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Machine learning guided appraisal and exploration of phase

design for high entropy alloys
Ziqing Zhou1, Yeju Zhou2, Quanfeng He1, Zhaoyi Ding1, Fucheng Li 1 and Yong Yang 1,3*

High entropy alloys (HEAs) and compositionally complex alloys (CCAs) have recently attracted great research interest because of

their remarkable mechanical and physical properties. Although many useful HEAs or CCAs were reported, the rules of phase design,

if there are any, which could guide alloy screening are still an open issue. In this work, we made a critical appraisal of the existing

design rules commonly used by the academic community with different machine learning (ML) algorithms. Based on the artificial

neural network algorithm, we were able to derive and extract a sensitivity matrix from the ML modeling, which enabled the

quantitative assessment of how to tune a design parameter for the formation of a certain phase, such as solid solution,

intermetallic, or amorphous phase. Furthermore, we explored the use of an extended set of new design parameters, which had not

been considered before, for phase design in HEAs or CCAs with the ML modeling. To verify our ML-guided design rule, we

performed various experiments and designed a series of alloys out of the Fe-Cr-Ni-Zr-Cu system. The outcomes of our experiments

agree reasonably well with our predictions, which suggests that the ML-based techniques could be a useful tool in the future

design of HEAs or CCAs.
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INTRODUCTION

Since their advent in 2004,1 high entropy alloys (HEAs) have been
attracting tremendous research interest because of their remark-
able mechanical and physical properties.2–4 Compared with
traditional alloys, HEAs usually contain more than five elements
mixed with a similar atomic fraction, thereby also known as multi-
principal element alloys1 or compositionally concentrated alloys.2

Based on the assumption of ideal mixing, Yeh et al.5 proposed that
an equal-atomic composition maximizes the configurational
entropy of an HEA, therefore, in favor of the formation of random
solid solution (SS) over other phases, such as intermetallics (IM).
Conceptually, the idea of HEAs1 suggests that, as the number of
the constituent elements increases in HEAs, the possibility for the
formation of SS should increase. However, the formation of SS
does not merely depend on the number of elements. According to
the Hume–Rothery rules,6 the misfit in the physical and electronic
properties of constituent elements strongly affects the formation
of SS in binary alloys and possibly multicomponent alloys as well,
such as HEAs.
Aside from SS, a variety of other phases, such as IM7,8 or even

amorphous phase (AM),9–12 were observed in the as-cast HEAs. To
rationalize this phenomenon, a number of empirical or semi-
empirical rules were proposed for phase selection in HEAs. These
rules were developed mainly based on whether there was a
correlation between the observed phases and several empirical
parameters that could be calculated readily from a HEA
composition, such as the ideal mixing entropy Sid,

1 the parameters
of atomic size difference δ and the average mixing enthalpy ∆Hmix

proposed by Zhang et al.,8 the mean valance electron concentra-
tion (VEC) by Guo et al.,13 the packing misfit parameter γ by Wang
et al.,14 the root mean square residual strain parameter by Ye
et al.,15 the electronegativity difference parameter by Guo et al.,13

the dimensionless parameters Ω ¼ TmSid
ΔHmixj j (Tm=melting point) by

Zhang et al.16 and ϕ ¼ Sid � ΔHmixj j=Tm
SEj j (SE= excessive configuration

entropy) by Ye et al.17 and many others.18–22 Despite the

seemingly difference among these rules, they are in the same

spirit of the classic Hume–Rothery rule, i.e., aside from increasing

the number of constituent elements, one has to minimize the

difference in the physical and chemical properties of the

constituent elements in HEAs in order to obtain random SS. On

the other hand, alloying different types of elements can also

facilitate the formation of metastable phases, such as AM23 or

metastable random SS phases.24 Therefore, metastable phases

have also been considered as one of the defining features of

HEAs.18

At the fundamental level, phase selection in alloys, including
metastable phases, can be attributed to the shape of their

potential energy landscape (PEL),25–29 as illustrated in Fig. 1. In

general, as PEL is derived from overall inter-atomic potentials,28

phase prediction in HEAs therefore must entail many-body

interactions. On the other hand, phases in HEAs are commonly

metastable in nature,30 which depend on the method of materials

synthesis and processing. Because of these complexities, the issue

of phase selection in HEAs is still open today although substantial

efforts have been made over the past decade.
In this work, we would like to develop several machine learning

(ML) models to assess the widely accepted phase design rules for

HEAs1,8,31,32 and also to explore new ones with additional design

parameters, which have not been considered yet in the literature.

