new
level of communication known as Vehicle-to-Person (V2P)
(explained in Section II-C). Further, the emergence of modern
technologies such as 5G, SDN, edge computing, and cloud
computing has enabled different applications leading to the
creation of new variants of vehicular networks, as shown in
Fig. 3.

Vehicular
Network

VANET
[36]–[68]

IoV
[69]–[78]

SDVN
[37], [38], [53]
[62], [70], [79]

EEVN
[57], [58], [80]

VCC
[48], [51]
[53], [81]

5GVN
[82]

Fig. 3. Variants of vehicular networks and related work.

5G technology that could provide high speed and low
latency has become a key driver for VANETs in enhancing
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transportation efficiency [83]. It is very crucial in vehicu-
lar applications such as fully-autonomous driverless cars to
transmit data with a delay of less than 1ms to make correct
driving decisions. The standard VANET wireless protocol
IEEE 802.11p has the problem of intermittent connectivity
and poor capacity for the rigorous autonomous vehicles [84].
This has led to proposals to integrate 5G with vehicular
networks which are known as 5GVN. Apart from low delay,
5G-integrated vehicular networks can provide efficient solu-
tions for congestion control, fair resource sharing, reliability,
high-throughput, high-connectivity and support diverse safety
applications [83].

SDN is a key enabler for creating an effective topology
in vehicular networks [85]. SDN simplifies hardware-software
management through a flexible networking architecture to
effectively handle the most dynamic nature of the vehicles.
In the literature, there have been several studies on integrating
SDN at different levels of the network and the design of a hier-
archical and centralized Software-Defined Vehicular Network
(SDVN) to support different functionalities [84] [85]. The use
of SDN helps to enhance Quality of Service (QoS), routing
reliability, and security services of the nodes in vehicular
networks. Most importantly, the use of SDN at the edge of
vehicular networks is effective for scheduling valuable data
packets and achieving improved QoS. This edge-enabled ve-
hicular network (EEVN) solutions are also ideal for low-delay
applications. However, the use of SDN at the edge is not ideal
for all applications. In the case of many vehicles connected
to a single RSU, it can result in performance degradation of
SDVN due to frequent handovers [86] [87]. In the literature,
there exist several proposals that focus more on the use of a
centralized controller in SDVN architectures to achieve better
security, improved scalability, and traffic management [85].
Nonetheless, controller placement has always been a major
issue [88] which demands more research in the direction of
vehicular applications.

Some recent works exploit the idea of minimizing onboard
storage and computation in vehicular networks by using cloud-
based services [89] [90]. Cloud computing is a potential
technology to provide flexible solutions by providing access
to virtual services to road users. This results in a new variant
of vehicular networks, known as Vehicular Cloud Computing
(VCC). The first cloud-based VANET architecture was pro-
posed in [89]. This work discusses several issues including
security and privacy in vehicular networks using VCC design.

While the adoption of the above key technologies brings
benefits, they also pose challenges. The connectivity of vehi-
cles to everything using advanced technologies creates serious
safety concerns. In vehicular networks, these advanced variants
can be used separately or with each other to provide enhance-
ments on scalability, power efficiency, spectrum efficiency, and
flexibility. An important problem with all these technologies
is to ensure security and privacy within a network. Our survey
mainly focuses on ML-based security solutions for vehicular
networks. Fig. 3 shows the works proposing ML-based secu-
rity solutions in different variants of vehicular networks.

C. Types of Communication

TABLE II
ML-BASED LITERATURE TO DETECT OR PREVENT ADVERSARIES AT

DIFFERENT LEVELS OF COMMUNICATIONS

Citation Adversary Model
Communication

In-VehicleV2V V2I V2R

[36] Platoon Attack 3 3
[37] DDoS Attack 3
[38] DDoS Attack 3 3
[74] DDoS Attack 3
[77] DDoS Attack 3 3 3
[39] GreyHole & BlackHole 3
[40] Black hole 3
[41] Sybil Attack 3 3
[42] Sybil Attack 3 3
[43] Sybil Attack 3 3 3
[44] Jamming Attack 3
[69] Jamming Attack 3
[45] jamming Attack 3
[91] Data Manipulation 3 3
[70] Crossfire Attack 3
[56] Spoofing Attack 3
[57] Spoofing Attack 3
[58] Spoofing Attack 3
[92] Cyber Physical Attack 3
[93] Cyber Physical Attack 3
[46] MDS 3
[47] MDS 3 3 3 3
[49] MDS 3 3
[50] MDS 3
[82] MDS 3 3 3
[68] MDS 3 3
[76] MDS 3
[55] MDS 3 3
[48] FDI 3 3
[51] IDS 3 3
[52] IDS 3
[59] IDS 3 3
[60] IDS 3 3
[53] IDS 3 3
[54] IDS 3
[81] IDS 3
[73] IDS 3
[94] IDS 3
[95] Trust Computation 3
[96] Trust Computation 3 3
[61] Trust Computation 3 3
[62] Trust Computation 3 3
[63] Trust Computation 3
[71] Trust Computation 3
[65] Trust Computation 3 3
[66] Trust Computation 3
[79] Trust Computation 3
[67] Trust Computation 3
[64] Privacy Protection 3
[72] Privacy Protection 3
[75] Privacy Protection 3 3
[78] Privacy Protection 3
[80] Privacy Protection 3 3

Data transfer in Vehicle-to-Everything (V2X) involves dif-
ferent types of communications at different levels. The first
type is low-level communication which involves the transfer
of data between the end nodes such as V2V, V2P, and Vehicle-
to-Sensor (V2S). In V2V communication, messages related
to traffic congestion and accidents are transmitted between
different regions without involving the backbone network. On
the other side, V2P and V2S modes of communication help to
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integrate the conditions of persons and sensors while making
decisions such as driving. This level of communication mostly
uses Bluetooth, DSRC, and IEEE 802.11p protocols.

The next type of communication takes place between a
vehicle and an intermediate node (RSU), or between two inter-
mediate nodes, to carry out operations such as broadcasting,
routing, vehicle authorization, and access services from the
server. This includes V2R and RSU-2-RSU communication
(R2R). This level of communication uses short-range commu-
nication if RSU is closer and LTE/5G in case of long-distance.
The third type is high-level communication which is used
to transfer packets from an RSU to backbone infrastructure
(R2I) and I2I. This type of communication is required when
a vehicle requests a service from the backbone network such
as LBS, infotainment service, entertainment service, and also
for generating certificates from TA and centralized routing
decisions. This includes long-range wireless communication
or wired communication.

Another important mode of communication is V2I in which
a vehicle is smart enough to communicate to the infrastructure
directly using cellular services (LTE/5G) for faster decisions
and packet transfers without an intermediate node. However,
the improved connectivity and increased number of communi-
cation channels have led to several breakthroughs and security
problems. Such threats at different levels of communications
have been studied and ML-based solutions have been devel-
oped in the literature. We list these works in Table II. We
note that most of the ML-based works in the literature focus
on security in V2V and V2R communication. Recently, the
advent of autonomous vehicles has driven research on security
of in-vehicle network. Furthermore, advances in 5G and SDN
facilitate V2I communication and there is ongoing research in
securing this communication as well.

D. Security Attacks and Requirements

This section addresses the requirements and threats related
to security in vehicular networks. We present a taxonomy of
security attacks at different parts of the vehicular network
as shown in Fig. 4. Accordingly, we classify the attacks
into four (4) different classes, i.e. hardware or software
(HW/SW)-based, infrastructure-based, sensor-based, and wire-
less communication-based. In Fig. 4, we depict the possible
security attacks in the above four classes along with the
security requirements highlighted using different colors.

1) Attacks: We briefly describe the attacks that are catego-
rized under four classes in this section.
Hardware/Software-based Attacks Several attacks can take

place over the hardware components and software sys-
tems of the VANET network to compromise different
security requirements. Some of the common attacks are
listed below.

Bogus Information: In this type of attack, the attacker
sends a piece of bogus or false information to misguide
the functioning of hardware or software systems in the
vehicles.

Timming Attack: This is a side-channel attack. It tries to
compromise the cryptographic algorithm of a system

Fig. 4. Taxonomy of attacks in vehicular network.

by analysing its timing information which is required
to execute the attack.

Message Forgery: This type of attack is launched to
deceive the recipient about the real sender.

Replay Attack: This attack is also known as playback
attack, where transmission of valid or true data is
repeated or delayed maliciously to misguide the func-
tioning of the system.

Masquerading Attack: It is a form of attack in which the
attacker uses fake identification to gain unauthorized
access to the vehicle system.

Node Impersonation: In this type of attack, the attacker
steals the identity of an authorized user to gain access
to the system.

GPS Spoofing: This attack tries to fool a global position-
ing system (GPS) by generating fake signals around
the vehicle in which the GPS sensor captures the fake
signals and records fake coordinates to misguide the
functioning of the vehicular networks.

Tampering Hardware: It is a type of attack in which the
hardware of a vehicle is deceived by providing fake
information or creating a fake environment around the
vehicle.

Routing Attack: This attack results in improper
functioning of the routing process. The routing
attacks are further classified into different attacks
corresponding to malfunctioning of the routing
process at different levels in a network. In terms of
hardware, miscommunication of the node’s presence
and location may affect the routing tables in a network.

Infrastructure-based Attacks This section describes the
attacks which infect the system at the infrastructure level.
Repudiation Attack: This attack takes place at the ap-

plication layer where a system fails to control the
log of actions and tracking of nodes due to malicious
manipulations. It is also known as the act of refusing
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the actions in a system.
Platoon Attack: Platoon is a concept of grouping vehi-

cles that travel in the same lane with close proximity
and similar speed regulations. Any type of action by
an attacker to destabilize the functioning of the platoon
is known as a platoon attack.

Session Hijacking: Session Hijacking is a type of attack
in which an attacker tries to hijack and get access to the
session of data transfer established between the vehicle
and destination node.

Key-Certificate Replication: In this attack, the attacker
uses duplicate keys and certificates of legitimate users
to fool TA and gains access to the network.

Unauthorized Access: This is an attack over the
authentication systems of the vehicular networks.
In this attack, the attacker tries to get access to
the vehicle node system, server, controller, or any
other component of the network by compromising its
authentication parameters such as decrypting login
identification (ID) and password for a system account.

Sensor-based Attacks These attacks concern about compro-
mising the authenticity and availability of sensors over the
vehicles. There are two such attacks in vehicular networks
which are described below.

Illusion Attack: In this attack, an adversary vehicle
deceives its own sensors to produce wrong readings
and transmits to the network. This creates a fake
illusion of the scenario over the road to misguide other
vehicles and generates false warning messages.

Jamming Attack: In this attack, the aim of the jammer
is to block or interfere transmission of data from a
sensor by sending false alerts or creating a spoofed
environment around the sensor.

Wireless Communication-based Attacks Wireless commu-
nication channel is one of the most vulnerable targets in
a network. A large variety of attacks can take place over
the wireless channel to compromise different security
requirements which are discussed below.

Brute-Force Attack: It is an attack over the authentica-
tion system of a wireless protocol used for transferring
data in V2X communication. The adversary runs a
brute-force algorithm to create different combinations
of passwords or pass-phrases to break access into the
medium.

Spoofing Attack: In vehicular applications, a different
type of spoofing attack can take place wherein the
attacker pretends as a legitimate user of the network to
gain access over the personal information. A spoofing
attack is not only limited to the spoofing of identifica-
tion but also the location, domain-name-server (DNS)
information, internet protocol (IP) address, and so on.

ID Fingerprinting: In a vehicular network, it is of
utmost importance to have correct identification and
true profiling of the driver to prevent hacking and theft
of the car. In ID fingerprinting, the attacker aims to

obtain the driver profile and uses it to launch an attack
over the system.

Location Trailing: This attack violates privacy by ille-
gally getting access to the channel that is transmitting
the vehicle’s personal information. Here, an adversary
can track the complete path of the target vehicle and
follows its location wherever it goes.

Sybil Attack: Sybil attack is one of the most common and
easy-to-implement attacks. Sybil attack in a vehicular
network creates virtual nodes to launch an attack and
detection of such virtual nodes is not easy.

Denial of Service (DoS): This is one of the difficult-
to-handle and very frequently implemented attacks. In
this attack, the attacker launches a bulk of spoofed
requests over the server or any other node to make
it fully occupied with unnecessary requests and blocks
the access to legitimate users.

Spamming Attack: In this attack, the attacker sends the
bulk of spam messages to consume network bandwidth
and increases delay for the transmission of data.

Jamming Attack: In this attack, the aim of the jammer
is to block or interfere the authorized transmission by
occupying the channel or by sending false alerts.

Grey-Hole and Black-Hole Attack: The black-hole and
grey-hole attacks are types of wireless routing attacks.
In these attacks, a node tries to stop onward forwarding
of messages/packets towards the receiver. In a black-
hole attack, there will be a complete blackout or drop
of packets. However, in a grey-hole attack, a partial
drop of packets will take place and partial packets are
altered by an attacker to convey wrong information to
the receiver.

Man-in-the-Middle (MiTM) Attack: In MiTM, an adver-
sary hears the communication going-on between two
nodes through intercepting the channel and pretends as
one of them to reply with the wrong information.

Eavesdropping: It is a sniffing attack, where the attacker
snoops the information transmitted between two enti-
ties. In this attack, it does not alter or reply to any of
the entities but only listens and gains access to personal
information.

2) Requirements: It is important to satisfy the basic se-
curity requirements to overcome the above security threats
and attacks in vehicular networks. The taxonomy of security
requirements for the VANET can be found in [6] [16]. The
important security requirements for vehicular networks are
summarized below.

Confidentiality One of the very basic requirements is to
guarantee the access of data to legitimate users only. Con-
fidentiality uses encryption techniques based on secure
keys and trusted certificates to ensure access only to the
legal user of data. Most of the works for confidentiality
is about key management. If the attacker gets access to
keys he can break into the system and misuses confiden-
tial data. Therefore, guaranteeing confidentiality is very
important in vehicular networks to secure the personal
data of vehicles and drivers.
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Availability It is an important security requirement to assure
the availability of the functionality of the applications and
processes of any network. There are many critical attacks
on the availability of services or communication channels
in VANET which are hard to handle [13]. Different types
of attacks can take place at different levels of the network,
as shown in Fig. 4. It is very crucial for the successful
running of the network to take prior steps and ensure the
availability of the system if an unwanted situation arises.
It is one of the basic security requirements to keep the
communication between vehicles and infrastructure func-
tional in the event of attacks. We discuss different ML-
based solutions to detect attacks and ensure availability
in Section IV.

