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Abstract

Machine learning is a field at the intersection of statistics and computer science that uses
algorithms to extract information and knowledge from data. Its applications increasingly
find their way into economics, political science, and sociology. We offer a brief intro-
duction into this vast toolbox, and illustrate its current uses in social sciences, including
distilling measures from new data sources, such as text and images; characterizing pop-
ulation heterogeneity; improving causal inference, and offering predictions to aid policy
decisions and theory development. In addition to providing similar use in sociology, we
argue that ML tools can speak to long-standing questions on the limitations of the linear
modeling framework; the criteria for evaluating empirical findings; transparency around
the context of discovery, and the epistemological core of the discipline.

Keywords: supervised learning, unsupervised learning, causal inference, prediction, het-
erogeneity, discovery



Introduction

Machine learning (ML) seeks to automate discovery from data. It represents a break-
through in computer science where intelligent systems typically involved fixed algorithms
(logical set of instructions) that code the desired output for all possible inputs. Now,
intelligent systems ‘learn’ from data, and estimate complex functions that discover rep-
resentations of some input (X), or link the input to an output (Y ) in order to make
predictions on new data (Jordan & Mitchell, 2015). ML can be viewed as an off-shoot of
non-parametric statistics (Kleinberg et al., 2015).

We can classify ML tools by how they learn (extract information) from data. Differ-
ent ‘tribes’ of ML use different algorithms that invoke different assumptions about the
principles underlying intelligence (Domingos, 2015). We can also categorize ML tools by
the kind of experience they are allowed to have during the learning process (Goodfellow
et al., 2016). We use this latter categorization here.

In supervised machine learning (SML), the algorithm observes an output (Y ) for each
input (X). That output gives the algorithm a target to predict, and acts as a ‘teacher’.
In unsupervised machine learning (UML), the algorithm only observes the input (X). It
needs to make sense of the data without a teacher providing the correct answers. In fact,
there are often no ‘correct answers’.1

We start with a brief (and somewhat technical) description of SML and UML, and
follow with example social science applications. We cannot give a comprehensive account
given the sprawl of the topic, but we hope to provide enough coverage to allow the
readers to follow up on different ideas. Our concluding remarks state why ML matters
for sociology and how these tools can address some long-standing questions in the field.

Supervised Machine Learning

Supervised machine learning (SML) involves searching for functions, f(X), that pre-
dict an output (Y ) given an input (X).2 One can consider different classes of functions,
such as linear models, decision trees, or neural networks. Let’s take the linear model as a
tool for prediction.3 We have an input vector, X, and want to make a prediction on the
output, Y , denoted as Ŷ (‘y-hat’) with the model

Y = f(X) = XTβ

where XT is the vector transpose and β (‘beta’) is the vector of coefficients.

1Supervised and unsupervised learning are not formally defined terms (Goodfellow et al., 2016). Many
ML algorithms can be used for both tasks. Scholars have proposed alternative labels, such as predictive
and representation learning (Grosse, 2013). There are other kinds of learning not captured with a binary
categorization. In the so-called reinforcement learning, the algorithm observes only some indication of
the output (e.g., the end result of a chess game but not the rewards/costs associated with each move)
(Jordan & Mitchell, 2015).

2In SML, the dependent variable is referred to as the ‘output’ while the explanatory or independent
variables are called ‘inputs’ or ‘features’. The prediction task is called classification when the output
is discrete, and regression when it is continuous.

3Uppercase letters, such as X or Y , denote variable vectors, and lowercase letters refer to observed
values (e.g., xi is the i-th value of X).
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Suppose we use ordinary least squares (OLS) – the most commonly used method in
sociology – to estimate the function, f(X), from data. We pick the coefficients, β, that
minimize the sum of squared residuals from data with n observations:4

n∑
i=1

(yi − f(xi))
2 (1)

This strategy ensures estimates of β that give the best fit in sample, but not necessarily
the best predictions out of sample (i.e., on new data) (see sidebar titled Classical Statistics
versus Machine Learning).

To see that, consider the generalization error of the OLS model, that is, the ex-
pected prediction error on new data. This error comprises of two components: bias and
variance (Hastie et al., 2009). A model has bias if it produces estimates of the outcome
that are consistently wrong in a particular direction (e.g., a clock that is always an hour
late). A model has variance if its estimates deviate from the expected values across
samples (e.g., a clock that alternates between fast and slow) (Domingos, 2015). OLS
minimizes in-sample error (equation 1), but it can still have high generalization error if
it yields high-variance estimates (Kleinberg et al., 2015).

To minimize generalization error, SML makes a trade-off between bias and variance.
That is, unlike OLS, the methods allow for bias in order to reduce variance (Athey &
Imbens, 2017).5 For example, an SML technique is to minimize

Classical Statistics versus Machine Learning

Breiman (2001b) describes ‘two cultures’ of statistical analysis: data modeling and
algorithmic modeling. Donoho (2017) updates the terms as generative modeling and
predictive modeling. Classical statistics follows generative modeling. The central
goal is inference, that is, to understand how an outcome (Y ) is related to inputs
(X). The analyst proposes a stochastic model that could have generated the data,
and estimates the parameters of the model from the data. Generative modeling
leads to simple and interpretable models, but often ignores model uncertainty and
out-of-sample performance. Machine learning follows predictive modeling. The
central goal is prediction, that is, to forecast the outcome (Y ) for future inputs
(X). The analyst treats the underlying generative model for the data as unknown,
and considers the predictive accuracy of alternative models on new data. Predictive
modeling favors complex models that perform well out of sample, but can produce
black-box results that offer little insight on the mechanism linking the inputs to
the output.

n∑
i=1

(yi − f(xi))
2 + λR(f) (2)

that is, in-sample error plus a regularizer, R(f), that penalizes functions that create
variance (Kleinberg et al., 2015; Mullainathan & Spiess, 2017). An important decision is
to select λ (‘lambda’), which sets the relative ‘price’ for variance (Kleinberg et al., 2015).