To build a data set for the ML models, we include 601 different

alloys and IM in the analyses. Because of the lack of data of

thermal history, we only consider the compositions of as-cast

alloys as the inputs to our ML models.
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RESULTS

Our ML modeling is based on three algorithms, including the
artificial neural network (ANN), the one-dimensional convolutional
neural network (CNN), and the support vector machine (SVM), to

assess the efficiency of the existing phase design rules and to
explore new ones (see Methods). In principle, the three ML
algorithms are suitable to solve supervised classification pro-
blems.33,34 ANN is based on a feed-forward structure with an input

layer, one hidden layer as in our work and an output layer.33 ANN
has recently been used preferably in material informatics because

of its good performance on small data sets.34–36 CNN is based on a
deep neural network and attached to convolutional and pooling
layers.33 By comparison, it has the most complicated architecture
and runs slow. Simply speaking, SVM is an algorithm to search
hyperplanes through data division.37 It has the simplest archi-
tecture and runs fast; however, the outcome of SVM is highly
sensitive to the choice of kernel parameters.
In the literature,1,8,31,32 there are already a few widely accepted

parameters for the general phase design in HEAs, including the
atomic size difference (δ),8 the mixing enthalpy (∆Hmix),

8 the ideal
mixing configurational entropy (Sid),

38 and the standard deviation
of electronegativity (∆χ).32 From a statistic mechanics viewpoint,
those parameters can be related to the PEL of an alloy.26 However,
for a more comprehensive exploration, we would like to expand
the parameter space by adding more thermodynamic parameters,
which were not considered previously. In principle, for each
parameter considered, we calculate both its mean value and
standard deviation for a multicomponent alloy wherever is
possible. As a result, this leads to 13 parameters (shown in Table
1).
For the ML modeling, these parameters were normalized based

on the general expression xi ¼
xðoldÞ
i

� xðoldÞ
imin

xðoldÞ
imax

� xðoldÞ
imin

; ði ¼ 1; 2; :::; 13Þ, where

x
ðoldÞ
i and xi denote, respectively, the original and normalized value
of the ith parameter or the ith feature of our ML model. To be
consistent with the HEA literature,2,8,39 we consider the existence
of three general phases, i.e., random SS, IM, and AM, as the
outputs or the data labels of our ML modeling. To be specific, the
existence for the individual phase is quantified by either 0 (not
existent) or 1 (existent). The label value of our ML model is a
binary number, which indicates whether a given phase can be
formed. If yes, the label value is 1; if no, it is 0.
To train our ML model, we collected the data from 163 binary

alloys, 120 ternary alloys, 89 quaternary alloys, and 229 higher
order alloys with at least five elements. Totally, we built a data set
containing 601 alloys, including 165 pure AM alloys, 248 pure
intermtallics, 131 pure random SS, 6 mixture of AM and
intermetallic alloys, and 51 mixture of intermetallic and random
SS alloys (see Supplementary Table 5). Following the ML
literature,40 the data set was randomly divided into three subsets,
with 70% data for training, 15% for validation and 15% for testing.
After data training, the ANN model achieved a high testing
accuracy of 98.9%, 97.8%, and 95.6% for AM, SS, and IM,
respectively; the 1D CNN model achieved a similar testing
accuracy of 97.8% for AM, 98.9% for SS, and 94.4% for IM;
whereas the SVM model achieved the testing accuracy of 96.7%
for AM, 98.9% for SS, and 95.6% for IM. Furthermore, we tested the
robustness of our algorithms by performing 10 times of
independent data division and model training. As seen in
Supplementary Table 1, the testing accuracies of our ML models
based on the 10 independent data divisions are very similar,
suggesting that the outcome of our ML modeling is not sensitive
to data division.
For the phase design of HEAs, it is of great importance to know

how the properties or attributes of the constituent elements
influence the formation of a particular phase. Theoretically, this
could translate to the measure of sensitivity of the data label, i.e.,
the probability to form a certain phase, with respective to changes
in the corresponding features, i.e., thermodynamic or micro-
mechanical parameters, as designed for our ML models. Through
the compound transformation function, the parametric sensitivity
of the data labels can be assessed quantitatively, which connects
the features and labels through the well-trained ML model. For
simplicity, let us focus on the ANN model for which an analytic
expression for the compound transformation function is available.
For our ANN model, the compound transformation function
between the features X and the labels z is highly nonlinear, which

Fig. 1 The schematics of the one-dimensional potential energy
landscape (PEL). The schematic PEL for a a high entropy phase and
b a low entropy phase.

Table 1. The 13 design parameters and the corresponding formula.

Parameters Formula

Mean atom radius a ¼
P

n

i¼1

ciri

Atomic size difference δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ci 1�
ri
a

� �2

s

Average of the melting points of
constituent elements

Tm ¼
P

n

i¼1

ciTmi

Standard deviation of melting
temperature

σT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ci 1� Ti
Tm

� �2

s

Average mixing enthalpy ΔHmix ¼ 4
P

i≠j

cicjHij

Standard deviation of mixing enthalpy σΔH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i≠j

cicj Hij � ΔHmix

� �2
r

Ideal mixing entropy Sid ¼ �kB
P

n

i¼1

ci ln ci

Electronegativity χ ¼
P

n

i¼1

ciχ i

Standard deviation of electronegativity Δχ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ciðχ i � χÞ2
s

Average VEC VEC ¼
P

n

i¼1

ciVECi

Standard deviation of VEC σVEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ciðVECi � VECÞ2
s

Mean bulk modulus K ¼
P

n

i¼1

ciKi

Standard deviation of bulk modulus σK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ci Ki � Kð Þ2
s

Z. Zhou et al.

2

npj Computational Materials (2019)   128 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



can be expressed as:

z ¼ W2 �
1

1þ e�W1�Xþb1
þ b2 (1)

