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Abstract

The stopping power of a material upon interaction with an energetic ion is

the key measure of how far that ion will travel. The implications of accurate

particle range calculations are tremendous, affecting every single application

in which particle radiation is involved, from nuclear power to medicine. An

approach is presented which attempts to overcome current shortcomings in

the theoretical understanding of stopping power, as well as the methods used

to interpret and exploit measured data. This is a considerable challenge, how-

ever the use of a novel machine learning methodology is shown to hold great

promise in this endeavour: the ultimate aim being the ability to correctly

predict the stopping value for any energy, ion and target combination, having

no pre-existing experimental data.

A random forest regression algorithm is trained using over 34,000 experi-

mental measurements, representing stopping power values for 522 ion-target

combinations across the energy range 10 –3 to 10 2 MeV/amu, and ion and

target atomic masses 1 to > 240. Evaluation is carried out using several

fundamental error metrics, over the whole dataset as well as for individual

combinations, to provide the most comprehensive understanding of perfor-

mance when tested under strict cross-validation criteria. The resulting model

is shown to yield predicted stopping power curves corresponding closely to
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those of the true experimental values, with an ability to generalise across

target elements, compounds, mixtures, alloys and polymers, irrespective of

phase, and for a wide range of ion masses.

Keywords: Machine learning, Random forest, Stopping power, SRIM

1. Introduction

The understanding of particle interactions in matter has profound implica-

tions in physics and beyond. Particularly useful is the ability to calculate

the range of energetic particles, which lose energy as they pass through a

material. The energy loss dE of an ion traversing path length dx through a

material is known as it’s stopping power S(E),

S(E) = −
dE

dx
(1)

which may generally be resolved into three contributing components,

S(E) = Sel(E) + Srad(E) + Snuc(E) (2)

the electronic stopping power, Sel(E), due to inelastic collisions with atomic

electrons causing ionisation and excitation; the radiative stopping power,

Srad(E), attributed to the emission of Bremsstrahlung radiation; and the

nuclear stopping power, Snuc(E), resulting from elastic electromagnetic col-

lisions with nuclei in which recoil energy is lost to the atoms [1].

The radiative stopping power is proportional to (me/M)2 where me and M

are the electron and ion rest masses, respectively, and is considered negligible

for particles other than electrons and positrons. The electronic stopping

power is the dominant component for ‘light’ ions (Z ≤ 10) and may be

approximately described by the Bethe theory [2], which itself is derived upon

the assumptions of the first-order Born approximation. Deviations from this

theory may be accounted for in a number of correction terms, including the

Barkas correction [3, 4], the Bloch correction [5], the shell correction [6], and

the density effect correction [7, 8].
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For large particle energies the corrections are minimal, and the Bethe equa-

tion provides a sufficiently accurate prediction of stopping power. However,

in the low energy regime (e.g. below ∼ 2 MeV for 4He [9]) the interpretation

breaks down. The nuclear stopping contribution and adjustments such as

the shell correction and charge shrouding effects become more significant.

There are methods for attempting to describe the stopping power where

theoretical models are incomplete. A widely accepted approach is to use

semi-empirical fitting formulas that provide adequate fits to existing exper-

imental stopping power data for various incident ions and target materials;

such as that proposed by Varelas and Biersack [10]. In particular, the prin-

cipal parameters to this formula are provided by Ziegler [11, 12, 13], with

other coefficients proposed by Watt [14]. These coefficients are compiled and

published by the International Commission on Radiation Units and Measure-

ments (ICRU) [9]. Additionally Powers [15] publishes some fitting parameters

for a limited number of compound targets. However the majority of existing

experimental data is provided only for elements, restricting the viability of

fitting formulas for more complex material compositions. In this case, val-

ues may be approximated as a weighted linear combination of the stopping

powers for their atomic constituents – known as the Bragg additivity rule.

This suffers further errors arising from fact that stopping power is strongly

influenced by chemical bonding of the atomic constituents, the phase of the

material, and channelling effects. It is generally acknowledged [9] that im-

proving the accuracy of the Bragg additivity rule by semi-empirical methods

is better applied to interpreting existing data than predicting the stopping

power of other materials.

The reality is that accurate stopping power data is crucial for applications

in medical radiotherapy, particle research, space technology, nuclear energy

generation and wider industry. Inaccuracies may generate large errors in

particle range calculations, which are derived by integration of the stopping

power with respect to energy. Whilst the present understanding of particle

energy loss in matter is vast, it still does not allow for an accurate analytical

solution to the stopping power function at all energies. There is a concurrent

incompleteness of experimental data, and the parameterised approximations
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currently used to solve these problems are burdened with errors and the

inability to generalise well to other ions and target materials. Ideally, data

is required for a great number of elements, mixtures and compounds; for a

range of incident ionising particles; and across a complete energy spectrum.

Machine learning (ML) methods are therefore perfectly placed to provide an

alternative solution; using the current incomplete experimental datasets to

predict unknown values. A novel approach to the calculation of stopping

power is presented in this paper whereby an ML algorithm is trained and

evaluated with the goal of achieving a complete model – capable of accurately

predicting the stopping power values for any feasible incident ion, energy and

target material.

