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Machine learning for technical skill assessment in surgery: a
systematic review
Kyle Lam 1, Junhong Chen1, Zeyu Wang1, Fahad M. Iqbal1, Ara Darzi 1, Benny Lo1, Sanjay Purkayastha 1✉ and James M. Kinross1

Accurate and objective performance assessment is essential for both trainees and certified surgeons. However, existing methods
can be time consuming, labor intensive, and subject to bias. Machine learning (ML) has the potential to provide rapid, automated,
and reproducible feedback without the need for expert reviewers. We aimed to systematically review the literature and determine
the ML techniques used for technical surgical skill assessment and identify challenges and barriers in the field. A systematic
literature search, in accordance with the PRISMA statement, was performed to identify studies detailing the use of ML for technical
skill assessment in surgery. Of the 1896 studies that were retrieved, 66 studies were included. The most common ML methods used
were Hidden Markov Models (HMM, 14/66), Support Vector Machines (SVM, 17/66), and Artificial Neural Networks (ANN, 17/66). 40/
66 studies used kinematic data, 19/66 used video or image data, and 7/66 used both. Studies assessed the performance of
benchtop tasks (48/66), simulator tasks (10/66), and real-life surgery (8/66). Accuracy rates of over 80% were achieved, although
tasks and participants varied between studies. Barriers to progress in the field included a focus on basic tasks, lack of
standardization between studies, and lack of datasets. ML has the potential to produce accurate and objective surgical skill
assessment through the use of methods including HMM, SVM, and ANN. Future ML-based assessment tools should move beyond
the assessment of basic tasks and towards real-life surgery and provide interpretable feedback with clinical value for the surgeon.
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INTRODUCTION
Accurate and objective performance assessment is a cornerstone
of any surgeon’s training. However, despite the wealth of
innovation available to the modern-day surgeon, surgeons
continue to rely on relatively blunt metrics, such as operative
duration, postoperative outcomes, and complication rates in order
to track their performance, which fails to truly capture the
surgeon’s intraoperative performance. Whilst feedback on intrao-
perative performance is available from trainers, this tends to be
infrequent, unstructured and prone to variation, leaving consistent
tracking of performance difficult.
The move to search for more structured and objective methods

of assessing intraoperative performance is by no means novel. A
wide variety of rating scales (Table 1), such as the Objective
Structured Assessment of Technical Skills (OSATS)1 are available
which allow expert raters to assess surgeons across domains such
as flow of operation, tissue handling, or efficiency. These have also
been appropriately adapted to specific specialties2–4 or to
laparoscopic5 or robotic platforms6,7. Whilst the use of these
scales is widespread amongst academic studies, the uptake within
clinical practice remains limited. The reasons for this include the
need for an expert reviewer, its time consuming and labor-
intensive nature and its tendency to rater bias.
A potential solution to these issues is the use of ML. ML can be

defined as “the scientific discipline that focuses on how computers
learn from data”8. Once it is trained or designed empirically, it can
process the large volume of data available from the modern-day
operating room seamlessly and produce rapid, automated, and
reproducible feedback without the need for expert reviewers. The

ever-increasing availability of computational power has seen ML
be applied across numerous disciplines in medicine, with surgery
being no exception. ML and artificial intelligence (AI) has been
used across diverse applications in surgery ranging from surgical
workflow analysis9, to autonomous performance of simple tasks10,
and postoperative mortality risk prediction11. This widespread use
of ML has led to the development of the field of Surgical Data
Science, which aims to improve the quality and value of surgery
through data collection, organization, analysis, and modeling12,13.
Surgical skill assessment is a growing research topic and the last
10 years has seen rapid increase in the use of ML within this field.
However, it remains unclear how and to what extent ML can be
applied for surgical performance assessment.
Therefore, the aim of this review is to systematically review the

literature concerning ML and surgical performance assessment.
The aims are primarily to summarize the major ML techniques
used to date in surgical skill assessment and to identify the current
challenges and barriers in the field; second to understand what
the key sources of data used to develop these tools are and the
tasks or procedures that have been assessed; and finally, to
understand to what extent ML has been successfully employed to
assess surgical performance objectively. Through this systematic
review, we aim to define future directions and propose new
criteria in this emerging field.

RESULTS
The literature search retrieved a total of 1896 studies. A further
5 studies were included through bibliometric cross-referencing.
Following title and abstract screening, the full texts of 121 studies
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were analyzed and 66 studies were found to be eligible for inclusion
(Fig. 1). Fig. 2 provides a framework of the technical skill assessment
process detailing how novel data can be processed by trained
models to provide an assessment of surgical performance. Table 2
provides an overview of all studies included within the review.