4The sum of squared residuals is only one among many possible “loss functions” in ML.
5One can find a similar approach in multi-level models popular in sociology where cluster parameters

are deliberately biased (Gelman & Hill, 2007).
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In OLS, that price is set to zero. In SML methods, the price is determined using the data
(more on that later).

For example, in linear models, larger coefficients yield more variance in predictions.
A popular SML technique, called LASSO (Least Absolute Shrinkage and Selection Op-
erator), introduces a regularizer,

R(f) =

p∑
j=1

|βj| (3)

that equals the sum of the absolute values of the coefficients, βj (j = 1, . . . , p) (Tibshi-
rani, 1996). The optimal function, f(X), now needs to select coefficients that offer a
compromise between minimizing the sum of squared residuals, and yielding the smallest
absolute coefficient sum.

SML techniques seek to achieve an ideal balance between reducing the in-sample and
out-of-sample error (aka training and generalization error, respectively). This goal
helps avoid two pitfalls of data analysis: underfitting and overfitting. Underfitting
occurs when a model fits the data at hand poorly. Take a simple example. An OLS
model with only a linear term linking an input (X) to output (Y ) offers a poor fit if the
true relationship is quadratic. Overfitting occurs when a model fits the data at hand too
well, and fails to predict the output for new inputs. Consider an extreme case. An OLS
model with N inputs (plus a constant) will perfectly fit N data points, but likely not
generalize well to new observations (Belloni et al., 2014).

Underfitting means we miss part of the signal in the data; we remain blind to some of
its patterns. Overfitting means we capture not just the signal, but also the noise, that is,
the idiosyncratic factors that vary from sample to sample. We hallucinate patterns that
are not there (Domingos, 2015).

Through regularization, SML effectively searches for functions that are sufficiently
complex to fit the underlying signal without fitting the noise. To see that, note that a
complex function will typically have low bias but high variance (Hastie et al., 2009). And
recall that the regularizer, R(f), penalizes functions that create variance; it often does
so by expressing model complexity.

Let’s go back to LASSO. The regularizer in equation 3 puts a bound on the sum of
absolute values of the coefficients. It can be shown that LASSO favors ‘sparse’ models,
where a small number of inputs (X) have non-zero coefficients, and effectively restrains
model complexity (Tibshirani, 1996).6

Now consider regression trees, another function class in SML. The method proceeds
by partitioning the inputs (X) into separate regions in a tree-like structure, and returning
a separate output estimate (Ŷ ) for each region. Say we want to predict whether someone
migrates using individual attributes of age and education. A tree might first split into

6Regularization can be understood as putting a prior on the final solution, β. To illustrate, as-
sume we have the optimization problem in linear regression: maxβ P (β|y, x), for some random vari-
ables Y = y and X = x. If we apply Bayes’ rule (and omit the normalizing term for simplicity),
we get P (β|y, x) = P (y, x|β) × P (β). We further express P (y, x|β) as P (y|x, β) × P (x|β) by apply-
ing chain rule, where P (y|x, β) is the likelihood function. Then, the optimization problem becomes:
maxβ P (β|y, x) = maxβ P (y|x, β)× P (x|β)× P (β) = maxβ

∏n
i=1[P (yi|xi, β)× P (xi|β)× P (β)], assum-

ing n independent and identically distributed observations. If we take the logarithm, we obtain the
log-likelihood function: maxβ

∑n
i=1[log(P (yi|xi, β)) + log(P (xi|β)) + log(P (β))]. The term P (xi|β) can

be dropped from this function given that x is not a function of β (and therefore P (xi|β) = P (xi)),
leading to: maxβ

∑n
i=1[log(P (yi|xi, β)) + log(P (β))] for some regularizer R(f) = P (β).
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two branches by age (young and old), and then each branch might split into two by
education (college degree or not). Each terminal node (‘leaf’) corresponds to a migration
prediction (e.g., 1 for young college graduates). With enough splits in the tree, one
can perfectly predict each observation within sample. To prevent overfitting, a typical
regularizer controls the tree depth, and thus, makes us search not for the best fitting tree
overall, but the best fitting tree among those of a certain depth (Mullainathan & Spiess,
2017).

How do we select the model that offers the right compromise between in-sample and
out-of-sample fit? To answer this question, we need to, first, decide on how to regularize
(measure model variance/complexity, R(f)), and second, on how much to regularize (set
the price for variance/complexity, λ, in equation 2).

Some SML Techniques

Penalized regression

A linear model of output (Y ) as a function of inputs (XTβ). Regularizers include∑p
j=1 |βj| for LASSO (least absolute shrinkage and selection operator),

∑p
j=1 β

2
j for

ridge regression, and α
∑p

j=1 |βj| + (1 − α)
∑p

j=1 β
2
j for elastic net regression. Pe-

nalized regression shrinks coefficients toward zero; estimates need to be interpreted
with caution (Athey & Imbens, 2016).

Classification and regression trees

A tree-like model that describes a sequence of splits in the input space (X) that
predict an output (Y ) at the end node (‘leaf’). Regularizers include tree depth
and number of leaves. Model captures nonlinearities and interactions in inputs.
A version, called random forests, averages over multiple trees (Breiman, 2001a),
leading to more accurate predictions, but less interpretable relationships of X to
Y .

