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Abstract

Contrast enhancement algorithms have been evolved through last decades to meet the requirement of its objectives.

Actually, there are two main objectives while enhancing the contrast of an image: (i) improve its appearance for visual

interpretation and (ii) facilitate/increase the performance of subsequent tasks (e.g., image analysis, object detection,

and image segmentation). Most of the contrast enhancement techniques are based on histogram modifications,

which can be performed globally or locally. The Contrast Limited Adaptive Histogram Equalization (CLAHE) is a

method which can overcome the limitations of global approaches by performing local contrast enhancement.

However, this method relies on two essential hyperparameters: the number of tiles and the clip limit. An improper

hyperparameter selection may heavily decrease the image quality toward its degradation. Considering the lack of

methods to efficiently determine these hyperparameters, this article presents a learning-based hyperparameter

selection method for the CLAHE technique. The proposed supervised method was built and evaluated using contrast

distortions from well-known image quality assessment datasets. Also, we introduce a more challenging dataset

containing over 6200 images with a large range of contrast and intensity variations. The results show the efficiency of

the proposed approach in predicting CLAHE hyperparameters with up to 0.014 RMSE and 0.935 R2 values. Also, our

method overcomes both experimented baselines by enhancing image contrast while keeping its natural aspect.

Keywords: Local contrast enhancement, Contrast Limited Adaptive Histogram Equalization, CLAHE parameter

determination, Hyperparameter selection

1 Introduction
Image enhancement consists of image quality improve-

ment processes, allowing a better visual and computa-

tional analysis [1]. It is widely used in several applications

due to its capability to overcome some of the limitations

presented by image acquisition systems [2]. Deblurring,

noise removal, and contrast enhancement are some exam-

ples of image enhancement operations. The idea behind

contrast enhancement is to increase the dynamic range of

the gray levels in the image being processed [3]. It plays

a major role in digital image processing, computer vision,

and pattern recognition [4].
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Besides providing a better visual interpretation by

improving the image appearance, the contrast enhance-

ment may also be used to improve the performance of

succeeding tasks, such as image analysis, object detection,

and image segmentation [2, 4, 5]. In fact, it has contributed

in a variety of fields like medical image analysis, high-

definition television (HDTV), industrial X-ray imaging,

microscopic imaging, and remote sensing [6].

Most of the contrast enhancement techniques are based

on histogram adjusts, due to their straight forward and

intuitive implementation qualities [5]. A comprehensive

review of histogram-based techniques may be found in

[6]. These techniques are often categorized in global or

local techniques. The use of global contrast enhance-

ment may be not suitable for images whose local details

are necessary or for images containing varying lighting
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conditions. On the other hand, if the process is applied

locally, it is possible to overcome those limitations [4, 7].

The Contrast Limited Adaptive Histogram Equaliza-

tion (CLAHE) [8] is a popular method for local contrast

enhancement that has been showing powerful and useful

for several applications [4, 9, 10]. CLAHE has been exten-

sively used to enhance image contrast in several computer

vision and pattern recognition applications. In the medi-

cal field, it was successfully applied in breast ultrasound

and mammography image enhancement [11, 12], in cell

image segmentation [13, 14], in retinal vessel image pro-

cessing [15, 16], and in enhancement of bone fracture

images [17]. Beyond medical field, CLAHE was applied to

enhance underwater images [18, 19], to perform fruit seg-

mentation in agricultural systems [20, 21], and to assist

driving systems to improve vehicle detection [22], traffic

sign detection [23], and pedestrian detection [24].

The basic idea of CLAHE consists in performing the

histogram equalization of non-overlapping sub-areas of

the image, using interpolation to correct inconsistencies

between borders [8, 25]. CLAHE has also two important

hyperparameters: the clip limit (CL) and the number of

tiles (NT). The first one (CL) is a numeric value that

controls the noise amplification. Once the histogram of

each sub-area is calculated, they are redistributed in such

a way that its height does not exceed a desired “clip

limit.” Then, the cumulative histogram is calculated to

perform the equalization [7]. The second (NT) is an inte-

ger value which controls the amount of non-overlapping

sub-areas: based on its value, the image is divided into

several (usually squared) non-overlapping regions of equal

sizes. According to [7], for 512 × 512 images, the number

of regions is generally selected to be equal to 64 (NT =

[ 8, 8]). Both parameters (CL and NT) are exemplified in

Fig. 1.

