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ABSTRACT

Efficient identification and follow-up of astronomical transients is hindered by the need
for humans to manually select promising candidates from data streams that contain
many false positives. These artefacts arise in the difference images that are produced
by most major ground-based time domain surveys with large format CCD cameras.
This dependence on humans to reject bogus detections is unsustainable for next gen-
eration all-sky surveys and significant effort is now being invested to solve the problem
computationally. In this paper we explore a simple machine learning approach to real-
bogus classification by constructing a training set from the image data of ∼32000 real
astrophysical transients and bogus detections from the Pan-STARRS1 Medium Deep
Survey. We derive our feature representation from the pixel intensity values of a 20×20
pixel stamp around the centre of the candidates. This differs from previous work in
that it works directly on the pixels rather than catalogued domain knowledge for
feature design or selection. Three machine learning algorithms are trained (artificial
neural networks, support vector machines and random forests) and their performances
are tested on a held-out subset of 25% of the training data. We find the best results
from the random forest classifier and demonstrate that by accepting a false positive
rate of 1%, the classifier initially suggests a missed detection rate of around 10%. How-
ever we also find that a combination of bright star variability, nuclear transients and
uncertainty in human labelling means that our best estimate of the missed detection
rate is approximately 6%.

Key words: methods: data analysis, methods: statistical, techniques: image process-
ing, surveys, supernovae: general

1 INTRODUCTION

Current transient surveys such as Pan-STARRS1 (PS1)
(Kaiser et al. 2010), PTF (Rau et al. 2009), LSQ (Baltay
et al. 2013), SkyMapper (Keller et al. 2007) and CRTS
(Drake et al. 2009) are efficient discoverers of astrophysi-
cal transients. To make these surveys possible it has become
necessary to automate every step in the data pipeline includ-

⋆ E-mail: dwright04@qub.ac.uk

ing data collection, archiving and reduction. A major goal
for time-domain astrophysics is early detection and rapid
follow-up to enable complete data sets for transients. Arte-
fact rejection has become the bottle-neck between fast tran-
sient detection and our ability to feed these targets to follow-
up surveys such as PESSTO (Smartt et al. 2013) and PTF
for early classification. Current artefact rejection typically
involves deriving some set of parameters from the image
data of individual detections and thresholding each parame-
ter, only promoting those detections that pass the thresholds
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2 D.E. Wright et al.

to humans for verification.
The numbers of detections that must be scanned by hu-

mans is still on the order of hundreds of objects each night
with a high false positive rate. The processing artefacts pro-
duced are a result of many factors such as saturated sources,
convolution issues and detector defects amongst others, and
to a large extent are common across all surveys. For the
next generation of survey we cannot expect humans to re-
main involved in this process of artefact rejection to the
same extent, where for example we expect on the order of
106 transient detections per night from LSST1.

Significant effort has been devoted to this problem in
anticipation of these next generation surveys, and to enable
rapid turn around from detection to classification for current
surveys. Machine learning techniques have been used to take
advantage of the large amounts of data gathered by these
surveys to train a classifier that can distinguish real astro-
physical transients from artefacts or ‘bogus’ detections. Ex-
amples include Donalek et al. (2008) for the Palomar-Quest
survey, Romano, Aragon, & Ding (2006) for SNFactory, and
Bailey et al. (2007) and du Buisson et al. (2014) for SDSS.
PTF have demonstrated the ability to efficiently characterise
detections and initiate rapid follow-up, see Gal-Yam et al.
(2014) for example, where the problem of real-bogus classifi-
cation has been addressed by the work of Bloom et al. (2012)
and Brink et al. (2013). While these studies do achieve high
levels of performance, the parameters chosen to represent
the images are often dependent on the specific implementa-
tion and strategy of the individual surveys.

In this paper we investigate a simple representation of
the images by using the pixel intensities in a region around
a detection in a single difference image. This choice of pa-
rameterisation is independent of other aspects of the sur-
vey, and is therefore applicable to any survey performing
difference imaging while also lending itself to implementa-
tion much earlier in the data processing pipeline (potentially
at the source extraction stage). We begin by outlining the
real-bogus problem in the context of PS1 in Section 2, fol-
lowed by a description of our training set and image param-
eterisation in Section 3. In Section 4 we discuss the vari-
ous machine learning algorithms we investigate, outline how
we select the optimum classifier, and report its performance
compared with previous work. We continue in Section 5 with
some further analysis to help understand how we expect the
classifier to perform on a live data stream. Finally we sum-
marise our results and conclude in Section 6.

2 PS1 AND THE PROBLEM OF REAL-BOGUS

CLASSIFICATION

The Pan-STARRS1 system comprises a 1.8 m primary
mirror (Hodapp et al. 2004) and a field-of-view of 3.3 deg
imaged by 60 4800×4800 pixel detectors, constructed from
10 µm pixels subtending 0.258 arcsec (for more details, see
Magnier et al. (2013)). The PS1 filter system consists of 5
filters, gP1, rP1, iP1, zP1 similar to SDSS griz (York et al.
2000) with the addition of yP1, which extends redward
of zP1. The system is described in detail by Tonry et al.

1 http://www.lsst.org/lsst/

(2012b). The PS1 Science Consortium (PS1SC) operates
the PS1 telescope performing 2 major surveys. The Medium
Deep Survey (MDS) (Tonry et al. 2012a) is allocated
25% of observing time for high cadence observations of 10
fields, each the size of the PS1 field-of-view. The wide-field
3π survey with 56% observing time aims to observe the
entire sky north of −30 deg. declination with a total of 20
exposures per year in all five filters for each pointing.

In this paper we use images from the MDS. Each
night 3-5 of the MDS fields are observed. Each epoch is
composed of eight dithered exposures of 8 × 113 s in gP1

and rP1, or 8 × 240 s in iP1, zP1 and yP1, producing nightly
stacked images of 904 and 1632 s duration (Tonry et al.
2012a). Each stack achieves 5σ depths of around 23.3 mag
in gP1, rP1, iP1, zP1 and 21.7 mag in yP1. Images from
the PS1 system are processed by the Image Processing
Pipeline (IPP; Magnier (2006)), on a computer cluster at
the Maui High Performance Computer Center (MHPCC).
The images are passed through a series of processing stages
including device detrending, masking and artefact loca-
tion. Detrending includes bias correction and flat-fielding
using white light flat-field images from a dome screen, in
combination with an illumination correction obtained by
rastering sources across the field-of-view. After deriving
an initial astrometric solution, the flat-fielded images are
then warped onto the tangent plane of the sky using a
flux-conserving algorithm. The plate scale for the warped
images was originally set at 0.200 arcsec pixel−1, but has
since been changed to 0.25 arcsec pixel−1 in what is known
internally as the V3 tessellation for the MDS fields. Bad
pixels are masked on the individual images and carried
through the stacking stage to give the nightly stacks.

Difference imaging is performed on a daily basis by
two independent pipelines. IPP takes the nightly stacks
and creates difference images by subtracting a high-quality
reference image from the new data. Point spread function
(PSF) photometry is then performed on the difference
images to produce catalogues of variables and transient
candidates (Gezari et al. 2012; McCrum et al. 2014). The
Transient Science Server (TSS) developed by the PS1SC
ingests catalogues of detections of residual flux in the
difference images and presents potential transients for
human eyeballing.

In parallel, an independent set of difference images
are produced at the Centre for Astrophysics at Harvard
from the nightly stack images using the PHOTPIPE (Rest
et al. 2014, 2005) software. A custom-built reference stack
is produced and subtracted from the IPP nightly stack
to produce an independent difference image. This process
is described in Gezari et al. (2010), Gezari et al. (2012),
Chomiuk et al. (2011), Berger et al. (2012), Chornock
et al. (2013) and Lunnan et al. (2013), and potential
transients are visually inspected for promotion to the status
of transient alert. A cross-match between the TSS and the
PHOTPIPE transient streams is performed and agreement
between the detection and photometry is now excellent,
particularly after the application of uniform photometric
calibration based on the ‘ubercal process (Schlafly et al.
2012; Magnier et al. 2013).
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ML for transient discovery in PS1 difference imaging 3

2.1 Artefacts in Difference Imaging

In this work we only use detections from IPP difference
imaging and not the independent PHOTPIPE detections.
In Fig. 1 we show a modular diagram of IPP difference
imaging process and the sources of the main types of
artefact.