W1 is the linear transformation matrix between the input layer and
the hidden layer; W2 is the linear transformation matrix between
the hidden layer and the output layer; b1 and b2 denote the
biases. With the Taylor’s expansion 1

1þe�x ¼ 1
2
þ 1

4
x þ oðx2Þ, Eq. (1)

can be linearized as follows:

z ¼
1

4
W2 �W1 � Xþ

1

4
W2 � b1 þ 2ð Þ þ b2 (2)

From Eq. (2), we can obtain a simple scaling relation
z � W2 �W1 � X, based on which we define the sensitivity matrix
as S ¼ W2 �W1. Note that, for the sensitivity matrix S, the number
of rows correspond to the number of phases, whereas the number
of columns correspond to the number of features.
With the well-trained ANN models, we obtained the sensitivity

matrices for the three phases (See Supplementary Tables 2–4). The
entries to each sensitivity matrix could be understood as the
measure of influence of the individual design parameter on the
formation of a certain phase or the correlation between the design
parameter and phase. In concept, the larger is the magnitude of a
sensitive parameter, the more influential is the corresponding
design parameter and vice versa. Note that a sensitivity measure
could be negative for a negative correlation, or positive for a
positive correlation. To assess the influence of the parameters, we
evaluated the magnitude of the sensitivity value of each feature,
from which one can infer that features with a low magnitude of
sensitivity might be abandoned or disposed of. These disposable
features were statistically unimportant and can be considered as
redundant. After removing the redundant features, we re-trained
the ANN model and found that its testing accuracy could be
somewhat improved; however, over-reduction of the features
caused some loss of testing accuracy of the ML model. For
example, as for the ANN model, we determined that nine features
are essential for the AM phase, 11 features for the IM phase, and
10 features for the SS phase. Table 2 compares the performance of
the ML models before and after the feature reduction. Statistically,
it appears that 13 features work the best for the CNN model,
which has the most complicated topologic structure and may
need more training variables for a high accuracy. By comparison,
features slightly fewer than 13 in number do not affect the
accuracy obviously for the ANN and SVM models. In general,
inclusion of all the 13 features does not significantly sacrifice the
testing accuracy of our ML models, as seen in Table 2.

DISCUSSION

In order to obtain statistically reliable sensitivity measures, we
trained each ANN model for 30 times and extracted the sensitivity
matrices accordingly. After that, the values of each sensitivity
measure were averaged with the standard deviation being
computed. Figure 2 shows the comparison of the sensitivity
measures which are color coded based on the ratio of mean to
standard deviation. If the averaged sensitivity measure is positive

for a positive correlation, it would be colored in red; if the
averaged sensitivity measure is negative for a negative correlation,
it would be colored in blue. Depending on the ratio of mean to
standard deviation, the intensity of color varies. In Yeh’s original
work,1 Sid was taken as the defining parameter for the formation
of SS in HEAs. The higher is Sid the more likely is to form SS over
other phases. This manifests as a high positive sensitivity measure
(+13) of Sid for SS. By comparison, the sensitivity measure of Sid for
IM is negative (−7), which somewhat corroborates the notion of
the high entropy effect proposed by Yeh.1 Interestingly, the
sensitivity measure of Sid for AM is positive but with a moderate
magnitude (+5). This behavior suggests that increasing the
chemical complexity does promote glass formation, which is in
line with one of the well-known design rules proposed by Inoue.31

Based on the sensitivity measures (Fig. 2), it is clear that δ plays
a very important role on the formation of SS, whereas ΔHmix

affects the formation of SS almost to the same degree as Sid.
Evidently, the very negative sensitivity measure (−16) implies that
one has to minimize the atomic size mismatch in order to obtain
SS. Conversely, the positive sensitivity measure suggests that one
should increase the atomic size mismatch in order to obtain IM or
AM. This agrees with a number of well-established empirical rules,
such as the Hume–Rothery rule,41 one of the Inoue’s rules31 and
the very recent rule proposed by Zhang et al.8 Now let us focus on
the design parameter ∆Hmix. As the ∆Hmix values are mostly
negative for different atomic pairs, therefore, if one would like to
reduce the magnitude of ∆Hmix of an alloy, he had to increase
∆Hmix of the alloy such that it would get closer to zero. This
explains why the sensitivity measure (+ 11) of SS on ∆Hmix is
positive because a near-zero value of ∆Hmix is beneficial to SS
according to Zhang et al.8 In contrast, a more negative ∆Hmix is in
favor of IM and AM, as discussed in previous work.8,42 As shown in
Fig. 2, the sensitivity measures of δ and ∆Hmix for SS are larger than
those for IM and AM. As seen in Fig. 3, SS has a rather narrow
distribution of δ and ∆Hmix in comparison with AM and IM. This
indicates that the formation of SS is more sensitive to the change
in δ or ∆Hmix than that of IM and AM, which agrees with
our sensitivity measure and also the recent works.8,20 In the prior
work,32 increasing the value of Δχ was thought to promote the
formation of IM while suppress that of SS. This is also in line with
the sensitivity measure of Δχ for IM and SS. The negative
sensitivity measure of Δχ for AM suggests that one has to reduce
Δχ for the formation of AM. In general, the reduction in Δχ benefits
both IM and AM and this behavior is very different from that of
∆Hmix.
For a quantitative comparison, we re-built our ML models with