2. Machine learning

The field of machine learning – using computers to learn from data, improve

their algorithms and make intelligent decisions – has seen a significant uplift

recently. This is the result of four main driving forces: faster and more

affordable processing hardware; increased connectivity and communication

between computers; greater quantities, storage and access to data; and well-

funded, extensive research efforts resulting in better and more efficient ML

algorithms [16]. Consequently machine learning technology is now present in

almost every aspect of modern life, from suggesting a movie to watch [17],

diagnosing skin cancers in photographs [18], to making instantaneous stock

market predictions [19].

Conventional computer programs require a user to have a deep understanding

of a system in order to write a set of instructions that compute the desired

outputs from a set of inputs. Instead, ML relies on the principle that what

may be lacking in knowledge of a system can be made up for in data [20].

As such, if it is possible to compile a large number of examples, a ML algo-

rithm may be ‘taught’ to detect statistical patterns and regularities in these

examples to the extent that it is able to accurately make its own predictions

for unseen data.

ML methods can be broadly classified by the type of data passed to the
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computer during training and the expected outputs of the trained model.

Supervised learning occurs when a training sample consists of a set of input

variables, also known as the feature vector, and the corresponding output to

be predicted, known as the label. Given a dataset with several samples the

algorithm learns to map the features to the labels, such that new labels can

be predicted for unlabelled data. Other learning approaches include unsu-

pervised learning, where labels are not provided, and the computer is instead

tasked with clustering patterns or trends within the input data; and rein-

forcement learning, where the computer seeks to take actions within a defined

environment to maximise a cumulative ‘reward’. In the case of supervised

learning, the method may be further separated into the types of labels to

be produced. These might be classification problems or regression problems,

where the labels are qualitative or quantitative, respectively.

Figure 1: An example of a simple decision tree. Ovals represent decision nodes,
rectangles represent leaf nodes (adapted from [20]).

The type of problem informs the learning algorithms that are applicable to

it. One leading supervised learning model used for both classification and

regression problems is a decision tree ensemble, sometimes called a random

forest (RF). A decision tree is a hierarchical model in which the output labels

are determined through a series of recursive splits [20]. Each tree consists of
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several decision nodes. At each node m a test function fm(x) is evaluated,

where the discrete outcomes of the test form each of the resulting branches.

For a given input vector, these tests are applied at each node until one of

the leaf nodes is reached, at which point the value of this leaf is equivalent

to the predicted output of the model, figure 1. The test function aims to

discriminate such that the error (however it may be defined) is minimised

to the greatest possible extent at each split. A leaf node therefore defines a

region of the input vector space where instances all have the same label (for

a classification problem) or similar numeric value (for regression problems)

and the error is lowest. Individual decision trees, however, are very prone

to overfitting the training data and do not generalise very well. To avoid

this problem, multiple decision trees known as a random forest (RF) can be

used [21, 22]. RF relies on the principle of bootstrap aggregation in which a

random sample of the training data is taken with replacement and used to

fit each tree in the forest. The output prediction of each individual tree can

then be averaged to produce the output of the ensemble overall, reducing

susceptibility of the model to noise in the data. RF is further developed such

that for each split in a tree a random subset of the input features are chosen,

in order to de-correlate the trees.

3. Methods

3.1. Objective

The objective of this work is to train and optimise a machine learning model

that is capable of predicting mass stopping power (the stopping power per

unit density). It should take inputs describing any incident ion: from protons

Z = 1 and alpha particles Z = 2, to heavy ions such as uranium Z =

92; for any target material: pure elemental materials, complex crystalline,

amorphous or polymeric compounds, and mixtures of varying composition;

in any state: solid, liquid or gas. The model should then be able to generate

predictions for stopping power both individually and across a continuous

incident ion energy range.

Key to the utility of the method is the ability to make fully ‘blind’ predictions.

That is, for a given ion-target combination the model should never have seen
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any prior experimental data when generating predictions. The model will

be trained on a dataset comprising experimental data for numerous ion-

target combinations and use complex learned feature relationships to infer

the stopping power function for any new unseen combination. Second to this,

the model should be generalisable to achieve consistent accuracy across the

full range of ion-target combinations. Care must be taken to avoid overfitting

to a particular subset or feature of the data. Weaknesses and limits, instances

where the model fails to perform well or is biased, should be evaluated.

All data cleaning, pre-processing, modelling and evaluation is performed in

Python 3.7 as part of the Anaconda 5.3 distribution.

3.2. Dataset

The training data is comprised of distinct experimental observations in the

form:

Ion, Target, Energy −→ Measured Stopping Power

Over several decades these measurements have been made by numerous in-

dependent authors and subsequently published in the literature. The data

is, in general, publicly-available in the form of journal publications and in-

dustry reports. Nevertheless, in the first instance, it is presented in a sparse

and non-standardised format: embedded within text documents, written in

multiple languages, quoted in different units, varying error levels and pre-

cision. A unique and free-to-access database is available on the website of

the International Atomic Energy Agency (IAEA), Nuclear Data Services [23].

This prodigious resource was pioneered by Professor Helmut Paul, University

of Linz, transferred to the IAEA in 2015 and is currently under the collab-

orative management of Dr Claudia Montanari [24]. The database makes

available compilations of experimental measurements starting from 1928 to

present. These cover a broad energy spectrum from eV to GeV, for ions in

the range Z = 1 to Z = 92, and approximately one hundred target elements,

compounds and mixtures. The data is accessible in various forms, of which

the file ‘SCSData.zip’ was downloaded for this work and contains historical

measurements taken up to September 2015.