Nearest neighbors

A method that relies on user-defined distances to average k nearest neighbors of a
new input (X) to predict output (Y ). The number of neighbors (k) is a regularizer.
It offers black-box predictions with little insight into the relationship between X
and Y .

Neural networks/Deep learning

A multi-layer set-up that models the output (Y ) as a concatenation of simple non-
linear functions of the linear combinations of inputs (X) (‘neurons’). Regularizers
include number of layers and number of neurons per layer.

In SML, we start the analysis by picking a function class and a regularizer. There are
many function classes and many associated regularizers (see the sidebar titled Some SML
Techniques).7 The general recommendation is to use the substantive question at hand to

7The ‘no free lunch’ theorem proves that no ML method (or no form of regularization) is universally
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guide these choices.8 With the function class and regularizer in hand, we turn to data to
choose the optimal model complexity. Put differently, in SML, we use the data not just
to estimate the model parameters (e.g., coefficients, β, in LASSO), but also for tuning
regularization parameters (e.g., the price for variance/complexity, λ).

What sets SML apart from classical statistical estimation, then, are two essential
features: regularization, and the data driven-choice of regularization parameters (aka
empirical tuning) (Mullainathan & Spiess, 2017; Athey & Imbens, 2017; Kleinberg
et al., 2015). These features allow researchers to consider complex functions and more
inputs (polynomial terms, high-order interactions, and, in some cases, more variables
than observations) without overfitting the data. This flexibility contrasts sharply with
classical statistics, where one typically selects a small number of inputs (X), and a simple
functional form to relate the inputs to the output (Y ).

One way SML uses data, therefore, is for model selection, that is, to estimate the
performance of alternative models (functions, regularization parameters) to choose the
best one. This process requires solving an optimization problem. Another way SML uses
data is for model assessment, that is, having settled on a final model, to estimate its
generalization (prediction) error on new data (Hastie et al., 2009).9

A crucial step in SML is to separate the data used for model selection from the data
used for model assessment. In fact, in an idealized set-up, one creates three, not two,
separate data sets. Training data is used to fit the model; validation data is put aside
to select among different models (or to select among the different parameterizations of
the same model), and finally, test (or hold-out) data is kept in the vault to compute
the generalization error of the selected model. There is no generic rule for determining
the ideal partition, but typically, a researcher can reserve half of the data for training,
and a quarter each for validation and testing (Hastie et al., 2009).

Splitting the data in this way comes at a cost, however. By reserving a validation and
test set, we reduce the chance of overfitting, but now run the risk of underfitting with
less data left for estimation (Yarkoni & Westfall, 2017). To achieve a middle-ground, we
can reserve the test data, but combine training and validation sets into one, especially if
the data are small. We can then re-cycle the training data for validation purposes (e.g.,
to select the optimal degree of complexity). One version of this process, called k-fold
cross-validation, involves randomly splitting the data into k subsets (‘folds’), and then,
successively fitting the data to k − 1 of the folds, and evaluating the model performance
on the k-th fold.

Consider the regression tree example above. We can divide the training data into
k = 5 folds, use four of the folds to grow a tree with a particular depth (complexity), and
then predict the output (migration) separately on the excluded fold, repeating for each
of the five folds. We can then repeat the same process with a different tree depth, and

better than any other (Wolpert & Macready, 1997). The task, then, is not to seek the best overall
method, but the best method for the particular question at hand (Goodfellow et al. (2016), but see
Domingos (2015) for a counter argument).

8Hastie et al. (2009, Table 10.1) compare different methods on several criteria (e.g., interpretability,
predictive power, ability to deal with different kinds of data). Athey & Imbens (2016); Athey (2017),
Abadie & Kasy (2017) link SML methods to traditional tools and questions in economics. Olson et al.
(2018) offer an empirical comparison on bioinformatics data.

9There are model-averaging techniques to improve predictive performance. For example, bagging
involves averaging across models estimated on different bootstrap samples (where one draws with replace-
ment N observations from a sample of size N). Boosting involves giving more weight to misclassified
observations over repeated estimation (Hastie et al., 2009).
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pick the complexity level that minimizes the average prediction error across the left-out
folds.10 In the final step, we can use the test data to compute the predictive accuracy
(generalization error) of the selected model.

SML for Policy Predictions, Causal Inference and Data

Augmentation

SML uses flexible functions of inputs (X) to predict an output (Y ). Some SML tools,
such as nearest neighbor, have no parameters at all. Other methods, such as LASSO,
give parameter estimates, β̂ (‘beta-hat’), but those estimates are not always consistent
(that is, do not converge to the true value as N grows) (Knight & Fu, 2000).

Social scientists are used to working with statistical models that produce parameter
estimates with particular properties (unbiased and consistent). But SML is not designed
for recovering β̂. Instead, SML is good at solving, what Mullainathan & Spiess (2017, p.
88) call, ‘Ŷ tasks’. Social scientists (mostly economists) have identified three classes of
‘Ŷ tasks’: predictions for policy and theory development, certain procedures for causal
inference, and data augmentation.11

Predictions for Policy and Theory Development

SML is a useful tool for policy predictions if the researcher is not immediately in-
terested in understanding the relationship between X and Y , but rather in using X to
predict Y in new data. Policy predictions impose a clear goal (Ŷ ) and performance metric
(difference between Y and Ŷ ), and allow for a “common-task framework” where different
teams can compete on the same question (Donoho, 2017).12

Economist Ed Glaesar and colleagues (2016) used this idea to set up a competition
to produce predictive algorithms for city governments. Sociologist Matt Salganik and
collaborators started a challenge to predict educational (and other) outcomes in the
Fragile Families data.13 The organizing team judged the submissions from 150 multi-
disciplinary teams on predictive accuracy on test (hold-out) data. In the on-going second
phase, the team plans to conduct in-depth study of the discrepant cases in the winning
model (e.g., students who ‘beat the odds’), and thus, envisions the predictions as a first
step to generating new insights and theory, not as an end goal.