Integrity While transmitting data from a vehicle to infras-
tructure or vehicle to vehicle, it is important to maintain
the true form of data and information. Any alteration
or change in data may result in undesirable sequences.
Integrity in vehicular networks is to ensure the originality
of data and protect it from any change, destruction, or
alteration from an adversary. The use of Public Key
Infrastructure (PKI) and cryptographic schemes are gen-
erally used in the literature to ensure integrity in vehicular
networks [8].

Privacy Privacy is a critically-important requirement for
security in vehicular networks. It is a means of protecting
the sensitive information of a vehicle from the attacker. In
the context of vehicular networks, it is further classified
into location privacy and user privacy. The location and
identity of the driver/vehicle are very sensitive and must
be kept hidden from an attacker. However, trusted author-
ities must know the location information to provide better
services. There are many LBSs which provide services to
the users based on their location. In such cases, protecting
the privacy of location from attackers while ensuring its
secure availability to the service-providing entity is quite
challenging [16].

Authentication Authentication is the first step of security in
a vehicular network. A vehicle always authenticates itself
to the system before requesting any service from it. There
are two types of authentications, message authentication,
and node authentication. When a vehicle becomes a part
of any new network it authenticates its node informa-
tion (i.e. identification, address and related information)
with the network. This helps a system to differentiate
between legitimate and malicious nodes. However, when
a message is transmitted between two vehicles, it must
be authenticated to ensure integrity. A failure to maintain
the first step of security in a vehicular network may result
in complete damage to the network.

Trust Trust is an important aspect of security to enhance the
protection level of the system from attackers. Trust can
be classified as a belief of one entity about another entity
belonging to the same group of networks. In vehicular
networks, trust computation is an additional step of secu-
rity requirement used along with privacy protection, avail-
ability, and key management to ensure the highly-secure
transmission of data [14]. Trust computation schemes

exist in the literature (in the context of entity-oriented
and data-oriented) which make use of historic interaction
of vehicles within a network to classify it as the trusted
one [97]. It is important in vehicular networks to ensure
honesty among vehicles by performing trust computation
as a basic security requirement.

Confidentiality [53]

Availability
[37]–[40], [44], [45], [49]–
[55], [59], [60], [69], [70],

[74], [77], [81], [84], [94], [98]

Integrity [36], [46], [48], [52],
[68], [76], [82], [91]–[93]

Privacy [42], [51], [54], [64], [72], [75], [78], [80]

Authentication [41]–[43], [46], [49], [53], [55]–[60]

Trust [61]–[63], [65]–[67], [71], [79], [95], [96]

Fig. 5. Security requirements and ML-based literature.

This survey centers around the use of ML in achieving the
above security requirements. As shown in Fig. 5, a number of
works have been carried out on the problems of availability,
integrity, authentication, and trust computation. In the context
of privacy, the use of ML is carried out in a very recent
times. However, the use of ML for achieving confidentiality
is not much studied in the literature. Most of the works in the
literature are about the use of keys to secure data and achieve
confidentiality within a system [99]–[102].

III. A BRIEF OVERVIEW OF MACHINE LEARNING IN THE
CONTEXT OF VEHICULAR NETWORK SECURITY

ML is a branch of Artificial Intelligence (AI) proposed
first in 1959 [103] as a self-learning technique for the game
of checkers. Today, the use of ML is widely explored in
almost all areas of networking [104]. ML is a computing-based
strategy which determines the hidden insights of a dataset
without being explicitly programmed. It improves the working
performance from its learning-experience. A typical model
for the traditional ML consists of three phases: 1) Training
Phase, which takes raw data and pre-processes it to extract the
features. The features are input into the ML model to learn
patterns and classes of the data. 2) Testing Phase, where a
new set of data is tested by the ML model for classification
based on its learning-experience from the training phase. 3)
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Prediction Phase, also known as the evaluation phase where
the working efficiency of an ML model is evaluated based
on quality metrics (such as accuracy, false-positives, false-
negatives, and so on). In the case of lower efficiency, the
training phase updates its data and/or features for achieving
better results. A typical ML model is shown in Fig. 6.

Fig. 6. The conceptual block diagram of a typical ML model.

The ML techniques are further classified into three broad
categories, namely, supervised, unsupervised learning and re-
inforcement learning (as shown in Fig. 7). The advances in
the functionalities have evolved these classes into several other
learning types such as DL, TL, and FL as shown in Fig. 7.
These types work in parallel with the three main classes and
have received significant attention due to their intelligence in
performing a different kind of tasks. We explain below the
widely-used ML approaches in vehicular network security.

A. Supervised Learning

In supervised learning, each entry of the training dataset
consists of an input value and its corresponding label. The
supervised algorithm learns the relation between the input
sample and label of the training set and uses it to map the
new instances of the testing data [17]. Supervised learning
can be applied for vehicular networks in different domains but
our survey explores the use of supervised learning in securing
vehicular networks.

Supervised learning is further classified into classification
and regression. The output of classification model is categor-
ical or discrete. The commonly used classification models for
the security in vehicular networks are K-Nearest Neighbour
(KNN) [105] [106], Decision Tree [107], Naive Bayes [108],
Support Vector Machine (SVM) [109], and Neural Network
(NN) [110]. The output of regression model is a continuous
value. The most-common regression models used to secure
the vehicular networks are logistic regression [111], random
forest [112], and NN [113]. In vehicular networks, the use of
supervised learning applies in different applications such as
driver fingerprinting, type of misbehaviour, attack detection,
and trust computation (Section IV).

B. Unsupervised Learning

In contrast to supervised learning, unsupervised learning
consists of input values only in their training dataset. There is

no use of pre-assigned labels for the dataset in unsupervised
learning. The idea of unsupervised learning is to find the
hidden patterns of data from unlabeled information. As a
result, similar structures of data are clustered into the same
group. Unsupervised algorithms are efficient and faster in data
processing.

Unsupervised algorithms are classified into clustering and
dimensionality reduction applications. In clustering, the input
samples group together on the basis of different similarity
attributes such as relative or absolute similarity. The group-
ing takes place by randomly selecting cluster centroids and
similarity attributes toward all values are calculated from the
center. The selection of centroid keeps on changing until the
best match is found. The most common clustering mechanisms
for the security in vehicular networks are k-means clustering
[114], Hidden Markov Model (HMM) [115], and NN [116]. In
dimensionality reduction, the data is projected from a higher
dimension to a lower dimension without losing useful informa-
tion [17]. The dimensionality reduction techniques are faster in
optimization and less complex but may degrade the learning
process. In terms of security in vehicular networks, the use
of Linear Discriminant Analysis (LDA) as a dimensionality
reduction mechanism is considered in the literature [117].

C. Reinforcement Learning
Compared to supervised and unsupervised learning, RL uses

different policies for the learning process. The conceptual
framework of RL is shown in Fig. 8. The objective is to
learn a policy which helps an agent to act optimally in the
given environment [118]. An agent generates data to learn
based on rewards received and tries to maximize the positive
rewards by interacting with an environment using a trial-and-
error method. The environment is a Markov decision process
where the reward and state transition probability are defined
by an observation and the selection of actions [21]. The policy
of RL is to find actions which maximize future rewards.

One of the most popular and widely used RL methods
is Q-learning. Q-learning uses the Bellman equation as a
constraint to maximize the cumulative rewards [118]. It aims
to maximize the expected sum of rewards by applying a policy
for the selection of actions. In practice, Q-learning generates
a lookup table to store a combination of actions and expected
rewards. This requires larger memory and sometimes becomes
inefficient when a continuous set of actions are used for the
data. As a solution, the DRL network is proposed which
involves the combination of DL and RL to handle larger
datasets [119]. The use of RL, DRL and its variants is widely
exploited for security in vehicular networks, as explained in
Section IV.

D. Deep Learning
DL is a subset of ML but works contrastingly to the tradi-

tional ML algorithms. It does not require feature engineering
as in the traditional ML. In DL, it learns the pattern of data
on its own through self-optimization of an algorithm [120].
DL finds the patterns which are too hard for the traditional-
ML to learn. Raw data, in its original form (without pre-
processing), can directly be applied to the DL algorithm to
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Fig. 7. ML approaches in the context of vehicular network security.

Agent

Environment
Reward

Action

Observation

Fig. 8. The conceptual framework of RL.

do classification, regression, and decision making without
explicit programming. DL is well-suited for the non-linear
data patterns [121] and it works in a supervised, partially-
supervised, unsupervised or reinforcement manner. Recently,
the use of DL is widely observed in transportation networks
[23]. Different variants of the deep architectures are present in
the literature to solve different security problems in vehicular
networks.

An Artificial Neural Network (ANN) is from one of the
initial designs of neural networks [122], whereas multilayer
perceptron (MLP) is the simplest and most-commonly used
version of an ANN [123]. An MLP is also known as
feedforward-ANN. An MLP is a layered model which con-
sists of three sections namely, input layer, middle hidden or
computation layers, and output layer. MLP can be modeled
as a supervised or unsupervised learning process [124]. MLP
faces the problem of low convergence efficiency and high

working complexity because of its fully-connected design.
Irrespective of these drawbacks, ANN architectures are used
for driver ID fingerprinting, attack detection and intrusion
detection applications in VANET [125].

Another variant, deep neural network (DNN) is an ANN
with deep (multiple) hidden layers [126]. The advantages
of using a deep structure of layers are: 1) To make the
design compatible for learning larger datasets. 2) A deep
network learns more complex functions compared to a shallow
network, and 3) Deep network architectures are useful in
achieving higher accuracy [127]. On the other hand, deeper
networks introduce much higher complexity in terms of pro-
cessing time and convergence. Based on the optimization
function and information flow, it can be further classified into
different types. We discuss below three different types of DNN
which find applications for security in vehicular networks.

1) Fully-Connected DNN (FCDNN) consists of a series of
layers where each input is connected to each neuron of the
next layer and so on. Due to this diversified connectivity,
it is known as a fully-connected network.

2) Convolutional Neural Network (CNN) is one of the popu-
lar and widely-implemented DNN in the literature which
achieves excellent performance for multi-dimensional
data. It is called CNN as it uses the mathematical opera-
tion of convolution at different layers in its network de-
sign [127]. The use of supervised as well as unsupervised
methods is widely-observed in CNN [128]. This makes
it promising for the application of intrusion detection
systems (IDS) where an unlabeled dataset is used. CNN
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has an advantage of good training performance which
uses fewer parameters due to weight sharing and pooling
operations. CNN achieves the best performance with
the multi-dimensional data such as speech and image
processing. Several works in the literature use CNN
architecture for security applications which are discussed
in Section IV.

3) Recurrent Neural Network (RNN) is a recursive DNN in
which neurons use a feedback looping structure where
new output of a neuron depends on the previous output
and the current input [129]. RNN is capable of storing
states over time. There are many applications for which
CNN is not good enough, such as understanding temporal
information in videos (i.e. sequence of images) or text
blocks. RNN is specially designed to process sequence-
data where the current data-point shows some relation
with the previous one. The Long Short-Term Memory
(LSTM) is a popular RNN design and widely used in
vehicular networks which generates long sequences of the
time-series data such as traffic flows, sensor readings, and
vehicle trajectories.

E. Federated Learning

FL is a recent learning strategy for collaborative training
of a series of learning models to reduce communication and
processing overhead [130]. It works in conjunction with the
existing ML models. The FL design follows star topology and
works at multiple levels of the network, such as lower-level
and upper-level. There can be multiple parallel learning tasks
at the lower-level (local-level) and one task at the upper-level
(global-level), as shown in Fig. 9. The networks at the lower-
level are trained based on the obtained weights from the global
model to support ensemble learning. Due to its distributed
functionality, the FL is also known as distributed learning
or lightweight learning. Recently, multiple applications have
emerged for vehicular networks that use FL [131] [132] [130]
[133].

Global Level

Local Level 1 Local Level 2 Local Level N

. . . .

Fig. 9. The conceptual framework of FL.

F. Transfer Learning

TL is a new type of widely used learning strategy [134]. As
the name suggests, it transfers important parameters among
networks to fine-tune its working mechanism for faster and
efficient performance. In DL, a network goes through a process
of training to learn the optimal weights and bias values. The
idea of TL is to use the output of one network for the training

of another network, as shown in Fig. 10. The weights and
bias values are learned from one network and directly applied
for the optimal working of another network instead of going
through the whole process of training again [135]. This helps
to accelerate the network performance by reducing the training
time for a network. Different paradigms of TL are proposed
in the literature including, one-shot learning, deep one-shot
learning, zero-shot learning, etc, for different applications
[124]. TL finds useful application in mobile networks where
state changes occur frequently. In the context of vehicular
network security, TL is a competent strategy where new attacks
are detected based on the transferred knowledge of the old
attacks.

Learning Task1

OutputInput
(Dataset1)

OutputInput
(Dataset2)

Learning Task2

Knowledge

Fig. 10. The conceptual framework of TL.

IV. ML-BASED SECURITY SOLUTIONS FOR VEHICULAR
NETWORKS

In this section, we discuss different ML-based security
solutions for vehicular networks proposed in the literature.
Fig. 11 presents a classification of security solutions where
the use of ML is widely exploited in the literature to protect
vehicular nodes and related information. The description of
ML techniques targeted security area, and its usage in vehic-
ular networks are briefly explained in the following sections.

A. Driver Identification/Fingerprinting

In vehicular systems, data generated from sensors involve
information about the vehicle and driver. The driver connects
to the vehicle in multiple ways including, personal phone,
vehicular services, infotainment services, insurance details,
manufacturer services, camera sensors, online accounts, and
so on [152] [153]. It is of utmost importance to preserve
the privacy of driver data, maintain security and prevent
adversaries from tracking the vehicle by linking it to the
driver’s identification. Different techniques are available in the
literature and most of them are based on the idea of hiding
location and accessing resources/services without disclosing
the true identity (i.e, using pseudonymity) of a driver to ensure
privacy [154] [8].