Thus, the main drawback in CLAHE, as reported in [26, 27],

is an improper hyperparameter selection that leads to

decrease in image quality. The authors also state that the

quality of the enhanced image depends most on the CL

hyperparameter.

Most work relies on fixed hyperparameter values empir-

ically chosen to solve a specific problem [20, 28–30].

Nonetheless, an entropy-based method to automatically

determine CLAHE’s hyperparameters was proposed in

[26]. It takes advantage of the characteristics of two

entropy curves (CL per entropy and NT per entropy). The

method proposed by the authors determines the CL and

NT values as the points with the maximum curvature

in each entropy function curve. Obtaining these func-

tions requires to calculate the entropy for every CLAHE’s

output considering all possible combinations of CL and

NT. Although experimental results showed the proposed

approach is capable of enhancing the image contrast

with low deterioration, the process is computationally

impractical. Calculating the entropy values of all the pos-

sible combinations between these hyperparameters is an

unfeasible task. Also, the proposed hyperparameter sug-

gestion was poorly tested and validated, once only three

images were used in their experiments.

A hyperparameter tuning for CLAHE based on multi-

objective meta-heuristic was proposed by [25]. In addition

to entropy, as proposed in [26], the authors used the

Structural Similarity Index (SSIM) to find most promis-

ing CLAHE’s hyperparameters. Once SSIM is related to

the level of image distortion, the goal was to maximize the

information gain using the entropy while minimizing the

image distortion via SSIM. It was found that besides these

objective functions are contradictory, the use of different

contrast levels could highlight different structures present

in medical images, allowing specialists to handle different

visualization options automatically.

At the time this research was conducted, besides [26],

no other method to automatically determine adequate

CLAHE’s hyperparameters to a given image was found.

Considering the lack of solutions to this problem, espe-

cially fast ones, in this work, we present a learning-

based hyperparameter selection method for the CLAHE

algorithm called learning-based Contrast Limited Adap-

tive Histogram Equalization (LB-CLAHE). One of the

main reasons that led us to choose a machine learn-

ing supervised approach to solve this problem was per-

formance. While training a supervised classification or

regression model is a complex computational task, the

prediction task itself is substantially fast. Further, super-

vised machine learning methods have proven to be pow-

erful in solving image-related problems [31–33]. Thus,

we proposed a new supervised model, able to automat-

ically determine CLAHE’s hyperparameters for images

with different contrast distortions and scenarios.

It is important to mention that we are not proposing a

new or improved version of CLAHE, but a method to find

CLAHE’s hyperparameters. Therefore, during the experi-

ments, our method will be compared with other CLAHE’s

parametrization approaches.

The remaining of this work is organized into three

sections. In Section 2, the methodology used to build

and validate the proposed technique is described. After,

Section 3 are presented, followed by our Section 4.

2 Materials andmethods
Supervised learning is a machine learning (ML) task of

inducing models from labeled data. In other words, using

a training set composed of data samples with a defined

target, it is possible to induce a model to predict the tar-

get values for new unseen samples. In ML research field,

there are a wide range of algorithms able to deal with

supervised classification and regression tasks [34]. These

tasks differ in how they represent the target feature. In a
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Fig. 1 Overview of CLAHE’s main parameters (CL and NT). Example with NT =[ 4, 4] and CL = 0.02
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classification task, the target is one among several categor-

ical values, also called classes. If just two different values

are provided, it defines a binary classification problem. If

there are more than two, they will compose a multi-class

one. On the other hand, in a regression task, the target is

a continuous variable predicted by the model. Both types

of problems may be evaluated from new unseen data (the

test set) toward analyzing the predictive performance.