Surgical tasks and environment
48/66 studies assessed the performance of benchtop tasks such as
peg transfer, suturing, or knot tying, 10/66 studies used a
simulator, and 8/66 studies assessed real-life surgery. Two studies
employed the use of animal models in order to conduct
procedures such as laparoscopic cholecystectomy. 20/66 studies

assessed laparoscopic tasks, 26/66 studies assessed robotic tasks,
and the remainder assessed a combination of open tasks such as
hand tying or open suturing, or procedures such as arthroscopy14

and capsulorhexis15. The use of simulators allowed the assessment
of more complicated tasks including procedures such as
discectomy16 or hemilaminectomy17. Although studies assessing
the performance of real surgery were limited in their number, their
proportion has increased since 2018. These studies have
investigated procedures across the fields of urology18–20, general
surgery21,22, otolaryngology23,24 and ophthalmology25. Table 2
details the variety of tasks and environments used in the studies
included in this review.

Table 1. Shared characteristics of Global Rating Scales.

Criteria OSATS GOALS GEARS R-OSATS GRITS ASCRS M-OSATS ASSET BAKSSS SARMS

Efficiency X X X X X X X X X

Tissue handling X X X X X X X X

Instrument handling and knowledge X X X X X X X

Flow of operation X X X X X X

Bimanual dexterity X X X X X X

Depth perception X X X X X X

Knowledge of procedure X X X X

Autonomy X X X X

Use of assistants X X X

OSATS Objective Structured Assessment of Technical Skills1,54, GOALS Global Assessment Tool for Evaluation of intraoperative Laparoscopic Skills5, GEARS
Global Evaluative Assessment of Robotic Skills6, R-OSATS Robotic-Objective Structured Assessment of Technical Skills7, GRITS Global Rating Index for Technical
Skills55, ASCRS American Society of Colon and Rectal Surgeons Assessment Tool for Performance of Laparoscopic Colectomy2, M-OSATS Modified Objective
Structured Assessment of Technical Skills56, ASSET - Arthroscopic Surgical Skills Evaluation Tool3, BAKSSS Basic Arthroscopic Knee Skill Scoring System4, SARMS
Structured Assessment of Robotic Microsurgical Skills57.

Fig. 1 PRISMA flow diagram. Search and study selection process for this review.
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Data sources
The data sources that form the basis of these ML tools can be
divided into kinematic data (40/66) and video or image data (19/
66). Seven studies used both kinematic and video data. Kinematic
data for the most part was derived from the da Vinci robot
(Intuitive USA), but external sensors have been worn by the
surgeon or embedded in the instruments to track instrument
movement. 10 studies used a simulator. There were few instances
of datasets being used on more than one occasion. The most
commonly used dataset was the JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) dataset26 which was used by
10 studies. The size of datasets was small, with 20/66 studies
having fewer than 10 participants (Table 2).

ML methods
Whilst a variety of ML methods have been utilized to assess
surgical performance, the most common ML methods used were
HMM (14/66), SVM (17/66), and ANN (17/66). Incidentally, these
three major ML methods coincide with the trends in research
within this area; early research focused on the use of HMM before
a shift in the field to SVM methods and more recently the use of
ANN and deep learning (Fig. 3). Further details of these ML
methods and other methods utilized in the studies included in the
review are reviewed in Tables 3–7.

Assessment and accuracy
52/66 studies reported accuracy rates. The majority of these
studies reported accuracy rates of over 80% (Table 2). 31 studies
reported accuracy rates of over 90% for at least one task. Accuracy
rates for studies assessing the performance of real-life procedures
varied between 77.4% and 91.1%. Although accuracy rates
reported among these studies were high, these results should
be interpreted with caution due to a number of factors.
Firstly, the diverse spectrum of tasks ranging from simple tasks

such as peg transfer to complex surgical procedures such as
laparoscopic cholecystectomy makes meaningful comparison
difficult. Secondly, although all included studies aimed to assess
technical surgical performance, the manner in which this was
attempted varied between studies. The majority of studies
measured surgical performance through the classification of
participants into novices or experts. However, other studies aimed
to predict scores on global rating scales such as OSATS or GEARS.
One study validated the ML-derived assessment metrics against
patient outcomes18. Moreover, the definitions of novices and
experts vary significantly between studies, ranging from the

previous number of cases and stage of training to hours of
experience. 29/66 studies employed the use of a rating scale such
as OSATS in order to determine expertize while 13/66 studies
failed to specify how expertize was determined. In addition,
definitions of novices varied from medical students with no
surgical experience at all to surgeons with less than 5 years of
laparoscopic experience27.
Finally, cross-validation techniques, a method for assessing the

classification ability of the ML model, varied between studies. For
example, use of leave-one-user-out (LOUO) validation compared
to leave-one-super-trial-out (LOSO) can result in significant
differences in accuracy levels. Models validated with the LOUO
method tend to achieve lower accuracy scores, when compared
with LOSO, as the model is validated on the trials of a surgeon
where it has never been trained on. Therefore, the comparison of
models with differing cross-validation techniques is problematic. A
summary of common cross-validation techniques is presented in
Table 8.