The first source of bogus detections are chip defects,
which take various forms. After detrending the chip data
are resampled and geometrically warped to fit a unit area
of sky that the data are projected onto, known as a sky cell.
Occasionally a transient will lie on a region of the detector
that when projected onto the sky falls on overlapping sky
cells. This results in duplicate warp images of the same chip
data, with the object lying close to one of the skycell edges.
After warping, sky cell edges, chip defects and saturated
sources are masked. Masked pixels in individual exposures
are propagated through the stacking stage.

A kernel is derived to degrade a high quality template
image to match the nightly stack. The template is convolved
with this kernel and subtracted from the nightly stack.
This series of steps leads to a class of artefacts which we
refer to as convolution issues. In general these arise from
the derived kernel not being able to accurately match all
sources in the template to those in the nightly stack. This
causes problems with bright sources where the kernel is
unable to fit the entire PSF of the detection in the nightly
stack image. These artefacts appear as high signal-to-noise
(S/N) PSFs but with darker rings appearing in the wings,
an example is shown in the bottom panel of Fig. 4. We call
these unclean subtractions. The flux in these detections
is probably due to a bright stellar variable. Identifying
variable stars (and AGNs) is quite a different problem to
detecting transients and we have chosen not to try to tailor
our algorithms to do both. The efforts in this paper are
focused on finding transients, although inevitably stellar
variables from very faint host stars are detected. Hence
we discard these bright stellar variables that appear in the
difference images as they are straightforward to identify.
We find these detections make up ∼10% of the bogus
detections.

The same convolution issues can lead to poor host
galaxy subtraction, where an inadequately convolved host
can be over or under subtracted leaving a pattern of positive
and negative flux. This makes it difficult to disentangle
any potential real detections. The third convolution issue
we highlight in Fig. 1 arises when point-like sources in the
template image are broader than that of the nightly stack
resulting in an over subtraction in the wings of the source
in the difference image. This happens when observing
conditions have been particularly good and the nightly
stack is of higher quality than the template image (this
is not a frequent occurrence). The final artefacts from the
convolution and subtraction stage are convolution problems
in the cores of faint galaxies, manifesting themselves as
faint nuclear transients and appearing as positive flux in
the difference image. Here the convolution step matches the
morphology of the faint galaxy in the template and nightly
stacks well, however the peak flux of the convolved template
is lower than that in the nightly stack. This results in the
nucleus of the faint galaxy being under subtracted leaving
residual flux in the difference image. These artefacts are the

most difficult to identify by eye but are distinguished by a
narrower PSF than expected. It is not always clear if the
flux is due to real variability or an artefact of convolution,
in any case these targets could not be confidently selected
as real transients for follow-up. This highlights one of the
major uncertainties in training the algorithms — secure
labelling of real and bogus objects, which we return to in
Sections 5.3 and 5.5.

Another source of artefacts arises during the source
extraction phase. Flux in the nightly stack from diffraction
spikes for example that have no equivalent in the template
image get flagged as potential transients. We refer to these
as spurious detections in Fig. 1.

Our approach to date for removing these contaminants
has been to attempt to derive a set of filters based on image
statistics derived for each potential transient detection
by IPP. These filters normally take the form of threshold
values for some parameters (see Section 2.2). However, the
parameter space is typically large and the work required to
manually develop the optimal set of filters is impractical.
Despite this our current hand-engineered checks allow only
a small fraction of the bogus images through. This still
produces on the order of a few hundred bogus objects
each night passing the cuts and being presented to human
scanners for verification. This is approaching the limit of
what can comfortably be processed by humans on a daily
basis and clearly a solution needs to be found for the next
generation of survey.

Over the course of the last ∼3 years of the PS1 survey
we have accumulated a large amount of data associated
with a few tens of thousands of astronomical sources that
have either been classified as real objects or artefacts
using a combination of the cuts detailed in Section 2.2 and
human scanning. This readily available data lends itself
to data-mining where we hope to use the historic data to
improve on the current method of real-bogus classification.
In Section 2.3 we outline how supervised learning can be
applied to this archive of PS1 data in order to construct
a real-bogus classifier that can be applied to the nightly
stream of new data gathered from PS1 and future surveys.
First we describe the cuts we perform.

2.2 Cuts

Prior to ingesting detections from IPP difference imag-
ing into a MySQL database at Queen’s University Belfast
(QUB) we perform pre-ingest cuts based on the detection of
saturated, masked or suspected defective pixels within the
PSF area. Taking as a typical night 3rd September 2013
(56548 MJD (Modified Julian Date)), the 7 nightly stacks
produced 366267 detections (∼52000 detections per stack),
the pre-ingest cuts rejected 94.88% of these detections.

The ∼18750 detections passing the pre-ingest cuts are
associated with transient candidates if there are two or more
quality detections within the last seven observations of the
field, including detections in more than one filter, and an
rms scatter in the positions of 60.5 arcsec. Each quality
detection must be of more than 3σ significance and have
a Gaussian morphology (XYmoments <1.2). These post-
ingest cuts also include checks for convolution issues, prox-
imity to bright objects and ‘NaN’ values close to the centre
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4 D.E. Wright et al.

Figure 1. Modular diagram of the IPP difference imaging steps and the types of artefacts arising from each stage.

of bright PSFs. 63% of the detections that passed the pre-
ingest cuts were rejected during the post-ingest cuts. The
remaining detections were promoted for human screening,
where 37% of the detections were deemed to be real. These
real transient candidates are cross-matched with catalogues
of astronomical sources in the MDS fields. We use our own
MDS catalogue and also extensive external catalogues (e.g.
SDSS, GSC, 2MASS, NED, Milliquas2, Veron AGN, X-ray
catalogues) to make a contextual classification of supernova,
variable star, active galactic nuclei or nuclear transient. We
also cross-match with the Minor Planet Centre to reject as-
teroids, though most are removed during the construction
of the nightly stacks.

2.3 Supervised Learning for Classification

In general supervised learning entails learning a model from
a training set of data for which we provide the desired output
for each training example. For the purposes of designating
a detection as a real transient or a processing artefact, the
desired output for each image is discrete. In such cases the
problem is a supervised classification task for which there are
a vast array of machine learning algorithms. In Section 4 we
discuss the algorithms we try; however all such algorithms
are trying to learn a model from the training data that will
allow them to map the input parameterisation of each train-
ing example (see Section 3.2) to the desired output or label,
while at the same time ensuring the model performs well
on data not seen during the training phase. For building a
real-bogus classifier this is an obvious avenue to pursue as
we have a large sample of historical data for which we have
labels provided by our current cuts and also through human
eyeballing.

In Fig. 2 we show a sample of both real and bogus exam-
ples drawn at random from the training data. Often bogus
detections show a combination of the factors we describe in
Section 2.1 and typically this affects the centroiding during
the source detection stage.

2 http://quasars.org/milliquas.htm

Figure 2. Example detections randomly selected from the train-

ing data. The 2 columns on the left show examples labelled as
real and the 2 on the right show those labelled as bogus. Bogus
detections a-c and f show signs of over subtraction, with a and
f also showing masking. d is a faint galaxy convolution problem.
Detections e and g are saturated sources that have been masked.
Finally, h is an example of an unclean subtraction of a bright
star.

3 TRAINING SET AND FEATURE

REPRESENTATION

As discussed in the previous section we must provide a la-
belled training set from which the classifier can learn to
recognise the characteristics that can identify detections as
being members of one of the classes: real or bogus. In order
to learn a model that will generalise well to detections in new
observations, it is important that detections in the training
set are representative of all detections we expect to see. In
practice this is easiest to achieve by providing the learn-
ing algorithm with the largest possible training set, indeed
Brink et al. (2013) attribute much of their improvement in
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performance over Bloom et al. (2012) to using a training set
with two orders of magnitude more training examples. In
the remainder of this section we describe the compilation of
the training set, starting with a description of our training
example selection process and labelling.

3.1 Training Set

Over the past 3 years ∼1 million potential transients have
been catalogued in the MDS by the TSS. Approximately
8000 of these objects have been selected by humans as real
transients and promoted as potential targets for spectro-
scopic follow-up. As of the end of the survey in May 2014,
515 transients had spectroscopic classifications.