In this paper, we aim to build a well-performing regres-

sion model robust enough to predict the most promising

CLAHE’s hyperparameter to adjust an image based on its

features. Thus, it was required a suitable training set for

the model induction.

In the computer vision field, obtaining the desired out-

put/label to compose the training data is a roadblock.

In fact, the labeling of datasets made by images (image

dataset) is usually done manually by experts from a very

specific application. This task is known as a difficult duty,

especially in situations where a huge amount of examples

are required to build the model [35].

Therefore, to create an adequate labeled training set,

we automatically extract a set of features from images

and the expected CLAHE’s optimal hyperparameters. The

process relied on generating contrast distorted images

from ideal contrast ones. We defined a grid with CLAHE’s

hyperparameters CL and NT, and for each original image,

we evaluated each single combination of (CL, NT). The

CLAHE’s hyper-space considered in experiments is pre-

sented in Table 1. The selected values for CL range from

[ 0, 1] increased by a step of 0.001. For NT, the range is

between {2, 32} with a step = 2. Thus, each image was

evaluated by 1001 × 16 = 16016 different hyperparam-

eter settings. The pair of hyperparameters whose output

image was themost similar to the original one was defined

as the target value.

The overall flow of the proposed approach and exper-

imental methods, showing the dataset labeling process,

supervised model building, and validation steps, and the

LB-CLAHE usage, can be seen in Fig. 2. It is important

to highlight that the final application of the proposed

approach depends on just the induced model. In other

words, a given new image is adjusted using the hyper-

parameters predicted from the previously built model,

induced only once.

The experimental methods adopted in this paper are

presented in the following subsections. All the datasets

and source code developed are freely available1.

Table 1 Hyper-space considered in our experiments

Symbol Hyperparameter Type Range Step

CL Clip limit Numerical {0,...,1} 0.001

NT Number of tiles Integer {2,...,32} 2

2.1 Image datasets specification

Two image datasets were used in our experiments. The

first one, dataset 1, was composed by 246 contrast

distorted images from 54 ones. We merged two well-

known image quality assessment (IQA) datasets to build

the dataset 1: CSIQ [36] and TID2013 [37]. We gener-

ated the dataset 1with the most popular IQA datasets

in order to evaluate ourmethod in different scenarios with

quality distortions. Also, CSIQ and TID datasets were

used in several recent contrast-related works [5, 38, 39].

In order to improve the generalizability of the proposed

approach, and also to validate if it is facing more chal-

lenging scenes and distortions, we created another dataset

(dataset 2). In this new version, different from before,

we created distortions to every ideal image provided in

following IQA datasets: [40–46]. For each one of the

149 ideal images available, we created a set of 42 distor-

tions. Thus, dataset 2 was composed by 6258 contrast

distorted images.

The set of 42 distortions was built using contrast and

intensity variations. Each original image, considered as

ideal by literature, had its contrast changed by histogram

compression in six levels: {− 50%, 10%, 30%, 50%, 70%,

90%}. Furthermore, the mean intensity of every changed

level was also shifted in six histogram bins: {10, 30, 60} for

both left and right sides. In Fig. 3, all the contrast distor-

tions from a given original image (without intensity shift)

may be seen, while Fig. 4 depicts all intensity shifts of a

contrast distorted image.

The histogram compression procedure, used to build

the contrast distorted images, started by identifying the

range of image intensities, in other words, by the extrac-

tion of a distance between the leftmost and the right-

most histogram bin. Then, this distance was decreased or

increased to generate contrast distortions. We employed a

linear distribution to obtain new values of left, right, and

middle points for the compressed histogram. The Open

Source Computer Vision Library (OpenCV) 2 was used to

implement all distortions of dataset 2 images.

It is important to mention that, despite we used only

the intensity (grayscale) channel from hue, saturation,

and intensity (HSI) color space in our experiments, LB-

CLAHE can also be applied to colored red, green, and blue

(RGB) color space images. In this case, intensity chan-

nel must be, along with the original hue and saturation

channels, converted back to RGB after enhancement. This

process can be seen in Fig. 5.