the four conventional features aligned with the classic phase
design rules,1,6,8,31,32 including Sid, δ, ∆Hmix, and ∆χ (see Methods).
After that, these ML models were trained and the test accuracies
are shown in Table 3. Evidently, the ML model based solely on the
single parameter Sid has the poorest performance in terms of the
testing accuracy, especially for IM (~ 62%). In general, the addition
of other design parameters, such as δ, ∆Hmix, and ∆χ, improves the
accuracy for all three phases. By comparison, it is clear that the ML
model based on the full set of the design parameters outperforms
other ML models based on a partial set of the design parameters.
Next, let us move to the new design parameters that were not

considered for alloy screening and phase design in the prior
works, as shown in Fig. 2. Note that VEC was early proposed by
Guo et al.13 to distinguish different crystalline structures of a SS
phase (FCC versus BCC); however, it was seldom used for phase
selection among SS, IM, and AM. Therefore, we herein consider
VEC as a new design parameter in our ML modeling. To
understand the effect of these new design parameters, we resort
to the potential energy fluctuation (PEF) model we recently
developed.26 As illustrated in Fig. 1, the alloy system with a
smooth potential energy profile has a high configurational
entropy and tends to form SS; whereas the alloy system with a

Table 2. Comparison of the testing accuracy of the ANN, CNN, and

SVM models before and after feature reduction.

Original 13 features Reduced features

ANN CNN SVM ANN CNN SVM

AM 98.9% 96.7% 97.8% 96.7% 93.3% 94.4%

IM 95.6% 95.6% 94.4% 94.4% 92.2% 94.4%

SS 97.8% 98.9% 98.9% 98.9% 97.8% 98.9%
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rugged potential energy has a low configurational entropy and
tends to form IM or even metastable phases, such as AM.
According to the PEF model,25 the PEF brought about by the
chemical and mechanical interaction among constituent elements
can be quantified as follows:

xe ¼ 4:12δ �

ffiffiffiffiffiffiffi

KV

kBT

r

(3a)

xc ¼ 2

ffiffiffiffiffiffiffiffi

σΔH

kBT

r

(3b)

where xe stands for the extended atomic size difference; xc stands
for the chemical bond misfit; K is the bulk modulus; V � a3 is the
mean atomic volume; kB is the Boltzmann constant, and T is the
temperature of the system or the melting temperature at which a
liquid solidifies into a solid in arc melting. In order to obtain SS,
one has to minimize both xe and xc. In theory, it will facilitate the

formation of SS if one could reduce δ, K, a, and σΔH , whereas
simultaneously increase the melting point T.
Now let us discuss the effect of Tm. Here, we should first

emphasize Tm is the average of the melting points of constitutive
elements rather than the real melting point or the liquidus
temperature of an alloy. From Fig. 2, one can infer that a high Tm
value favors AM while a low Tm value favors IM. From a statistical
viewpoint, this suggests that, in the past, one tended to select
high melting point elements for AM, whereas low melting point
elements for IM. According to Lu et al.,43 the glass transition point

Tg of a metallic glass is correlated with Tm through the relation

Fig. 3 The possible correlation of the design parameters and
experimentally obtained phases. The plot of δ vs ΔHmix for SS, IM,
and AM.

Table 3. Comparison of the accuracy of 1-feature (Sid) model, 3-feature

(Sid, δ, ∆Hmix) model, 4-feature (Sid, δ, ∆Hmix, ∆χ) model, and 13-

feature model.

Sid Sid, δ, ∆Hmix Sid, δ, ∆Hmix, ∆χ 13 features

AM 72.2% 85.6% 87.8% 95.6%

IM 62.2% 75.6% 83.3% 92.2%

SS 83.3% 92.2% 94.4% 97.8%

Fig. 2 Comparison of the sensitivity measures of the 13 design parameters based on the result of the ANN model. The sensitivity
measures of the 13 design parameters for (a) amorphous phase (AM), (b) intermetallics (IM) and (c) solid solution (SS).

Z. Zhou et al.
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Tg= 0.385Tm. Therefore, the higher is Tm the higher is Tg. As the
glass forming ability of metallic glasses increases with the reduced
temperature Tg/Tl,

44 where Tl stands for the alloy’s liquidus
temperature, a higher Tm value and hence a higher Tg value
indicates a better glass forming ability, which is consistent with
our ML result. In addition, it is worth mentioning that a, Tm and K
are not statistically independent. As shown in Fig. 4, a and K are
negatively correlated, whereas Tm and K are positively correlated.
This inter-dependence explains the effect of a, Tm and K, as seen in
Fig. 2.
Based on our findings, it appears that both high K and high σK