7



Term Meaning Number

dataset All cleaned experimental data 1

ion Incident particle 32

target Material under irradiation by the ion 97

combination A unique ion-target pair 522

sample

Each observation (row) in the dataset,

consisting of a single stopping power value

given for a particular energy, ion and target

34,237

Table 1: A description of the terminology and quantities within the final ‘cleaned’
data.

However the data in this form is, to a degree, still non-standard and incon-

sistent – particularly for ML purposes. The files are therefore prepared, both

manually and using automatic scripts such that the final dataset structure

is self-consistent, and where energy and mass stopping power are in units of

[MeV/amu] and [MeV cm2 g−1], respectively. The process is considered to be

an efficient solution for handling the large database but has the inevitable

downside in that a portion of potentially useful training data is lost, including

more recent observations. This could be extracted and processed to improve

the future performance of the model. The ‘cleaned’ dataset is as described

in table 1, with associated terminology to be used here on.

3.3. Features

This data is then further processed to make it suitable for training a ML

model. This takes the form of feature extraction and pre-processing. Feature

extraction involves extending the dataset to contain relevant input variables

that may be predictive of the stopping power. By composing a supplemen-

tary dataset of fundamental ion and target material parameters, the following

features are considered: the atomic mass of the incident ion; the atomic num-

ber of the incident ion; the relative atomic (or molecular) mass of the target

material; the state of the target material one-hot encoded as three binary
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vectors for solid, liquid or gas; the normalised fractional composition of the

target material, encoded as a sparse matrix where each column represents an

element in the periodic table and the values contained in the columns indicate

the relative fractional composition of the target materials (eg. for pure alu-

minium, the column representing ‘Al’ will contain a value of 1.0 – whereas for

aluminium oxide, Al
2
O

3
, the column ‘Al’ will contain a value of 0.4). Other

features generated include the mean ionisation energy of the target mate-

rial, the mean density of the target material, and a binary vector indicating

whether the target material is polymeric or not. The final predictor of the

stopping power is the incident ion energy per unit mass [MeV/amu] given by

the experimental dataset. Equivalently, the value (label) to be predicted is

the experimental stopping power.

3.4. Model

The decision tree machine learning model – ‘RandomForestRegressor’ – is

provided as part of the Scikit-Learn library in Python, version 0.19.1 [25, 26,

27]. During training, each decision tree is built from a number of samples of

the input training data drawn with replacement, to produce a bootstrapped

ensemble. A random subset of the features are used at each split – according

to the principle of a random forest. The sizes of the trees are left unrestricted,

that is: the minimum number of samples required for a split to occur is set to

2; the trees are fully expanded until all the leaves are ‘pure’, i.e. they cannot

be split any further, regardless of tree depth; and the minimum number of

samples required at each terminal leaf node is set to 1. The number of trees

used is 100; any increase in this number showed only a marginal improve-

ment in model performance at the expense of a much greater computing

time. All other hyperparameters are set to their default values including the

splitting criterion, which is set to optimise for mean squared error (MSE).

Training is only performed on a single processing thread, although this may

be parallelised for speed improvements if required. The predicted output is

calculated as the mean of the outputs of each tree in the ensemble. Through

training on the features provided in the dataset and obtaining the best splits

in each tree, the model learns to calculate outputs for any new set of input

features.
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3.5. Error metrics

Four error metrics are used to quantify the performance of the model in terms

of the predicted values ypred against the true experimental values, ytrue. The

first is the coefficient of determination, R2,

R2 = 1−

∑

(ytrue − ypred)
2

∑

(ytrue − ȳtrue)2
(3)

where the numerator of the fraction describes the size of the residuals (dif-

ference between predicted and true values) produced by the model; and the

denominator describes the size of the residuals for a naive model in which

the regression predicts the average value, ȳtrue [28]. The value of R2 is a

widely used metric to describe the ‘goodness of fit’ of a regression model

to the observed data, in which a perfect model achieves a score of R2 = 1.

An arguably better metric for the usefulness of a model is the root-mean-

squared-error (RMSE),

RMSE =

√

∑

(ytrue − ypred)2

n
(4)

where the square root is taken of the sum of squared residuals, divided by the

number of samples, n. The value of the RMSE is therefore expressed in the

units of the quantity being estimated, in this case the stopping power, and

therefore provides a more tangible accuracy metric. The RMSE represents

an estimate for the standard deviation of the model (for an unbiased model

it is equal to the standard deviation), which scales with the magnitude of

the stopping power, and hence smaller values indicate a better model. The

fact that the square of the residuals is summed means that it penalises large

errors to a much greater extent. To avoid this, in the case where independent

large errors are not relatively much worse than the overall errors, the mean-

absolute-error (MAE) may be evaluated,

MAE =
1

n

∑

|ytrue − ypred| (5)
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which measures the absolute (unbiased) sum of residuals. Finally, the most

intuitive – but also fundamentally limited – metric of error is the mean-

absolute-percentage-error (MAPE),

MAPE =
100

n

∑

∣

∣

∣

∣

ytrue − ypred
ytrue

∣

∣

∣

∣

(6)

in which the percentage deviation of the residuals is calculated. This metric

is easily comparable with other work that quotes errors in terms of percent-

ages, such as the ICRU reports [1, 9], however suffers from several drawbacks.

The first is that a ‘divide-by-zero’ error may be encountered if the true value

is zero (not an issue in this instance). The most significant, however, is that

there is no upper bound on the percentage error for forecasts that are too

high. Hence model optimisation based upon the MAPE metric will system-

atically favour models that make too-low predictions over those that are too

high.