The autonomous vehicles should maintain correct identi-
fication and true profiling of the driver to prevent hacking
and theft of the vehicle. To enable this, ML techniques are
used by researchers to authenticate the true identification and
fingerprinting of a user/driver to make vehicles resilience to
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Security Solutions

Privacy Protection [64], [72], [75], [78], [80]

Trust Computation [61]–[63], [65]–[67], [71], [79], [95], [96]

Misbehaviour or Intrusion Detection [46]–[55], [59], [60], [68], [73], [81], [82], [94], [136]

Attack Detection

Miscellaneous [70], [91]–[93]

Spoofing Attack [56]–[58]

Jamming Attack [44], [45], [69], [98]

Sybil Attack [41]–[43]

Black-Hole and Grey-Hole Attack [39], [40]

DDoS [37], [38], [74], [77]

Platoon Attack [36]

Driver Identification/Fingerprinting [125], [137]–[151]

Fig. 11. Security solutions and ML-based literature.

the theft without hiding the true identity of drivers. Recently,
there has been an immense investigation on the driver be-
havioural data and driving patterns to identify the true user.
The data from smartphone sensors and on-board electronic
control units (i.e. using the on-board diagnostic (OBD)-II
protocol) are most-commonly used for driver profiling. Few
studies in the literature focus on biometric and key-based
authentication techniques for driver identification [155]–[157].
However, these techniques are difficult to achieve higher
accuracy and implement in the low-powered vehicle security
systems. Therefore, recent works deal with driver identification
by applying ML algorithms to behavioural data. The sum-
marized tabular comparison of solutions using ML for driver
fingerprinting is presented in Table. III.

In [137], the authors present the idea of temporal clustering
with a hidden Markov model and applying mean-square error
to each cluster for predicting driver behaviour. The clusters are
created based on the actions of the driver in terms of brake
pedal pressure, gas pedal pressure, velocity, and the distance
it keeps with the front signal. The distraction due to the road
conditions shows a great impact on these features. This work
achieves an accuracy of about 70% among 23 drivers and 85%
among 3 drivers when the road distraction is considered.

In the literature, solutions have been developed using SVM,
k-means clustering, random forest, naive Bayes, and KNN
algorithms for driver profiling and true identification. In [138],
the authors demonstrate the potential of using inertial sensors
to identify the driver. They consider turning events, braking,
and acceleration to differentiate among the drivers. The results
are obtained by applying SVM and K-means clustering to
the inertial sensors data and accuracy of 65% is achieved

to differentiate the identity among 2 or 3 drivers. In [139],
the authors consider 21-unique features to propose a highly-
accurate personalized driver assistance system. The features
include speed, distance, direction, pressure, and so on, of
different objects in a vehicle. A new ML technique called
Extreme Learning Machine (ELM) is used in this work which
achieves the accuracy rate of 75% for a group of 11 drivers,
88% for a group of 5 drivers, and 90% for a group of 3
drivers. Similar to [139], the authors in [140] and [125] also
consider the use of a wide range of features i.e. 16 and 15
different measurements from OBD-II protocol, respectively.
In [140], the authors compare 4 different ML algorithms (i.e.
random forest, naive Bayes, KNN, and SVM) to perform
authentication with an accuracy of 99% among 15 drivers.
However, the work in [125] achieves an accuracy of 99%
among 10 drivers by using a decision tree, random forest,
KNN, and MLP algorithms.

The work in [142] highlights different kinds of features for
driver identification where the authors collect trip-based data
to help authenticate a driver. The traditional ML algorithms
including SVM, naive Bayes, and random forest are used
to achieve an accuracy rate of 88%. Another unique set of
features is considered by the authors in [143] to profile a
driving style. In this work, the repulsive potential energy
values generated from the preceding vehicles have been used.
A simulator collects data for training and testing purposes.
Using the SVM classification method, this work achieves 70%
accuracy among 4 drivers. In [148], a different kind of decision
tree-based ML technique is applied over 51 features of the
OBD-II protocol data. Such a large number of features helps
to obtain about 99% accuracy among 10 drivers. Another work
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TABLE III
SUMMARY OF LITERATURE ON DRIVER IDENTIFICATION OR FINGERPRINTINGS USING ML

Citation Year Feature Data Algorithm Accuracy

[137] 2012 Brake pedal pressure, gas
pedal pressure, vehicle

velocity and the distance from
the vehicle in front signals

Temporal clustering with
HMM

70% (group of 23), 85%
(group of 3)

[138] 2013 Acceleration, braking and
turning events

SVM and K-mean clustering 65% (group of 2/3)

[139] 2015 21 features including speed,
distance, direction and

pressure

ELM 75% (group of 11), 86%
(group of 5), 88% (group of

4), 90% (group of 3)
[140] 2016 16 features from OBD-II Random Forest, Naive Bayes,

KNN and SVM
87% accuracy (group of 15,
few sensors), 99% (group of

15, more sensors)
[125] 2016 15 features from OBD-II Decision Tree, Random

Forest, KNN and MLP
99% (group of 10)

[141] 2016 GPS data DL 77% (50 drivers), 60% (1000
drivers)

[142] 2017 Trip-based data SVM, Random Forest and
Naive Bayes

88%

[143] 2017 Repulsive potential energy of
vehicles

SVM 70% (group of 4)

[144] 2017 Acceleration NN 88% (group of 13)
[145] 2017 Acceleration and decelration Multiclass LDA 60% (group of 5)
[146] 2017 GPS data Autoencoder regularized DNN 78% (group of 50)
[147] 2018 137 statistical features

extracted from GPS data
Random Forest 82% (group of 3/4)

[148] 2018 51 features from OBD-II J48, Random forest and
REPtree

99% (group of 10)

[149] 2018 10 sensor readings from
OBD-II

DL 90% (group of 4)

[150] 2019 Smart phone sensor + OBD-II
protocol data

CNN and RNN 95% (group of 10, 0
anomalies), 57% (group of

10, 50% anomalies)
[151] 2020 The intake air pressure and

torque of friction
ML (10 schemes compared) 90%-93%

in [147] uses GPS data to perform driver identification with the
random forest algorithm by extracting 137-additional statistical
features to achieve an accuracy of 82%.

In recent years, there have been research that focus more on
achieving high accuracy with a minimum number of features
and/or automatic feature extraction. It is difficult to handcraft a
large set of features in order to achieve a higher identification
score. The effect of distractions from the road or location
is also challenging for the manually-chosen type of features.
This has lead researchers to explore the use of DL to let the
algorithm automatically extract features from the sensor data.
In this context, the first work on DL for driver identification
is proposed in [141]. The authors in this work use GPS
data as input to achieve 77% accuracy among 50 drivers
and 60% accuracy among 1000 drivers. Another work in
[146] presents the idea of feature extraction (from GPS data)
by using autoencoder-regularized DNN with an accuracy of
78.3% among 50 drivers. In [144] and [145], the acceleration
and deceleration data are considered for driver identification
and classification. The authors in [144] train and test their
design by applying an NN over 4 different clusters of data
obtained from 13 drivers. They are able to achieve an accuracy
of 88% for the correct identification of drivers. In [145], the
authors propose a multiclass-LDA classifier to identify drivers.
Their simplest design obtains an accuracy of 60% among 5
drivers.

An analytical study is performed in a recent work [151] over
ten different ML algorithms for accurate detection of the true
driver. This work aims to use minimum number of features for
driver prediction which includes intake air pressure and torque
of friction. In the performance evaluation, an accuracy of 93%
is achieved by multiple ML techniques to discriminate between
true driver and impostor. The model discussed in [149] inputs
10 different sensor readings of OBD-II protocol to the CNN.
This work presents an 8-layer CNN design which is able to
achieve an accuracy of 90% for 4 drivers within a few minutes.
In a recent work [150], the authors employ behavioural data of
drivers with a DL algorithm to guarantee driver identification
while considering the effect of anomalies. They propose an
end-to-end driver fingerprinting framework by using CNN and
RNN over the combined data of smartphone sensors and the
vehicle’s electronic control unit. In this work, the authors
consider a driver’s personal data as a time-series sequence
and perform identification through the multivariate time-series
classification. It achieves an accuracy of 95% (no anomalies)
and 57% (50% of anomalies) for 10 drivers.

B. Attack Detection

Vehicular networks are vulnerable to different types of
attacks and a number of solutions are proposed in the literature
to deal with such attacks [6]. The evolution of V2R, V2V, and
V2I communications demands highly-efficient, intelligent, and
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faster solutions. The traditional hard-coded algorithms are able
to deal with the deterministic type of attack scenarios. On
the other hand, the self-learning designs of deep architectures
can detect a variety of attacks through experience and shared
information. Therefore, ML and its sub-classified architectures
are gaining popularity to detect attacks and deal with different
types of security issues in V2X communications. In this
section, we will discuss different types of attacks and ML-
based solutions proposed in the literature to prevent these
attacks. The summarized tabular comparison of solutions using
ML for attack detection is presented Table. IV.

1) Platoon Attack: Platoon is a concept of grouping vehi-
cles which travel in the same lane with close proximity and
similar speed regulations [158]. Platoon helps to save energy
and improves road capacity to efficiently manage traffic.
However, attacks on the stability of a platoon may result in car
accidents and severe losses. The authors in [36] propose a self-
learning deep architecture to detect attacks against the stability
of a platoon. A platoon of 10 vehicles is considered where the
first vehicle is a leader vehicle with the desired speed and
all other vehicles in a platoon follow it. The attacker tries to
destabilize a platoon by applying constant brakes or abrupt
accelerations to deviate the speed of nearby vehicles. In [36],
by using FCDNN and CNN, the authors are able to detect and
locate the attacker. The velocity, range, and distance obtained
from LIDAR and RADAR sensors (present in all autonomous
vehicles) are fed into the FCDNN and CNN networks. The last
hidden layer of the network contains 10 outputs corresponding
to each of the vehicles in a platoon. A high (or 1) at any output
position indicates the presence of attack and its location. This
design is able to achieve an accuracy of 97% in detecting the
attacks.

2) DDoS: The use of SDN is gaining a lot of importance
in the field of transportation systems. However, the centralized
intelligence of SDN poses some threats. It provides an easy
point of access to launch distributed DoS (DDoS) attacks by
generating a large number of spoofed-flows requesting SDN
services. The authors in [37] use an ML-based solution to
detect DDoS attacks in SDN-based vehicular networks with
a focus on V2I communication. It performs an analytical
study to find the best ML mechanism to detect DDoS attacks
for the given conditions. It collects ground truth data from
transport control protocol (TCP) and user datagram protocol
(UDP) flows (as 7 different features) in the presence as well
as an absence of DDoS attacks. On the basis of collected
data, it trains the network with multiple supervised learning
algorithms and observed that the gradient boost classifier
achieves the best performance. In addition, the random forest,
decision tree, and linear SVM techniques perform close to the
best performance. However, the NN does not perform well
because of the insufficient amount of data used to train the
NN.

The authors in [38] study DDoS attacks based on TCP
flood, UDP flood, or ICMP (internet control message protocol)
flood in an SDN-based vehicular network. In this work, the
authors use the SVM algorithm to identify efficiently and
respond quickly in the event of an attack. The flow table
entries are used as input features for the SVM training. The

data forwarding plane forwards every new entry towards the
controller. Over the control plane, the PACKET_IN trigger
check takes place and the rate of PACKET_IN message is
compared with the threshold rate. In case of an abnormality, a
warning message is transmitted to the attack detection module
where the SVM recognition algorithm checks the presence of
an attack by extracting the flow characteristics. If confirmed,
the attack warning system generates alert proceeds with further
actions. The authors evaluate the design in terms of detection
ratio, false alarm ratio, and classification time. An average
detection ratio of ≈98% is achieved for different types of
floods with the longest classification time of 0.148sec.

Sherazi et. al [77] propose an idea of analyzing packets
from live network traffic to detect vulnerabilities. This work
focuses on DDoS attack detection using RL in IoV networks.
This work uses cluster-based topology where cluster heads
collect sensor data from end-users. The proposed algorithm
is designed to perform attack detection on live traffic where
it captures and analyzes packets using fuzzy logic. Further,
it uses Q-learning over pre-processed packets to detect DDoS
attacks. In this work, the authors use NS-3 simulation platform
to evaluate the proposed method using buffer size usage,
energy consumption, response time, and throughput as per-
formance metrics. Angelo et. al [74] propose a data-driven
approach to detect DoS attacks along with three other types of
attacks on in-vehicle networks. This work uses data associated
with the controller area network (CAN) bus and extracts
useful features using unsupervised learning. It represents CAN
behaviour from those features and any deviation from the
learnt behaviour is considered as an attack on the system.
Further, this work uses a data-centric scheme to narrow down
the type of an attack by observing associated parameters of the
CAN bus. The performance evaluation results of the proposed
scheme show an accuracy of 99%-100% for a car-hacking
dataset.

3) Black-Hole and Grey-Hole: The black-hole and grey-
hole attacks are types of wireless routing attacks. In these
attacks, a node tries to stop onward forwarding of mes-
sages/packets towards the receiver. In a black-hole attack, there
will be a complete blackout or drop of packets. On the other
hand, in a grey-hole attack, packets are selectively dropped and
a subset of packets are altered by an attacker to convey wrong
information to the receiver. In the literature, ML techniques
have been developed to detect these kinds of routing attacks.

In [39], the authors present a design to detect grey-hole
and rushing attacks using NN and SVM algorithms. The
purpose of both attacks is to disconnect links between RSU
and vehicles which prevents the discovery of routes for the
packet transfer. In this work, the authors record the number
of received packets, dropped packets, PDR, and average end-
to-end delay for normal and malicious behaviour in VANETs.
The recorded data is pre-processed, trained, and tested with
the feed-forward NN to collect output in terms of normal
and abnormal behaviour. Further, the same data is trained
and tested with the SVM model as well to identify system
efficiency for detecting grey-hole attacks and rushing vehicles.
An alarm is generated to notify systems regarding the attacks
based on a joint-decision from both techniques. As a result,
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TABLE IV
SUMMARY OF LITERATURE ON ATTACK DETECTION USING ML

Citation Year Feature Data Algorithm Type of Attack Service Accuracy

[40] 2015 Auditable data from basic, IP
and AODV trace files

Artificial NN Black hole Detection 99%

[39] 2016 Rx packets, PDR, dropped
packets and delay

NN and SVM Grey hole and
rushing attack

Detection 99% (both)

[42] 2017 Driving pattern KNN Sybil attack Detection 100.00%
[41] 2017 Driving pattern SVM Sybil attack Detection 92%-98%
[37] 2018 7 features extracted from TCP

and UDP flows
ML (8 schemes compared) DDoS Detection NA

[44] 2018 History of power usage Dyna Q-RL Jamming attack Prevention NA
[91] 2018 Acceleration by LIDAR and

RADAR
HMM Attack on cruise

control algorihm
Detection 78% to 90%

[38] 2018 OpenFlow flow tables SVM DDoS Detection 98%
[45] 2018 RSSI, PDR, SINR and RSV K-means clustering Jamming attack Detection NA
[58] 2018 Physical layer information RL (Q-Learning) Spoofing attack Detection NA
[92] 2018 Sensor readings and

beaconing
DL and RL Cyber physical attack Prevention NA

[36] 2019 Range and veloctiy by
LIDAR and RADAR

CNN and FCDNN Attack to destablize
the platoon

Detection 98%

[43] 2019 11 features including range,
position, speed etc

RNN (LSTM) Sybil attack Detection 95%

[98] 2019 History of actions and
observations

RL (Q-Learning) Jamming attack Prevention NA

[69] 2019 RSSI, ToA, ToD and distance CatBoost (Decision tree ML) Jamming attack Detection and
localization

100%

[77] 2019 Packet features from live
network traffic

RL (Q-Learning) DDoS attack Detection NA

[70] 2019 SDN traffic flows ANN, DL and LSTM Crossfire attack Detection 80%-87%
[56] 2019 RSS, RSU location and

spoofed location
Multi-layer NN Spoofing attack Detection NA

[57] 2020 Spatial decorrelation features RL (Q-Learning) and TL Spoofing attack Prevention NA
[74] 2020 Car-hacking dataset K-means DoS, fuzzy, RPM

and gear attack
Detection 99%

[93] 2020 Sensor readings and
beaconing

DL and RL Data manipulation
attack

Prevention NA

the above models achieve a maximum error rate of 0.19% and
0.17% for SVM and NN, respectively.