2.2 Dataset labeling

The key point of our labeling process is to relate the

best pair of CLAHE’s hyperparameters automatically to a

given contrast distorted image aiming its correction. In

this way, we applied CLAHE with all its hyperparame-

ters combination over the distorted images. Next, were
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Fig. 2 Overall flow of the proposed approach and experimental methods
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Fig. 3 Contrast distortions in dataset 2. Original image (a), − 50% compression (b), 10% compression (c), 30% compression (d), 50% compression

(e), 70% compression (f), 90% compression (g)

compared with the original image, searching for the most

similar image pair. In other words, we tried all possible

hyperparameter settings to correct those distorted ver-

sions using the original image as the reference to find the

best pair of h = {CL, NT}. Figure 6 depicts the impact

of the hyperparameter values chosen to a given distorted

image, with (a) being the original/ideal, (b) being the dis-

torted one, and (c–e) being CLAHE outputs. Contrast was

increased less than desired in (c), optimally increased in

(d), and over increased in (e). It shows that it is important

to select adequate CLAHE hyperparameters for a given

image.

This process is analog to image similarity analysis, which

can be performed by different aspects. In this work, the

most important one was the similarity related to the image

quality, especially regarding the contrast. The IQA tech-

niques, which match this objective, can be split into three

groups: (i) full reference, (ii) reduced reference, and with

(iii) no reference [38, 47]. In a scenario where a refer-

ence image is available to be compared to another, the

full-reference techniques are preferred [38]. Therefore, we

used three common IQA full-reference evaluation mea-

sures: mean squared error (MSE), peak signal-to-noise

ratio (PSNR), and the structural similarity index (SSIM)

index [47, 48].

It is known that the entropy value (a statistical mea-

sure of randomness) of a gray-level image is quite related

with its contrast [26, 38, 49]. Thus, the entropy difference

between both images (corrected and original) may be use-

ful to identify images with similar contrast [49]. Here, we

called it gray level entropy difference (GLED).

The MSE, PSNR, SSIM and GLED performance mea-

sures present values from different ranges and scales. To

create a trustful method to compute an indication from

the metrics, we ordered the four metrics through calcu-

lating an average rank. Thus, the highest ranked sample

represents the most similar CLAHE/ideal image pair of

hyperparameters.

The automatic labeling process is computationally

expensive. A computer cluster composed of 18 computers

(Intel Xeon E5-2430v2 and 24 GB RAM), withWindows 7

and Matlab, was used for this purpose.

2.3 Image features

Once our samples are properly labeled with the best pair

of CLAHE’s hyperparameters, each distorted image needs
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Fig. 4 Intensity shifts of histogram bins in dataset 2. Contrast distorted image with 90% compression (a), 10 bins to right (b), 30 bins to right (c), 60

bins to right (d), 10 bins to left (e), 30 bins to left (f), 60 bins to left (g)

to be described. Thus, the ML algorithms may be used to

build models from the relations between image features

and their labels.

The features from images already provide useful infor-

mation for automatic classification and regression [50].

In our proposal, we explore a set of 28 features to pre-

dict effectively CL and NT values. These features may

be divided into four main sub-groups: spatial, histogram,

texture, and image quality.

As spatial image features (i.e., features extracted from

each (x, y) pixel of the 2D image), two statistical moments

(mean and standard deviation) and gray level entropy were

selected. Based on the image histogram (tonal distribu-

tion of a digital image), we extracted the second (standard

deviation), third (skewness), and fourth (kurtosis) statisti-

cal moments as suggested in [3, 51].

Image texture features provide information about the

spatial arrangement of intensities in an image. They have

been applied in a wide variety of image classification appli-

cations [52]. We used three common texture descriptors:

local binary patterns (LBP) [53], gray-level co-occurrence

matrix (GLCM) [52], and fast fourier transform (FFT)

frequency domain features [50, 54].