3.6. Model evaluation

Two evaluations of model performance are sought. The first is the ability of

the model to fit to the training data – ie. the samples in the experimental

dataset that are used to train the model. This is achieved by training the

model on the full dataset and then using the trained model to make predic-

tions for each sample in the full dataset. The error metrics described above

are calculated to indicate how well the predicted and true experimental val-

ues align for each combination, in addition to how well the model fits onto

the dataset as a whole.

This evaluation is an assessment of the fundamental internal performance of

the model but not indicative of its external predictivity on new data that

has not been used in training. Hence the second evaluation is on that of

the predictions against new and ‘unseen’ data. In lieu of acquiring new

experimental observations in a laboratory, a more practical (and statistically

meticulous) method is to remove, or hold-out, a portion of the dataset known

as the test data. The model is trained on the remainder of the data, and then

asked to make blind predictions on the test set.
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A rigorous method by which this can be implemented is k -fold cross-validation

(CV). This a process in which the dataset is divided into k partitions. Of

these partitions, k-1 are used to train the model with the remaining partition

held-out for testing the model. This process is repeated k times as the hold-

out sample is rotated through the full dataset, with the model retrained each

time on the remainder, until all the data has been used both for both training

and testing. The total error of the model is given as the mean average of the

error metric evaluated for each hold-out sample.

The ultimate benefit of the model lies in its ability to predict the full energy

range stopping power for ion-target combinations with no existing experimen-

tal data. Hence to comply with this strict condition, the dataset is divided

into folds that each contain all samples for a unique combination, such that

k = 522.

4. Results

4.1. Dataset analysis

A fundamental problem when attempting to build a generalisable machine

learning model is unbalanced training data. Training data that under or

over-represents certain samples and features will, in the best case, result

in a model that is better at some prediction tasks than others – and in

the worst case, produce a model that heavily overfits to the nuances of the

training data and is unable to generalise at all. It is therefore important to

understand the dominant patterns within the dataset before training such

that these imbalances can be accounted for. Unfortunately, any database

that is made up of real-world observations will contain inherent sampling

biases. In the case of the stopping power dataset, experimental physicists are

incentivised to make measurements of ions and targets that are useful to their

specific field, and less so to improve the continuity of the existing knowledge

base which may otherwise be scientifically irrelevant. Certain combinations

will attract intense study and hence be indulged with many hundreds of

observations by many authors. Others will be less so and may only contain

a single observation by a lone author. Figure 2 is a representation of the

distribution of samples within the dataset. The black squares represent a
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Figure 2: Distribution of combinations within the dataset by (relative) atomic
mass, one square represents one unique combination out of 522. There
are 32 ions along the x-axis and 97 targets on the y-axis. The his-
tograms represent the total number of samples for each ion or target
mass, a larger bar indicates more samples at that mass. For clarity,
histogram x-axis not to scale.
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unique ion-target combination, in which the ion has atomic mass AIon and the

target has relative atomic mass ATarget. The histograms represent the relative

distribution of samples within the dataset for both ions and for targets, where

the total area under each histogram is equal to the total number of samples,

34,237.

There is a noticeably greater density of combinations containing low mass

ions: data exists for every ion up to Z = 22. Above that, the dataset rep-

resents only a fraction of the heavier ions up to Z = 92. The number of

samples is heavily weighted towards the lighter ions, with hydrogen (Z = 1)

and helium (Z = 2) the most commonly observed. The range of target mate-

rials favours lower relative atomic masses and lighter incident ions, although

the distribution of samples is more continuous. Notably, the largest num-

ber of samples are recorded for gold (A ∼ 197), aluminium (A ∼ 27) and

silver (A ∼ 108). The bias of the dataset towards the lighter combinations

is unsurprising considering the relative abundance and practicality of lighter

ions and target materials. On average each combination contains ∼66 obser-

vations. However, the distribution of the number of samples p, figure 3, is

heavily skewed towards small numbers of observations for each combination.

The modal value lies between 1−10 stopping power observations, likely con-

tributed from a single study and not covering the full energy range. There

also exist some examples with much greater numbers of measurements, in-

cluding 10 combinations that are not shown in figure 3 with stopping power

observations taken across a wide energy range totalling between 350 to over

1000 samples. 76.6% of the dataset is comprised of solid target materials

(light grey bars), with the remaining 21.0% gases (dark grey bars) and 2.4%

liquids (black bars).

4.2. Feature importance

The relative importance of the features is calculated by the mean decrease in

impurity (MDI) [29] – defined as the total decrease in node impurity, weighted

by the number of samples reaching the node, averaged over all the trees in

the forest. MDI gives an understanding of how much each feature influences

the successful performance of the model and can allow those most useful to

be selected for. As a secondary consequence, feature importance may also
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Figure 3: Number of samples, p, per combination. Of which solid (light grey),
gaseous (dark grey), liquid (black) target materials. Mean number
of samples for any single combination is ∼66. For clarity x-axis is
truncated – not shown are individual bin counts for 10 combinations
ranging up to 1078 samples.
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Figure 4: The relative importance of features listed for the top ten features: ion
atomic mass, Aion; ion atomic number, Zion; ion energy, Eion; tar-
get (relative) atomic mass, Atarget; target (relative) atomic number,
Ztarget; hydrogen fraction, H; target density, ρtarget; target periodic
group, Grptarget; target mean ionisation energy, Itarget; carbon frac-
tion, C.
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yield interesting insights into real-world, physical, correlations. However, it

is important to note that the objective of the model is that of optimising

predictions, and not of drawing meaningful inferential conclusions.