Alheeti et al. [40] propose an ANN design to detect black-
hole attacks in self-driving cars. This work considers three
different types of trace files namely, basic trace file, IP trace
file, and AODV trace file, to extract features for the network.
These files generate a large number of features. To find the
most effective features, the "proportional overlapping scores"
method is used in this work. The authors use 21 features to
characterize data as normal and abnormal. This data is used
as input for the NN to detect the black-hole attacks. Using the
NS2 (network simulation-2) simulator, the authors demonstrate
accurate attack detection with a rate of 99.8%.

4) Sybil Attack: Sybil attack is one of the most common
and easy-to-implement attacks. A sybil attack in a vehicular
network creates virtual nodes to launch an attack and detection
of such virtual nodes is not easy. The use of pseudonyms in
vehicular networks for the privacy of user identity makes it
difficult for the system to detect sybil attacks.

Different techniques are proposed in the literature to en-
hance the authentication mechanism and prevent unauthorized
access [159] [160]. Pengwenlong et al. in [41] apply an
ML algorithm over the driving patterns to successfully detect
sybil attacks in vehicular networks. The idea is to find the
similarity between driving patterns based on time, location,
velocity, acceleration, and acceleration-variation in order to

detect malicious nodes. A new concept of driving pattern
matrix (DPM) is proposed in this work which uses eigen
values as input to the SVM algorithm. The results are obtained
by varying different parameters and using different SVM
kernels to achieve an accuracy of 92% to 98%. Another work
by Pengwenlong et al. [42] is also about sybil attack detection
but using the KNN technique. In this work, the authors use the
driving pattern and eigen values of DPM to detect an attacker
with an accurate classification rate of 100%.

Kamel et al. [43] present a generic RNN-based solution to
perform global detection of sybil attacks. This work considers
four different effects of a sybil attack which results in traffic
congestion, data replay, DoS random, and DoS disruptive.
In the first step, OBUs and RSUs detect the misbehaviour
within vehicles. In the case of malicious activity, it reports
to the misbehaviour authority (MA) by sending misbehaviour
reports (MBRs). The function of MA is to achieve a global
view of misconduct that takes place in vehicular nodes. MA
performs 11 different checks of information including, range
plausibility, position plausibility, speed plausibility, and so
on, to use it as an input for an LSTM-based RNN network
which detects the correct type of a sybil attack. In this work,
the authors also employ feature compression by using an
autoencoder algorithm. They evaluate the performance of their
proposed model using OMNET++ simulator which shown an
accuracy of 95%.
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5) Jamming Attack: In this attack, the aim of a jammer is
to block or interfere transmission of data from a sensor by
sending false alerts or creating a spoofed environment around
the sensor. The trust-based mechanisms are commonly used to
prevent access of jammers to the system but sometimes these
techniques fail to differentiate between the trusted node and
malicious node. Xu et al. [98] present an RL-based jamming
attack prevention algorithm for mobile ad-hoc networks. The
proposed algorithm performs Q-learning to learn the history
of actions (past), and then input it into the deep Q-network
(DQN) to predict Q-values for the present states. It is observed
from the performance results that a well-learned network
(based on past experiences) helps the transmitter to perform
optimally and quickly in case of a jamming attack. The
performance evaluation of the proposed mechanism is carried
out using tensorflow [161].

A jamming attack against a vehicle platoon is discussed in
[44]. This work presents a Dyna-Q RL-based power control
mechanism. In this scenario, the jammer tries to consume
channel energy and prevents an efficient transmission of data
among vehicles. The RL-based algorithm performs a historic
assessment of the environment to calculate the mean approxi-
mation of a channel utility and uses it to control the power for
vehicles. The proposed mechanism not only prevents jamming
but also enhances the signal-to-interference noise ratio (SINR).

Kumar et. al [69] present an anti-jamming protocol to detect
and localize the jammers in vehicular networks. This work
contains multiple stages of functionalities in which at first a
foster rationalizer is implemented to identify the frequency
change that results in signal strength variations. The next step
is to use a morsel supple filter for the minimization of noise
to perform accurate localization. A decision tree-based ML
algorithm (known as CatBoost) is used to locate a jammer.
It employs 4 different features for the correct prediction of
location i.e. distance factor, time of arrival (ToA), time of
delay (ToD), and received signal strength indicator (RSSI). In
their performance evaluation, the proposed algorithm main-
tains accurate location prediction accuracy of 99.91% using
MATLAB/SIMULINK. The proposed algorithm also achieves
high throughput, high PDR, and low packet loss ratio.

Karagiannis et al. [45] propose an unsupervised algorithm to
detect RF-jamming in vehicular communications. In this work,
three real-time simulations are evaluated to identify intentional
and unintentional jamming of RF signals in V2V communi-
cations. It implements RSSI, PDR, SINR, and relative speed
variation (RSV) from the vehicle’s OBU as input features
to an unsupervised classifier. The authors claim the RSV
parameter is a key factor to differentiate between jamming due
to malicious nodes and jamming due to unintentional system
problems.

6) Spoofing Attack: In vehicular applications, different
types of spoofing attacks can take place wherein an attacker
pretends as a legitimate user of the network to gain access
to the personal information. A spoofing attack is not only
limited to the spoofing of identification but also the location,
DNS information, IP address, and so on. In [56], Ihsan et
al. propose a model to encounter the problem of location
spoofing in vehicular networks. It considers traditional location

verification systems (LVS) as inefficient due to their relevance
on channel parameters which limits its application for the
highly-mobile real-time scenarios in vehicular networks. This
work proposes a multi-layer NN to classify node location as
legitimate or spoofed. The received signal strength, untrue
(spoofed) locations, and RSU locations are feed into the net-
work to generate binary responses. As an evaluation parameter,
the error function is used to compare the proposed work with
the existing traditional methods to verify the effectiveness of
using ML in identifying spoofed entities. This work considers
scenarios where it is believed that a malicious node is optimiz-
ing its untrue location to make it hard for a network to detect
an attack. However, ML-based NN design works efficiently to
detect an attack for the optimized scenarios as well.

Lu et al. [58] present an RL-based spoofing attack detection
mechanism. In this work, the authors implement a Q-learning
authentication mechanism to detect rogue nodes. This model
uses physical layer information such as RSSI to find spoofing
data by sending an alarm when there is a mismatch between
the information received from a rogue node and the previously
recorded data (of old legal users) in a network. It improves the
detection accuracy by maintaining a record of radio sources
and physical layer parameters. The final decision is made by
Q-learning which is trained by performing repeated spoofing
detections in the form of a Markov decision process. Prior
knowledge of the attack model and network model is not
important in this kind of architecture. In their performance
evaluation, the proposed model achieves lower misdetection
and false alarm rate compared to the existing solutions.

The authors of [57] extend [58] with an advanced and robust
RL-based physical authentication mechanism to prevent un-
known spoofing attacks in VANETs. The existing physical au-
thentication schemes use channel state information to prevent
an attack [58] [162]. In the extended work, the authors propose
a low-energy-consuming mechanism which performs authen-
tication without the prior knowledge of channel parameters.
The proposed work performs RL to detect spoofed packets
based on physical spatial decorrelation features through a trial-
and-error method. The authentication policy is selected based
on the current state and its Q-value to authenticate packets
with the user identity. This work employs TL as well to save
convergence time and make the learning process faster. The
results are compared with earlier RL-based work to prove the
better performance of their proposed authentication scheme.

7) Miscellaneous: In addition to the above well-known
attacks, there is a possibility of other types of attacks that can
take place at different parts of vehicles and vehicular networks
to affect the normal working mechanism. Jagielski et al. [91]
propose an ML-based mechanism to detect four different
types of attacks (i.e. ACL (Acceleration), VEL (Velocity),
POS (Position), and VEL-POS) which can compromise the
cruise control system of a vehicle. Here, ACL and VEL
can impact the passenger comfort and efficiency, respectively.
However, POS and VEL-POS can result in a car crash. The
proposed model performs attack detection by using a physical
kinematics equation and a hidden Markov model. In this work,
the information regarding acceleration collected from LIDAR
and RADAR sensors is used as an input feature for the ML
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model. In their performance evaluation, the authors detect the
above mentioned four types of attacks with an accuracy rate
of 78% to 90%.

Narayanadoss et. al [70] present an ML-based solution to
detect crossfire attacks where an attacker disconnects the set
of links/nodes from the rest of the network. An SDN-based
intelligent transportation system is considered in this work.
It performs a comparison analysis between ANN, DL, and
LSTM to find the highly-accurate attack detection model.
In the SDN-based design of a vehicular network, the traffic
behaviour and temporal correlation between the traffic flows
are recorded to use as an input for the ML models and differen-
tiate between the legitimate and attacker flows. In this work,
the authors use mininet platform to perform a comparative
analysis between different ML-models in vehicular network
scenarios. The results conclude that LSTM outperforms ANN
and DL in accurately detecting the attacker flows based on
different parameters. The average detection accuracy achieved
by ANN and DL is about 80% and for LSTM it is about
87%. Ferdowsi et. al [92] propose a method to increase
the robustness of an autonomous vehicle’s dynamics control
system in case of cyber-physical (CP) attacks. Such CP attacks
are a type of attacks on vehicles where adversaries try to
manipulate their sensor or communication data. In this work,
the authors use a game-theoretic approach to formulate an
action where the attacker injects faulty data into the control
system to manipulate its optimal safe spacing measurements.
In the reaction, the task of the vehicle’s defending system is
to maximize the robustness against faulty data. The attacker
can inject faulty data using an infinite range of data values and
the defending system has no information for the attacker. In
the proposed work, each player of the vehicle’s system uses
an LSTM network to learn its own action and feeds it into the
deep RL algorithm. The RL algorithm trains itself with actions
that minimize the spacing deviation. Any value which results
in maximum deviation would be considered as an attack. The
performance evaluation shows deep RL helps to prevent the
CP attacks and makes the dynamics control system robust
against illegitimate changes. Another recent work, with the
same application of enhancing the robustness of autonomous
vehicle’s dynamics control system, is proposed in [93]. This
work also uses game theory along with LSTM and deep RL.
The difference from the previous work is the use of additional
generative adversarial network (GAN) architecture to enhance
the robustness and prevent control system data manipulation.

C. Misbehaviour or Intrusion Detection
Misbehaviour detection system (MDS), also known as IDS

is a means of detecting an unknown type of attacks. It is
crucial to design a system which identifies the misbehaviour
that occurs in any form. Several studies have been carried out
in the literature on the problem of intrusion or misbehaviour
detection. In this section, we discuss ML-based solutions to
handle intrusion or misbehaviour taking place by a dishonest
node. The summarized tabular view of solutions is shown in
Table. V.

Grover et al. [55] discuss a scenario where a misbehaved
vehicle launches an attack by generating false alert messages.

In this work, the authors propose an ML algorithm to classify
the types of misbehaviours in vehicular networks. It uses
single-class ML to differentiate between honest and dishonest
nodes, in the first place. In the next step, it applies a multi-
class ML to detect the type of misbehaviour or attack that
can be launched by a dishonest node. There are six different
types of attacks considered in this work which can compromise
the authenticity or availability of a vehicle in V2V or V2R
communications. This work employs a wide range of features
which are collected using the NCTUns-5.0 simulator [163].
For the performance evaluation section, five different types
of ML algorithms are compared where random forest and J-
48 algorithm outperform with a true-positive rate of 92% for
single-class and 93% for multi-class classifications.

Leandros et. al [51] present a distributed IDS (DIDS) in
vehicular networks. This work analyses the effect of RSU
placement, intruder velocity, and density of vehicles over the
accuracy and response time. The DIDS uses K-OCSVM which
can be deployed over vehicles or on RSUs for detecting the
misbehaviour by an intruder. The K-OCSVM is a combina-
tion of one-class SVM (OCSVM) and K-means clustering
algorithm. The system uses one-class SVM to separate all
possible outliers, and then uses it as an input for the k-means
clustering where clustering takes place in a recursive manner
to differentiate the most severe alerts into a separate cluster.
The separated cluster of negative values is communicated to
the security center for further processing.

In [59], the authors develop an IDS using a clustering
scheme in VANETs. Compared to the previous works, the
proposed algorithm claims not to engage any special agent
for observing the node behaviour. In addition, the authors
use unique features such as mobility of nodes and topology
changes in their framework. It takes a worm-hole attack,
black-hole attack, sybil attack, selective-forwarding attack,
packet-duplication attack, and resource-exhaustion attack into
consideration. It is a lightweight framework that performs
detection at multiple levels including, a global decision at
RSU, global detection at the cluster head, and local detection at
cluster members. At the local level, a Bayesian game is applied
by a cluster member that takes features such as PDR, message
duplication ratio (MDR), packets sent, and signal strength
intensity (SSI) to model rules for the normal behaviour. In case
of exploitation of rules, an alarm for the malicious behaviour is
generated and then forwarded to the cluster head. However, at
the global level (i.e. cluster-head), an SVM learning algorithm
confirms the malicious node detection by training it with the
same features as used at the local level. Finally, the global
level decisions (at RSU) compute the trust level for each
node, and the nodes with lower trust values are blacklisted.
The performance study verifies that this algorithm is fast,
lightweight (in terms of overhead), and has low false-positive
rates.