Quality Assessment
The mean MERSQI score was 11.6. Scores ranged from 10.5 to 14.5.
The majority of studies were designed as single group studies
without randomization, single center in nature and had outcomes
of skills and behaviors limiting their maximum possible score. The
full table of results can be found in the Supplementary Data 2.

DISCUSSION
This systematic review demonstrates the variety of ML techniques
used in the assessment of technical skill in surgery. A total of
66 studies employed the use of ML in order to perform technical
skill assessment in surgery. The most commonly used ML models
were HMM, SVM, and ANN. However, of the studies included in
this systematic review which took place in 2019 or later, half
involved the use of neural networks, which reflects its increase in
popularity.
31 studies reported accuracy rates of over 90% on determining

performance on at least one task, highlighting the promise ML-
based surgical performance assessment has to offer. This review
demonstrates that ML-based surgical performance assessment has
the potential to be incorporated into surgical training in order to
deliver accurate performance assessment which is objective,
reproducible and not resource intensive. This technology could
allow surgical trainees to gain access to regular and consistent
feedback, allowing them to track and progress up their learning
curves more rapidly. Moreover, the benefits of ML-based surgical

Fig. 2 Framework for the technical skill assessment process. Kinematic or video data from differing surgical tasks in a range of
environments are recorded and fed to a variety of ML algorithms. The result is the development of a trained model. Novel data can then be
fed to these models in order to provide assessment of surgical skill.
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assessment tools could extend beyond surgical trainees; for
example, allowing certifying bodies to deem surgical competence
or assessing how surgeons perform with novel technologies or
techniques in the operating room.
Despite the significant promise that this field offers, this review

highlights that ML-based surgical assessment tools are still within
their relative infancy and that a tool, which can be delivered into
clinical practice appears distant. We highlight three significant
barriers to progress and suggest key future research goals.

Focus on basic tasks
The majority of studies included in our systematic review focused
on the assessment of performance in basic benchtop tasks such as
suturing, peg transfer, and knot tying. Whilst the reported
accuracy of determining novices and experts at these tasks were
high, the translation of these techniques into life surgery is called
into question. Real-life surgery has significant challenges to
overcome when compared to an artificial benchtop environment.
Algorithms have to contend with less predictable kinematic data
as well as video which can be contaminated with blood and
surgical smoke. Therefore, the applicability of techniques used in
these environments may have limited value when employed in life
surgery.
Moreover, the value of determining novices and experts from

these relatively trivial tasks may be limited beyond those initially
learnt on laparoscopic or robotic platforms. Classification of
surgeons into novices and experts may be purely a surrogate of
familiarity with the platform rather than of actual surgical skill. In
addition, it is questionable whether the measurement of
performance on these tasks truly determines technical surgical
skill rather than simply the dexterity of the participant. In one
study, there were no statistically different objective performance
indicators between robotic experts and training specialists,
defined as non-surgeons with significant experience in benchtop
robotic tasks28. It must be noted that multiple studies attempt to
classify participants into novices, intermediates and experts.
Efforts to differentiate between those with moderate levels of
experience to experts will likely have more clinical transferability
compared to studies, which aim to classify participants with
significant disparities in ability, such as medical students against
expert surgeons. Therefore, whilst the use of basic tasks is an
obvious first step for those aiming to develop these ML tools due
to the relative ease and speed of data collection, it must be
recognized that the clinical value of such studies may be limited.

Lack of standardization of methods
Across the 66 studies reviewed in our systematic review, there is
significant variation amongst the studies carried out. Whilst the
majority of studies compared novices to experts, definitions of
novices and experts varied significantly. Novices varied from
medical students with no surgical experience to residents on a
defined surgical training programme whilst the definition of
expert ranged from 50 cases to 1000 cases. While some studies
classified participants against a ground truth of an expert-rated
scale such as OSATS or GEARS, the majority of studies based
expertize on hours of training or the number of cases performed.
Some studies based expertize level on the stage of training which
may not be an accurate representation of expertize level (for
example, due to varying levels of exposure to robotic platforms),
while other studies entirely failed to state how expertize was
determined.
In combination with the diverse range of tasks and different

cross-validation techniques employed in these studies, the
comparison of methods used to assess performance is challen-
ging. Some success has been achieved with the JIGSAWS
dataset26, an open-source annotated dataset of eight surgeons
across three expertize levels performing a total of 103 basicTa
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robotic benchtop trials. The use of this dataset by multiple
research groups has allowed the comparison of assessment
techniques on a benchmark dataset. However, beyond the
JIGSAWS dataset, we have found few studies have compared
results across the same datasets. The majority of studies within our
review present methods based on original data with varying
methodology rendering comparison difficult.