The aggregate catalogue information for all objects ex-
tracted by IPP and which pass the pre-ingest cuts described
in Section 2.2 are stored in a database at QUB. Individual
detections are associated with an object if they are spatially
coincident within 0.5 arcsec. This information is presented
to humans in the form of webpages3. The webpages show all
the photometric points produced by IPP in a multi-colour
lightcurve. The number of photometric detections typically
ranges from a few to a few dozen depending on the magni-
tude and timescale of the transient objects (see Rest et al.
(2014), McCrum et al. (2014), Chomiuk et al. (2011) for ex-
amples of lightcurves). These webpages also present a sub-
set of the image postage-stamps of the detections associated
with an object (target image, reference image and difference
image). This subset contains the first detections of the ob-
ject of which there are always at least 2 (see Section 2.2) and
up to 5 subsequent detections. Each object is then eyeballed
by a human, those that appear to be real transients are
promoted as potential targets for scientific follow-up, while
artefacts are discarded.

Our training examples are drawn from the subset of
detections we choose to present on the human digestible
webpages for each object, as detailed above (typically 2-3
but less than 7). The majority of real examples were taken
from detections of promoted objects with no spectroscopic
classification. There is no guarantee that all detections of a
promoted object are necessarily a result of good image sub-
tractions. This prohibits simply assigning a label of real to
all individual detections associated with a promoted target.
In order to to ensure that we have a secure, reliable and clean
set of real detections for training, we inspected and individu-
ally labelled 4352 detections (from 1919 different transients)
as real, discarding any artefacts from the training set. We
augmented this sample of real detections with data from 53
spectroscopically confirmed supernovae (from Dec. 2012 to
Jan. 2014) for which we used the complete set of detections
(∼31 detections per object on average). These were again
manually checked to remove bogus detections. We held out
the first detections of all 53 SNe, which we use for testing in
Section 5.7 and all detections of PS1-13avb, which we use
in Section 5.6. This leaves an additional 1603 real training
examples bringing the total to 5955 real detections.

Over the course of the survey approximately 800000 ob-
jects have been discarded as artefacts providing on the or-

3 Similar webpages are made public for the PS1 3Pi Survey at:
http://star.pst.qub.ac.uk/ps1threepi/psdb/public/

Table 1. Composition of data sets.

Set Real Bogus Total

Training 4800 19271 24071
Test 1619 6405 8024

Total 6419 25676 32095

der of 106 examples of bogus detections. We randomly sam-
ple from the available bogus examples and aim for 4 times
more bogus examples as real, this is similar to the propor-
tions used by Brink et al. (2013). Initial tests with classifiers
showed that a significant proportion of the false positives ap-
peared to be clean subtractions. We improved the purity of
the bogus sample by examining the randomly selected bo-
gus detections and added any detections that looked like real
transient subtractions to the list of real examples (the effect
of label contamination is further discussed in Section 5.3).
This produced an extra 464 examples for the set of real de-
tections resulting in a final total of 6419. We then selected
4 times as many bogus images from the remainder of the
bogus examples we inspected, producing a sample of 25676
bogus detections.

The final training set contains 32095 training examples.
We divide the training examples into 2 sets, distributed as
follows; 75% for training and cross validation, and 25% for
testing. The training examples are randomly shuffled prior
to splitting with the caveat that all detections on the same
night of a given object are included in the same set. This
is to avoid detections with almost identical statistics being
in multiple sets and giving a false impression of a classifiers
performance. The construction of the data set is summarised
in Table 1. The label for each training example is a 1 or 0,
with 1 representing a label of real and 0 bogus.

The training set we have constructed is representative,
containing examples of detections from different chips, see-
ing conditions, and filters, with various levels of S/N and
examples of all types of processing artefact.

3.2 Feature Representation

Machine learning algorithms require a 1-dimensional (1-D)
vector representation of each training example, where each
element of the vector corresponds to some numeric data or
feature that may be useful to the algorithm for discerning
examples belonging to each class. Previous work in the area
of real-bogus classification, has focused on using parameters
contained in catalogues generated by the processing pipeline
and more complex features derived from that information to
represent the detections, see Table 1 from Brink et al. (2013)
and Table 1 from Romano, Aragon & Ding (2006).

The catalogue features available to individual surveys
depend on the implementation of their image processing
pipeline. When applying machine learning for real-bogus
classification to a new survey it may not be possible to cal-
culate these features based on the information available in
the catalogues. There is also potential to spend a lot of time
deriving and testing ways to combine the catalogue infor-
mation that is available into features that we hope capture
the differences between real and bogus detections. Bogus

c© 0000 RAS, MNRAS 000, 000–000
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detections are the result of many factors and establishing
a set of features that can encapsulate them all is difficult.
In contrast simply representing the detections by their pixel
intensity values requires no time spent developing or tuning
feature extractors. Previous work that relies solely on the
pixel data has proven effective for simple visual classifica-
tion tasks, such as hand written digits (LeCun et al. 1998).
For more complex tasks or to boost performance much of
this work has been performed by learning a hierarchy of un-
supervised features from the pixel data (Coates, Lee, & Ng
(2011); LeCun et al. (1998)). Establishing a firm benchmark
on the pixel intensity representation allows us to assess the
potential gains from applying these more complex methods
and is the main focus of this paper. Using this representation
we expect the learning algorithm to identify salient relation-
ships between pixels for the classification task. In the next
section we discuss our choice of features and continue in the
following section by describing the preprocessing steps we
apply before training.

3.2.1 Feature Vector Construction

To represent our training examples, we use the pixel data
itself. For a given training example, we construct its feature
vector by selecting a 20×20 pixel area (corresponding to ∼5
times the average seeing of PS1) around the centre of what
IPP considers a transient, which we refer to as a substamp.
The 1-D vector is constructed by shifting off each column of
the substamp and concatenating those columns together to
produce a 400 element vector of pixel intensity values.

In Fig. 3 we show visualisations of these feature vectors
along with the substamp from which they were constructed
for examples of real detections and for various levels of S/N.
In Fig. 4 we show detections labelled as bogus with examples
of different types of artefact. A learning algorithm will learn
to identify patterns in the feature vectors that are charac-
teristic of examples belonging to the two classes.

The choice of feature representation is independent of
the implementation of the rest of the image processing
pipeline and survey, with the assumption that the pixel level
data is easily accessible.

3.2.2 Feature Preprocessing

Aside from the image processing steps carried out by the
pipeline, we carry out 2 additional transformations of the
data. We first replace any ‘NaN’ pixel values with 0s. ‘NaN’
pixel values typically arise from masking or floating point
overflows during image processing. We choose to replace
these pixel values with 0 so as not to influence the next
step in the preprocessing phase. As a second step we apply
a feature normalisation function which allows classifiers to
focus on relative pixel intensities and limits the effect of ab-
solute brightness on the classifiers. We apply the following
normalisation:

f(x) =
x

|x|
log

(

1 +
|x|

σ

)

(1)

where x is a feature vector and σ is the standard deviation
of the pixel intensity values for that feature vector. This is

the same normalisation function used by EyE4 (Bertin 2001)
and similar to that of Romano, Aragon & Ding (2006).

4 OPTIMISATION OF THE CLASSIFICATION

SYSTEM

In order to achieve the best performance from the machine
learning algorithms discussed in the following sections it is
necessary to optimise the hyperparameters of each. This is
done by a process known as cross validation which is a brute
force search of the hyperparameter space, where a model is
trained with the hyperparameters selected at predetermined
intervals within the space. The best combination is selected
by measuring the performance in a held out sample of the
24071 training examples.

Below we give a brief introduction to each of the clas-
sifiers. We also point out the free parameters that must be
selected by cross validation and discuss this process in depth
in Section 4.4.1. To end this section on optimisation we show
the performance of each classifier on the out of sample data
in the test set.

4.1 Artificial Neural Networks

Artificial Neural Networks (ANN) comprise a number of in-
terconnected nodes arranged into a series of layers. In this
study we limit ourselves to a 3-layer ANN (consisting of an
input layer, a hidden layer and an output layer) as those with
more than one hidden layer need more careful training and
require more computational power (Hinton, Osindero, & Teh
2006). For our purposes we train feed-forward ANNs with
back-propagation and randomly initialised weights, where
the activation of each node is calculated with the logistic
(sigmoid) function.