A model named CEAP (Collection, Exchange, Analysis, and
Propagation) is proposed in [60] which deploys an intrusion
detection mechanism on top of clustering protocols. It is a
multi-decision intelligent mechanism using SVM classification
for intrusion detection. In this work, the cluster heads work as
watchdogs to analyse the multi-point relay node and monitor
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TABLE V
SUMMARY OF LITERATURE ON MISBEHAVIOUR OR INTRUSION DETECTION USING ML

Citation Year Feature Data Algorithm Type Service Accuracy

[55] 2011 Wide range of features related
to packet delivery, speed,

positioning etc

ML (5 schemes compared) MDS Detection 92% (single),
93% (multi)

[52] 2015 Behavioural and contextual
information

SVM IDS Detection NA

[51] 2015 Road traffic and network data
parameters

K-OCSVM IDS Detection NA

[59] 2015 PDR, MDR, SSI and packet
sent

SVM IDS Detection NA

[60] 2016 Vehicle behaviour (Packet
transmission)

SVM IDS Detection NA

[48] 2016 Speed and speed error NN MDS Detection and
Prevention

NA

[53] 2017 KDD CUP IDS dataset Multi-class SVM IDS Detection 88%
[47] 2017 NGSIM dataset ANN MDS Detection 99%
[49] 2018 VeReMi dataset SVM and KNN MDS Detection and

Localization
NA

[136] 2018 Network incoming and
outgoing, CPU, disk data,

encoder, accelerometer, power
and current

RNN IDS Detection 90% (known
attack), 67%

(unknown attack)

[46] 2019 Beacon ML (5 schemes compared) MDS Detection 95%
[68] 2019 VeReMi dataset KNN and SVM MDS Detection 99%
[81] 2020 CIC-IDS2017 dataset Feed-forward NN IDS Detection 99%
[50] 2020 NSL-KDD dataset Ensemble Learning IDS Detection 97%
[82] 2020 Alert-specific features ML (5 schemes compared) MDS Detection 96%-98%
[94] 2020 CAN dataset TL IDS Detection 88%-95%
[73] 2021 AWID dataset TL IDS Detection 92%-96%
[76] 2021 VeReMi dataset ML (6 schemes compared) MDS Detection NA

the packet transmission for the classification of malicious
and true behvaiours. The main contribution of this work
is to maintain low computation power, low communication
overhead and reduce the storage usage by deploying it over the
existing clustering protocols such as QoS-optimized link-state
routing [164]) to make it efficient for the infrastructure-less
vehicular networks.

Li et al. [52] present an IDS which uses the SVM algorithm
to detect anomalous vehicles. It employs behavioural and con-
textual information to train the SVM classifier. In contextual
information, the velocity, channel status, temperature, wind
speed, GPS coordinates, and altitude are taken into account.
This algorithm is more resilient to different attack patterns
and environmental changes. It is deployed at every node to
analyse the neighbouring node behaviour and exchange their
information with one another. In this way, each node gets
local as well as external information (shared by others). The
dempster-shafer theory is used to fuse data at each node. The
broader view of the network makes it easier for all nodes to
have the same belief of malicious nodes. In the performance
evaluation, the parameters such as communication overhead,
precision, and recall are calculated and compared with the
previous works.

In [48], Sargolzaei et al. highlight the concept of fault
detection to prevent different types of attacks. A misbehaviour
or fault initialization in a network corresponds to the beginning
of an attack. This work presents an NN-based design to detect
the falsification (i.e. false data injection (FDI)) that can be a
cause for different types of attacks. The platoon scenario is
considered in this work and two controllers are used to keep

track of speed and distance of a vehicle. In case of any change
from the reference values, the controller sends a notification
to the decision-making unit which uses a fuzzy logic-based
NN to detect the fault and generates a new value for the safe-
gap needed to maintain between vehicles to prevent accident
scenarios. It exploits current speed and speed error to output
the safe distance alerts for all the vehicles in a platoon. This
work uses simulation to evaluate the design in terms of speed
(input) and distance (output).

In [81], an end-to-end design of a feed-forward NN is
proposed for intrusion detection. The detailed methodology
helps to provide misbehaviour detection against a wide range
of attacks. The authors use an MLP on selected features of
a recent dataset (i.e CIC-IDS2017). The selection of features
before optimizing the hyper-parameter is important in achiev-
ing good performance. A key contribution of this work is the
implementation of the proposed design on a MicroProcessor
Unit (MPU) from STMicroelectronics which is used as a smart
gateway to ensure a connection between the vehicle and cloud.
In performance evaluation, false positive ratio of less than 1%
and 99% accurate intrusion detection are achieved for a wide
range of attacks using the CIC-IDS2017 dataset.

Kim et. al [53] propose a cloud-based SDN design for vehic-
ular applications to perform intrusion detection. In this work,
the vehicles and RSUs are combined to form a data plane and
a group of vehicles combines to form a cloud. The controller
on the infrastructure side along with certification authority
(CA) is used to perform a control plane task. All vehicles are
programmed to send information on packet drop rate, packet
modification rate (PMR), request-to-send (RTS) flooding rate,
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wireless channel status, packet interval, and packet size as
input features toward a multi-class SVM which is deployed
at the controller side. The SVM performs classification based
on input features and identifies if an attack is taking place
or not. This work performs a MATLAB-based simulation to
evaluate the proposed design. In order to create an attack,
the KDD CUP intrusion dataset is used [165]. Four different
types of attacks are considered in this work, including DoS
attack, probing attack, a user-to-root (U2R) attack, and remote-
to-local (R2L) attack. The performance results show that the
cloud-based SVM classification model is able to achieve an
accuracy of 88%.

In [47], the authors consider an ANN to detect misbehaviour
information. There are seven different types of features ex-
tracted from the NGSIM (Next Generation SIMulation) dataset
[166] to help detect anomalies. In this work, the detection
phase consists of 4 phases: data acquisition, sharing, analysis,
and decision making. In the first phase, only data collection
takes place. In the second phase, the vehicles broadcast their
mobility information to all reachable network nodes and other
vehicles. The rate of broadcast and transmission delay is used
in this phase to analyse the behaviour of vehicles. In the third
phase, a set of features representing misbehaviour are grouped
together. In the final phase, an ANN is used to perform training
and testing for anomaly detection. The performance results
show that the trained classifier detects misbehavour with an
accuracy of about 99%. A scheme is proposed in [49] to
predict as well as locate the misbehaviour. This work uses
VeReMi dataset [167], which is designed for V2X security
testing. It contains a labeled dataset for the normal and attack
behaviour. The ML algorithms perform different plausibility
checks using SVM and KNN to classify an attack and predict
its location. Three different plausibility checks used in this
research include location, movement, and quantitative infor-
mation. This scheme can classify misbehaviour efficiently by
maintaining recall within 5%.

Loukas et. al [136] propose a lightweight DL-based IDS
model for vehicular applications which can also be offloaded to
other network devices/vehicles. As a case study, the authors in
this work use small-land vehicles to perform offloading of the
continuous task of IDS and demonstrate high attack detection
accuracy using a deep learning model. The proposed work
detects known attacks with 90% of accuracy and unknown
attacks with 67% of accuracy. First, the detection model uses
deep MLP along with RNN to process time-series data of
eight input features collected from communication, processing,
and physical properties of the vehicle. Later, an LSTM hidden
layer is used to learn the temporal context of different attacks.
However, for offloading, a mathematical model is proposed
where authors use minimum detection latency as an objective
to make computation offloading decisions for the DL model,
given the processing demands (available resources) and the
reliability of the communication channel is satisfied.

Sohan et. al [46] present an ML-based framework to identify
vehicle misbehaviour using false alert messages and position
falsification. The vehicles update each other regarding different
happenings including, road conditions, accidents, emergency
vehicles, and collision warnings by sending information via

a beacon. In this work, the authors track beacons and infor-
mation deviation from the normal protocol conditions and use
it as an input for the ML algorithms. Five different types of
ML algorithms are compared in this work wherein decision-
tree classifier achieves the highest accuracy of 95%. The
authors in [68] propose an ML-based solution to maintain the
correctness of information exchanged between V2V and V2I.
The misbehaviour performed by an attacker to manipulate or
inject false information into the communication stream can
cause catastrophes or accidents in vehicles. In this work, the
authors introduce three features of the n-sequence trajectory to
detect misbehaviour with higher accuracy. It uses supervised
KNN and SVM classification and compares it to previous
work using the same dataset but with different features. In
the performance evaluation, 99.7% of precision is achieved.

Collaborative IDS is studied by Ghaleb et. al in [50]
using ensemble learning and shared knowledge of vehicles.
In this work, each vehicle creates an ensemble of weighted
random-forest classifiers, for which aggregation takes place
using a robust voting scheme. Each vehicle trains local IDS
classifiers using a random forest algorithm and shares its
knowledge on-demand with other vehicles. The performance
of the classifier on each vehicle is evaluated by testing the
local dataset over the received classifier, and based on the
generated trustworthiness factor of the received classifier. The
classifiers which highly-deviate the results are excluded from
the ensemble of weighted random-forest classifiers. This work
uses network security laboratory-knowledge discovery data
mining (NSL-KDD) dataset to simulate performance over four
different types of attacks. It can classify attacks with an F1
score of 97% and 4% false-positive rate.

Gyawali et. al [82] propose an MDS mechanism to prevent
internal attacks. This work uses ML along with reputation
theory to detect an attack and ensure the reliability of vehicles.
First, the ML algorithm evaluates the vehicle message, and
the result of this evaluation is used as feedback to combine
with the Dempster-Shafer (DS) theory. Then the reputation
score of each vehicle is calculated using DS theory with
the combinational feedback of ML algorithm. Besides, this
work proposes a revocation scheme to perform a reputation
score update. The obtained score is synchronized with the
CA to enhance confidence for misbehaviour detection. This
work carries out extensive simulations of a realistic vehicular
environment to create the dataset. A wide range of alert-
specific features is collected including time, speed, position,
distance, flow, and change/difference in these parameters.
The authors evaluate their mechanism against false alert and
position falsification attacks and perform a comparison with
voting schemes. The proposed mechanism achieves an F1-
score of 98% for false alert and 96% for positional attack
detection.

Tariq et. al [94] present a TL-based intrusion detection
scheme on CAN protocol. First, it trains the convolution
LSTM-based model with a previously-known intrusion dataset.
Later, one-shot TL is used to re-train the model for detection of
new attacks where only one sample of new intrusion is enough
to detect it. In the performance evaluation, the authors use the
CAN dataset collected from two real vehicles to demonstrate
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88% and 95% of accurate detection of new and known attack
types, respectively. Another TL-based IDS is proposed in [73].
In this work, the authors propose two TL-based model update
schemes to detect new types of attacks in IoVs. It uses a tree-
based TL algorithm along with two update schemes, a cloud-
assisted and a local model update scheme. One of the key
advantages of this work is using a small amount of data to
achieve high detection accuracy. The model works with two
hypotheses based on whether the cloud can timely provide
labeled data or not. If the cloud provides data, the TL model
update is performed with the given data. In case of no timely
provision of data from the cloud, the local model is used. In the
local update, vehicles obtain the pseudo-label of the unlabeled
data and perform multiple updates of the TL model to respond
to a new attack before the cloud completes the labeling of new
attack data. This scheme achieves an accuracy of 92-96% by
evaluating two sets of data from the publicly available AWID
(Aegean WiFi Intrusion) dataset.

A recent work in [76] presents a data-centric misbehaviour
detection system for IoVs. The novelty of this work is about
using plausibility checks along with traditional supervised
ML algorithms to increase detection accuracy. The authors
compare the performance of six supervised ML algorithms
with two plausibility checks i.e. location plausibility and
movement plausibility. The results show 5% and 2% of
improvement in precision and recall, respectively, with the
additional plausibility checks.

D. Trust Computation
Trust is an important aspect of security to enhance the

protection level of the system from attackers. In vehicular
networks, trust computation is an additional step of security
requirement used along with privacy protection, availability,
and key management to ensure the highly-secure transmis-
sion of data [14]. Trust computation schemes exist in the
literature (in the context of entity-oriented and data-oriented)
which make use of historic interaction of vehicles within a
network to classify it as the trusted one [97]. It is important
in vehicular networks to ensure honesty among vehicles by
performing trust computation as a basic security requirement.
The summarized tabular view of solutions using ML for trust
computation is shown in Table. VI.

Ahmed et. al [63] present an algorithm for identifying
honest and dishonest nodes using logistic regression over the
trust values of nodes. The trust values are computed from the
messages. The more the correct messages are forwarded from
the node, the higher is its trust value. Basic safety messages
(BSM) are communicated between nodes that include speed,
location, brake status, and other information related to the
state of a vehicle. A sudden change in speed or brake may
take place due to the fake information from a malicious node.
These parameters are used to identify the correctness of the
information and calculate trust values. Here, a logistic regres-
sion algorithm create trust values for all nodes and generates
a list of honest and malicious nodes within a network. The
authors use OMNET++ to simulate their proposed design.

Shams et. al [67] present a trust establishment mechanism
for vehicles, called Trust Aware SVM-Based IDS (TSIDS).

It uses promiscuous mode to collect data, and SVM for
classification of trusted vehicles. The packet drop count (PDC),
packet transfer delay (PTD), and packet forward interval
(PFI) are used as the feed of the classification module. Here,
promiscuous mode enables capturing all data packets from
all nodes in the reception range. This makes every node to
monitor neighbouring nodes and detect misbehaviour in its
surrounding. To save energy and processing power resources,
the packet collection is initiated only during packet routing.
The performance results show that the promiscuous mode-
based SVM classifier detects trusted vehicles with an F-score
of about 98% for the urban scenario, and 91% for the highway
scenario.

In [95], the authors perform a comparison analysis between
five different ML algorithms for the trust computation of data
in machine-to-machine (M2M) communications. This work
proposes to use the above ML-based solutions for vehicular
applications (i.e. V2V communications). It uses MATLAB to
simulate a scenario of connected vehicles/nodes for the evalu-
ation of proposed models. The data transmitted between nodes
is fed into the ML algorithm to evaluate the trustworthiness
of data. This work observes that random forest achieves the
best performance in terms of a receiver operation characteristic
(ROC) and precision-recall curve (PRC) for evaluating the
trust.