Full-reference IQA techniques can not be used to com-

pose the feature set, since an ideal image is requested

to perform them. In other words, considering an image

that needs to be corrected, in a real-life problem, the

ideal image is unknown. Thus, we used three no-reference

contrast-related IQA techniques to compose our feature

vector: statistical naturalness measure (SNM) [55], Mea-

surement of Enhancement by Entropy (EME) [56] and

global contrast factor (GCF) [57]. The complete list of the

image features used in experiments is described in Table 2.

All the image features were scaled between [ 0, 1] before

performing our regression task. This standardization

avoids any influence that different features’ magnitudes

could have during the model induction step. Besides,

regarding the computational costs to extract the image

features, the spatial and histogram feature groups calcula-

tion have the time cost of O(P) [58], being P the number

of pixels in the considered image. In the texture group,

both LBP and GLCM also present linear complexity con-

cerning the number of image pixels (O(P)) [58]. The FFT

transformation requires O(P logP) calculations to gener-

ate the frequency domain shifting [58]. All features in

the no-reference IQA group present time complexity of
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Fig. 5 Using LB-CLAHE with colored images

O(N) [55–57]. Therefore, the time complexity for extract-

ing image features is asymptotically dominated by the FFT

calculation, i.e., our feature extraction step has time com-

plexity ofO(NP logP), considering thatN images with the

same spatial resolution are going to be processed.

2.4 Supervised regression algorithms

We evaluated a total of five different regression algorithms

to determine which one would get the best performance

in automatic CLAHE’s hyperparameter prediction. The

choice was based on their extensive application in multi-

ple predictive tasks, and also presenting different learning

biases. In this way, the following algorithms were per-

formed in our experiments: classification and regression

tree (CART) [59], multilayer perceptron (MLP) artificial

neural network [60], support vector machine (SVM) [61],

random forest (RF) [62], and Extreme Gradient Boost-

ing (XGBoost) [63]. All the regression techniques were

performed using their standard hyperparameter settings,

as defined in the corresponding R packages. The follow-

ing sections briefly describe each one of the evaluated

regression techniques.

2.4.1 CART

Classification and regression tree (CART) [59] is a deci-

sion tree (DT) induction algorithm that builds binary

trees by recursively partitioning the data space into

orthogonal hyper-planes and fitting a simple predic-

tion model within each partition. DTs present good

predictive performance on several domains and model

interpretability [64]. Regression trees are used for depen-

dent variables that assume continuous or ordered dis-

crete values, with prediction error typically measured

by the difference between the observed and predicted

values. CART uses a generalization of the binomial

variance called the Gini index [59]. In our experi-

ments, we used the R package rpart [65] for building

CART models.
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Fig. 6 Automatic labeling process to find best CLAHE hyperparameter pair. Original image (a). distorted image (b). CLAHE with inacurrate

hyperparameters: CL = 0.01 and NT =[ 8, 8] (c). CLAHE with ideal hyperparameters: CL = 0.025 and NT =[ 4, 4] (d). CLAHE with inacurrate

hyperparameters: CL = 0.468 and NT =[ 16, 16] (e)

2.4.2 MLP

Multilayer perceptron (MLP) feed-forward network [60]

is an important class of artificial neural networks able to

deal with classification and regression problems. MLPs

are composed of multiple units (neurons), responsible for

computing and propagating information through the net-

work. These neurons are organized in layers, usually an

input layer (which just receives the input values), one (or

more) hidden layer(s), and an output layer. The informa-

tion is propagated through the network feed-forwardly

until the output layer. The back-propagation algorithm is

often used to train the MLP networks. MLPs have been

used to solve complex and diverse problems due to the

generality of their application [60]. The R RSNNS package

[66] was applied in our experiments.

2.4.3 SVM

Support vector machines (SVMs) [61] are kernel-

based algorithms that performs non-linear classifica-

tion/regression using a hyperspace transformation: it

maps the inputs into a high-dimensional feature space

where the problem is linearly separable. SVMs are known

to be robust in handling a wide variety of problems,

presenting high accuracy and capacity to treat high-

dimensional data. In this work, SVM implementation

from the e1071 R package [67] was used.