By limiting many of the choices for the structure of the
ANNs we remove the need to select these hyperparameters
during the cross validation phase in Section 4.4.1 which sig-
nificantly reduces the complexity of the space we have to
search. This economy of computation comes at the cost of
not testing regions of the parameter space (e.g. other acti-
vation functions) and restricting the representational power
of the ANNs by requiring a single hidden layer. We are how-
ever left with only 2 hyperparamters to choose namely, the
number of nodes that make up the hidden layer, s2 and
the regularisation parameter, λ through which we attempt
to prevent overfitting. There is some suggestion (Murtagh
1991; Geva & Sitte 1992) that the optimal number of nodes
in the hidden layer (s2) is 2n+ 1, where n is the number of
input features. In our case n is fixed at 400 input features,
suggesting we should train ANNs with s2 = 801 nodes, how-
ever training such large networks is beyond the scope of this
work and we instead choose to test values of s2 in the range
25-200.

We use our own vectorised implementation of ANNs
written in python5. The code relies on numpy6 for efficient

4 http://www.astromatic.net/software/eye
5 https://www.python.org
6 http://www.numpy.org
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Figure 3. Visualisation of feature vectors for detections labelled

as real. The feature vectors are constructed by shifting off each
column of the 20×20 pixel substamp on the left and appending
them together to produce the 400 element 1-D feature vector
depicted on the right.

Figure 4. Similar to Fig. 3 but for bogus examples.
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array manipulations and scipy7 for optimisation of the ob-
jective function.

4.2 Random Forests

Random Forests (RFs) aim to classify examples by build-
ing many decision trees from bootstrapped (sampled with
replacement) versions of the training data (Breiman 2001).
Classifications are then assigned based on the average of the
ensemble of decision trees. Each individual tree is grown by
randomly sampling k features from the n input features and
selecting the feature that best separates real examples from
bogus as informed by the gini function. We use scikit-learn’s8

implementation of RFs where we select hyperparameters by
assigning values to variables n estimators, max features

and min samples leaf; the total number of trees in the en-
semble, the number of features considered at each split and
the minimum number of examples that define a leaf, below
which no further splitting is allowed. RFs provide the ability
to estimate the importance of each feature which we use in
Section 5.2.

4.3 Support Vector Machines

Support Vector Machines (SVMs) (Cortes & Vapnik 1995)
aim to find the hyperplane in the input feature space that
optimally classifies training examples for linearly separable
patterns, while simultaneously maximising the margin, the
distance between the training examples which lie closest to
the hyperplane, known as the support vectors. SVMs can
be extended to non-linear patterns with the inclusion of a
kernel, where the kernel transforms the original input data
into a new parameter space. We again use scikit-learn’s im-
plementation of SVMs where we choose the free parameters
namely, the penalty parameter, C (similar to λ for ANNs)
and the kernel parameter gamma, which controls the local in-
fluence that support vectors have on the decision boundary.
We only try SVMs with a Radial Basis Function (RBF) ker-
nel, this being the most common choice and again reduces
the parameter space that must be searched.

4.4 Model Selection

For each algorithm discussed above we need a method to
choose the optimal combination of hyperparameters that
will achieve the best performance for the classification task.
In order to compare the relative performance of the differ-
ent models we need some Figure of Merit (FoM). We use
the FoM of Brink et al. (2013) which captures the essence
of the problem we are trying to solve. The FoM is defined
as the minimum Missed Detection Rate (MDR) (False Neg-
ative Rate) that gives a False Positive Rate (FPR) of 1%.
That is, assuming we are willing to accept that 1% of the
images deemed real by the classifier and promoted to hu-
man scanners will turn out to be bogus, what fraction of
the real images would be discarded? With this we can select
the model that would discard the least real images while 1%
of images classified as real can be expected to be bogus.

7 http://docs.scipy.org/doc/scipy/reference/index.html
8 http://scikit-learn.org/stable/index.html

4.4.1 Cross Validation

When calculating the FoM to compare the relative perfor-
mance of models, it is important that the measurement is
made on data that the model has not inspected during the
training phase, otherwise we risk measuring the performance
on data that the model has overfit and report an FoM that
we cannot expect to achieve on out of sample data. To mit-
igate this effect we split the data we designated for training
in Section 3.1 into 5 subsets or folds with equal numbers of
training examples. We then train each model on 4 of these
folds and use the fifth as a validation set to measure the
performance. The model is then retrained on 4 folds but a
different fold is held out. In total the model is trained 5
times with each fold being held out once. We then average
the results for the 5-folds and choose the model that re-
sults in the best average FoM. A second advantage is that
for relatively small data sets where the composition of the
validation set may not be representative of the entire pop-
ulation, by evaluating the performance on each fold in turn
and then averaging, we achieve a better estimate of the ac-
tual performance on the entire data set.

In our case all 3 classifiers output a prediction or hy-

pothesis for each example. These hypotheses can be thought
of as the probability a given example has of belonging to
the class of real images, taking on values in the range 0-
1. A classifier predicts detections with hypotheses close to
1 are highly likely real transients, while those close to 0
are bogus. In Fig. 5 we plot the distribution of hypothesis
values for a RF with n estimators=100, max features=25
and min samples leaf=1 trained on 4 folds of the training
set. The distribution plotted shows the hypotheses for the
held-out fifth fold. To assign a label of real or bogus we
must define a decision boundary; a hypothesis value above
which the classifier labels detections as real, otherwise detec-
tions are labelled bogus. If the classifier has learnt a useful
model it should output detections labelled as bogus with a
hypothesis below the decision boundary and those labelled
as real above the decision boundary for the prediction to be
correct. Bogus detections with predictions above the deci-
sion boundary are False Positives and real detections with
hypotheses below the decision boundary are Missed Detec-
tions. For our FoM the decision boundary is selected as the
hypothesis value above which only 1% of the bogus detec-
tions lie (dashed line in Fig. 5). The FoM is the fraction of
the detections labelled as real that lie below this choice of
decision boundary. During 5-fold cross validation a hypoth-
esis distribution is generated by predicting hypotheses for
the detections in each of the held-out folds.

In Fig. 6 we show an example of the 5-fold cross
validation process for an RF with max features=25 and
min samples leaf=1. In this example we vary the number
of decision trees, n estimators and plot a Receiver Opera-
tor Characteristic (ROC) curve for each model. ROC curves
are produced by varying the decision boundary at which we
assign a prediction to a label of real or bogus and calculate
the FPR and MDR that decision boundary produces for the
validation set. From the example in Fig. 6 we see that select-
ing a value of 100 for n estimators produces the best FoM
of ∼0.167, this means that an FPR=1% produces a MDR
of 16.7%. We also include 5% and 10% FPR levels for ref-
erence. We repeated this process for various sizes of hidden
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Figure 5. Hypothesis distribution produced during one permu-

tation of 5-fold cross validation. The hypotheses shown are for
images in the held-out fold. Green shows the hypotheses for the

validation examples labelled as artefacts and red those labelled as
real. The decision boundary is selected such that the fraction of
detections labelled as bogus lying above the decision boundary is
0.01. The False Positive Rate can be visualised as the fraction of
green bars with a prediction greater than the decision boundary,
the MDR is the fraction of red bars with predictions less than the
decision boundary. The first interval has a frequency of 2376, but

the plot is truncated for clarity.

layer. We also show an example of measuring the FoM on a
data set containing a significant proportion of the training
data, labelled as overfit in Fig. 6.

By replicating this process for both ANNs and SVMs
we were able to select the optimal set of hyperparameters
for each algorithm. In the second column of Table 2 we show
the optimal hyperparamters selected for each algorithm by
cross validation. By using the validation sets to select the
hyperparameters, there is a danger that the hyperparame-
ters will in effect have been fit to these sets. As a result, the
FoM we measure on the validation sets is not an unbiased
measurement of the performance we would expect to achieve
on data not included in the training folds. We deal with this
in the next section.