Lack of data
The datasets within this systematic review were small in nature
with 20/66 studies comprising of fewer than 10 participants. In
addition, the majority of data obtained from these studies were
not open-source and therefore datasets were not reused across
different groups. There is, however, increasing momentum for the
sharing of datasets such as m2cai2016-tool29 released for the tool

presence detection challenge at M2CAI 2016 and datasets used in
the EndoVis challenges30. The increasing availability of open-
source datasets will allow not only the benchmarking of results
but also improved training and performance of models, as well as
encouraging a global effort towards publishing more datasets.
Whilst inadequate amount of data is a common problem

amongst ML communities, acquisition of real-life surgical data
poses its unique set of challenges. There is a lack of digitization
and infrastructure across operating rooms meaning that those
collecting data such as operative video are, for the most part, in
the minority. Ultimately, for ML applications in surgery to flourish,
a paradigm shift in the operating room towards large-scale
collection of surgical data is needed in order to facilitate these
applications. However, implementing these systems are not
without issue and the surgical data science community continues

Fig. 3 Trends in ML methods used for surgical performance assessment. Graphical depiction of changes in ML methods used for surgical
performance assessment between 2001 and 2020.

Table 3. Overview of ML algorithms—sequential data modelling models.

ML Technique Description Advantages Disadvantages Related
Algorithm

References

Hidden Markov
Model (HMM)

A probabilistic model which models a series of
observable/hidden states and the probability of
transition between hidden states. By detecting the
transition of the observable states (e.g., bimanual
instrument movements), it estimates the most
probable sequence of hidden states (e.g., suturing
task). The hidden states often represent the
surgical manoeuvres, and the metrics can be
inferred from the hidden state transitions. Inferred
data can then be used to analysis the performance
of the surgeon.

1. Low model
complexity.
2. Relatively less amount
of training data needed.
3. Effective at modeling
temporal information.

1. Segmentation of
gestures from motion
data can be strenuous.
2. Parameter tuning
and model
development can be
time-consuming.
3. Features used in the
model are manually
defined.
4. Expert knowledge is
often required to define
the HMM models.

•Maximum
Entropy
Markov Model.
• Markov
Random Field.
• Conditional
Random
Fields.
• Naïve Bayes

23,38–

40,58,66,68,70–

73,88,100,102

Dynamic Time
Warping (DTW)

Algorithm which finds the optimal match between
two temporal sequences that vary in time
or speed

1. Simple and easy to
implement.
2. Highly effective at
finding similarities/
matches between two
sequences.

1. Features need to be
manually defined.
2. Can only compare
2 sequences at a time.
3. Long computational
time in search for the
optimal match.

• Hidden
Markov Model

84,88
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to grapple with both the technical and ethical hurdles to its
adoption13,31.

Moving forward
Studies investigating performance assessment in surgery must
move away from basic benchtop tasks and towards assessment of
real-life surgery. However, the increasingly popular use of deep
learning architectures requires large volume of intraoperative
data. The priorities must be to ensure operating rooms are
appropriately digitized and have the infrastructure to both collect
and share intraoperative data. Not only will the sharing of these
datasets improve the development of ML models and allow
comparison of techniques but it will also encourage collaboration
between groups to further research in this area. This will solve not
only issues associated with the use of ML in surgical performance
assessment but also issues across the whole field of surgical data
science and the wider application of ML to surgery. Encouragingly,
efforts have been made by the surgical data science community in
order to identify the challenges and research targets associated
with widespread data acquisition in the operating room and data
sharing13,31. It is only through this that datasets can be acquired
and utilized at scale.
Future studies should aim to standardize methodology such

that meaningful comparison can be made. Individual studies with
varying skill levels of participants performing a wide variety of
tasks are unlikely to be impactful when compared to studies with
standardized methodology ideally on shared open-source data-
sets. Furthermore, skill assessment in surgery must move beyond
a simplistic binary classification. The clinical applicability of being
classified as a novice as opposed to an expert is limited; it is more
important for trainees to understand why they have been classed
as a novice than just to know that they have been classed as such.
The focus within this field must move towards explainable
techniques. Class activation maps are able to inform the surgeon
which aspect of the task has weighted their classification towards
a novice or expert, allowing the trainee to understand which part
of the task they should look to improve upon in the future32,33.
Not only must future performance assessment tools be accurate,
but they must identify targets of improvement which are
interpretable to the surgeon. The future performance assessment
tool must move beyond a novice vs expert classifier and towards a
clinically applicable tool, which can continuously assess surgeon
performance and therefore advance surgeons up their learning
curves more rapidly and maintain their performance.
The significant promise lies in the emergence of novel