2.4.4 RF

Random forest (RF) [62] is an ensemble algorithm which

consists of independently growing decision tree-based

predictors, such as CART, on different subsets of train-

ing data. Different training sets are built for each tree

using random sampling with replacement (bagging). Each

tree also uses a subset of randomly chosen features. In

each tree, the samples not randomly chosen for train-

ing are called out-of-bag (OOB) cases. They could be

used to calculate an unbiased, internal, prediction error

metric called out-of-bag error (OOBE), also employed

in variables’ importance assessment [62]. For regression

problems, the outcomes are formed by taking the average

result over all trees in the forest. The randomForest R

package was used in experiments.
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Table 2 List of all image features extracted

No. Type Feature

01 Spatial Mean value of intensity image

02 Spatial Standard deviation of intensity image

03 Spatial Entropy of intensity image

04 Histogram Standard deviation of intensity image histogram

05 Histogram Kurtosis of intensity image histogram

06 Histogram Skewness of intensity image histogram

07–16 Texture Vector of local binary patterns (LBP) rotationally
invariant features

17 Texture Entropy of gray-level co-occurrence matrix

18 Texture Inertia of gray-level co-occurrence matrix

19 Texture Energy of gray-level co-occurrence matrix

20 Texture Correlation of gray-level co-occurrence matrix

21 Texture Homogeneity of gray-level co-occurrence matrix

22 Texture FFT energy

23 Texture FFT entropy

24 Texture FFT inertia

25 Texture FFT homogeneity

26 Image quality Statistical naturalness measure (SNM)

27 Image quality Measure of enhancement (EME)

28 Image quality Global contrast factor (GCF)

2.4.5 XGBoost

Extreme Gradient Boosting (XGBoost) [63] is a scal-

able end-to-end tree ensemble boosting machine learning

system based on the gradient boosting machine (GBM)

framework that has provided state-of-the-art results on

many problems. Sequentially, new trees are added to the

ensemble aiming to minimize the actual error gradient

(boosting) along a regularization term to avoid overfitting.

In fact, XGBoost was reported as the best prediction tech-

nique in several data mining competitions. We performed

our experiments using the XGBoost R package.

2.5 Evaluation measures

For model assessment, we used the root mean square

error (RMSE) and the determination coefficient
(

R2
)

eval-

uation measures. The RMSE was computed with the

ideal CLAHE’s hyperparameters determined through the

dataset and the predicted values by the regression model.

This metric is defined as the root of the quadratic dif-

ference between the true observed (yi) values and the

obtained (ŷi) ones for each sample i of the n evaluated

cases [68], as defined by Eq. 1. In our case, the y and ŷ val-

ues represented, respectively, the desired CLAHE param-

eters and its estimations made by the machine learning

models. It measures how near of the expected values are

the predictions made by the induced model.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 . (1)

The r-squared or R2 expresses the amount of the total

variation associated with the use of an independent vari-

able. Its values range from 0 to 1: the closer R2 is to 1, the

higher is the proportion of the total variation in the output

which is explained by introducing an independent variable

in the regression scheme [69]. In this way, R2 shows how

similar are the predicted values when compared with the

real expected, in our case, the CLAHE’s hyperparameters.

All these information regarding the experimental setup is

also presented in Table 3.

For dataset 1, regarding CL, best results were

achieved by XGBoost, followed by RF. Still, best results

while predicting the NT hyperparameter were achieved

by SVM, closely followed by RF. For dataset 2, RF

obtained the best results to both hyperparameters, fol-

lowed by XGBoost. It is possible to observe that, in gen-

eral, better results were observed in ensemble methods.

Worst results were reached by MLP, probably because it

relies on its tuning to achieve better results.