4.4.2 Testing

Having selected the optimal model for each of the algorithms
we retrain these models with the entire training set. This al-
lows the models to learn from more examples. To measure
how well we expect the models selected by cross validation
in the last section to perform on unseen data we measure
the FoM on the test set, the 25% of the data we held back
from both training and validation. This provides an unbi-
ased estimate of the performance. In Table 2 we show the
FoM measured on the test set. Fig. 7a shows the ROC curve
for each model in Table 2. We find that the RF is the best
classifier with a FoM of 0.106.

Fig. 7b shows a close-up of the measured FoM for the

Figure 6. An example of the cross validation process for a RF
with max features=25 and min samples leaf=1.

RF classifier, where the measured FoM is shown along with
the performance we would expect to achieve if we were to
allow 5% or 10% of the bogus detections through to human
scanners. For example, allowing the FPR to slip to 5% in-
creases the completeness to 97.6%. We also plot the hypoth-
esis distribution for the detections in the test set in Fig. 8.

The FoM shown in Fig. 7b is the single best classifier we
find in our analysis. Using this classifier on a data stream of
nightly observations from PS1, we would expect that 99% of
the detections promoted to humans would be of real astro-
physical transients while 10.6% of the real detections would
be rejected by the classifier. Brink et al. (2013) report a
MDR of 7.7% for their system. As a next step it is useful to
investigate the detections for which the classifier produces
incorrect predictions to see if there are systematic errors that
the classifier makes or if it is making correct predictions for
detections that have been labelled incorrectly during the
construction of the training set.

5 FURTHER ANALYSIS

In this section we attempt to get a better sense of how we
expect the classifier to perform in practice by characterising
its performance under various conditions. We aim to iden-
tify trends in the kinds of detections for which the classifier
makes incorrect predictions and investigate the effect that
providing the classifier with incorrectly labelled training and
test sets has on the measured FoM. However, we begin this
section by looking at methods to boost performance by com-
bining classifiers.

5.1 Combining Classifiers

As a last step toward boosting performance we investigated
a selection of methods to combine the RF, SVM and ANN
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Table 2. Comparison of learning algorithms.

Classifier Model Parameters Threshold FoM

Artificial Neural Network s2=200, λ = 5 0.547 0.233
Support Vector Machine (RBF) C=3, gamma=0.01 0.788 0.196
Random Forest n estimators=1000, max features=25, min samples leaf=1 0.539 0.106

a)

b)

Figure 7. a) Comparison of the best models for various learning
algorithms applied to the held out test set. b) Detail of ROC

curve of the best performing classifier, the Random Forest shown
in a). At a FPR of 1% the FoM shows that in practice we expect
to operate at a MDR of 10.6%.

from Table 2. The predictions of the 3 methods are corre-
lated; a candidate highly ranked by the RF is likely to also
be highly ranked by the other 2 classifiers, but there are still
detections of real transients that are discarded by only one
of the classifiers. From Fig. 9 there are 24 detections labelled

Figure 8. Hypothesis distribution for the optimal Random Forest
classifier applied to the test set.

Table 3. Results of combining classifiers.

Method FPR MDR

Majority Vote 0.02 0.06
Mean Hypotheses 0.01 0.12
Hypotheses as Features 0.01 0.12

as real that only the RF wrongly rejects, it is these examples
that we hope to recover by combining classifiers.

We tried only a few of the simplest combination strate-
gies. First we simply classified a detection based on the ma-
jority vote of the 3 classifiers. Second we assigned each de-
tection a hypothesis that was the mean of the hypothesis
values output by each classifier. This produced a new dis-
tribution of mean hypotheses, where we again selected the
decision boundary to produce the FoM. Finally we trained
a SVM using the 3 hypotheses for each detection as the fea-
tures representing that detection. In the end none of these
methods outperformed the RF classifier, though the perfor-
mance was comparable (see Table 3).

This result is unsurprising given that the classifiers are
highly correlated and there is no guarantee that these meth-
ods will outperform the best individual classifier (Fumera &
Roli 2005). The RF is in itself an ensemble of classifiers (the
individual decision trees) and may already incorporate much
of the gain in performance we can expect from these simple
methods.
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Figure 9. Venn diagram showing the relationship between the
Missed Detections for each classifier. There are 1619 positive ex-
amples in the test set.

5.2 Relative Feature Importance

Random Forests provide a built-in method to estimate the
relative importance of each feature to the classification
(Breiman 2001). By inspecting the ‘depth’ at which each
feature is used as a decision node we can estimate the rela-
tive importance of that feature, as those features used closer
to the top of the tree will contribute to the prediction of
a larger fraction of the training examples. The fraction of
samples for which we expect a feature to contribute to the
classification can be used to gauge its relative importance.

Fig. 10 shows the relative importance of each pixel de-
termined from the training set. The relative importance met-
ric is normalised such that it sums to 1. The most important
features have the highest values and as would be expected
are located in the centre of the image. The pixels on the
edges of the images are thought to be important for identi-
fying many of the bogus examples, where the object is not
centred in the substamp and often lies at the edge. For ref-
erence if features were equally important they would each
have a relative importance of 1/400 = 0.0025.

Fig. 10 may suggest some redundancy in the features
bounding the central pixels. It is expected that omitting
these features would have little effect on the performance of
our classifier as RFs are thought to be unaffected by the in-
clusion of noise variables in the feature vector (Biau 2010).
In contrast Brink et al. (2013) find that the MDR for their
RF classifier improves by ∼4% by omitting noisy features
using a backward feature selection method. The effect of
feature selection is an interesting area for future work and
attempts at optimisation.

5.3 Label Contamination

We took care to eliminate label contamination in Section 3.1,
by visually checking and manually labelling each training ex-
ample. Nonetheless we expect that there remain some exam-
ples with incorrect labels. In this section we employ similar
methods to those in Brink et al. (2013) to investigate the

Figure 10. The relative importance of each pixel to the classifi-
cation for the Random Forest. The contributions of each feature
are normalised such that they sum to 1.

effect that label contamination has on our ability to train
and test the optimal RF model.

First we investigate the effect of adding label contam-
ination to the training set. We add contamination by ran-
domly selecting a subset of the detections from the training
set and flipping their labels. Those labelled as real are now
labelled as bogus and vice versa. In Fig. 11 we plot the effect
of randomly flipping labels in the training set while leaving
the original labels in the test set untouched. The measured
MDR appears fairly unaffected up to around 6% contamina-
tion. The approach of Brink et al. (2013) is robust to around
10% suggesting our method may be more susceptible to in-
correctly labelled training data.

Next we flip labels in the test set, while using the orig-
inal training set labels as they are. Given that the RF has
been trained with correctly labelled data, for the most part
we expect it to provide the correct labels for the images in
the test set. However, the flipped labels affect our ability to
accurately measure the FoM. Although the classifier makes
sensible predictions, when we compare these predictions to
the flipped labels the otherwise correct predictions are now
evaluated as False Positives or Missed Detections. Fig. 11
shows how the FoM is affected as we increase the fraction of
flipped labels, we see that even at low proportions labelling
noise in the test set can have a significant effect.

5.4 Classification as a Function of Signal-to-Noise

To investigate the classifier performance as a function of
Signal-to-Noise (S/N), we also follow a similar analysis to
Brink et al. (2013). We plot the distribution of magnitudes
for each example in the test set labelled as real in Fig. 12.
We divide the examples into 11 bins, each spanning 1 mag-
nitude in the range 13 to 24 mag. We then use the classi-
fier to make a prediction for the examples in each bin and
calculate the fraction of examples classified as bogus which
we take as an estimate of the classifier performance for ob-
jects at that level of S/N. For objects with magnitudes &20
there is a ∼6% chance of missing real detections. Counter-
intuitively the detection performance deteriorates for higher
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Figure 11. The effect of randomly flipping labels. As we increase
the fraction of the images for which we flip the label i.e. as we
introduce more label contamination, the performance of the clas-
sifier trained on the contaminated training set and measured on
the untouched test set (blue line) decreases as expected. Introduc-
ing contamination into the test set has a much more pronounced

effect on the measured performance even at low fractions (green
line).