Trust computation can also be used to perform secure
routing in vehicular networks. Zhang et. al [62] present the
idea of using trust computation for reliable-routing using RL
(i.e. with the use of rewards and actions) in SDN-based
vehicular networks. In this work, each node attempts to
find a trustworthy neighbour for data forwarding. First, V2V
communication takes place to decide the trustworthiness of
a vehicle, in terms of correctly-received packets depending
on the total packets forwarded. Later, a deep CNN running
over the controller calculates Q-values considering the network
input state and an individual trust value as input to the model.
Based on the calculated Q-values (a cumulative path trust
value), a controller decides the forwarding path as an action
to do next-hop routing of data. The convergence, PDR, and
average network throughput are calculated to evaluate the
effectiveness of an algorithm. In [79], Zhang et. al extend
[62] and propose a trust-based dueling deep RL approach (T-
DDRL) for routing data in SDVNs. In this model, a logically
centralized controller deploys a dueling network architecture.
The best policy to route data is determined using deep Q-
learning. The controller acts as an agent that decides trusted
immediate-path for routing, based on long-term rewards and
Q-values. The authors use OPNET simulator to evaluate
their model in terms of convergence performance, delay, and
throughput.

Recently, in [66], Soleymani et. al perform trust compu-
tation using fuzzy logic along with an ML algorithm. It
proposes a fuzzy logic-based trust computation mechanism
to access integrity and accuracy in event messages and their
sender. The parameters that are used to measure trust scores
are plausibility, experience, and type of vehicle. The plau-
sibility and experience are based on communication history
and location. Here, the type of a vehicle is considered as
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TABLE VI
SUMMARY OF LITERATURE ON TRUST COMPUTATION USING ML

Citation Year Feature Data Algorithm Type of Trust Accuracy

[63] 2016 Basic safety messages Logistic Regression Data centric trust NA
[95] 2018 Data Traffic ML (5 schemes compared) Data centric trust 100%
[62] 2018 Routing information RL Data centric trust NA
[79] 2018 Routing information DRL Data centric trust NA
[67] 2018 Packet drop count, transfer

delay and forward interval
SVM Data centric trust 98% (Urban) and

91% (Highway)
[96] 2019 Uniformaly distributed trust

value
Q-Learning Vehicle centric trust 100%

[61] 2019 Driver behaviour and received
messages

DL Hybrid trust NA

[71] 2019 Similarity, Fimiliarity and
PDR

Variants of KNN and SVM Data centric trust 90%

[65] 2020 Event, context and feedback
from driving model

RL Data centric trust 100%

[66] 2020 RSSI, PDR, and the distance
between two vehicles

KNN Hybrid trust NA

low, medium, or high, based on its authentication level.
This work considers obstacles to have a major impact while
measuring trustworthiness. Therefore, it performs evaluations
under line-of-sight (LOS)(i.e. a radio link between sender and
receiver without an obstacle between them) and non line-of-
sight (NLOS)(i.e. a radio link between sender and receiver
with obstacles) environments. The differentiation of LOS and
NLOS is done with the KNN algorithm by using RSSI, PDR,
and the distance between two vehicles as input features. This
work performs Monte-Carlo simulations and demonstrates that
their work has better performance compared to other models
under different patterns of attacks.

Trust computation is extremely important when it comes to
driverless cars where human trust over the automated vehicles
is still a question [168] [169] [170] [171]. The study in [168]
tries to learn the factors that may affect a driver’s willingness
to rely on an automated driving system. The authors evaluate
the patterns of speed, lateral distance, and steering maneuver
timings when an automated car is passing and/or overtaking
a manual vehicle (scooter and bicycle are considered in
this work). The driver responses (of the manual vehicle)
are collected verbally and by providing a questionnaire. In
terms of obtained responses, the proposed work highlights an
appropriate range of the above factors in order to maintain a
trust among vehicles which share the same road. However, in
recent years, researchers are focusing on ML-based solutions
to measure trust and implement actions to block dishonest
nodes from entering the network. In [96], the authors employ
a Q-learning algorithm to assess the trust for automated
driving vehicles (ADVs) and report intruders, based on the
measured confidence level. Two types of assessment methods
are discussed in the proposed work which are called as direct
and indirect ADV assessment models. In the direct model,
trust is maintained based on V2V and V2R communications.
In the indirect assessment model, a vehicle communicates
with RSU and only RSU plays a role to ensure the reliability
of a vehicle. The assessment values, collected for a vehicle,
by other vehicles or different RSUs, are aggregated and
used to confirm the misbehvaiour of a vehicle. A Q-learning
model encourages vehicles to report intruders and in response

vehicles receive rewards from the RSU to enhance their trust
level. In performance evaluation, the authors prove the higher
detection accuracy of their proposed model compared to the
previous works.

Tangade et. al [61] propose a DL-based algorithm to per-
form trust computation and driver classification in VANET.
Two sequential DNNs are used in this work where the first
network (5-layer) assigns reward points to the driver-based on
the driving behaviour. The reward points also help to com-
pute trust-value for different vehicles. However, the second
sequential deep network (4-layer) performs computation to
characterize the driver as fraudulent or non-fraudulent based
on the received messages. The effective performance of their
proposed algorithm in terms of fraudulent driver identification
and low computational overhead is evaluated using NS-3
simulator.

The authors in [71] present a comparative analysis be-
tween different supervised ML algorithms to accurately detect
trustworthy and untrustworthy nodes. An IoV environment is
considered in this work. The trust level of different nodes is
computed based on the direct and indirect observations of data
transmitted by a node. However, the calculation of optimum
weights and trust thresholds is considered in this work and
measured by using ML techniques. A real IoT data set is used
in this work to do performance evaluation. It extracts features
such as similarity, familiarity, and PDR, and labels them to
feed into 11 different variants of SVM and KNN supervised
algorithms. The above ML techniques are evaluated in terms
of precision, recall, F1-score, and accuracy, where most of the
KNN variants are performing better than SVM.

A data-oriented trust model is proposed by Guo et. al [65]
to help prevent driving decision-making entity from bogus
information. In this model, a vehicle requests trust values from
the trust evaluation model regarding a driving decision-making
event such as path selection and speed regulation. The trust
evaluation model connects to a data repository and learning
engine module which deploys RL to optimize the trust evalu-
ation decision by receiving feedback from the driving decision-
making module of a vehicle. The data repository contains
information such as onboard sensor readings received from
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different nodes at a different time and, previous trust decisions
(feedback). This work demonstrates the use of feedback for
optimizing the trust module process that yields a high precision
rate in different scenarios.

E. Privacy Protection

Privacy is a means of protecting the sensitive information of
vehicles from attackers. In the context of vehicular networks,
it is further classified into location privacy and user privacy. A
wide range of privacy schemes are proposed in the literature
which are categorized into mix-zones [172] [173], obfuscation-
based [174] [175], silent-period [176], k-anonymity [177],
dummy-based [178] and hybrid models [179]. Most of these
techniques use a pseudonym (i.e. a unique identifier different
from the real one) as an identity to get services from the
network without exposing its real identification. The ability
to access services without disclosing real identity is known as
anonymity. In mix-zones and silent-period schemes, the loca-
tion of a user is preserved by forcing it to change pseudonym
using anonymous communication zones (i.e mix zones) where
the density of vehicles is high and/or during specified silent
periods, respectively. This makes it difficult for an attacker
to map a pseudonym with a real identity. However, it’s not
important to always have high-density zones and a change
of pseudonym at an inappropriate time may result in lack
of privacy and performance degradation. In obfuscation-based
mechanisms, the users obtain LBSs by using a path confusion
algorithm in which the location of a nearby building, object,
or intersecting user are used to obscure the real location. In
this algorithm, the presence of suitable substitutes to create
anonymity for the required LBS is not guaranteed. In k-
anonymity and dummy-based mechanisms, the location of a
user is mixed with k-nearby users or n-different dummy users
before obtaining a service. These techniques involve main-
taining a pool of locations which is difficult and processing-
intensive.

In recent years, ML-based schemes are receiving attention to
overcome the drawbacks of the above-mentioned techniques.
Protecting the privacy of users and locations from attackers
while ensuring secure availability to the service-providing
entity is quite challenging. New solutions based on ML can be
developed for the new type of data such as images, generated
from vehicles. Only a little work is done in the literature in this
domain. The summarized tabular view of available ML-based
solutions is presented in Table. VII.

Wang et al. [64] propose an RL-based obfuscation scheme
to enhance the privacy of the semantic trajectory of a vehicle.
In this model, a vehicle communicates with RSU and provides
location coordinates and semantic location to access LBSs. In
order to protect the semantic trajectory, an obfuscated location
is transmitted despite the real location coordinates. The selec-
tion of obfuscated location is dependent on the policy defined
by an RL model. It observes the current state, privacy level of
last time slot, real location coordinates, and semantic location
to update its Q-function and give decisions for the most
suitable obfuscation policy. The proposed work also assumes
the adversary is smart and does not simply trust the location

parameters received from a vehicle. It aims to minimize the
vehicle’s privacy gain and sends spams and scams by inferring
the vehicle’s semantic location and Markov model. This is why
an RL-based mechanism selects the best obfuscation policy
for a vehicle at any particular time while considering the
adversary’s behaviour. For the performance study, the privacy
gain and quality of service loss are calculated to evaluate the
functioning of the proposed model.

A privacy-preserving technique using FL is proposed for
IoV where data is generated in the form of images [72].
This work focuses on the privacy-enhanced data collection
at the edge of the networks. First, the data generated by a
vehicle node is uploaded to an edge network. The FL pre-
processes the data on an edge to estimate the road condition
based on uploaded images. The function of the pre-processor
is to perform image fingerprinting and to find correlation and
similarity of images using semi-supervised learning. This also
removes a large number of irrelevant images. Training results
and some amount of pre-processed data are transmitted to the
cloud (backbone network) for further processing and to share
with other edge nodes. This scheme results in reduced delays
and enhanced privacy of user data.

Zhang et. al [54] propose to use collaborative learning in
which vehicles share their experience with each other to assure
better detection of malicious vehicles. Collaboration among
vehicles also creates a privacy concern. This work presents
a privacy-preserving ML-based collaborative IDS in vehicular
networks. The idea is to detect intrusion while maintaining
the privacy of the training dataset. It uses alternating direc-
tion method of multipliers (ADMM) to train a classifier for
detecting misbehaviour from vehicles. It uses a supervised
learning algorithm and each collaborative learning is modeled
as an optimization problem to perform distributed ADMM-
based empirical risk minimization (ERM). In addition, a dual
variable perturbation (DVP) is applied to preserve the privacy
of the training dataset. The authors evaluate their design in
terms of empirical risk and empirical loss to quantify security
for different network topologies.

Lu et. al [78] address provider’s privacy concern and present
a blockchain-integrated FL framework for secure data sharing.
It proposes to use two directed acyclic graphs (DAGs), one
main permissioned blockchain at RSU (i.e. PermiDAG), and
a local DAG at vehicles for secure data sharing. Moreover,
a DRL-adopted asynchronous FL framework is used to per-
form efficient node selection. The learning models will also
participate in enhancing the reliability of data shared between
an RSU and vehicles by executing a two-stage verification.
The performance results show faster convergence and higher
accuracy of the proposed learning models.

Lu et. al [80] propose a two-phase federated learning-based
data privacy protection scheme for vehicular cyber-physical
systems (VCPS). It consists of data transformation and col-
laborative data leakage detection. First, it allows vehicles to
locally-train models and ensure privacy of their data. This
work also addresses the limited resource problem, and to save
computing resources, it performs caching of a trained model in
each phase for repeated use. Later, a federated scheme-based
mechanism is used to address the vulnerability problems at a
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TABLE VII
SUMMARY OF LITERATURE ON PRIVACY PROTECTION USING ML

Citation Year Feature Data Algorithm Type of Privacy

[64] 2019 Privacy level of last time slot,
location coordinates and

semantic location

RL Semantic Trajectory
(Location)

[72] 2019 Road images FL Data Privacy
[54] 2020 NSL-KDD dataset Collaborative Learning Training Data Privacy
[78] 2020 MNIST dataset FL, CNN and DRL Data Privacy
[80] 2020 20 News-groups dataset FL and Gradient Boost

Decision Tree
Data Privacy

[75] 2021 VeReMi dataset FL Data Privacy

centralized node. In this work, the authors use the gradient-
descent algorithm and Laplace mechanism to formulate a
learning problem and distort the model for guaranteeing dif-
ferential privacy. To evaluate the model, this work uses a real-
world 20 News-group dataset and demonstrates high security,
high efficiency, near-real-time performance and good accuracy
of the proposed scheme.

A recent study on privacy protection using federated learn-
ing is presented in [75]. The idea of this work is to learn
a misbehaviour detection model while maintaining user data
privacy. Vehicles use BSMs to exchange data such as speed
and location, which help ML algorithms to make routing,
guidance, and safety decisions. In this work, the authors study
data falsification attacks that compromise the privacy of per-
sonal information transmitted using BSMs between vehicles.
As a solution, it proposes federated learning where personal
information of a vehicle resides locally on the vehicle and
performs ML training without sending data to the central node.
The vehicles only send their updated and trained local model to
the central node for learning of an aggregated smarter model.
The centrally trained model not only detects but also identifies
the position of an attack. In the performance study, the authors
demonstrate the effectiveness of federated learning compared
to the centrally BSM-trained model.

V. LIMITATIONS AND CHALLENGES AND IN USING
ML-BASED SECURITY SOLUTIONS

ML has shown significant achievements and is becoming
a workhorse for many security applications in vehicular net-
works. At the same time, it has a number of limitations and
constraints. This section highlights the limitations in ML-based
solutions for vehicular networks and brings out the research
challenges that need to be addressed.

A. Adversarial Machine Learning

Adversarial ML is an important limitation of using ML-
based solutions to different security problems in vehicular
networks. In adversarial ML, the adversaries may use multiple
ways to supply deceptive inputs to the ML model, attempt to
fool it, and compromise the results [180]. With the advent of
vehicle automation which involves the use of ML and multi-
agent systems to assist a vehicle’s operation, an adversarial
attack over ML may result in catastrophes and great danger
to human lives. Therefore, dealing with adversarial ML is

critically important to ensure the robustness of algorithms
proposed in the literature to protect vehicular nodes and related
information, as discussed in Section IV. In this section, we
briefly discuss the threats to different types of ML techniques
used to secure vehicular networks.