are beneficial for SS, high K and low σK for IM, whereas low K and
high σK for AM. Although VEC was mainly used to distinguish
different SS phases in the previous work,17 however, our model
shows that VEC and σVEC as well as χ also participates in phase
selection. As seen in Fig. 2, high VEC, low σVEC, and low χ are in
favor of SS; low VEC, low σVEC and high χ are in favor of IM,
whereas high VEC, high σVEC, and low χ are in favor of AM. This
intriguing behavior indicates that VEC should play a role in phase
formation. According to the hybridization theory proposed by
Fukuhara et al.,45 AM alloys tend to have larger VEC than
crystalline metals. This is because the probability of forming
metallic glass increases with more valence electrons, such as s, p,
and even d or f electrons, owing to the formation of a pseudo gap
below the Fermi energy EF by spd or spf hybridization.46 Although
the definition of VEC used by Fukuhara et al. differs from that in

our work, however, the VEC values calculated with the two
different definitions for the alloys are positively correlated (see
supplementary Fig. 1). That behavior suggests that the VEC-related
mechanisms proposed by Fukuhara et al.45 could be applicable to
our case as well. In addition, our ML model also indicates that low
σT favors SS and AM, whereas high σT favors IM.
To further validate our ML modeling, we carried out extensive

experiments through the development of a new hybrid HEA
system, which has a general chemical composition of (FeCrNi)10−x
(ZrCu)x (x= 1, 2, …, 8), where x stands for the atomic percentage.
First, we obtained a series of the bulk HEAs through arc melting
(see Methods). As shown in Fig. 5a, the XRD results show the
phases detected in the HEA bulk samples, being labeled as S1 to
S8, with the corresponding x value increasing from 1 to 8.
Evidently, a dual phase SS (FCC+ BCC) structure is observed for
x= 1 and 2. Interestingly, when x further increases to 3–5, both SS
and IM phases can be detected. Finally, when x reaches a relatively
high value of 6–8, only IM phases can be detected in the HEA.
Figure 5b shows the atomic fraction of the constituent elements in
the as-cast HEA samples, based on which we can predict phase
selection in each of the HEA samples with our ML models. As seen
in Fig. 5c, the phase in the bulk sample is predicted to transit from
SS, to SS+ IM (multi-phase), IM+ AM (multi-phase) and finally to
AM. The prediction of SS and IM in x= 1–3 agrees with our
experimental results. Nevertheless, our ML modeling predicts that
the HEAs should transit to IM+ AM and AM when x increases,
which seemingly contradicts our experimental results. As dis-
cussed in the later text, this discrepancy could be attributed to a
cooling rate effect.
To study the cooling rate effect, we prepared a few ribbon

samples through vacuum melt spinning (see Methods), which had
the compositions of (FeCrNi)2(ZrCu)8 (S8), (FeCrNi)1.5(ZrCu)8.5 (S9),
and (FeCrNi)1(ZrCu)9 (S10). As shown in Fig. 6a, it is evident that
the atomic structure of the ribbon samples transits from SS+ AM
to AM with the increasing concentration of ZrCu, which agrees
well with the prediction of our ML modeling. Furthermore, we
prepared a series of thin films through co-sputtering (see
Methods). Figure 6c shows the XRD curves obtained from
FeCrNi-rich compositions to ZrCu-rich compositions. Evidently, as
the chemical composition continuously changes from FeCrNi to
ZrCu, the HEA films undergo a transition from a crystalline to AM
structure. This behavior generally agrees with the prediction of our
ML modeling (Fig. 5c). Figure 6b shows the exact composition of
the thin-film samples we obtained. According to Fig. 5c, these
compositions should fall into the region where IM transitions to
AM. In other words, even if the atomic structure with these
compositions became AM under a very high cooling rate, as is the
case of thin-film deposition, one would expect an increasing glass
forming tendency with the increasing atomic fraction of the ZrCu
component in our HEA, which warrants future research.
To summarize, we developed the ML models based on three

algorithms (ANN, CNN, and SVM) to assess the existing phase
design rules for HEAs in this work. With these ML models, we
further explored the use of additional new design parameters for
phase design for HEAs. In theory, these new design parameters
can be associated with the fluctuation of PEL of a multicomponent
system, which greatly improves the accuracy of our ML modeling.
To verify the ML modeling, we carried out a series of experiments,
including casting, melt spinning, and co-sputtering, for the design
of a new Fe-Cr-Ni-Zr-Cu HEA system. The experimental results
generally agree with the prediction of our ML modeling. However,
in the meantime, our results also indicate clearly that the phases in
the HEAs designed based on our ML modeling are cooling rate
dependent, which is sensible as AM is a metastable phase and
even SS in some HEAs, such as the cantor alloy,7 are also
metastable in nature.

Fig. 4 The statistical correlations between the properties of the
constituent elements. The correlations between a atom size and
bulk modulus and between b melting temperature and bulk
modulus. (See Supplementary Table 5 for the details of the data).
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METHODS

ML algorithms

ANN. As illustrated in Fig. 7, our first ML model is based on a classification
ANN with one hidden layer. The neural network contains one input layer for
the 13 design parameters, one hidden layer with 20 neurons and one output
layer for the label. The transform function that connects the input and hidden

layer can be written as a ¼ W1xþ b1 , where að20 ´ 1Þ is the vector composed

of the values received by the 20 hidden neurons;W1(20×13) is the weight matrix
derived from linear transformation, xð13´ 1Þ is the normalized feature of our ML

model and b1(20×1) is the offset of the linear transformation. Furthermore, the

sigmoid function SðxÞ ¼ 1
1þe�x was used as the activation function in the

hidden layer. Similarly, the transform function between the hidden and output

Fig. 6 The structural characterization of the Fe-Cr-Ni-Zr-Cu ribbons and thin films. a The XRD spectra for the melt spinning ribbons, b the
compositions of the thin films detected via EDX, and c the XRD spectra for the thin films.