Figure 4 shows the ranked importance for the top ten features, out of a

total of 121. The first five have an overwhelming influence on the model,

namely, the atomic numbers and masses of the ion and target, as well as

the ion energy per unit mass. On the other hand, target density has little

impact. These relationships might be expected when considering the form of

theoretical descriptions of the mass stopping power. Interestingly, the mean

ionisation energy is much less important, as is the physical state of the target

material, and whether it is polymeric. The fractional target composition,

comprising 109 elemental vectors, is also mostly irrelevant. The presence

of these features apply individually to each target material – hence they

are not key predictors overall. It should be noted that both hydrogen and

carbon score higher than all other elements, which may either signify that

the presence of these elements – or their various chemical groups – may

more strongly influence the stopping power. More likely is that there is a

selectivity attributed to the model through a higher number of hydrocarbon

observations listed in the dataset. This would indeed mean that the model

is performing more successfully on these materials but it has no physical

correlation to the stopping power.

4.3. Performance on training data

The random forest regression model is trained by supervised learning on the

full dataset. Each sample is represented by the vector of features described

above and mapped to its associated experimental stopping power value. Af-

ter training, predictions are made for each sample of the dataset to assess

how well the model fits to the training data it has seen. The quality of a

model can be assessed by comparing the model predictions against the orig-

inal experimental stopping power values, figure 5. Very good correlation is

observed, and nearly all points align with the black line that represents a

perfect predicted outcome. The calculated value of R2 = 0.9989 indicates

a near-ideal fit to the 34,237 samples in the training data across the en-

tire range of stopping powers. The calculated error metrics are displayed in
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table 2.

Figure 5: Predicted values for all samples plotted against their ‘true’ experimen-
tal values. Predictions are made by model on the training data. High
R2 value and small deviations from the ‘ideal’ model (black line) are
observed, indicating that the model fits very well to the dataset.

Errors are also calculated individually for each combination. The frequency

distributions of these errors are shown in figure 6, along with their mean

values. These values are different to those presented in table 2 because of

their differing methodologies in derivation. Both the dataset as a whole,

and the individual combinations, display low RMSE and MAE metrics in

relation to the total variation in the stopping power values – from 0 to over

200,000 MeV cm2 g−1. Additionally MAPE is slightly greater than 2% across

the full range of values. It can therefore be assumed that both the quantity

of data and the architecture of the model is sufficient to identify accurate
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R2 RMSE [MeV cm2 g−1] MAE [MeV cm2 g−1] MAPE [%]
0.9989 492.7 86.94 2.273

Table 2: Error metrics calculated on all samples in dataset, to 4 significant fig-
ures.

Figure 6: Error metrics calculated for each individual combination. Histograms
show distribution of error magnitudes across all combinations in the
dataset. The mean error values, µ, are calculated across all combina-
tions, and therefore differ from those values calculated for all samples.

relationships between the input features and stopping power values. This is

indicative of a low bias model that is not underfitting the training data.

4.4. Performance on test data

The true test of a model, and essential to its ultimate advantage, is to gen-

erate predictions for unseen test data that has not been trained on. This is

carried out using k -fold CV for each ion-target combination. Figure 7 plots

the predicted values against experimental observations where each combina-

tion, in turn, has been held-out for test data. The predictions are therefore

‘blind’ and rely on the ability of the model to generalise well to new data

in order to achieve low error. Overall, the predictions align with the true

experimental values. R2 = 0.9316 suggests that the model is predicting the

test data well. It is immediately clear that the majority of stopping power

values within the dataset are distributed towards the lower end of the range.

In this region, representing stopping powers for light ions incident on heavy

targets, the model appears to make predictions very near to the ‘ideal’ values

(black line). For higher stopping powers, associated with heavy ions incident
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on light target materials, the model is unable to make sufficiently good pre-

dictions and the spread increases accordingly. This is possibly a consequence

of the lesser quantity training data for higher stopping power values. Inter-

estingly, a line of identical predicted values can be resolved at approximately

100,000 MeV cm2 g−1, suggesting a possible overfit to a feature in the train-

ing data. There are a few additional clusters of high-error predictions that

may also be attributed to this.

The R2 value can be considered a measure of the proportion of the variation

in the predicted values that can be described by the model [28]. However the

value of the model lies in its overall error – not in how well it explains dataset

variability. Hence RMSE, although not a metric for the success of the dataset

fitting process itself, is a better indicator of the usefulness of the model.

Table 3 gives the calculated error metrics on all the predictions as a whole.

Given the broad range of stopping powers, up to 200,000 MeV cm2 g−1, an

RMSE = 3,944 MeV cm2 g−1 is acceptable. The MAE = 814.8 MeV cm2 g−1

is several times lower and would suggest that the higher RMSE is due to a

small number of very large prediction errors – possibly caused by overfitting

or by the outliers at high stopping power values. The MAPE could intuitively

be interpreted as an overall 85% ‘accuracy’, with this accuracy expected to

be greater for smaller stopping powers.

R2 RMSE [MeV cm2 g−1] MAE [MeV cm2 g−1] MAPE [%]
0.9316 3944 814.8 15.03

Table 3: Error metrics calculated on all samples in dataset, to 4 significant fig-
ures.