Scholars apply SML to various questions in economics, political science, and crim-
inology. Kleinberg et al. (2015) use a LASSO model to predict which patients would
benefit most from joint replacement surgery among Medicare beneficiaries. Cederman &
Weidmann (2017) discuss how SML can predict and prevent deadly conflict. Beck et al.
(2000) use neural networks to forecast militarized international disputes. Brandt et al.
(2011) employ automated-coding of news stories to predict Palestinian-Israeli conflicts,
and Perry (2013) applies random forests to predict violent episodes in Africa. Berk (2012)
reviews his extensive work that uses SML for predictions of criminal risk. These scholars

10See Varma & Simon (2006) for more sophisticated ‘nested cross-validation’.
11Mullainathan & Spiess (2017) review predictive modeling in economics, Cranmer & Desmarais (2017)

in political science, and Yarkoni & Westfall (2017) in psychology.
12The company Kaggle hosts competitions (www.kaggle.com/competitions) where contestants train

models on shared data and compete on predictive accuracy.
13http://www.fragilefamilieschallenge.org/
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use their predictions as a starting point for disentangling the process in question, and for
pushing existing theory.

Kleinberg et al. (2017), for example, illustrate how machine predictions can help us
understand the process underlying judicial decisions. The authors first train a regression-
tree model to predict judges’ bail-or-release decisions in New York City, and then use the
quasi-random assignment of judges to cases to explain the sources of the discrepancy be-
tween model predictions and actual decisions. Their findings show that judges overweight
the current charge, releasing high-risk cases if their present charge is minor, and detaining
low-risk ones if the present charge is serious. These findings reveal important insights
on human decision-making and carry the potential to inspire new theory. From a policy
standpoint, the authors’ predictive model, if used in practice, promises significant welfare
gains over human decisions: reducing reoffending rate by 25 percent with no increase in
jailing rate, or alternatively, pulling down jailing rate by 42 percent with no increase in
reoffending rate.

An important discussion in the literature is on how SML tools should weight different
kinds of prediction ‘errors’. Berk et al. (2016), for example, apply a random-forest model
to forecast repeat offenses in domestic violence cases. In consultation with stakeholders,
the authors weight false negatives (where the model predicts no repeat offense when there
is one) 10 times more heavily than false positives (where the model predicts repeat offense
when there is none). Their model, consequently, produces highly accurate predictions of
no-offense cases (which require very strong evidence), but less accurate forecasts of repeat
offenses (many of which do not end up occurring).

There are legitimate concerns that SML predictions (and the data on which they are
based) can perpetuate social inequalities (Barocas & Selbst, 2016; Harcourt, 2007; Starr,
2014). What if ‘predicted’ offenders, are disproportionately drawn from minority groups?
What if predicted beneficiaries of health interventions are mostly high-status individuals?

Scholars now acknowledge an inherent trade-off between predictive accuracy and al-
gorithmic fairness (Berk et al., 2018; Hardt et al., 2016; Kleinberg et al., 2016). An open
question is how to define ‘fairness’. While most definitions relate to treatment of ‘pro-
tected groups’, one can operationalize fairness in many different ways (Berk et al., 2018;
Narayanan, 2018).

To see the complexity of the problem, consider a predictive algorithm that outputs
loan decisions (Ŷ ) from credit scores (X) (Hardt et al., 2016). Assume the algorithm
produces more accurate predictions for men than women, and recommends more loans
to be given to men. One way to make the algorithm fair is to exclude applicants’ gender
from the data, but this solution fails if gender is correlated with another input, like
income. Another way is to seek demographic parity, that is, to constrain the model so
that gender has no correlation with the loan decision. But this constraint might generate
disparity in some other characteristic (Dwork et al., 2012). Yet another way to define fair
is to impose equal opportunity (Hardt et al., 2016), that is, to force the model to make
men and women equally likely to qualify for loans within a given sub-population (e.g.,
individuals who pay back their loans).

Different definitions of fairness yield different outcomes. And it is difficult (if not
impossible) to implement multiple definitions at the same time (Berk et al., 2018). Ad-
dressing algorithmic fairness is not just a technical issue in ML; it requires us – as a
society – to consider difficult trade-offs.14

14Similar moral dilemmas abound in the use of ML in new technologies, such as, self-driving cars
(Greene, 2016). Survey experiments show that while people agree that an algorithm should minimize
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Causal Inference

Social scientists are often interested in identifying the causal effect of an input (‘treat-
ment’) (X) on an output (Y ). SML tools can help in certain causal inference procedures
that involve prediction tasks. We provide some basic intuition and examples from this
rather technical literature, and refer the readers to Athey & Imbens (2017) and Mul-
lainathan & Spiess (2017) for comprehensive reviews, and to Pearl & Mackenzie (2018)
and Peters et al. (2017) for general frameworks that link ML to causality.

As a primer, consider the fundamental problem of causal inference: we observe an
individual (or any unit of analysis) in one condition alone (‘treatment’ or ‘control’), and
cannot measure individual-level variation in the effect of the treatment.15 We instead
focus on an aggregate ‘average’ effect that we treat as homogeneous across the population
(Xie, 2013). In experimental design, we randomly assign individuals to treatment and
control groups, and directly estimate the average causal effect by comparing the mean
output between the groups (Imbens & Rubin, 2015).