Fig. 5 The structural characterization of the bulk (FeCrNi)10-x(ZrCu)x (x= 1, 2, …, 8) alloy. a The compiled XRD results, b the compiled EDX
results, and c the comparison of the phases obtained for different alloy compositions from arc melting (SS: filled circle, SS+ IM: half-filled
triangle, and IM: hollow square) against the ML predictions. Note that the colors manifest the ML predictions (SS: orange, SS+ IM: yellow, IM+
AM: green, and AM: blue).
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layer can be written as z ¼ W2hþ b2 , where W2(1×20) is the weight matrix of
the linear transformation, h(20×1) is the output of the hidden layer, and b2 is the
offset of the linear transformation. Here, it is worth mentioning that we used
cross-entropy as the loss function in our ANN model, which was defined as

H ¼ �
Pn

i¼1 ylogŷ, where variable y is the label of the training data and ŷ ¼ z
is the model output. In general, cross-entropy measures the difference
between the real label (or real data) and model output, which can be treated
as the systematic error of our ML model and needs to be minimized during a
data training process. After the model training, W1, W2, b1, and b2 are
obtained. Afterwards, the well-trained models can be used for predictions

through the transition functionz ¼ W2
1

1 þ e�W1Xþb1
þ b2 , where X stands for the

testing subset. In the classifier, the value z would be rounded up to 1 or 0,
which corresponds to the existence or absence of a certain phase, respectively.

One-dimensional CNN. Figure 8 illustrates the topological structure of our
second ML model, which is the one-dimensional CNN with two hidden
layers. The Kernel size and stride are set to 3 and 1 for both convolutional
layers. LeakyReLU is used as the activation function for the two hidden
layers. For an input u, LeakyReLU uð Þ ¼ u if u � 0 and 0:01u if u < 0. The
input layer contains 13 features, which are the same as those for the
aforementioned ANN model. The first hidden layer consists of 64 channels,
each of which contains 11 neurons. Each neuron takes weighted values
from only three inputs in proximity. For instance, u1 ¼ LeakyReLUðWu

1 ðx1 þ
x2 þ x3Þ þ bu1Þ (W denotes weight, b denotes bias). Sixty-four channels are
stacked together as the first hidden layer (convolutional layer) with
different weights and biases in every of the 11 neurons. The second hidden
layer consists of 128 channels, each containing nine neurons. Each neuron
takes weighted values from three inputs in proximity. The 128 channels,
which contain different weights and biases for each of the nine neurons,
are stacked together as the second hidden layer (convolutional layer). The

output layer unstacks the 128 channels of second hidden layer neurons,
and then calculates two weighted sums (z1, z2) as scores for the
classification with a formula of zj ¼ Wz

1jv1 þWz
2jv2 þWz

3jv3 þ � � � þ

Wz
1152jv1152 (for j= 1, 2). The scores are normalized via σðzjÞ ¼

ez
j

P2

k¼1
ezk

(for j= 1, 2) where
P2

i¼1 σðzÞi ¼ 1 and σðzÞi 2 ð0; 1Þ. The cross-entropy

loss function was defined as H ¼ �
Pn

i¼1 y log γ̂T , where vector is the label

of the training data and y
_

ð1 ´ 2Þ ¼ ðσ1; σ2Þ is the model output.

Convolutional layers extract spatial correlations between certain features
and achieve the high and stable accuracy at cost of much more trainable
variables.

SVM. SVM with a radial basis function kernel is applied as the third ML
model. The kernel function is kðx; x0Þ ¼ expð�γ x� x0k k2Þ where γ ¼
0:4; 0:2; 0:2 for SS, AM, and IM, respectively. The regularization parameter C
is set to 10 for all three classes. Because there is a tradeoff between the
number of points misclassified and the robustness of the classification
among new data, we tuned the parameters to reach the highest
classification accuracy.
The ML model with one, three, and four features
To build the ML models with a partial set of the design parameters, we

utilized the ANN algorithm, as shown in Fig. 8. To be specific, the feature in
the one-feature model is Sid; the features in the three-feature model
comprise Sid, δ, and ∆Hmix; whereas the features in the four-feature model
comprise Sid, δ, ∆Hmix, and ∆χ.

Casting of bulk samples through Arc melting. We used pure metals with a
purity level higher than 99.9% to prepare the bulk samples (FeCrNi)10−x
(ZrCu)x (x= 1, 2, …, 8). The raw elemental materials, including Fe, Cr, Ni, Zr,

Fig. 7 The architecture of the machine learning model. The schematic for the design of the artificial neural network-based machine
learning model.
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and Cu, were first melted in a laboratory-scale arc-melting furnace with a
high vacuum of 8 × 10−4 Pa and a Ti ingot to soak up the remaining
oxygen. After that, the samples were cast into a Cu mold with the
dimension of 5 mm× 10mm× 50mm. For subsequent characterization,
the as-cast samples were cut into a proper size for grinding and polishing.