Analysis of the error metrics for individual ion-target combinations can pro-

vide greater insight into the limits of the model. Figure 8 shows the distribu-

tion of errors calculated for each combination, along with the mean values.

Only the lower end of the distributions are displayed for clarity, obviating the

need to show a long tail of single-count bins. Since the RMSE and MAE scale

in proportion to the magnitude of the stopping power, it is expected that the

distribution of these errors will be in proportion with the stopping powers in

the dataset. Correspondingly, the greatest number of counts is seen in the
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Figure 7: Predicted values for all samples plotted against their ‘true’ experimen-
tal values. Predictions are made by model on the unseen test data. An
imbalance of data distribution can be observed. Better predictions are
made for lower stopping power values, which are better represented in
the dataset. Additionally, linear clustering, possibly caused by overfit-
ting, reduces the predictive quality of the model.
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Figure 8: Error metrics calculated for each individual combination. Histograms
show distribution of error magnitudes across all combinations in the
dataset (these are truncated for clarity along the x-axis and omit some
individual combinations with very large errors). The mean error values,
µ, are calculated across all combinations, and therefore differ from
those values calculated for all samples.

smallest bin (0-100 MeV cm2 g−1), and thereafter the majority of combina-

tions have an RMSE and MAE below 1000 MeV cm2 g−1. The MAPE has a

modal value between 4-8%, with a long tail (truncated for clarity) consisting

of outliers with much higher errors.

It is useful to visualise the source of these outlier values and identify bound-

aries within which the model performs the best. These boundaries should

inform how the model may be improved to generalise better. Figure 9 shows

a plot of the ion and target masses for each combination, AIon and ATarget,

respectively, against their RMSE error. Colours represent RMSE errors be-

low 5,000 MeV cm2 g−1 (green), between 5,000-15,000 MeV cm2 g−1 (yellow)

and above 15,000 MeV cm2 g−1 (red). Several patterns can be identified.

Firstly, the model performs best on the high number of combinations that

contain lower-mass ions. This would undoubtedly be a consequence of a

greater amount of training data in this regime, although this may perhaps

not be the only reason. Secondly, the highest errors occur along the rear,

right-hand face of the graph corresponding to light target materials. In par-

ticular, hydrogen and helium targets are very poorly predicted, especially at

higher ion masses where the stopping powers are larger. However, this is not

directly attributable to a lack of data in this region – the dataset consists
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of 801 observations for a helium target (8th highest target material) and hy-

drogen 616 (12th highest). Hence the poor generalisability of the model for

lighter targets may be due to more complex non-linear relationships that are

not present for heavier targets.

Figure 9: The distribution of RMSE with ion and target masses, AIon andATarget

respectively. Higher errors are concentrated along the rear right-hand
face of the graph – suggesting that the model does not perform well on
very light targets, and heavier incident ions. The largest errors occur
for a hydrogen target.

The analysis of the model allows two empirical boundary conditions to be

proposed: AIon < 50 and ATarget > 4. These describe the regime in which

optimal predictive performance is achieved. Beyond this the model struggles
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Boundary Conditions Samples R2 RMSE MAE MAPE

None 34,237 0.9316 3944 814.8 15.03
ATarget > 4 32,457 0.9627 2817 666.5 11.62
AIon < 50 31,553 0.8920 1523 331.9 14.76
ATarget > 4, AIon < 50 29,849 0.9378 1053 235.2 11.08

Table 4: Error values (evaluated on the whole dataset) are greatly reduced when
the model is re-trained and cross-validated with the application of
boundary conditions on the training data. Only 14% of samples are
lost, suggesting that the error metrics are still representative of a large
dataset and well-generalised model.

to generalise and produce good predictions, due to a lack of training data,

but also possibly as a result of more complex physical relationships in these

regions. Table 4 shows the result of retraining of the model with various

boundary conditions. Both the RMSE and MAE are observed to decrease by

approximately 75%, which is to be expected considering the reduced number

of samples with high stopping powers. The model is, however, observed to

improve as a result of the added boundaries both in terms of greater R2

and lower MAPE. Despite these conditions the dataset still comprises nearly

30,000 samples and therefore remains generalised, with the improvements

not falsely gained from overfitting to a small subset of the data.

4.5. Individual combination examples

The performance of the model is further evaluated on the predicted stopping

power functions for each individual combination. A subset of combinations

is presented here, describing the general features observed across the full

dataset of 522 combinations. In the following figures the predicted stopping

power values are plotted in blue, as a function of energy in the range 10−3

to 102 MeV/amu. These predictions are generated for 200 energies equally

spaced along the logarithmic axis. The experimental data that exists, which

doesn’t necessarily cover the full energy range, is plotted in red. The pre-

dictions are made without the model having ‘seen’ any of the experimental

values and are therefore solely generated by the patterns and relationships

determined by the random forest within the remainder of the dataset. As

such, the following figures represent the true power of the model to predict
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(a) Hydrogen ion on lead target (b) Hydrogen ion on argon target

Figure 10: Stopping power function: experimental observations, ytrue (red); pre-
dictions, ypred (blue).

the stopping power function across a broad energy range, for materials where

experimental data is incomplete or does not exist.