1) Threats to Supervised Learning: The conventional ma-
chine learning algorithms where classification takes place
using static features and predefined labels are vulnerable to
deliberate attacks. Evasion attack is one of the most common
types of deliberate attacks over supervised ML algorithms. In
an evasion attack, an adversary aims to manipulate test samples
that are undetectable by ML classifiers [181]. There are several
vehicular applications where ML-based supervised classifi-
cation is used to differentiate malicious and non-malicious
nodes, as discussed in Section IV. In an evasion attack, a
vehicle (adversary) can easily add malicious test samples
without participating or changing training data and induce an
ML algorithm to output incorrect results. In [182], authors
perform an experimental study over a vehicular network to
fool its supervised model and demonstrate how ML-generated
attacks over ML are undetectable by existing ML classifiers
in vehicular applications.

The feature poisoning in ML algorithms is another threat
to supervised algorithms. Different feature selection/extraction
techniques are exploited in the literature for diverse vehicular
applications, including attack prevention and intrusion detec-
tion [183], [184]. The selection of the right features not only
reduces the computational cost but also improves the learning
capabilities of the algorithm. In the case of high-dimension
datasets, it is not effective to perform manual feature selection.
Therefore, automated feature selection methods are useful.
However, such automated techniques are unfavorable when
training features are poisoned by smart attackers [185]. In
[185], the authors perform a study over some popular feature
selection methods to show how easily these methods can be
compromised under positioning attack over training samples.

Therefore, reliable deployment of supervised algorithms in
security-sensitive vehicular networks is important. A secure
ML-classifier with a robust feature selection method can be
designed to enhance regulatory terms for the legitimate users
and to differentiate between the legitimate and illegitimate
training entries.

2) Threats to Unsupervised Learning: The problem of
attacks over unsupervised learning is not explored in the
context of vehicular networks. Nonetheless, unsupervised al-
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gorithms are also susceptible to adversarial attacks [186]. Like
supervised learning, in unsupervised learning, evasion attack is
also effective where the addition of malicious samples during
the testing phase could lead to learning vulnerabilities evading
detection of an attacker, or attacking clustering method by
reducing the distance between real and adversarial samples
will mislead the model, and classify it under the class of
legitimate users. However, such attacks, their impact, and their
prevention in the context of vehicular applications are not
explored much in the literature. This opens up a direction for
researchers to shed light on the area of adversarial attacks over
unsupervised mechanisms in vehicular network security.

3) Threats to Reinforcement Learning: Reinforcement
learning and its DL-assisted variants aid autonomous vehicles
to make self-directed decisions in driving task [32], [187],
[188]. Despite the development, RL may suffer from various
issues in autonomous systems such as wrongly-classified ob-
jects in perception systems, theft of vehicles due to incorrect
recognition of driver monitoring patterns by a neural network,
compromised functional safety due to erroneous collection of
vehicle data, and failure in the detection of an attack. In RL,
where no prior knowledge exists, and actions are derived based
on long-term rewards, an agent may keep on increasing re-
wards for a fooled environment in the event of an attack [189].
In addition, recovery time in RL algorithms is generally high.
Therefore, several researchers have raised concerns regarding
reliable RL for security-critical applications [190]–[192].

The authors in [193] explore the adversarial attacks on DRL.
Wang et. al [193] investigate the impact of adversaries on a
well-trained DRL-based energy management electric vehicle.
The attacks are generated using the fast-gradient-sign method
(FGSM) where different assumptions are generated against
DRL, like too much usage of fuel or out of battery, to confuse
the energy management system and distract the performance of
the electric vehicle. This work shows significant performance
degradation of targeted DRL agent against two types of adver-
sarial random noises. Therefore, a robust method that monitors
inputs before processing is needed. In another work, Yue Wang
et. al [194] explore backdoor trojanning attacks on DRL-
based congestion control system of autonomous vehicles. The
authors investigate a set of triggers to enhance the stealthiness
of the attack before injecting it into the DRL training set and
ensures the similarity of triggers to the benign data. Later,
the backdoor injection takes place by retraining the model
with a mixture of legitimate and malicious entries. Here,
the trigger set consists of vehicle position and speed, and
malicious actions are acceleration and deceleration control.
The performance evaluation of the attack model is done
using three different complex traffic scenarios. The backdoor
injection tricks the system toward an insurance attack, where
an autonomous vehicle crashes into the vehicle in front of it.

Not limited to this, the addition of noise to RL inputs for
distracted graphical perception, injecting faulty data to sensor
readings to misguide the agent, and/or physical attack where an
adversary may alter the physical environment around vehicles,
is another easy-to-deploy adversarial attack on a DRL model.
This opens up several opportunities to develop efficient, robust,
interpretable, fair, and defensive RL for autonomous vehicles

and other vehicular applications.
4) Threats to Deep Learning: Recently, there are several

works in the literature which use DL for different applica-
tions in vehicular networks including, security [195] [196],
autonomous vehicle control system [197], traffic light control
[198], and so on. However, DL agorithms can easily be fooled
using several techniques [199]–[203]. A survey is presented in
[199] which highlights the problem of an adversarial attack on
DL as a serious issue for networks.

In driverless/autonomous cars, it is very crucial to under-
stand the environment to make correct decisions. An au-
tonomous vehicle perceives the nearby objects and prepares
its path trajectory based on sensors such as cameras. The
use of CNN and DNN is highlighted in most of the works
to deal with an image dataset [204]–[207]. While DNN and
CNN deal with image data efficiently, it can easily be fooled
by an attacker through fake scenes which results in noisy
images and false predictions. A NVIDIA PilotNet architecture
in autonomous vehicles estimates steering angles based on the
perception received from camera sensors. In [208], authors
demonstrate learning and mapping using DNN in NVIDIA
PilotNet architecture. Although DNNs are useful, they are
relatively easy to be fooled with high confidence, which may
result in serious degradation of network performance by pre-
dicting wrong outputs in autonomous vehicular applications.
In [209], the authors produce noisy images (fooling images)
using gradient ascent which are unrecognizable to humans,
but a trained DNN model recognizes it as belonging to one
of its classes with high confidence. Such a type of fooling
adversarial attacks may result in catastrophes and great danger
to human lives in the case of a fully autonomous vehicle.

Therefore, dealing with such image-fooling attacks becomes
critically important to ensure the robustness of deep algo-
rithms, and mitigate the impacts of fooling images. Although
researchers have started addressing issues with image data,
approaches which do not use images as input, are yet to
be explored. This opens up a new research direction for the
researchers to study all types of data inputs and propose robust
and safer deep architectures for self-driving cars and other
vehicular applications, under adversarial conditions.

5) Threats to Federated Learning: Federated learning is
recently being explored for privacy protection and many other
applications in vehicular networks [31], [210]. It provides
highly-centralized services for vehicles and follows the pattern
where global learning (at a central node) and local learning
(at vehicles) exchange sensitive data over the air (wireless
channel) to offer fast training, low processing and, low com-
munication overhead [130]. To protect model confidentiality,
the global node receives no information about how the data
is generated from local nodes. This makes federated learning
less-prone to model poisoning attacks. However, it is possible
to launch a backdoor attack which is explored in the literature
against FL, where an adversary performs model replacement
at the local level to interrupt the global performance [211],
[212]. Therefore, ensuring the reliability of participating nodes
is important. The vehicular networks are mobile where net-
work configuration changes quickly. As a result, participating
nodes also change until the FL model convergences, and the
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inclusion of unreliable nodes in-between may jeopardize the
performance of an FL model.

Another possible attack on FL is data poisoning attack.
An adversary can launch a data poisoning attack over the
data transmitted wirelessly to alter the prediction/classification
behaviour of the FL algorithm. The sensitive information
transmitted between local and global models includes weights,
bias, and gradient values. This requires local nodes to imple-
ment additional privacy algorithms. However, attacks on FL
in the area of vehicular applications and its impact on user
security is yet an area to explore in the future. Moreover, the
protection of FL leads to additional computational overhead
whereas vehicular nodes are resource-constrained entities. The
solutions in this context require intelligent algorithms which
are smart enough to understand the trade-off between available
resources and privacy needed to prevent the attack on FL
model or data.

6) Threats to Transfer Learning: Transfer learning is con-
sidered as a powerful approach due to its ability to quickly
build a new ML model from the existing pre-trained model.
In the context of vehicular security, the use of transfer learning
is observed in intrusion detection and attack detection appli-
cations. Recently, researchers have done some experimental
studies to validate the vulnerability of transfer learning toward
misclassification attacks, weight poisoning attacks and back-
door attacks [213]–[215]. Here, a misclassification attack tries
to manipulate the features of certain layer outputs, whereas, in
weight poisoning, the adversary injects vulnerability into pre-
trained weights. In the backdoor, the attacker aims to craft
an adversarial model from a pre-trained model to manipulate
the end-to-end classification system. However, the impact of
such attacks and the level of catastrophe it may create are not
studied for vehicular networks and the users. Therefore, this
area is still an open issue to explore further.

B. Energy Constraint in ML-based Solutions

Energy is another important constraint that needs to be
considered while proposing ML-based security solutions. Fast
training and accurate detection are key concerns in ML for an
efficient design. However, it can only be achieved with large
data and heavy machinery which means high energy consump-
tion and more system resources. Therefore, ML algorithms are
regarded as energy-consuming resource-intensive solutions.
Recently, the advent of autonomous vehicles has driven re-
search on the problem of the security of in-vehicle network.
An in-vehicle network means battery-powered sensors and an
embedded transceiver unit. Performing ML training locally
on the vehicle (as done in [75], [80], Section IV-E) can be
energy expensive. In addition, the heterogeneity of devices
in vehicular networks, such as pedestrians with a smartphone
requires optimization of an algorithm according to the type
of a node. This is because, unlike a vehicle, energy and
resource efficiency is critical for the pedestrian user. Hence, an
energy constraint is important to study while providing ML-
based security solutions in vehicular networks. As discussed
in Section IV, recently, there are a few works done in the
domain of energy-efficient secure ML designs where RL and

TL are used in all of the works for attack detection in vehicular
networks [44], [57], [77], [193]. The constraint of energy
efficiency is not much explored by other ML-based solutions
used in the application of vehicular security. Withal, data-
driven and energy-efficient ML techniques are a challenge that
need to be considered in vehicular security.

Another potential solution is resource offloading which
is explored by researchers lately for enhancing the energy
performance of future ML algorithms. Compounded by high
mobility and a high number of users, offloading is not an
easy-to-solve problem in vehicular networks, and offloading
ML-based security algorithm and their performance impacts
is yet an open research issue to consider.

Not limited to this, as discussed in Section IV, recently
authors in [78] present the idea of using blockchain-integrated
ML solution for privacy protection in vehicular application.
With the advantage of authentication and data protection,
blockchains are also known for the drawbacks of harder scal-
ability, high energy dependence, and high resource consump-
tion [216]. Therefore, energy-efficient and memory-efficient
blockchain-integrated ML protocols for storing and process-
ing blockchain consensus and blockchain-centric vehicular
architectures are some important areas that open up new
opportunities for further research.

C. Latency Limitation in ML-based Solutions

The latency has become a key driver for vehicular applica-
tions. ML-based solutions exhibit iterative execution property
which results in longer time to generate outcomes. This makes
latency limitation in ML for vehicular security solution, a
potential open research issue, and there is a need to optimize
the execution and response time of ML-based solutions. In
addition, as discussed in Section IV-B and IV-D, latency/delay
is used as a metric in the number of security solutions
to evaluate vehicle behaviour and performance of the ML-
approaches.

Application-differentiated ML approaches, that can charac-
terize the type and requirements of applications, and quantify
the parameters needed to deploy low-latency ML solutions, are
desirable. As an example, latency requirements for ML-based
autonomous driving security are different and more critical
than the security of entertainment services in vehicles. Delays
in detecting attacks over driving data can result in catastrophes
or accidents in vehicles.

A potential approach for a low-latency ML-based vehicular
security is integration of ML and edge computing. Edge com-
puting is becoming a key enabler for improved performance
of the vehicular networks where edge computing seeks to
reduce latency by migrating cloud services to an intermediate
node that is closer to the vehicles. As discussed in Section
IV, a recent work in the literature uses edge resources for
fast ML-based security solutions [57], [80]. Considering this,
deployment of ML techniques at edge nodes is an interesting
area to explore which will help to make real-time responses
by learning data locally. ML at the edge can solve security
concerns by reducing reliance on the cloud network which
requires personal vehicular information to be transmitted and
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processed at another end of the network. With edge, such
crucial and private data can be processed locally in a real-
time and faster manner which is not possible with the existing
traditional network architectures. However, the drawback of
using ML at the edge means working with data solely available
on a single node, whereas centralized cloud means global
knowledge. Moreover, there are techniques in ML (i.e. transfer
learning) where models trained locally at the edge can be
shared/transferred among nodes to gain more knowledge and
with less data (model only) to be transferred. The more the
models combine, the more the knowledge gained, and higher
the quality of decision. At the same time, it could result in
increased time for overhead. Thus, there is a tradeoff that needs
to be carefully considered.

In addition, edge networks are resource-constrained and
with the limited resources available at the edge, the storage
and computation resources required by ML algorithms may
not be enough. Therefore, an intelligent technique to deploy
a low-latency ML algorithm at the edge of a geographically
diverse vehicular network is a potential area to explore further.

D. Computation Cost in ML-based Solutions
Vehicular networks are resource-constrained and mobile in

nature. The use of DL-based security solutions requires more
computational resources and a large amount of input data to
achieve better optimization. The computation-intensive ML is
another limitation in vehicular security. Some work is done
in the literature which focus on computation-efficient ML-
based solutions for vehicular security. As an example, recently,
authors in [94] (as discussed in Section IV-C) propose a light-
weight and low-computation DL model for intrusion detection
in vehicular networks. This work uses a one-shot TL over a
pre-trained supervised LSTM model for the detection of new
attacks where only one sample of new intrusion is enough
to detect it. Another recent work in [73] proposes tree-based
TL architecture for IDS which is a lightweight and low-
computation model that achieves an accuracy of up to 96%.
This shows transfer learning has the potential of achieving
computation efficiency in ML-based security solutions. How-
ever, with only a little work done, further studies and research
can be carried out on the use of TL and its performance
impacts for the application of vehicular security.

Another potential research issue on computation-efficient
ML is hardware-for-ML. It is a new trend recently seen in the
literature [217] [218]. An Eyeriss accelerator with the spatial
architecture of 168 processing elements for deep convolutional
architectures (AlexNet and VGG-16) is proposed by MIT
[219]. It optimizes computation efficiency by compressing and
reusing local data using the dynamic random-access memory
(DRAM) and accumulation unit. Many other research organi-
zations such as, Google [220], Stanford [221] and IBM [222]
are also introducing hardware-based ML units. They support
domain-specific hardware to provide robust, energy-efficient,
and computation-efficient ML solutions. A potential future
direction of research is to design secure vehicular network-
friendly ML hardware. A low-processing ML-based hardware
unit will help to provide a well-grounded computation-efficient
performance over the vehicular access network.