frameworks within the ML community which may be able to
counter the problems faced by neural networks, such as the large
volume of training data required (Table 7). Generative adversarial
networks (GAN), through the use of two competing neural
networks, are able to generate novel data with the same features
as the training data34. Its application has seen huge popularity in
the fields of AI art and the creation of new photographs which
appear superficially authentic to human observers. The application
of GAN to ML-based surgical assessment could address issues with
insufficient training data, which is often a limiting step within the
development of these tools. Transformer networks35, an encoder-
decoder architecture based on attention layers, have rapidly
gained popularity within the field of Natural Language Processing
due to its power for sequential modeling. ML-based surgical
assessment tools could apply transformers and their capability to
model temporal relationships to model surgical phase transitions.
Clinicians must work in conjunction with ML scientists so that
advances within ML development can be capitalized upon and
applied within the field of ML-based surgical assessment.
Furthermore, ML scientists must have an understanding of the
surgical challenges and needs that they are trying to solve. It isTa

b
le

4
co
nt
in
ue

d

M
L
Te
ch

n
iq
u
e

D
es
cr
ip
ti
o
n

A
d
va
n
ta
g
es

D
is
ad

va
n
ta
g
es

R
el
at
ed

A
lg
o
ri
th
m

R
ef
er
en

ce
s

in
fe
re
n
ci
n
g
w
it
h
m
u
lt
ip
le

se
q
u
en

ti
al

p
ro
ce
ss
es
.

Lo
g
is
ti
c
R
eg

re
ss
io
n

Su
p
er
vi
se
d
cl
as
si
fi
ca
ti
o
n
al
g
o
ri
th
m

b
as
ed

o
n
th
e
lo
g
is
ti
c
(o
r
si
g
m
o
id
)

fu
n
ct
io
n

1.
Ea
sy

to
u
n
d
er
st
an

d
an

d
im

p
le
m
en

t.
2.

Fa
st

p
er
fo
rm

an
ce
.

3.
G
o
o
d
ac
cu

ra
cy

fo
r
si
m
p
le

d
at
as
et
s.

1.
C
an

b
e
ea
si
ly

o
u
tp
er
fo
rm

ed
b
y

m
o
re

co
m
p
le
x
al
g
o
ri
th
m
s.

2.
St
ru
g
g
le
s
w
it
h
n
o
n
lin

ea
r
p
ro
b
le
m
s.

3.
Se

n
si
ti
ve

to
va
g
u
e
fe
at
u
re
s.

•
Li
n
ea
r
R
eg

re
ss
io
n

1
,2
0
,2
8
,6
1
,8
0

K. Lam et al.

10

npj Digital Medicine (2022)    24 Published in partnership with Seoul National University Bundang Hospital



only through a mutual awareness of each others’ fields that ML-
based surgical assessment can advance.
Finally, the development of ML-based surgical assessment tools

is not limited to the technical challenges alone. The future use of
ML for the purposes of surgical technical skill assessment may
bring wider challenges. ML-based assessment of future surgical
teams may challenge the rights of privacy for the surgeon and
their team. Not only are there fears from surgeons that they will be
constantly watched, but there are also concerns that such systems
may influence surgeon’s behaviors. In addition, it is unclear what
the rights of the future surgeon to opt-out are as well as the
implications of doing so. Finally, it is unclear what the role of such
systems may play in the role of determining surgical error. Whilst
ML-based performance assessment tools may allow rapid, repro-
ducible, and automated performance assessment and in doing so
accelerate surgical education, we must also pre-empt the potential
wider challenges of implementing such tools into clinical practice.
We must look, not only at the development of these performance
assessment tools, but also the challenges associated with their
deployment. Ultimately, for research into ML-based performance
assessment tools to be worthwhile they must be leveraged such
that they can make the transition from benchtop to bedside.

CONCLUSIONS
Despite research spanning 20 years, there is still significant
progress to be made in the use of ML for technical skill assessment.

The use of ML has the opportunity to allow surgeons to track their
performance accurately, objectively, and reliably. Numerous ML
methods have been utilized to assess surgical skill; however, the
comparison of such techniques is difficult due to the wide variety
of datasets, tasks, and study participants. We identify three key
barriers to progress in the field: (1) a focus on basic benchtop tasks;
(2) the lack of standardization between studies; (3) the lack of
available datasets for the purpose of surgical assessment. Future
efforts in the field must focus on moving beyond basic benchtop
tasks and towards the assessment of real-life surgery which is
interpretable and of clinical value for the surgeon. For this to be
successful, operating rooms must adapt to allow intraoperative
data to be acquired at scale and subsequently shared.

METHODS
This systematic review was conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
statement (PRISMA)36. The systematic review was also registered
on the International Prospective Register of Systematic Reviews
(PROSPERO ID: CRD42020226071).

Search Strategy and Databases
A comprehensive literature search was conducted using Medline
(via Ovid), Embase, Web of Science, and the IEEEXplore database
to account for technical papers. Example search terms included

Table 5. Overview of ML algorithms—feature extraction methods.