Figure 10a presents a typical output for a hydrogen ion (proton) incident on

a lead target. It can be seen that the model is able to replicate the shape

of the stopping power function to a high degree, with minimal discontinu-

ities or noise. There is a discontinuity seen at higher energies, which may

be symptomatic of a shortage of training data in this region. The scatter

within the blue curve is due to the fact that the model is generating the

predictions individually for each energy value. A smooth predicted stopping

power function therefore should not be expected, nor should it be desired

– the experimental training data itself is not perfect and therefore contains

a component of irreducible error that the model is successfully not overfit-

ting to. In general, the predicted values are seen to align extremely well with

the experimental observations and achieve correspondingly low error metrics.

The remaining low-energy portion of the curve that is not measured against

the experimental values looks like a sensible extrapolation of the curve, and

given the low errors on the higher energy data, could be considered a well-

founded prediction. Figure 10b shows a typical response for an elemental gas,
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argon. Similarly, good alignment with experimental values is seen, notably in

the low-energy region, and the model produces a consistent stopping power

function curve – boasting the ability of the model to generalise to gaseous

targets.

More complex targets also perform well. Namely, mixtures such as air, figure

11a; alloys such as havar, figure 11b; polymeric resins such as formvar, figure

11c; and compounds such as silicon dioxide, figure 11d.

It is interesting to assess the performance of the model on very ‘noisy’ ex-

perimental data, which has been accumulated through many different exper-

iments, such as for iron, figure 12a; nickel, figure 12b; silicon, figure 12c; and

zinc, 12d. Many of these combinations contain vastly different sets of obser-

vations, particularly around the peak of the function. Hence one unavoidable

source of error, that cannot be attributed to the quality of the model, is sim-

ply disagreement of the predictions against a large number of inconsistent

experimental observations. However, it is notable that the blind predictions

on these noisy combinations tend to favour a single trend in the experimen-

tal data values. This may conversely lend credibility to the favoured set

of experimental values, as it would suggest that they are statistically more

representative than the others.

The fact that the model may be trained on numerous combinations of highly

noisy and self-contradictory data, and yet is able to predict clean and con-

tinuous stopping power curves is a strong indication that overfitting is not

occurring, and that the model is a robust and well generalised. Further-

more, it suggests large potential performance gains if the training data can

be cleaned and rationalised.

Predictions generated for heavier ions are presented in figure 13. The model is

largely able to produce sensible stopping power functions that agree well with

the experimental values. However, the continuity of the curve degrades with

increasing ion mass. The relative deficiency of experimental observations

for higher ion masses is immediately apparent and is an attributable cause

for this effect. The poorest congruity is observed in the high energy region:

plateaus and discontinuities can be seen, which may be the source of the
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(a) Hydrogen ion on air target (b) Hydrogen ion on havar target

(c) Hydrogen ion on formvar target (d) Helium ion on silicon dioxide target

Figure 11: Stopping power function for various complex target materials: exper-
imental observations, ytrue (red); predictions, ypred (blue).
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(a) Hydrogen ion on iron target (b) Hydrogen ion on nickel target

(c) Hydrogen ion on silicon target (d) Hydrogen ion on zinc target

Figure 12: Stopping power function for examples of noisy or incongruous exper-
imental samples: experimental observations, ytrue (red); predictions,
ypred (blue).
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(a) Helium ion on aluminium target (b) Carbon ion on aluminium target

(c) Nitrogen ion on aluminium target (d) Magnesium ion on aluminium target

(e) Aluminium ion on aluminium target (f) Phosphorus ion on aluminium target

Figure 13: Stopping power function for heavier ions on an aluminium target:
experimental observations, ytrue (red); predictions, ypred (blue).
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linear clusters identified in figure 7. RMSE and MAE are observed to scale

approximately in proportion with the magnitude of the stopping power, as

expected. Higher ion masses experience greater stopping powers. In relation

to the magnitude these errors can be considered relatively small, accounting

for between 4-10% of the peak stopping power in figure 13.

5. Discussion

5.1. Model assessment

The initial assessment of any ML method should be on the bias and variance

of the model. A high bias is consistent with underfitting, in which the model

does not exhibit a representative relationship between the input features

and the predicted output. This is commonly judged by the performance on

the training data, for which large errors would indicate a large bias. It is

promising that the errors on the training set given in table 2 would indicate

that the bias is minimised. High variance would suggest the opposite problem

– in which the model is overfitting to the data. Low training data errors

combined with high errors on test data would indicate poor generalisation

and hence a large variance. A random forest model has the benefit of reducing

overfitting by design, in that each decision tree is fitted on a different subset of

features and samples. Additionally, testing through cross-validation should

provide a comprehensive assessment of the model generalisability. A few

artefacts of possible overfitting have been identified in the predictions, but

overall the model appears to generate consistent and sensible predictions.

The errors in table 3 are not unreasonable given other factors involved and

would not suggest an intolerably high variance. There is also a significant

degree of scatter, or irreducible error, within the experimental data – in some

cases this is very severe. This means that even a perfect model will suffer a

minimum level of error.

Given this, the second assessment should be whether the model is fit for

purpose. The direct use of the model is to be able to generate a full stopping

power function, S(E), for any ion-target combination, without any knowl-

edge of experimental data. Figures 10 to 13 display this capability is achieved

satisfactorily for a broad diversity of ions and targets. A smooth curve fit is
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produced and is observed to align well with experimental data without appre-

ciably high errors. Predicted values may be generated across the full energy

range to form a functional curve from which ion ranges may be calculated.

Two boundary conditions have been identified that define ions and targets

that the model is better at predicting. These conditions are invariably the

result of a lack of experimental training data outside these regimes; however

may also point to a wider physical difference in the behaviour of light targets

and heavy ions. This would need to be corroborated by further experimental

work, and the supplementation of this data in future models.