Social scientists now use SML to identify heterogeneous treatment effects in sub-
populations in existing experimental data. For example, Imai & Ratkovic (2013) discover
groups of workers differentially affected by a job training program. They interact the
treatment (i.e., being in the program) with different inputs (X), and use a LASSO model
to select the inputs that are most important in predicting increase in worker earnings.
Similarly, Athey & Imbens (2016) develop ‘causal trees’ to estimate treatment effects for
sub-groups. Different from standard regression trees in ML (where one seeks to minimize
the error in predictions, Ŷ ), causal trees focus on minimizing the error in treatment
effects. One can then obtain valid inference for each ‘leaf’ (sub-group) with ‘honest’
estimation, that is, by using half the sample to build the tree (select the optimal partition
of inputs), and the other half to estimate the treatment effects within the leaves. Wager
& Athey (2018) extend the method to random forests that average across many causal
trees and allow for ‘personalized’ treatment effects (where each individual observation
gets a distinct estimate). Similarly, Grimmer et al. (2017) propose ‘ensemble methods’
that weight several ML models, and discover heterogeneous treatment effects in data from
two existing political science experiments.

Most empirical work in sociology relies on observational data where we do not control
assignment to treatment. One way to estimate the causal effect in this case is to as-
sume the output (Y ) to be independent of assignment to treatment, conditional on other
observed inputs. Under this so-called ‘selection-on-observables’ assumption, we can es-
timate a causal effect by ‘matching’ treatment and control groups on their ‘propensity
score’ (that is, likelihood of being in the treatment group conditional on inputs). Estima-
tion of this score is well-suited to SML as it involves a prediction task (where the ‘effects’
of inputs are not of interest). Recent work uses boosting (McCaffrey et al. 2004), neural
networks (Setoguchi et al., 2008; Westreich et al., 2010), and regression trees for this task
(Diamond & Sekhon, 2013; Hill, 2011; Lee et al., 2010; Wyss et al., 2014) as alternatives
to traditional logistic regression.

In some cases, the selection-on-observables assumption does not hold, and we suspect
that some unobserved inputs are correlated with both assignment to treatment and the
output. Regularization in SML could lead to exclusion of such inputs from the model,

casualties, they are not thrilled with the prospect of riding in ‘utilitarian cars’ that can sacrifice its driver
for the greater good (Bonnefon et al., 2016)

15Morgan & Winship (2007, 2014) offer an authoritative review of causal inference in social sciences.
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for example, leading to omitted variable bias in estimation. Similarly, with many inputs,
one generally runs the risk of model misspecification (Belloni et al., 2014; Ho et al., 2007;
King & Nielsen, 2016; Raftery, 1995; Young & Holsteen, 2017; Muñoz & Young, 2018).
Athey & Imbens (2015) develop a measure of sensitivity to misspecification. Belloni
et al. (2017) propose ‘double-selection’ of inputs to address potential omitted variable
bias. This procedure involves solving two prediction tasks to determine, first, the inputs
correlated with the treatment, and second, those correlated with the output. The union
of these two sets of inputs enter an OLS regression of the output, leading to parameter
estimates with improved properties (Belloni et al., 2014, 2017; Chernozhukov et al., 2017).

Another way to address the omitted variable bias is to find an ‘instrument’ – an input
that is correlated with assignment to treatment but not directly with the output (Angrist
et al., 1996). We can then regress the treatment (a given input, X) on the instrument (Z),
and then use the predicted values (X̂) as an input in the output (Y ) regression. Because
the first stage in this ‘instrumental variables’ (IV) regression involves a prediction task, we
can use SML tools. There are now many examples of this application in the econometrics
literature. Belloni et al. (2012) use LASSO to produce first-stage predictions in data
with many potential instruments, while Carrasco (2012) and Hartford et al. (2016) turn
to ridge regression and neural networks, respectively.

Data Augmentation and Imputation

Scholars use SML for data linking and augmentation.16 Feigenbaum (2015), for exam-
ple, input human-coded data to train SML algorithms to link individuals across census
waves. Abramitzky et al. (2018) develop a fully-automated method to estimate probabil-
ities of matches across census waves, and then measured intergenerational occupational
mobility. Using a nested design, Bernheim et al. (2013) recruited a subset of survey
respondents to participate in a lab experiment, and used their responses in the lab as
training data to impute responses for the remaining sample. Blumenstock et al. (2015)
collected survey responses from a subset of cell-phone users in Rwanda as training data
to predict the wealth and well-being of one million phone users.

Scholars are similarly turning to supervised topic modeling (Blei & McAuliffe, 2010) to
use human-identified topics as training data to classify a larger set of documents (Hopkins
& King, 2010; Mohr et al., 2013). For instance, Chong et al. (2009) applied this approach
successfully to predict topics for image labels and annotations.

Researchers are also using SML for missing data imputation. Farhangfar et al. (2008)
investigated the performance of different ML classifiers in fifteen datasets and find that,
although no method is universally best, näıve-Bayes and support vector machine clas-
sifiers perform particularly well in imputing missing values. More recently, Sovilj et al.
(2016) use Gaussian mixture models to estimate the underlying distribution of data and
an extreme learning machine (a type of one-layer neural network) for data imputation.
Their approach, evaluated in six different datasets, yields more accurate values compared
to conditional mean imputation.