ML Technique Description Advantages Disadvantages Related
Algorithm

References

Principal
Component
Analysis (PCA)

Unsupervised linear dimensionality
reduction algorithm. It extracts the
most significant features with the
highest variance in the data.

1. Reduces overfitting.
2. Improves
visualization of data.
3. Improves algorithm
performance.
4. Removes features
which are correlated.

1. Principal components (linear
combinations of original features)
are abstracted information from
data and can be hard to interpret.
2. Sensitive to the scale of
features and outliers.
3. Trade-off between information
loss and dimension reduction.

• Support
Vector
Machine.
Linear
Discriminant
Analysis.
• Feature
selection
methods

27,77,81,82

Linear
Discriminant
Analysis (LDA)

Supervised dimensionality reduction
and classification algorithm. A
statistical method which projects the
data onto new axes which maximizes
the separability between classes by
maximizing the between-class
variance and minimizing the within-
class variance.

1. Allows for
supervised
dimensionality
reduction with prior
knowledge of the
classes.
2. Can outperform
PCA as
dimensionality
reduction technique.

1. Not suitable for non-Gaussian
samples.
2. Prone to overfitting.
3. The projection space cannot
exceed the existing dimensions.
4. Limited by the type of samples.

• Principal
Component
Analysis

14,17,59,61,70,87,90,91,100

Table 6. Overview of ML algorithms—clustering methods.

ML Technique Description Advantages Disadvantages Related Algorithm References

k-means
clustering

Unsupervised iterative clustering algorithm
which separates unlabeled data into “k”
distinct groupings. Observations sharing
similar characteristics are therefore clustered
together. New point clustered into one of
the K groups based its minimum distance to
the center of group. The centers will be
recalculated iteratively until convergence.
The means of the clusters will then be used
to determine the classes of new observed
data points.

1. Easy to
implement.
2. Low algorithm
complexity.
3. Scales to large
datasets.

1. Need to assign k, not suitable
for some classification
requirements.
2. Sensitive to outliers and
initial values.
3. Difficult to cluster data of
varying sizes.
4. Difficult to implement with
high dimensional data.
5. Not suitable for non-convex
classification.

• k-nearest
neighbors.
• Spectral clustering.
• Iterative.
• Self-
organizing maps

15,60
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Table 7. Overview of ML algorithms—deep learning methods.

ML Technique Description Advantages Disadvantages Related
Algorithm

References

Artificial Neural
Network (ANN)
or Deep Neural
Network (DNN)

ANNs are networks of
nodes (or neurons)
connected to each other
to represent data or
approximate the
functions. DNNs are ANN
with many layers (i.e.
deep layers). With deep
layers and parallel
processing of the
neurons, ANNs can learn
and determine the
optimal features from
data, and they can be
generalized to yield best
classification results even
with missing data or
unseen scenarios.

1. Can achieve high
accuracy.
2. Able to model
complex and nonlinear
problems.
3. Can learn patterns
and generalize to
handle unseen data.
4. Robust and fault-
tolerant to noise.

1. Need large volume
of training data.
2. Time-consuming in
the training process,
and require
significant
computational power
to train complex
networks.
3. Difficult to interpret
due to its black-box
nature.
4. The learning
process is stochastic –
even training with
same data, it may
result in different
networks.

•

Convolutional
Neural
Networks.
• Recurrent
Neural
Networks

14,16,21,24,25,32,33,63,65,69,78,79,82,83,99,101,103

Convolutional
Neural
Network (CNN)

CNN is an artificial neural
network with a “Deep”
structure, convolution
operation layers and
pooling layers. CNN has
the ability of
representation learning,
where it could carry out
shift-invariant
classification of input
information based on its
hierarchical structure105.

1. Robust.
2. Parallel processing.
3. Learn representative
features from data.
4. Can process data with
noise and lack of
information.
5. Widely used in image
classification with high
resolution.
6. Pooling can abstract
high-level information.
7. Translation invariant
(controversial).

1. Time-consuming in
the training process,
and require
significant
computational power.
2. Pooling may lose
detailed and valued
information.
3. Poor performance
when input image is
of low resolution.

• Multilayer
Perceptron.
• Recurrent
Neural
Networks

21,24,25,32,33,69,78,79,82,99,101

Recurrent
Neural
Networks (RNN)

The recurrent neural
networks are designed
for modeling sequential
processes. It takes the
current observation
together with the output
of the network in
previous state to
generates the output.

1. Parameter sharing
mechanism and Turing
completeness.
2. Memorizing ability
makes it suitable for
time-series signal
processing involving in
semantic analysis,
sentiment classification,
and language
translation.