5.2. Comparison to other methods

Considering that the work is novel in its particular implementation, it is diffi-

cult to make a direct comparison with previous work. The method is similar

to those employed in quantitative structure-property relationship (QSPR)

studies, in which ML models are used to generate regression or classifica-

tion predictions of unknown material properties based upon structural and

molecular information [30, 31, 32]. These tend to be used in chemistry, for

example, to predict aqueous solubility [33] or ionisation of organic molecules

[34]; biology, to predict protein interactions [35]; or medicine, to identify

chemical structures that may perform well as drugs [36]. These use cases

clearly do not allow quantitative comparison, however the methods used for

the model development and validation in this work are very similar and of

equally high standard [37, 38, 39].

The machine learning approach may also be compared with the current semi-

empirical methods, such as SRIM [40]. The methods of Ziegler et al. differ

substantially, but the aim is similar. SRIM appears to use an alternative

definition of MAPE to define the error of their model,

MAPE∗ =
100

n

∑

∣

∣

∣

∣

ytrue − ypred
ypred

∣

∣

∣

∣

(7)

They publish these values compared against 25,200 experimental data points,

for one of their latest updates: SRIM-2010, table 5, in which the objective is

to provide the best possible curve fit to experimental data.
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SRIM-2010 RF Model

Ions Samples ε̄ Samples Train ε̄ Test ε̄

H 8,300 4.0 11,380 2.4 11.9
He 6,500 3.9 9,255 2.1 9.1
Li 1,400 4.8 712 2.1 24.5
Be - U 9,000 5.8 12,879 2.0 12.4
All 25,200 4.6 34,237 2.1 11.6

Table 5: A comparison between the alternative MAPE values published for
SRIM-2010 and those derived for the random forest model. Values are
calculated for various incident ions: hydrogen, helium, lithium and heav-
ier ions. For each row: ε̄ = the average MAPE calculated for all samples
in that row.

For comparison, values in table 5 are quoted for both training data, where

the ML method may be considered to be performing a similar ‘curve-fitting’

task to SRIM; and the test data, in which the ML method is uniquely able

to produce ‘blind’ predictions for unseen data. It can be concluded that the

performance of SRIM, as evaluated solely on MAPE, is better than that of

the blind test predictions of the random forest. However, it is inferior in

comparison to the predictions made on the training data. Ziegler et. al.

state that if erroneous experimental outliers are omitted (those that differ by

> 25%) the overall error of their model drops to 4.0%. Similar analysis of

the RF model achieves 2.0% on the training data and 6.6% on the test data.

5.3. Model improvements

The current state of the model is such that it remains under-optimised in

several aspects. It represents the most pessimistic result achievable by such a

method. Primarily, it is disadvantaged by the quality and distribution of the

training data. This may ultimately prove to be an impenetrable issue with-

out collection of large amounts of additional experimental data, however it

would be expected that substantial improvements may be achieved by simple

processing of the current dataset. Such treatment may include: balancing

of the dataset such that all ions and targets are represented more equally,

training only on combinations that contain experimental data across the full

energy range, applying further boundary conditions such as on the state of

32



the target material to produce a more accurate but narrower model. Sec-

ondly, the large noise component in the experimental data must be addressed.

The dataset should be selectively processed to minimise the scatter and re-

move outliers, particularly in the case where the experimental data consists

of several contradictory stopping power curves. Finally, the large number

of samples discarded in the processing of the original database should be

extracted and added to the dataset, including those more recent experimen-

tal measurements – which may additionally benefit from more modern and

refined techniques.

The feature generation process should be developed to improve the quantity

of potentially useful information for training. New features could be added

that convey more detail on the structure of the target materials, such as

molecular fragments, chemical groups, crystallinity or bonding states – which

has been shown to improve the performance of SRIM [41].

In terms of the model it would be expected that there may be algorithms

that are better suited to this kind of problem within the multitude of machine

learning tools available. Promising candidates would be certain linear models

or neural networks; or even the use of separate models for each energy regime.

Further improvement could be attained with random forests by optimisation

of the model hyperparameters (number of trees, depth, samples at each split,

etc.) which can often be determined by an extensive gridsearch across the

parameter space.

6. Conclusions

The work in this paper introduces a new paradigm for determining the stop-

ping power of ion-target combinations. It is an area that suffers from a

number of shortcomings not only in its theoretical underpinning, but also in

the methods used to interpret and exploit experimental data. The implica-

tions of accurate stopping power calculations are of considerable importance

and hence there is a great need to make improvements.

It has been shown that the novel use of machine learning holds substantial

promise in fulfilling this demand. A random forest regression algorithm is
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trained using over 34,000 stopping power observations, representing 522 ion-

target combinations across the energy range 10−3 to 102MeV/amu, and ion

and target atomic masses 1 to > 240. Based on extensive evaluation through

k-fold cross-validation against several error metrics it has been demonstrated

that the model is able to fit to training data with superior accuracy. How-

ever, crucially, it also is able to make low error predictions on unseen test

data. This signifies the extraordinary power of the model to make fully blind

predictions for ion-target combinations that do not have experimental data,

with the ability to generalise across elements, compounds, mixtures, alloys

and polymers; in solid, liquid and gaseous states; and for a wide range of

ion masses. These results lay the groundwork for further investigation and

significant future improvements to the model.
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