VI. OBSERVATIONS AND LESSONS LEARNED

In this section, we present the observations and lessons
learned from the works presented in this survey on ML-based
solutions for vehicular network security.

In Section II, we highlighted the emergence of modern
technologies such as 5G, SDN, edge computing, and cloud
computing which has enabled different applications leading
to the creation of new variants of vehicular networks. The
key advantages of new variants are summarized in Table
VIII. In the context of machine learning and security, we
observe VANET and IoV are the most popular and widely
used network architectures, whereas 5G, edge-enabled and
cloud networks are recently gaining attention in vehicular
applications.

TABLE VIII
VEHICULAR NETWORK VARIANTS AND ADVANTAGES

Variant Advantages

IoV

Intelligent; allow large scale deployment; and
integrate an environmental understanding of
surrounding things such as human (driver) actions
and activities

5GVN

Provide high speed, low latency, efficient solutions
for congestion control, fair resource sharing,
reliability, high-throughput, high-connectivity and
support diverse security applications

SDVN
Handle the dynamic nature of the vehicles and
supports better QoS, routing reliability, and security
of the nodes.

EEVN Ideal for low-delay applications, performing
scheduling and improved QoS

VCC Access to virtual services to road users and
minimize onboard storage and computation

It is observed that data transfer in vehicular networks
involves a wide range of communication types. These types
are susceptible to various types of vulnerabilities and security
problems. We note that most of the ML-based literature focus
on security in V2V, V2I, and V2R communication. Recently,
the advent of autonomous vehicles has made the security of
in-vehicle networks an important concern and researchers have
started to explore this area. Several ML-based works have
been carried out on the problems of availability, integrity,
authentication, and trust computation. In the context of privacy,
the use of ML is at an infant stage and is receiving attention
recently. The use of ML for achieving confidentiality is not
much studied in the literature, and it appears that most of the
work use key-based approaches which seem enough to achieve
confidentiality within in a system [99]–[102].

In Section III, we reviewed the functioning of several ma-
chine learning techniques that serve as an analytical framework
in various vehicular applications. Supervised and Unsuper-
vised architectures work with various types of pre-collected
datasets. However, reinforcement learning uses different poli-
cies and has the ability to collect and learn data in parallel
where an agent generates data and maximizes the rewards by
interacting with an environment. The use of RL is efficient
in dynamic and mobile environments (such as vehicular net-
works) where the set of actions are infinite. We observed that
advances in the functionalities have evolved into several other
learning types such as DL, TL, and FL.
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DL does not require feature engineering and processes raw
data in its original form. It is well-suited for the non-linear data
patterns and it works in a supervised, partially-supervised, or
unsupervised manner. For the cases of multi-dimensional data,
CNN works good, but in applications where understanding
temporal information is required, RNN is a better alternative
to CNN. RNN is specially designed to process sequence data
and/or time-series data. FL and TL are new types of learning
strategies, work in conjunction with the existing ML models
and recently showing good potential in the field of vehicular
security. FL is a distributed and lightweight learning method
wherein different networks at the lower level are trained based
on the obtained weights from the global (centred) model to
support ensemble learning. FL helps to reduce communication
and processing overhead. However, TL is efficient in reducing
the training time for a network. As the name suggests, it
transfers important parameters among networks to fine-tune
its working mechanism and the network does not go through
the whole process of training again. TL also finds useful
applications in mobile networks such as vehicular networks,
where state changes occur frequently.

In Section IV, we have identified the use of ML-based
solutions in five different security aspects including, driver
fingerprinting, attack detection, misbehaviour or intrusion de-
tection, trust computation, and privacy protection. Several ML
architectures are explored in these areas where we observe
supervised learning, reinforcement learning, and deep learning
are popular learning algorithms in vehicular security appli-
cations, as shown in Table IX and X. In the context of
driver fingerprinting, it is of utmost importance to preserve the
privacy of driver data and prevent adversaries from tracking
the vehicle by linking it to the driver’s identification. The
older techniques use the idea of hiding location and accessing
resources/services without disclosing the true identity (i.e,
using pseudonymity) of a driver to ensure privacy. With the
advent of autonomous vehicles, true profiling of the driver
is important. To enable this, ML techniques are used by
researchers to authenticate the true identification and finger-
printing of a user/driver to make vehicles resilient to theft
without hiding the true identity of drivers. We also note that
supervised learning is the most-widely used ML technique for
driver fingerprinting, as shown in Table IX. Some works in
the literature, use unsupervised ML to cluster driver behaviour
before performing classification and achieve better accuracies
with the given models. It is observed that the data from
smartphone sensors, vehicle sensors, and onboard electronic
control units (i.e. using the OBD-II protocol) are the most
commonly used data types for driver profiling using ML.

In the context of attack detection, the designs of ML and
deep architectures are attractive to detect a variety of attacks
through experience and shared information. We observe that
all three types of classes, including supervised, unsupervised,
and reinforcement learning are beneficial in the detection and
prevention of attacks. It is also noticed that the attacks over
the availability and authenticity of vehicular networks are the
most common attacks detected with ML-based solutions. In
addition, the use of deep architectures is explored in the
literature to maintain the integrity of platoons. In terms of

data, we find that the wireless channel measurement data and
routing traces are widely used in different types of attack
detections. The advent of autonomous vehicles where sensors
make some of the driving-related decisions requires a highly
robust control system. The researchers consider reinforcement
learning as a key player in this area to prevent different types
of attacks on the sensors. In such cases, sensor data is used
as a feature to detect and/or prevent the attack.

Not limited to the known types of attacks, several ML-based
studies have been carried out in the literature for the detection
of unknown types of attacks i.e. IDS/MDS. We note that the
supervised learning, deep learning, and transfer learning are
the commonly used techniques in IDS. To collect feature set,
a diverse set of data modalities where vehicular application-
specific datasets like NGSIM, VeReMi, and CAN bus are used
in recent studies for IDS and privacy protection. We also
observe from the literature that datasets such as KDD-CUP,
NSL-KDD, AWID, and CIC IDS, which are the application,
protocol, and low-level network entities datasets, and not rele-
vant but used for the performance study of intrusion detection
and privacy protection in vehicular networks. However, it is
highly desirable to use vehicular network specific datasets to
provide more useful insights.

The problem of privacy protection and trust computation us-
ing ML is relatively new and recently explored in the literature,
and yet an open issue to explore further. Federated ML along
with RL and DL is a recent and widely explored technique for
privacy in vehicular networks. Another interesting observation
is the use of blockchain-integrated ML solutions in vehicular
privacy. In general, blockchain-based systems are playing an
important role in authentication, privacy preservation, trust
management, data management, and resource sharing appli-
cations [216]. However, blockchain-integrated learning frame-
works open new directions for researchers, especially in 5G-
based vehicular networks, where an increasing number of users
may result in a larger block size, leading to network congestion
affecting the power usage.

The trust computation in vehicular networks is another
basic security requirement which is used along with privacy
protection, availability, and key management to ensure highly-
secure transmission of data. In the literature, researchers make
use of the historic interaction of vehicles within a network to
classify it as the trusted one. The use of supervised ML, DL,
and RL is explored widely in the literature with routing and
wireless channel measurement data to ensure honesty among
vehicles by performing trust computation.

In Section V, we have observed that despite the impressive
achievements of ML in vehicular security applications, it has
a number of limitations and challenges. This section also
discusses the possibilities of further research in ML-based
vehicular security. One important limitation is adversarial
ML. In several ways, the vehicles (adversaries) may supply
deceptive inputs to the ML model in an attempt to fool
it, and compromise the results. The conventional supervised
algorithms where classification takes place using static features
and predefined labels are vulnerable to feature poisoning and
deliberate attacks where an adversary aims to manipulate
training features and test samples, respectively, and induce
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TABLE IX
ML TECHNIQUES APPLIED TO VEHICULAR SECURITY (PART 01)

Citation Year Learning Technique Security Application

[55] 2011

Supervised learning

MDS
[138] 2013 Driver Fingerprinting
[51] 2015 IDS
[52] 2015 IDS
[59] 2015 IDS

[139] 2015 Driver Fingerprinting
[63] 2016 Trust Computation
[60] 2016 IDS
[39] 2016 Grey Hole and Black

Hole Detection
[140] 2016 Driver Fingerprinting
[125] 2016 Driver Fingerprinting
[53] 2017 IDS
[41] 2017 Sybil Attack Detection
[42] 2017 Sybil Attack Detection

[142] 2017 Driver Fingerprinting
[143] 2017 Driver Fingerprinting
[144] 2017 Driver Fingerprinting
[37] 2018 DDoS Detection
[49] 2018 MDS
[95] 2018 Trust Computation
[67] 2018 Trust Computation

[147] 2018 Driver Fingerprinting
[148] 2018 Driver Fingerprinting
[38] 2018 DDoS Detection
[71] 2019 Trust Computation
[69] 2019 Jamming Attack

Detection
[46] 2019 MDS
[56] 2019 Spoofing Attack

Detection
[68] 2019 MDS

[151] 2020 Driver Fingerprinting
[82] 2020 MDS
[54] 2020 Privacy Protection
[50] 2020 MDS
[66] 2020 Trust Computation
[76] 2021 MDS

[137] 2012

Unsupervised Learning

Driver Fingerprinting
[138] 2013 Driver Fingerprinting
[48] 2016 MDS

[144] 2017 Driver Fingerprinting
[145] 2017 Driver Fingerprinting
[45] 2018 Jamming Attack

Detection
[91] 2018 Manipulation Attack

Detection
[74] 2020 Attack Detection

[79] 2018

Reinforcement Learning

Trust Computation
[62] 2018 Trust Computation
[58] 2018 Spoofing Attack

Detection
[44] 2018 Jamming Attack

Detection
[92] 2018 Cyber-Physical Attack

Detection
[64] 2019 Privacy Protection
[98] 2019 Jamming Attack

Detection
[96] 2019 Trust Computation
[77] 2019 DDoS Attack Detection
[57] 2020 Spoofing Attack

Detection
[65] 2020 Trust Computation
[78] 2020 Privacy Protection

TABLE X
ML TECHNIQUES APPLIED TO VEHICULAR SECURITY (PART 02)

Citation Year Learning Technique Security Application

[40] 2015

Deep Learning

Black hole
[125] 2016 Driver Fingerprinting
[141] 2016 Driver Fingerprinting
[47] 2017 MDS
[146] 2017 Driver Fingerprinting
[136] 2018 IDS
[149] 2018 Driver Fingerprinting
[92] 2018 Cyber-Physical Attack

Detection
[36] 2019 Platoon Attack Detection
[43] 2019 Sybil Attack Detection
[70] 2019 Crossfire Attack

Detection
[61] 2019 Trust Computation
[150] 2019 Driver Fingerprinting
[81] 2020 IDS
[93] 2020 Data Manipulation Attack

Detection

[72] 2019

Federated Learning

Privacy Protection
[78] 2020 Privacy Protection
[80] 2020 Privacy Protection
[75] 2021 Privacy Protection

[94] 2020
Transfer Learning

IDS
[57] 2020 Spoofing Attack

Detection
[73] 2021 IDS

an ML algorithm to output incorrect results. The area of
attacks over unsupervised learning is not explored much in
the context of vehicular networks. Nonetheless, we observe
that unsupervised algorithms are also susceptible to adversarial
attacks. Therefore, reliable deployment of supervised and
unsupervised algorithms with a robust feature selection method
in security-sensitive vehicular networks is important.

We highlight that RL, an attractive technique for au-
tonomous vehicles, may suffer from various issues such as
wrongly classified objects in perception systems, theft of vehi-
cles due to incorrect recognition of driver monitoring patterns
by the neural network, compromised functional safety due to
erroneous collection of vehicle data, failure in the detection of
an attack and many more. In the event of an attack over RL, an
agent may keep on increasing rewards for illegitimate actions,
resulting in a fooled environment. Therefore, the recovery time
to go back to normal state becomes high. Some researchers
have raised concern over the reliability of RL for vehicular
security applications. Therefore, there is a need to put future
efforts into designing defensive RL for vehicular applications.

For DL-related security, many vehicular applications deal
with image datasets and such models can easily be fooled by
an attacker through fake scenes which results in noisy images
and false predictions. The image fooling adversarial attacks
may result in catastrophes and great danger to human lives
in the case of autonomous vehicles. We also observe that,
while FL is less effective to model poisoning attacks, backdoor
attacks and data poisoning attacks are common. The backdoor
attack along with misclassification attack and weight poisoning
attack is also studied to validate the vulnerability of transfer
learning. The attacks on FL and TL in the area of vehicular
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applications and their impact on user security are less explored.
The extent of catastrophe caused by the above types of attacks
over different ML types is not studied much in the context of
vehicular networks.

Not limited to adversaries, there are some other key con-
straints to study while developing ML-based security so-
lutions. The limitations discussed here are latency, energy
consumption, resource usage, and computation efficiency.
The above limitations are related to each other in one way
or another, and choosing a right tradeoff among them is
also an important problem to study. The possible solutions
we discussed are the use of data-driven algorithms, well-
quantification of application sensitivity, edge-ML, resource
offloading, blockchain integrated ML, new ML techniques like
TL, and hardware-for-ML. All these solutions are less explored
and have good potential for further research in vehicular
security.

VII. CONCLUSION

ML techniques offer huge benefits to enable secure com-
munication in vehicular networks. High mobility of vehicles,
easy-to-access wireless channels, insufficient authentication,
and inadequate trust among nodes are key problems in main-
taining security and privacy within a network. In this survey,
we first classified attacks over vehicular networks into four
different groups that include hardware/software, infrastructure,
sensors, and wireless communication. We then discussed six
major requirements of security in vehicular networks where
ML has been widely adopted to satisfy the requirements.
Next, we presented a classification of ML approaches in the
context of vehicular network security. We briefly explained
the working mechanism of each approach. The ML techniques
proposed in the literature for security of vehicular networks
were described and summarized in tables for a clear under-
standing. While ML techniques bring in several benefits, they
have different limitations which pose new challenges. We
discussed such challenges in ML-based vehicular security that
require further study. To provide useful insights, we presented
our observations and lessons learned from this survey.
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