1. Difficult to train.
2. Imperceptible
gradient vanishing
problem.
3. Gradient explosion
problem, which can
be fixed by gradient
clipping.
4. Short-term memory
issues.

• Long Short-
Term Memory.
• Gated
Recurrent Unit

33,69,103

Table 8. Overview of cross-validation techniques.

Dataset Cross-validation Description

Hold out Dataset is randomly split into a training and test set. Can suffer from sampling bias and overfitting to the
training set.

k-fold Data is split into k folds and the data is trained on k-1 folds and tested on the fold that was left out. Process is
repeated and the result is averaged. The major advantage is that all observations are used for both training and
validation.

Leave-one-user-out (LOUO) Similar to k-fold validation. In LOUO validation, each surgeon’s trials are used as the test set in turn. Repeated until
each surgeon’s trials are used for testing.

Leave-one-super-trial-out (LOSO) Also a variation on k-fold validation. In LOSO validation, a trial from each surgeon’s set of trials is used as the test
set. This process is repeated and the result is averaged. This tends to achieve better results compared to LOUO as
the algorithm can learn on all surgeons’ trials.

Bootstrapping Bootstrapping is similar to k-fold validation but resamples with replacement such that the new training datasets
will always have the same number of observations as the original dataset. Due to replacement, bootstrapped
datasets may have multiple instances or completely omit the original cases.
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‘machine learning’ and ‘artificial intelligence’ in addition to
‘surgical skill’, ‘surgical performance’, and ‘surgical assessment’.
The full Medline, Embase, Web of Science, and IEEEXplore search
strategies can be found in Supplementary Data 1. Free-text words
were combined using Boolean operators, in addition to medical
subject headings terms (MeSH). The search was performed in
consultation with a professional librarian at Imperial College
London in December 2020.
All identified studies were uploaded to Covidence, a Cochrane-

supported systematic review package tool. Initial screening was
independently conducted by two investigators (KL and FMI) to
determine if the eligibility criteria were met. Discrepancies were
discussed and resolved either by consensus or by a third reviewer.
Studies that met the inclusion criteria underwent full-text screen-
ing. In addition, supplemental references were examined for
additional relevant articles.

Study selection criteria and outcome measures
Studies published including the primary and secondary outcomes
as detailed below were included. No language restrictions were
applied. Inclusion criteria included any study that used ML to
examine performance assessment of either a real-life operative
procedure or a surgical benchtop task. Exclusion criteria included
any study that did not assess performance or did not use a ML
technique. The last search was conducted in December 2020.
Studies with inadequately published data with regards to the
primary and secondary outcome measures were also excluded.

Data extraction
The primary outcome of this systematic review was to detail the
ML techniques used in technical skill assessment in surgery and
identify the current challenges and barriers in the field. Secondary
objectives were to understand the types of data employed by
these ML techniques, determine the procedures and tasks which
have been investigated in these studies and determine the current
accuracy of existing ML models used for surgical skill assessment.
We determined real-life studies as studies that utilized data taken
from real-life surgery, simulator studies as studies, which recorded
data without the need for external sensors (able to automatically
generate kinematics or metrics without noise and the need for
preprocessing), and benchtop studies as any study that did not
satisfy the previous two criteria.
All study characteristics and outcome measures were indepen-

dently extracted by two investigators (KL and FMI). Discrepancies
were discussed and resolved either by consensus or by a third
reviewer.

Quality Assessment (Risk of Bias)
Quality assessment was conducted through the use of the Medical
Education Research Study Quality Instrument (MERSQI)37. The 10-
item tool assesses 6 domains, each with a maximum score of 3, (1)
study design, (2) sampling, (3) type of data, (4) validity of
evaluation instrument, (5) data analysis, (6) outcomes. Scores
range from 0–18. Quality assessment was assessed by one
reviewer and validated by a second.

Overview of ML methods
HMM can be seen as a probabilistic method to predict the
unobservable sequence (usually the underlying tasks, the move-
ment orders of instruments, etc.) based on the probability of the
sequence of occurrence of observable information (such as
kinematic data of the surgical instruments, visual features, force
exerted). In surgical skill assessment, HMM will enable the
researcher to infer the underlying sequences of surgical tasks,
instrument motion trajectories, etc., from the observable informa-
tion captured during the operations and which can be used to

distinguish and quantify the surgical dexterities of surgeons. For
example, for the same surgical task, such as suturing, a novice may
take more steps and time (i.e. a longer sequence of instrument
movements) compared to an expert surgeon. A classic example
can be found in Rosen et al.38.
In early articles, HMM is widely used as the training method to

assess surgical skill. HMM were applied to estimate the underlying
surgical maneuvers from the observable kinematic/video data
from the system when the surgeon participant performed surgical
training tasks, and the participant’s training skill level was then
deduced from the estimated data38–40. Although accuracy within
this period achieved over 80%, the use of HMM failed to
demonstrate sufficient benefit for it to be employed on a wider
scale. However, the early use of HMM had led to the growing
interests in the use of ML for the purpose of surgical skill
assessment. The use of HMM declined at the start of the 2010s
with the rise in popularity of ML methods such as SVM.
SVM41,42 is a supervised ML method based on the Vapnik-