16In the ML community, researchers use the term “data augmentation” to also refer to the technique of
artificially increasing your training data in order to improve the predictive performance of ML classifiers.
This strategy is widely used in deep neural networks for image recognition (e.g. Wong et al., 2016), but
remains outside the scope of our review.
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UNSUPERVISED MACHINE LEARNING (UML)

Unsupervised machine learning (UML) searches for a representation of the inputs (X)
that is more useful than X itself (Goodfellow et al., 2016). Some UML tools reduce the
dimensionality of the data (e.g., principal component analysis, factor analysis, topic mod-
eling). Other methods partition the data into groups (e.g., cluster analysis, latent class
analysis, sequence analysis, community detection) (see sidebar titled Some UML Tech-
niques).17 There is no target output (Y ) to predict, no ‘teacher’ showing the algorithm
what it should aim for, and no immediate measure of success. Researchers use heuristic
tools to evaluate the results.

UML for Measurement and Discovery

Social scientists can use UML for measurement and discovery. The output from UML
(data partitioned or projected onto a lower dimension) typically becomes an input that
allows subsequent analysis or theorizing. In the absence of a ‘ground truth,’ researchers
need to pay particular attention to model checking, and validate their results using sta-
tistical, substantive, or external criteria.

Generating measures from complex data

UML can produce measures from data to be used in subsequent statistical analysis.
Sociologists have long used principal components and factor analysis to reduce many
inputs into a smaller set. Social scientists now use UML to process new kinds of data
(images or text). Economists, for example, classify satellite images with UML to gener-
ate measures (deforestation, pollution, night lights, and so on) that relate to economic
outputs (see Donaldson and Storeygard (2016) for a review). Sociologists categorize text
to develop proxies for discourse in the media (DiMaggio et al., 2013), state documents
(Mohr et al., 2013) and academic publications (McFarland et al., 2013).18

Following a long tradition, sociologists also use UML to group social network data.
Earlier applications, such as ‘blockmodels’, employed structural equivalence (sharing
neighbors) to evaluate similarity, and to then partition the network into sub-groups
(White et al., 1976; Breiger et al., 1975). Recent improvements involve using centrality
(instead of equivalence) measures to discover communities (Girvan & Newman, 2002),
assuming generative probabilistic distributions (Nowicki & Snijders, 2001) that help in
model selection (Handcock et al., 2007), allowing for mixed-membership in communities
(Airoldi et al., 2008), and considering temporal dynamics (Matias & Miele, 2017; Xing
et al., 2010; Yang et al., 2011) and ‘latent’ social structure (Hoff et al., 2002).

17There are excellent reviews of latent class analysis (Bollen, 2002), sequence analysis (Abbott & Tsay,
2000; Cornwell, 2015), and community detection (Fortunato, 2010; Fortunato & Hric, 2016; Watts, 2004).

18To learn more about text analysis, see Blei (2012), Grimmer & Stewart (2013), Mohr & Bogdanov
(2013), Bail (2014), Evans & Aceves (2016).
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Some UML Techniques

Principal components analysis

Discovers a small number of linear combinations of the inputs (X) that are uncor-
related with one another and capture most of the variability in the data. These
linear combinations (‘principal components’) can be used as inputs in subsequent
analysis (e.g., in regression to predict some output, Y ).

Factor analysis

Discovers latent (unobserved) factors that account for the correlation in inputs (X);
returns ‘factor loadings’ for each input that can be used to interpret the factors.

Cluster analysis

Groups observations into a given number of ‘clusters’ so that observations in a
cluster are more similar to one another than to observations in other clusters;
returns cluster membership for each observation.

Latent class analysis

Discovers latent classes of observations that can account for the correlations in
observed categorical inputs (X); returns probability of class membership for each
observation.

Sequence analysis

Compares sequences (ordered elements or events) with ‘optimal matching’ to dis-
cover groups of observations with similar patterns (typically with cluster analysis).

Topic modeling

Discovers latent ‘topics’ in text data based on co-occurrence of words across docu-
ments.

Community detection

Identifies ‘communities’ in networks (graphs) based on structural position of nodes.

Characterizing population heterogeneity

UML can help characterize population heterogeneity. For example, Bail (2008) applies
‘fuzzy’ cluster analysis (which allows cases to belong to multiple groups) to discover
three configurations of symbolic boundaries between immigrants and natives in Europe.
Bonikowski & DiMaggio (2016) employ latent class analysis to characterize four types
of popular nationalism in the United States. Frye & Trinitapoli (2015) use sequence
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analysis to discover five distinct event sequences that characterize women’s experienced
prelude to sex in Malawi. Killewald & Zhuo (2018) employ the same method to identify
four maternal employment patterns of American mothers. Garip (2012, 2016) uses cluster
analysis to identify four distinct groups among first-time Mexico-U.S. migrants. Goldberg
(2011) develops ‘relational class analysis’ that considers associations between individuals’
survey responses (rather than responses themselves) to discover three separate logics of
cultural distinction around musical tastes. Baldassarri & Goldberg (2014) apply the same
tool to identify three configurations of political beliefs among Americans.

These examples use a variety of methods, but share a common goal. They search for
the hidden structure in a population that would be presumed homogeneous under the
traditional statistical approach (Xie, 2007, 2013; Duncan, 1982). This approach often
yields new hypotheses that emerge from data.

Model checking

Unlike prediction problems, there is often no ‘ground truth’ in UML, therefore, model
checking is an important step. Researchers use statistical validation techniques that
involve some heuristic measure to capture whether, for example, ‘clusters’ (Garip, 2012;
Killewald & Zhuo, 2018), ‘latent classes’ (Bonikowski & DiMaggio, 2016), or ‘topics’ are
well separated (DiMaggio et al., 2013). Scholars employ substantive validation to see if
the produced partitions cohere with existing typologies, or more generally, with human
judgement. Grimmer & King (2011) offer a method for ‘computer-assisted clustering’
(CAC). The method allows researchers to explore and select from thousands of partitions
produced by different clustering methods, and thus, puts their domain knowledge at the
center (Grimmer & Stewart, 2013).