Table 3 Experimental setup

Element Choice

Datasets Dataset 1: 246 contrast distorted images

Dataset 2: 6258 contrast distorted images

Full-reference IQA
techniques

Mean squared error (MSE)

Peak signal-to-noise ratio (PSNR)

Structural similarity (SSIM)

Gray-level entropy difference (GLED)

Absolute mean brightness error (AMBE)

Visual information fidelity (VIF)

Image features Spatial (3 features)

Histogram (3 features)

Texture (19 features)

Image quality (3 features)

Supervised regression
algorithms

Classification and regression tree (CART)

Multi-layer perceptron (MLP)

Support vector machine (SVM)

Random forest (RF)

Extreme Gradient Boosting (XGBoost)

Evaluation measures Root mean square error (RMSE)

R-squared (R2)

Resampling method 10-fold cross-validation



Campos et al. EURASIP Journal on Image and Video Processing         (2019) 2019:59 Page 11 of 18

Overall predictive performance was not high while pre-

dicting NT. It is justified since image quality mainly

depends on the CL rather than NT [26]. Thus, different

NT values are capable to provide adequate images.

The RMSE supports the comparison of possible method

superiority through the application of the Friedman’s sta-

tistical test with significance level at α = 0.05. The null

hypothesis is based on the equivalent performances of

the algorithms considering the averaged RMSE on each

dataset. Looking for emphasizing a possible superiority

of an algorithm, we applied the Friedman’s statistical test,

but was not observed significantly different between them

(at p value = 0.1712). To select an algorithm to sup-

port the discussions related to image features and contrast

enhancement, we chose RF due to best position in Fried-

man’s rank and capability of understanding the model by

RF importance.

In this sense, the time complexity to build prediction

models for the CLAHE hyperparameters would be related

to the RF training cost. Non-prunned versions of tradi-

tional decision tree algorithms, such as CART, present

time complexity of O(vN logN), where v represents the

number of explaining features and N the number of train-

ing examples [59]. CART models are employed to com-

pose the RF tree ensemble. Nonetheless, at each split point

of the t trees in the forest, only s features are explored,

being the last ones selected at random. The t and s RF’s

hyperparameters are input by the user. Thus, the time

complexity of training a RF predictor is O(tsN logN). In

our solution, RF is trained twice, corresponding to each

of the CLAHE hyperparameters. Therefore, the compu-

tational costs of our solution are the combination of the

computations to extract the image features and to induce

the regression models. Thus, the total asymptotic time

complexity of our proposal is O(NP logP + 2tsN logN),

whenconsideringN images with the same spatial resolution.

The experiments were performed using the 10-fold

cross-validation strategy owing to support a fair compari-

son without overfitting.

3 Results and discussion
In this section, we present our main experimental results

and findings. First, we present the results regarding

the predictive performance of models from different

ML algorithms. Afterwards, based on the best model

performance, some results are discussed in the image

enhancement context. Finally, a visual comparison of our

method with [26] was performed.

3.1 Predictive performance

Table 4 presents results regarding the predictive perfor-

mance of the induced models for dataset 1 and for

dataset 2. There, we present RMSE and R2 values

achieved by the selected ML algorithms.

Table 4 Predictive performance of machine learning regression

algorithms for dataset 1 and dataset 2

Dataset Algorithms Clip limit Number of tiles

RMSE R2 RMSE R2

Dataset 1 CART 0.04 0.70 0.12 0.15

MLP 0.03 0.85 0.11 0.24

SVM 0.04 0.85 0.10 0.27

RF 0.03 0.86 0.11 0.25

XGBoost 0.01 0.93 0.13 0.22

Dataset 2 CART 0.04 0.63 0.17 0.09

MLP 0.05 0.56 0.16 0.14

SVM 0.04 0.61 0.17 0.15

RF 0.03 0.76 0.14 0.37

XGBoost 0.03 0.76 0.14 0.35

Best performances are highlighted

3.2 Image features importance

When using RF, by permuting the values of a feature in

OOB samples and recalculating the OOBE in the whole

ensemble, it is possible to address the RF variable impor-

tance on prediction error. In other words, in the case of

substituting the values of a particular feature by random

values result in error boost, the feature is related to the

positive problem comprehension. On the other hand, if

the resulting importance is negative, the evaluated feature

disrupts the task description and should be removed from

modeling. This procedure could be performed for each

feature toward explaining its impact [62].