Chervonenkis Dimension theory and structural risk minimization
principle43 to address linear and nonlinear classification problems,
which denote the distribution of the input dataset. Generally, the
use of SVM classifiers consist of the training stage, validation
stage, and test/prediction stage. The SVM classifier relies on the
multi-dimensional handcrafted features and metrics relevant to
the tasks of interest derived from original signals, such as bio-
signal44, video45, kinematic data46. Such features include energy-
based metrics14 (which include total work, the sum of the changes
in potential energy, and the sum of the changes in kinetic energy
when performing a specific task), computer vision-based fea-
tures15 (such as duration, size, centrality, circularity, and motion
stability), and other measurable indexes (such as the position,
angle, and force application of instruments and volume of
simulated tissue removed17. These features vectors or matrix are
often linearly inseparable. Hence, conventional linear classifiers,
such as Linear Discriminant Analysis, are not able to classify the
tasks based on these feature vectors. However, the SVM classifier
maps the original features from a low dimensional space to a
higher dimensional space nonlinearly and transform the nonlinear
problem into a linear separable one, so that the classification
boundary or the ‘hyperplane’ (in the higher dimensional space) of
the original features matrix can be determined by maximizing the
margin between the key feature points (i.e. the support vectors).
In essence, it avoids the traditional process from induction to

deduction, realizes the efficient “transductive reasoning” from
training samples to prediction samples (hence, maximizing the
margin between the support vectors), and greatly simplifies
common classification and regression problems. Therefore, it can
yield high classification accuracy even with relatively small
training data samples. However, since SVM calculates support
vectors by quadratic programming, which involves the calculation
of an m-order matrix, the storage and calculation of the matrix
requires significant computational power and machine memory.
In addition, computing resource will increase with the number of
samples and therefore SVM can be difficult to train with large-
scale training samples. SVM can be sensitive to missing data,
parameters, and kernel function selection which has limited its
widespread applications in big data analytics.
ANN are inspired by the biological information processing

mechanism of the human neural system. An ANN consists of a
network of interconnected nodes (or neurons) to simulate the
functions of the soma, dendrite, and axon of the neurons and the
synaptic connections between the neurons to realize strategy
representation or function approximation. ANN can learn and
deduce the optimal approximation of highly complex nonlinear
functions, given its ability to learn from the data. Common
topological structures include multi-layered feed forward network,
feedback network, recurrent neural network and competitive
neural network47.
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The concept of ANN is to imitate the human’s cognitive abilities.
Like the biological neurons in the human brain, neurons in ANN
can gather information from multi-inputs (i.e. from their con-
nected neurons or stimuli), process the information and output
signals to its connected neurons (or the classification results). Both
biological neural networks (BNN) and ANN can receive signals
(electro-chemical signals in BNN, data signals in ANN), and release
the processed signals to the connected neurons. Unlike BNN, ANN
are designed with layered structures, where signals can be
gathered and passed between layers but not across layers. Signals
which are passed between neurons will be amplified or
attenuated with the synaptic weights, and each neuron will
activate or deactivate based on the weighted synaptic signals it
receives. In other words, ANN learns and memorizes information
through adjusting the synaptic weights between neurons. Deep
learning or deep neural network (DNN) refers to ANN with many
layers of neurons, and increasing the number of layers and
neurons will increase the inferencing ability of the ANN, especially
in highly complex nonlinear problems.
The last few years have seen increasing numbers of applications

of ANN in the field of surgical skill assessment, which can be
categorized into conventional ANN (used mostly in earlier
research), and DNN (used in recent research). The conventional
sequential modeling-based ML methods, such as SVM, require the
design of optimized data preprocessing functions, feature
symbolization or quantification and feature selection processes
which are a very complex process and require expert knowledge.
In contrast, the new end-to-end48,49 method framework, (i.e. the
DNN method), can learn the optimal features directly from the
data and extract high-level abstract information, which will lead to
high classification accuracy. This framework is gradually becoming
the standard approach in ML. The emergence of different deep
network topologies, such as Generative adversarial network
(GAN)50 (which is designed for addressing insufficient available
data sources for training the neural network), Convolutional neural
network (CNN)51 (which is designed for learning the optimal
features from data, especially for vision-based applications),
Recurrent Neural Network (RNN)52 and Long-Short-Term Memory
(LSTM)53 (which are designed for time series classification tasks),
coupled with ever-increasing computational power due to the
advances in the semiconductor industry, offer great potential in
the development of objective surgical skill assessment tools.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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