Researchers also resort to external validation that bring new data to evaluate whether
identified patterns confirm expectations. Bail (2008), for example, shows that three types
of symbolic boundaries emerging from attitudinal data are associated with country-level
immigration patterns and integration philosophies in Europe. Bonikowski & DiMaggio
(2016) find that four varieties of nationalism in the United States correlate with social
and policy attitudes that were not used in the identification of the typology. DiMaggio
et al. (2013) check that topics identified in the news coverage of government assistance
to the arts respond to other news events in hypothesized ways. Garip (2016) confirms
that four migrant types, obtained by clustering survey responses alone, relate differently
to macro-level economic and political indicators.

ML: New Answers to Old Questions

There are two broad categories of machine learning (ML) – an off-shoot of computer
science and statistics. Supervised machine learning (SML) builds a model of inputs (X)
to predict an output (Y ) in new data. Unsupervised machine learning (UML) discovers
patterns in inputs (X) without a target (Y ) to predict. While many of the ML tools are
quite new to sociology, the problems they address are not. Below we discuss how ML can
speak to some long-standing concerns in our field, and point to promising directions for
future research.
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SML helps us break away from ‘general linear reality’

In quantitative sociology, we often follow the classical statistics approach: assume a
distribution of the data, select a few inputs, and specify a parametric (typically linear)
model to relate the inputs to an output (Breiman, 2001a; Donoho, 2017). We tend to
favor models that seem to align with common sense (Watts, 2014). We consider some
alternative specifications (for example, nested models that gradually introduce controls),
but do not exhaust all possibilities (Varian, 2014), and fully take into account model
uncertainty (Western, 1996; Young, 2009).

SML allows us to include many inputs (including higher-order terms and interactions)
and complex functions that connect inputs (X) to the output (Y ). It helps break away
from the ‘general linear reality’ imposed by OLS (Abbott, 2001). It helps us avoid ‘un-
derfitting’ (missing part of the signal) and mine the data effectively without ‘overfitting’
(capturing the noise as well as the signal). This gain comes at a cost. Predictive tools in
SML typically do not yield reliable estimates of the ‘effects’ of particular inputs (β̂), and
indeed, some methods only produce black-box results.

Sociologists can identify pure prediction (Ŷ ) problems where different research teams
can potentially compete in a ‘common-task framework’ (Donoho, 2017). Economists,
for example, are already using SML to make policy predictions (Kleinberg et al., 2015).
Sociologists can further use predictions as a starting point to understand underlying social
process and to develop theory. Sociologists can also use their expertise in processes of
stratification to inform debates on the ethics of predictive modeling, and its ‘fairness’ to
different social groups (Berk et al., 2018).

Another direction for sociologists is to use SML to improve classical statistical tech-
niques. Economists now apply SML to prediction tasks within the causal-inference frame-
work, for example, estimation of the ‘propensity score’ in matching (Westreich et al., 2010)
or the first-stage equation in instrumental variables (Belloni et al., 2012), and identifica-
tion of ‘heterogeneous treatment effects’ in existing experimental data (Athey & Imbens,
2016). One particularly fruitful application (and one that is highly relevant to sociolo-
gists given our typical attention to omitted variable bias) involves using SML for model
selection (Belloni et al., 2014, 2017).

ML allows us to study population heterogeneity

Quantitative sociology often takes a deductive approach, where the researcher derives
hypotheses from a theory to test on data. This approach, inspired by classical physics,
can act as a straitjacket that limits the questions we can ask, and the methods we can
use (Lieberson & Lynn, 2002).

To fit our work into the mold of hypothesis-testing, we flatten social theories into a
few variables, and estimate the average effect of each variable in some given population.
We neglect that most theories offer ‘sometimes-true’ statements (Coleman, 1964) that
hold under specific conditions and for specific groups of individuals. We also pit multiple
theories against one another to determine the ‘best’ fit empirically. We ignore the possi-
bility that different mechanisms might be simultaneously at work (what Goldberg (2011)
calls equifinality or what Watts (2014) refers to as the indeterminacy problem). We rule
out heterogeneity in explanation a priori.

It is these concerns about causal complexity that have led Ragin (1987) to develop
a toolbox (qualitative comparative analysis) to identify different causal ‘bundles’ (con-
figurations of various conditions) that underlie some historical phenomenon, or Abbott
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(1995) to advocate for sequence analysis as a way to characterize configurations of events
that inform social outcomes.

ML offers new tools to characterize population heterogeneity. Economists use SML to
uncover heterogeneous treatment effects in experimental data (Athey & Imbens, 2016).
Sociologists use UML to discover sub-groups in populations, and then link the emergence
of each sub-group to various external factors (Bail, 2008; Bonikowski & DiMaggio, 2016;
Garip, 2012). This latter approach is akin to searching for ‘ideal types’ (Weber, 1978)
as a first step to developing theory (Swedberg, 2014). Indeed, Muller et al. (2016) and
Baumer et al. (2017) make an insightful connection of ML to inductive reasoning in the
social sciences (and ‘grounded theory’ approach in particular).

By expanding their toolkit to include ML, sociologists can better consider hetero-
geneity, and close the gap between their pluralistic stance when it comes to embracing
different theories and monism when it comes to ‘testing’ those theories with data.

SML makes us sensitive to ‘researcher degrees of freedom’ and
replication

In sociology, we commonly estimate and evaluate a model on the same sample, and
run the risk of ‘overfitting’ (capturing the idiosyncrasies of the sample at hand). SML,
if nothing else, gives us the crucial idea that we need to validate our results on new data
(or, with efficient partitioning of the original data, aka cross-validation).