S/N objects. The number of examples of these cases are low
as typically these objects result in artefacts from saturation
and subsequent masking or unclean subtractions. However,
this can also be understood as an effect of our feature rep-
resentation, where we are learning classifications based on
the relative intensity of pixels across the substamp. The ten-
dency to misclassify such detections could stem from a com-
bination of the large relative intensity differences between
pixels in these substamps that often characterise artefacts
and the low numbers of high S/N images of real transients.
This explanation is further supported by both the ANN and
SVM, which also misclassify these objects, suggesting the
issue is with the data and not a consequence of the realisa-
tion of the RF. In the next section we try to identify any
relationships in the missed detections.

5.5 Missed Detections

We inspected the 172 missed detections (see Fig. 13) look-
ing for similarities that may explain why they were rejected.
We found that these missed detections are associated with
112 individual transients. Although we took care to limit
label contamination during the construction of the training
set, we identified some examples of obvious bogus detections
mislabelled as real that account for a small fraction (∼1%)
of the missed detections.

We also find about 29% of the missed detections appear
to be a result of faint galaxy convolution problems (see Sec-
tion 2.1). These artefacts are difficult to identify by eye and
as a result have been incorrectly labelled as real detections
significantly contributing to the label contamination of the
test set.

In Section 5.4 we discussed the high MDRs for bright

Figure 12. Histogram of magnitudes for the test set examples
labelled as real. We also show the MDR as a function of S/N
which increases dramatically for sources brighter than magnitude
20.

sources. In Fig. 14 we plot the hypothesis values for all de-
tections included in the histogram of Fig. 12 (i.e. all test set
detections that have been visually classified as real) against
their magnitude reported by IPP. A feature of the plot that
stands out is the cluster of sources with magnitudes brighter
than 16 and hypotheses less than 0.2. Magnier et al. (2013)
report that for the PS1 3π survey, saturation occurs at∼13.5
for gP1, rP1, iP1, ∼13.0 for zP1 and ∼12.0 in yP1. We were
concerned that these sources could be saturated, however to
conclusively determine this the individual images that are
combined to make a nightly stack would need to be exam-
ined. Instead we scaled the magnitudes reported by Magnier
et al. (2013) for PS1 3π exposures by the exposure times for
the individual images that make up a nightly stack and set
a magnitude limit of 16 mag. Objects brighter than this
limit may have saturated cores in some exposures and can-
not safely be labelled as real. Some of these sources on close
inspection also show signs of the unclean subtractions we
highlighted in Section 2.1.

The detections brighter than 16 mag in Fig. 14 with
hypotheses above 0.2 are all associated with a single con-
firmed supernova (SN), SN 2014bc (PS1-14xz)(Smartt et al.
2014). SN 2014bc is a nearby (7.6 Mpc) Type-IIP located in
the bright host galaxy NGC4258 (Messier 106). The tran-
sient lies close to the core of the host and as a consequence
the host has been poorly subtracted in the same location in
all the substamps. Detections of this object appear in both
the training and test set and although we ensured detections
from the same night must appear in the same set, the slowly
evolving plateau has resulted in detections with similar S/N
and the same pattern of poor subtraction appearing in both.
It is therefore to be suspected that test set detections asso-
ciated with this SN would have been rejected along with the
other sources brighter than 16 mags had similar detections
not been included in the training set. This raises the issue of
potentially missing the brightest transients which are often
of interest and the cheapest to classify spectroscopically, we
return to this in Section 6.

The high MDRs in the magnitude range 16-20 still re-
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Figure 13. The 172 detections labelled as real but classified as bogus by the RF. Detections are grouped according to the discussion in
Section 5.5. The hypotheses for the detections are shown as the inset numbers.

main unexplained. To address this in Fig. 15 we plot the
number of examples of real transients in each of the magni-
tude bins used in Section 5.4 for both the training and test
sets. The plot clearly shows the deficit in training examples
at magnitudes brighter than 20 and lead us to conclude that
we lack enough training examples of high S/N transients to
allow the classifier to learn a model that generalises well in
this regime. In Fig. 15 we overlay the relative size of the test
set compared with the training set in each bin. We selected
the test set by randomly sampling 25% of the data available
for training. The small fractions of test examples available
between 16 and 18 mags combined with the low numbers in
the range 16-20 mags severely impact our ability to accu-
rately measure the MDR in this range.

Aside from the issues associated with high S/N, there
are a few other SNe with detections that show similar host
galaxy subtraction problems to SN 2014bc. Some of these are
true bogus detections which we show in Fig. 13. Approxi-
mately 9% of the missed detections are bogus detections
around poor host subtractions. We include detections of SN
2014bc with this group in Fig.13 though these detections
around 15th magnitude could equally have been included
with the bright sources.

Among the missed detections we also found substamps
where entire rows or columns along an edge of a substamp
had been masked. In the second panel of Fig. 3 we show
an example where the bottom 2 rows of pixels have been
masked. These are examples of the sky cell duplicates we de-

Figure 14. Plot showing the hypotheses of the real examples in

the test set against the magnitude measured by IPP. The shaded
region shows the magnitude cut above which we cannot be certain

the nightly stacks do not contain saturated images.

scribe in Section 2.1. We were concerned the classifier was
rejecting these detections based on the masking. To see if
this was the case we identified all the examples of sky cell
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overlap among the real test set detections, and found 20. As
we ensured that detections from the same night must be in
the same set (training or test set), the equivalent full 20×20
pixel substamps were also in the test set. We compared the
performance on the full pixel substamp with that of the par-
tially masked substamp and found that there is only 1 case
where the masked substamp was rejected while the full pixel
substamp was kept. In this instance a significant proportion
of the substamp was masked (7 columns) with the edge lying
close to the PSF. The majority of the remaining substamp
pairs were both assigned the same classification. There are
however 6 pairs where the masked substamp was correctly
classified as real, but the full pixel substamp was rejected,
showing the classifier does not tend to reject detections with
sky cell masking simply due to the masked regions.

The reason for rejecting one detection from the pair
over the other is unclear as both substamps are constructed
from the same data. The 6 pairs for which the full pixel
substamp was labelled bogus, but the masked substamp
was labelled real are all associated with a single transient
and may not apply to other sky cell pairs. For these sub-
stamp pairs we found that the centroids always differed by
1 pixel and were offset in the same direction. We tried shift-
ing the centre of the stamps to the same pixel, but found
that this had little impact on the hypothesis. In all cases the
flux-conserving warping results in equivalent pixels contain-
ing different counts, though the difference is typically small
.10%. Given the small number of cases where the detec-
tions of a sky cell pair are assigned to different classes (7
in total) and that these detections are associated with only
two transients (6 associated with a single transient where
the full pixel substamp is rejected and 1 associated with a
different transient where the masked substamp is rejected),
it is difficult to explain this behaviour, though one explana-
tion may be the small differences in pixel intensity values
perhaps combined with the different centroids.

The nuances of difference imaging make it difficult to
determine the ground truth label for each detection. Hu-
mans often require additional information beyond that con-
tained in the single difference image e.g. position relative to
the host, or the number of bad/good pixels visible in the
input image. The investigations above suggest that the clas-
sifier is identifying subtle relationships and correctly iden-
tifying that many of the ‘missed detections’ are dubiously
labelled as real. We estimate that 45% (∼5% bright sources;
∼29% convolution problems; ∼9% poor host subtractions;
∼1% obvious mislabelled artefacts) or about 77 of the missed
detections are not of high enough quality to be confidently
labelled as real detections. Therefore the RF classifier is not
strictly getting them wrong. The high proportions of these
cases among the missed detections does not hold true for
the entire sample of real detections in the test set, where
for example faint galaxy convolution problems are crudely
estimated to account for no more than 7%. Removing such
detections from our test set results in an MDR around 6.2%.
The MDR of our classifier is therefore in the range 6.2 -
10.6% for a FPR of 1% but most likely toward the lower end
of this range. The remaining 95 detections are true missed
detections and appear to be mislabelled by the classifier due
to high S/N as discussed above, poor seeing conditions and
very low S/N detections near the detection limit.