Preparation of ribbon samples through vacuum melt spinning. We used
metals with a purity level higher than 99.9% to prepare the ingots, which
had the compositions of (FeCrNi)2(ZrCu)8, (FeCrNi)1.5(ZrCu)8.5, and (FeCr-
Ni)1(ZrCu)9. The raw metals were melted and solidified to form the ingots
in a laboratory-scale arc-melting furnace, which had a vacuum as high as
8 × 10−4 Pa and contained a Ti ingot to soak up any residual oxygen in the
vacuum. Then the ribbon samples were prepared via single roller melt
spinning at a wheel surface velocity of 70m/s in a laboratory-scale
induction-melting furnace with a high vacuum of 8 × 10−4 Pa.

Deposition of thin films through co-sputtering. As shown in Fig. 9, the co-
sputtering technique was utilized with two targets, one being FeCrNi and
the other being ZrCu. Both the FeCrNi and ZrCu are of equal-atomic ratio
and with a purity level higher than 99.9%. The FeCrNi target was sputtered
on a direct-current source with a power of 200W, whereas ZrCu target was
sputtered on a radio-frequency source with a power of 50W. Argon with a
purity of 99.9% was applied as the protection gas with a pressure of
20mtorr after pumping the furnance to 9 × 10−6 torr. Eighteen pieces of
wafers with a size of 5 mm× 10mm were arranged as a single line from
the FeCrNi (left) side to the ZrCu (right) side. After a 40min co-sputtering, a
series of thin films with gradient components were prepared.

DATA AVAILABILITY

All data used in this manuscript are available from the authors on request.

CODE AVAILABILITY

All the codes used in this manuscript can be accessed via the following link https://

github.com/ZHOU-Ziqing/MLcode-for-HEAphase.

Received: 24 July 2019; Accepted: 2 December 2019;

REFERENCES

1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal ele-

ments: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303

(2004).

Fig. 9 The design of the high-throughput experiments. The
schematic diagram of the co-sputtering process used to deposit
our thin-film samples.

Fig. 8 The architecture of the machine learning model. The schematic of one-dimensional convolutional neural network-based machine
learning model.

Z. Zhou et al.

8

npj Computational Materials (2019)   128 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://github.com/ZHOU-Ziqing/MLcode-for-HEAphase
https://github.com/ZHOU-Ziqing/MLcode-for-HEAphase


2. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related

concepts. Acta Mater. 122, 448–511 (2017).

3. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater.

Sci. 61, 1–93 (2014).

4. Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. High-entropy alloy: challenges and

prospects. Mater. Today 19, 349–362 (2016).

5. MacDonald, B. E. et al. Rerch. JOM 69, 2024–2031 (2017).

6. Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases. (CRC Press:

Boca Raton, 2016). 323–329.

7. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural develop-

ment in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218

(2004).

8. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid-solution phase

formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

9. Li, H. F. et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-

entropy bulk metallic glass. Acta Biomater. 9, 8561–8573 (2013).

10. Cunliffe, A., Plummer, J., Figueroa, I. & Todd, I. Glass formation in a high entropy

alloy system by design. Intermetallics 23, 204–207 (2012).

11. Gao, X. Q. et al. High mixing entropy bulk metallic glasses. J. Non Cryst. Solids 357,

3557–3560 (2011).

12. Chen, Y. Y. et al. Corrosion properties of a novel bulk Cu 0. 5 NiAlCoCrFeSi glassy

alloy in 288 °C high-purity water. Mater. Lett. 61, 2692–2696 (2007).

13. Guo, S., Ng, C., Lu, J. & Liu, C. T. Effect of valence electron concentration on stability

of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

14. Wang, Z., Huang, Y., Yang, Y., Wang, J. & Liu, C. T. Atomic-size effect and solid

solubility of multicomponent alloys. Scr. Mater. 94, 28–31 (2015).

15. Ye, Y. F., Liu, C. T. & Yang, Y. A geometric model for intrinsic residual strain and

phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015).

16. Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties optimization of high-

entropy alloys. JOM 64, 830–838 (2012).

17. Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. Design of high entropy alloys: a

single-parameter thermodynamic rule. Scr. Mater. 104, 53–55 (2015).

18. Guo, S. & Liu, C. T. Phase stability in high entropy alloys: Formation of solid-

solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21, 433–446 (2011).

19. Yang, X. & Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-

component alloys. Mater. Chem. Phys. 132, 233–238 (2012).

20. Guo, S., Hu, Q., Ng, C. & Liu, C. T. More than entropy in high-entropy alloys:

forming solid solutions or amorphous phase. Intermetallics 41, 96–103 (2013).

21. Rajan, K. Materials informatics: an introduction. Inform. Mater. Sci. Eng. Data-

Driven Discov. Accel. Exp. Appl. 8, 1–16 (2013).

22. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration

of multi-principal element alloys for structural applications. Calphad Comput.

Coupling Phase Diagr. Thermochem. 50, 32–48 (2015).

23. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys.

Acta Mater. 48, 279–306 (2000).