When we test a model out-of-sample, not only do we minimize the risk of overfitting
(to which models with low R2 – share of explained variation – are especially vulnerable),
but we also evaluate the overall performance of a model in explaining an output (Y ).
We get more information on the strength of underlying theory, in other words, than is
typically available with in-sample estimates (e.g., coefficients in an OLS model) (Watts,
2014).

Out-of-sample testing can also help address – what Yarkoni & Westfall (2017) call –
‘procedural overfitting’ (aka ‘p-hacking’) that can occur during data cleaning or model
selection. There are many choices available to us (‘researcher degrees of freedom’) that
might influence the results (Simmons et al., 2011; King & Nielsen, 2016).19 Any time
we use the data to optimize over these degrees of freedom (for example, choose variables
that give the best fit), we need to conduct an out-of-sample test (or cross-validation) to
evaluate the true performance of our choices. A related activity at the research community
level is to encourage independent replication studies, which would serve as out-of-sample
tests (Freese, 2007).20

ML offers tools for exploration and discovery

In quantitative sociology, we mostly engage in exploratory work, but couch it in the
language of ‘hypothesis testing’. We often use flexible research designs and statistical

19This issue has led to heated debates in psychology where researchers have been unable to replicate
some well-known experimental findings (Simmons et al., 2011; Open Science Collaboration, 2015). In
sociology, Teplitskiy et al. (2018), for example, re-estimated hundreds of published models on the Gen-
eral Social Data (GSS) with slight perturbations, and found reduced number of significant coefficients,
standardized coefficient sizes, and share of explained variation (R2).

20Social change makes it difficult to conduct out-of-sample tests with data from different time periods.
Teplitskiy et al.’s (2018) replication of GSS-based studies, for example, shows weaker results when models
are estimated on ‘future’ data.
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models until we learn something new and interesting, but present our results as if we
were confirming a hypothesis that we knew all along. We give our readers the ‘con-
text of justification’, but not the ‘context of discovery’ (Popper, 1935). This practice
makes it difficult to teach our students research design or encourage ‘creative theorizing’
(Swedberg, 2014).

ML gives us a vast array of tools to explore and learn from data, but for these tools
to be useful in sociology, we first need to distinguish exploratory work from confirmatory
research. Conducting confirmatory research requires minimizing ‘researcher degrees of
freedom’ ideally by pre-registering hypotheses and other design choices in a public forum
(e.g., the Open Science Framework) (Baldassarri & Abascal, 2017; Hofman et al., 2017;
Simmons et al., 2011; Ioannidis & Doucouliagos, 2013; Watts, 2014). Instead we go back
and forth between data, statistical models, and theory until we gain a novel insight.

Many of us do not conduct confirmatory work in this strict sense. Instead we go back
and forth between data, statistical models, and theory until we gain a novel insight. Pre-
senting such efforts as exploratory allows us to truthfully describe where our ideas come
from. It frees us to use ML (and other) tools for discovery and creative conceptualization.
It helps us generate novel hypotheses for subsequent confirmatory work. Recognition of
exploratory work, however, requires support from journals and an expansion of scientific
values.

ML provides a diverse set of tools that can inform a diverse set
of questions

In sociology, we rely largely on a ‘hypothesis-testing’ framework and classical statis-
tical approach. We routinely fit our questions to this set-up, and use data to estimate
the effects of some input (X) on an output (Y ). ML not only helps us improve parts
of this strategy, but also give us tools that can inspire new questions. How well do a
set of inputs (X), for example, predict output (Y )? How do these predictions deviate
from observed outcomes and why? Or what is the underlying structure of some input
(X)? How is that structure related to external factors (Z)? Answering these questions
can help us push theory or generate new hypotheses. Indeed, in some of the best social
science applications, the results from ML provide not an end goal, but the starting point
for further analysis and conceptualization. As such, ML tools complement, not replace,
existing methods in sociology.
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Summary Points

1. Classical statistics focuses on inference (estimating parameters, β, that link
the output Y to inputs X); supervised machine learning aims at prediction
(use inputs X to forecast unobserved output Ŷ ).

2. Supervised machine learning (SML) balances in-sample and out-of-sample
fit through regularization (i.e., penalizing model complexity and estimation
variance) and empirical tuning (i.e., data-driven choice) of regularization pa-
rameters.

3. Unsupervised machine learning (UML) discovers underlying structure in data
(e.g., principal components, clusters, latent classes) that needs to be validated
with statistical, substantive or external evidence.

4. Sociologists can apply SML to predict outputs, to use the predictions as a
starting point to understand underlying social process, or to improve classical
statistical techniques.

5. Sociologists can use UML to describe and classify inputs (X), and to concep-
tualize on the basis of the descriptions.

Future Issues

1. What are the prediction (Ŷ ) questions in sociology?

2. What can the deviations from predictions reveal about the underlying social
process?

3. What are the criteria for evaluating predictive ‘fairness’?

4. How can we use predictions given by SML or descriptions produced by UML
to theorize?

5. How can we validate the findings of ML applications?

Related Resources

Murphy, Kevin P., 2012. Machine learning. A probabilistic perspective. MIT Press,
Cambridge.

Bishop, C,M., 2016. Pattern recognition and machine learning. Springer-Verlag, New
York.

Salganik, M.J., 2017. Bit by bit: Social research in the digital age. Princeton Univer-
sity Press, Princeton.

Summer Institute in Computational Social Science, Online Resources. https://

compsocialscience.github.io/summer-institute/2017/#schedule
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