Figure 15. The magnitude distributions of the real examples in
the training and test sets. The numbers on each bin show the total

number of images in the training set. We also show the relative
numbers of test set examples in each bin (blue line). The shaded

region again shows the magnitude cut defined in Section 5.5

5.6 Medium Deep Confirmed Supernovae

In order to demonstrate how we might expect the classifier
to perform on a live data stream we first use the classifier
to make predictions for the supernova PS1-13avb for which
we held out all associated detections from both the test and
training set. This object has been spectroscopically classi-
fied as a Type Ib SN and has a well sampled lightcurve from
about -18 days pre-maximum to around 106 days post max-
imum, including exposures in all 5 filters ranging in mag-
nitude from around 23 to 20 mags (see Fig. 16 top panel).
We selected this object for its high quality lightcurve and
magnitude range which represents the majority of objects
discovered in the PS1 MDS. In the bottom panel of Fig. 16
we show the hypothesis for each epoch of this target. The
plot shows that the hypothesis is consistently above the de-
cision boundary of 0.539 (selected in Section 4.4.2) with the
exception of the detection from 56480.406 MJD (Modified
Julian Date) which shows the transient at a magnitude of
gP1 = 23.12 ± 0.21 approaching the detection limit in this
filter. The detection is displayed as an inset in Fig. 16 with
its hypothesis of 0.506, showing the low S/N and deviation
from a PSF-like morphology.

5.7 Early Detection

One of the major aims of recent supernova searches has been
to try to detect the transient as soon after explosion as pos-
sible in order to trigger rapid follow-up to spectroscopically
study regions of the transients evolution that remain rela-
tively unexplored (Gal-Yam et al. (2014); Cao et al. (2013)).
To this end we carry out a simple test by using the classifier
to make predictions for the first detections of all 53 clas-
sified SNe in our database. Again we held these detections
out from the training and test sets. In Table 4 we list the
53 SNe and the details of the first detections along with the
hypothesis for each detection. The classifier correctly pre-
dicts all detections as real and had it been running on a live
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Figure 16. (top panel) PS1 lightcurve of the Type Ib Supernova
PS1-13avb. (bottom panel) The hypothesis for each epoch. The
dashed line shows the decision boundary (0.539) below which the
classifier predicts an image as bogus. (inset) The only missed
detection for this SN which shows low S/N.

data stream would have promoted all objects to humans for
follow-up.

6 SUMMARY OF RESULTS AND

CONCLUSIONS

In this work we have constructed a data set of detections
from the Pan-STARRS1 Medium Deep Survey. We used this
data set to train a Random Forest classifier to reject bogus
detections of transients before they are presented to humans
as potential targets for follow-up. As the feature represen-
tation of these detections we used the pixel intensity values
of a 20×20 pixel substamp centred on the detection. This
choice is independent of the observing strategy and removes
the need for careful feature design and selection that requires
specific domain knowledge. The choice of features also make
this method applicable to any survey performing difference
imaging and requires no information from either the tem-
plate image or nightly stack. Using the Figure of Merit as
defined in Brink et al. (2013) we selected the decision bound-
ary such that objects classified as real should be 99% pure,
which resulted in a best estimate of a Missed Detection Rate
of 6.2% (i.e. 93.8% complete) and can compete with previous
work in this area. We further tested the classifier by apply-
ing it to the lightcurve of a Type-Ib supernova and found
only one missed detection out of 74. The missed detection
had low signal-to-noise. In addition, to assess the classifiers

performance for early detection, we used the classifier to
make predictions for the first detections of 53 spectroscopi-
cally confirmed SNe in our database and found none would
have been rejected.

We discovered our classifier struggles to provide accu-
rate classifications for the brightest sources (<19 mags).
Many of these are associated with bright variable stars and
have ringing patterns due to the kernel size definition, which
leads to labelling difficulties. Some are also close to the sat-
uration limit which may cause the algorithms to misiden-
tify real sources as bogus. The mathematical problem in
detecting bright variable stars in difference images is clearly
quite distinct from finding low flux and moderate flux level
transients in, or near extended galaxies. Furthermore the
scientific goal in characterising variability of stellar sources
is typically based on total flux measurements whereas find-
ing explosive transients requires the resolved and unresolved
galaxies to be subtracted. Our methods are tailored to-
ward the latter, and can certainly not be blindly applied to
uncover complete populations of variable stars or variable
AGNs. With a goal of discovering extragalactic transients,
one is content to ignore stellar variables in a data stream,
although we show here that the algorithms can sometimes
misclassify bright and high signal-to-noise explosive tran-
sients.

We also found the MDR is consistently higher for
sources brighter than 20 mags which we attribute to the lack
of training data in this range. We would expect that provid-
ing more training examples that are representative of these
objects would reduce the MDR for brighter sources. In this
paper we have only used a sample of the data from the PS1
MDS, but we have access to the full database of MDS tran-
sients, which could be used to provide more training data.
In addition we also have data from PS1 3π difference imag-
ing which could also be used to boost training numbers and
build a classifier that could perform real-bogus classification
for both surveys. In our analysis we have not considered the
case of asteroids as these are typically removed during the
construction of the nightly stacks in the MDS. Including
the PS1 3π data, where differencing is performed on indi-
vidual exposures, would allow us to test the performance of
our method on asteroids. It may also be more beneficial to
apply this approach at the source extraction stage. By work-
ing directly on the pixel data the classifier could potentially
learn which sources to extract and which to discard from a
difference image before any further processing of a potential
detection is performed.

The dependence of any machine learning approach to
real-bogus classification on large amounts of training data
presents a serious problem for any new survey. While many
sources of processing artefacts are common across surveys,
differing pixel scales and seeing conditions prevent the use
of a classifier trained on one survey being directly applied to
another. A solution would be to build a training set based on
hand labelled commissioning data and periodically retrain
the classifier as new data become available. Alternatively an
initial classifier trained on the limited data available early in
a survey could be improved on by employing online learning,
where the classifier is automatically updated as new labelled
data are gathered (Shalev-Shwartz 2011; Saffari et al. 2009).

Future work will focus on combining the remaining PS1
data available into a single training set that will hopefully
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address the S/N issue. Other areas of research could include
the use of semi-supervised feature learning (Raina et al.
2007) and deep learning (Coates et al. 2013) that retain all
the advantages of our current approach at the expense of be-
ing more computationally demanding. However, the added
representational power of larger ANNs and the possibility of
applying the unsupervised features learnt from one survey
to a variety of other surveys could mean this is a promising
domain to explore.

An efficient real-bogus classifier is only one step toward
rapid discovery and classification of transients. With next
generation surveys the stream of transients will need to be
prioritised based on scientific goals. Providing a contextual
classification (Djorgovski et al. 2012; Bloom et al. 2012) of
the transients detected would allow researchers to select the
most promising candidates for their research goals and will
also be the focus of future work.

ACKNOWLEDGMENTS

The Pan-STARRS1 Survey has been made possible through
contributions of the Institute for Astronomy, the Univer-
sity of Hawaii, the Pan-STARRS Project Office, the Max-
Planck Society and its participating institutes, the Max
Planck Institute for Astronomy, Heidelberg and the Max
Planck Institute for Extraterrestrial Physics, Garching, The
Johns Hopkins University, Durham University, the Univer-
sity of Edinburgh, Queen’s University Belfast, the Harvard-
Smithsonian Center for Astrophysics, and the Las Cumbres
Observatory Global Telescope Network, Incorporated, the
National Central University of Taiwan, and the National
Aeronautics and Space Administration under Grant No.
NNX08AR22G issued through the Planetary Science Divi-
sion of the NASA Science Mission Directorate. The research
leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC Grant
agreement no [291222] (PI : S. J. Smartt) and the RCUK
STFC grants ST/I001123/1 and ST/L000709/1. DEW ac-
knowledges support from DEL in the form of a postgraduate
studentship.