24. Ng, C., Guo, S., Luan, J., Shi, S. & Liu, C. T. Entropy-driven phase stability and slow

diffusion kinetics in an Al 0. 5 CoCrCuFeNi high entropy alloy. Intermetallics 31,

165–172 (2012).

25. He, Q. F., Ye, Y. F. & Yang, Y. The configurational entropy of mixing of metastable

random solid solution in complex multicomponent alloys. J. Appl. Phys. 120,

154902 (2016).

26. He, Q. F., Ding, Z. Y., Ye, Y. F. & Yang, Y. Design of high-entropy alloy: a per-

spective from nonideal mixing. JOM 69, 2092–2098 (2017).

27. An, S. et al. Common mechanism for controlling polymorph selection during

crystallization in supercooled metallic liquids. Acta Mater. 161, 367–373 (2018).

28. Stillinger, F. H. A topographic view of supercooled liquids and glass formation.

Science 267, 1935–1939 (1995).

29. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition.

Nature 410, 259–267 (2001).

30. Wei, S., He, F. & Tasan, C. C. Metastability in high-entropy alloys: a review. J. Mater.

Res. 33, 2924–2937 (2018).

31. Takeuchi, A. & Inoue, A. Classification of bulk metallic glasses by atomic size dif-

ference, heat of mixing and period of constituent elements and its application to

characterization of the main alloying element. Mater. Trans. 46, 2817–2829 (2005).

32. Dong, Y., Lu, Y., Jiang, L., Wang, T. & Li, T. Effects of electro-negativity on the

stability of topologically close-packed phase in high entropy alloys. Intermetallics

52, 105–109 (2014).

33. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and

applications of machine learning in solid-state materials science. npj Comput.

Mater. 5, 83 (2019).

34. Bhadeshia, H. K. D. H., Dimitriu, R. C., Forsik, S., Pak, J. H. & Ryu, J. H. Performance

of neural networks in materials science. Mater. Sci. Technol. 25, 504–510 (2009).

35. Islam, N., Huang, W. & Zhuang, H. L. Machine learning for phase selection in

multi-principal element alloys. Comput. Mater. Sci. 150, 230–235 (2018).

36. Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-

entropy alloys. Acta Mater. 169, 225–236 (2019).

37. Boser, E., Vapnik, N., Guyon, I. M. & Laboratories, T. B. Training algorithm margin

for optimal classifiers. Proceedings of the 5th Annual ACM Workshop on Compu-

tational Learning Theory. 144–152 (1992).

38. Yeh, J. W. Physical metallurgy of high-entropy alloys. JOM 67, 2254–2261 (2015).

39. Guo, S. Phase selection rules for cast high entropy alloys: an overview. Mater. Sci.

Technol. 31, 1223–1230 (2015).

40. Butler, K. T. & Daniel, W. Review Machine learning for molecular and materials

science. Nature 559, 547–555 (2018).

41. Mizutani, U. Hume-Rothery rules for structurally complex alloy phases. MRS Bull.

37, 169–169 (2012).

42. Wang, Z., Guo, S. & Liu, C. T. Phase selection in high-entropy alloys: from none-

quilibrium to equilibrium. JOM 66, 1966–1972 (2014).

43. Lu, Z. & Li, J. Correlation between average melting temperature and glass tran-

sition temperature in metallic glasses. Appl. Phys. Lett. 94, 2008–2010 (2009).

44. Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10,

473–488 (1969).

45. Fukuhara, M., Takahashi, M., Kawazoe, Y. & Inoue, A. Role of valence electrons for

formation of glassy alloys. J. Alloy. Compd. 483, 623–626 (2009).

46. Takeuchi, T. et al. Free-energy analysis of the Zr-Ni-Al bulk metallic glass from the

local atomic arrangements of the relevant crystals. Mater. Trans. 46, 2791–2798

(2005).

ACKNOWLEDGEMENTS

The research of Y.Y. is supported by City University of Hong Kong with the grant

number 9610391 and by the Research Grants Council (RGC), the Hong Kong

government, through the General Research Fund (GRF) with the project number

CityU11213118 and CityU11209317.

AUTHOR CONTRIBUTIONS

Y.Y. supervised the project and conceived the idea. Z.Q.Z. collected and analyzed the

data with the ANN algorithm, derived the sensitivity matrix, and carried out the

experiments with the assistance of Q.F.H., D.Z.Y. and F.C.L. Y.J.Z. analyzed the data

with the CNN and SVM algorithm. Z.Q.Z., Y.J.Z. and Y.Y. wrote the manuscript. All

authors contributed to the discussion of the data.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41524-019-0265-1.

Correspondence and requests for materials should be addressed to Y.Y.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2019

Z. Zhou et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2019)   128 

https://doi.org/10.1038/s41524-019-0265-1
https://doi.org/10.1038/s41524-019-0265-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Machine learning guided appraisal and exploration of phase design for high entropy alloys
	Introduction
	Results
	Discussion
	Methods
	ML algorithms
	ANN
	One-dimensional CNN
	SVM
	Casting of bulk samples through Arc melting
	Preparation of ribbon samples through vacuum melt spinning
	Deposition of thin films through co-sputtering


	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