REFERENCES

Bailey S., Aragon C., Romano R., Thomas R. C., Weaver
B. A., Wong D., 2007, ApJ, 665, 1246

Baltay C. et al., 2013, PASP, 125, 683
Berger E. et al., 2012, ApJL, 755, L29
Bertin E., 2001, in Mining the Sky, Banday A. J., Zaroubi
S., Bartelmann M., eds., p. 353

Biau G., 2010, ArXiv e-prints (1005.0208)
Bloom J. S. et al., 2012, PASP, 124, 1175
Breiman L., 2001, Machine learning, 45, 5
Brink H., Richards J. W., Poznanski D., Bloom J. S., Rice
J., Negahban S., Wainwright M., 2013, MNRAS, 435, 1047

Cao Y. et al., 2013, ApJL, 775, L7
Chomiuk L. et al., 2011, ApJ, 743, 114
Chornock R. et al., 2013, ApJ, 767, 162

Coates A., Huval B., Wang T., Wu D., Catanzaro B., Ng A.,
2013, in Proceedings of the 30th International Conference
on Machine Learning (ICML-13), pp. 1337–1345

Coates A., Lee H., Ng A. Y., 2011, in AISTATS 2011, Vol.
1001

Cortes C., Vapnik V., 1995, Machine learning, 20, 273
Djorgovski S. G., Mahabal A. A., Donalek C., Graham
M. J., Drake A. J., Moghaddam B., Turmon M., 2012,
ArXiv e-prints (1209.1681)

Donalek C., Mahabal A., Djorgovski S. G., Marney S.,
Drake A., Glikman E., Graham M. J., Williams R., 2008,
in American Institute of Physics Conference Series, Vol.
1082, American Institute of Physics Conference Series,
Bailer-Jones C. A. L., ed., pp. 252–256

Drake A. J. et al., 2009, ApJ, 696, 870
du Buisson L., Sivanandam N., Bassett B. A., Smith M.,
2014, ArXiv e-prints (1407.4118)

Fumera G., Roli F., 2005, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 27, 942

Gal-Yam A. et al., 2014, Nature, 509, 471
Geva S., Sitte J., 1992, Neural Networks, IEEE Transac-
tions on, 3, 621

Gezari S. et al., 2012, Nature, 485, 217
Gezari S. et al., 2010, ApJL, 720, L77
Hinton G., Osindero S., Teh Y. W., 2006, Neural compu-
tation, 18, 1527

Hodapp K. W., Siegmund W. A., Kaiser N., Chambers
K. C., Laux U., Morgan J., Mannery E., 2004, in Soci-
ety of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 5489, Ground-based Telescopes,
Oschmann Jr. J. M., ed., pp. 667–678

Kaiser N. et al., 2010, in Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, Vol.
7733, Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series

Keller S. C. et al., 2007, PASA, 24, 1
LeCun Y., Bottou L., Bengio Y., Haffner P., 1998, Proceed-
ings of the IEEE, 86, 2278

Lunnan R. et al., 2013, ApJ, 771, 97
Magnier E., 2006, in The Advanced Maui Optical and
Space Surveillance Technologies Conference

Magnier E. A. et al., 2013, ApJS, 205, 20
McCrum M. et al., 2014, MNRAS, 437, 656
Murtagh F., 1991, Neurocomputing, 2, 183
Raina R., Battle A., Lee H., Packer B., Ng A. Y., 2007, in
Proceedings of the 24th international conference on Ma-
chine learning, ACM, pp. 759–766

Rau A. et al., 2009, PASP, 121, 1334
Rest A. et al., 2014, ApJ, 795, 44
Rest A. et al., 2005, ApJ, 634, 1103
Romano R. A., Aragon C. R., Ding C., 2006, in Machine
Learning and Applications, 2006. ICMLA’06. 5th Inter-
national Conference on, IEEE, pp. 77–82

Saffari A., Leistner C., Santner J., Godec M., Bischof H.,
2009, in Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, pp. 1393–
1400

Schlafly E. F. et al., 2012, ApJ, 756, 158
Shalev-Shwartz S., 2011, Foundations and Trends in Ma-
chine Learning, 4, 107

Smartt S. J. et al., 2014, The Astronomer’s Telegram, 6156,
1

c© 0000 RAS, MNRAS 000, 000–000



ML for transient discovery in PS1 difference imaging 17

Smartt S. J. et al., 2013, The Messenger, 154, 50
Tonry J. L. et al., 2012a, ApJ, 745, 42
Tonry J. L. et al., 2012b, ApJ, 750, 99
York D. G. et al., 2000, AJ, 120, 1579

c© 0000 RAS, MNRAS 000, 000–000



18 D.E. Wright et al.

Table 4. First detections of the 53 spectroscopically confirmed PS1 supernovae ordered by hypothesis. (Due
to sky cells some SNe appear twice.)

Name Classification First Detection (MJD) Magnitude Filter Hypothesis

PS1-13duq Ia 56588.381 21.64 iP1 0.989

PS1-13bzp Ia 56478.276 21.33 gP1 0.98
PS1-13bzp Ia 56478.276 21.30 gP1 0.975

PS1-13abg II-P 56383.336 21.47 zP1 0.971
PS1-13bqg Ia 56443.287 20.90 gP1 0.968
PS1-13abg II-P 56383.336 21.55 zP1 0.963
PS1-14il IIn 56676.554 21.36 zP1 0.959
PS1-13vc Ia 56351.476 20.67 zP1 0.958
PS1-13abw Ic 56383.438 21.23 zP1 0.958
PS1-14ky II 56681.499 21.60 zP1 0.957
PS1-13ur Ia 56351.525 20.32 zP1 0.955
PS1-13eae II 56604.598 19.82 yP1 0.954
PS1-13alz II-P 56399.282 20.43 iP1 0.952
PS1-12cnr Ia 56283.340 20.33 zP1 0.948
PS1-13can Ia 56477.567 22.04 zP1 0.946

PS1-13cws Ia 56549.460 21.48 zP1 0.943
PS1-13ge Ia 56328.612 21.49 gP1 0.94

PS1-12cho Ia 56262.469 21.07 zP1 0.933
PS1-12cey II 56268.294 22.06 gP1 0.931
PS1-13bok I 56424.560 22.35 rP1 0.926
PS1-13djz Ic 56554.585 20.74 zP1 0.923
PS1-13a Ia 56289.280 21.20 zP1 0.919
PS1-13bit Ia 56420.548 22.69 iP1 0.918

PS1-13bqb Ia 56443.287 22.32 gP1 0.918
PS1-13djj Ia 56563.576 20.72 gP1 0.916
PS1-12bza II-P 56262.469 21.12 zP1 0.914
PS1-13brf Ia 56443.324 22.68 rP1 0.91
PS1-13hp II-P 56325.545 21.40 gP1 0.907
PS1-13adg Ia 56384.515 21.71 rP1 0.902
PS1-13awf I 56417.315 22.47 iP1 0.899
PS1-13atm II-P 56410.298 22.25 zP1 0.898
PS1-13cjb II 56501.436 22.63 gP1 0.896

PS1-12cho Ia 56262.469 21.08 zP1 0.884
PS1-13cai Ia 56477.567 21.99 zP1 0.882

PS1-13bni II-P 56420.548 23.07 iP1 0.873
PS1-13bog Ia 56417.341 22.57 iP1 0.867
PS1-12chw Ia 56262.313 21.21 yP1 0.857
PS1-13bqv Ia 56442.486 21.64 zP1 0.849
PS1-13djs Ia 56562.587 21.44 zP1 0.84
PS1-13aai/SN 2013au Ia 56370.421 19.29 zP1 0.833
PS1-13cuc/SN 2013go Ia 56536.587 19.03 zP1 0.814
PS1-13hs I 56328.515 21.97 gP1 0.801
PS1-13baf II-P 56414.521 22.54 iP1 0.801

PS1-13avb Ib 56414.521 21.75 iP1 0.796
PS1-13ayn Ia 56416.449 22.01 rP1 0.77

PS1-13aai/SN 2013au Ia 56370.421 19.36 zP1 0.735
PS1-13fo/SN 2013X Ia 56314.625 18.04 yP1 0.713
PS1-13bus Ia 56462.440 22.91 iP1 0.708
PS1-13brw II-P 56436.325 20.71 yP1 0.707
PS1-13hi IIn 56324.604 18.50 zP1 0.704
PS1-13bvc Ia 56469.349 21.90 zP1 0.698
PS1-13bzk Ia 56468.571 21.38 yP1 0.662
PS1-13abf Ia 56380.368 20.21 yP1 0.642
PS1-13arv Ia 56409.239 20.98 yP1 0.638
PS1-13wr II-P 56349.602 20.39 yP1 0.637

PS1-14xz/SN 2014bc II-P 56399.380 18.25 iP1 0.623
PS1-13wr II-P 56349.602 20.40 yP1 0.61

PS1-13buf Ia 56461.299 22.60 zP1 0.577
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