We used the RF importance to investigate the contribu-

tion of each image feature in explaining the best CLAHE’s

hyperparameter settings. In Fig. 7, RF variable importance

of each feature is presented. In the case of no nega-

tive importance was obtained, no disrupted feature was

selected in to build the model.

For CL, statistical moments of intensity image his-

togram (features 4–6) were important. It is interesting

to note that feature 4 was important only to dataset 1

while features 5 and 6 were more important to dataset 2.

Other features like 19 (energy of gray-level co-occurrence

matrix), 22 (FFT energy), and 23 (FFT entropy) were

also important to both datasets. Despite the importance

peak of feature 10 in dataset 1, LBP features achieved

average importance values while predicting the CL hyper-

parameter. Different than expected, two of the entropy-

based features did not achieve high importance values:

3 (entropy of intensity) and 17 (entropy of gray-level

co-occurrence matrix).

For NT hyperparameter, results were slightly similar

with 22 (FFT energy) being the best parameter consid-

ering both datasets. Some other peaks were presented

by features 1 (mean value of intensity image) and 2
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Fig. 7 Features importance extracted from RF models, to both datasets and CLAHE hyperparameters

(standard deviation of intensity image), suggesting that a

good NT value may have some correlation with image

intensity.

Overall, no feature was useless at all. To have a faster

feature extraction process, removing the less important

features only may not be profitable. A better option is to

perform group-based feature selection, once the removal

of a complete group may have a higher impact on time

during feature extraction.

3.3 Full-reference image quality assessment

In addition to the four IQA techniques used in the

dataset labeling step, two more were used to eval-

uate the similarity between the ideal (original) and

obtained (contrast enhanced) images: absolute mean

brightness error (AMBE) [70] and visual informa-

tion fidelity (VIF) [71]. According to [72], most of

the existing contrast enhancement evaluation mea-

sures are not related to human perception of enhance-

ment quality. Thus, we selected AMBE and VIF due

to being full-reference techniques and exhibiting pos-

itive correlations with perceptual quality of contrast

enhancement.

Moreover, for comparison purposes, we used two base-

lines: (i) CLAHE-fixed hyperparameters and (ii) global

histogram equalization (HE). We fixed the CLAHE hyper-

parameters as CL= 0.01 and NT= [ 8, 8] (default of Matlab

and others). Results of this comparison, for dataset

1, can be seen in Fig. 8. Regarding GLED, MSE, and

AMBE, where lower values are desired, it is visible that

LB-CLAHE achieved better results in most cases. On the

other hand, regarding PSNR, SSIM, and VIF, higher val-

ues are desired. Likewise, LB-CLAHE achieved noticeably

better results in most cases.

Results were similar in dataset 2. As will be dis-

cussed further in this section, there were a small set

of images which LB-CLAHE was not superior. However,

considering average values, LB-CLAHE achieved superior

performance than the baselines to all the six IQA tech-

niques experimented in both datasets. These values can be

seen in Table 5. In general, there were no significant dis-

crepancy between the six IQA techniques regarding the

performance of the three compared methods.

Figure 9 shows samples obtained by LB-CLAHE with

high similarity considering the original image according

to the IQA techniques for different contrast scenarios.

It can be observed that in scenarios of adequate con-

trast or more than enough (D), LB-CLAHE simply do

not increase it. On the other hand, it properly enhances

an image with low contrast (A, B, and C), giving it a

natural aspect. Meanwhile, global HE and fixed CLAHE

over-enhanced or under-enhanced the images in the four

observed scenarios.

As seen in Fig. 8, there is a small set of images which

LB-CLAHE was not superior according to the major-

ity of IQA techniques. As exposed in Fig. 10, in the

first two scenarios (A and B), global HE was the best

among most metrics, while in the last two (C and D),

CLAHE with fixed hyperparameters was the best option.

It is important to mention that, even in these scenar-

ios, LB-CLAHE achieved adequate visual aspect. Also,

to all images where LB-CLAHE was not superior, it

was the second one with really close values to the best

option in all metrics. Average similarity values, obtained

between ideal (original) and obtained (contrast enhanced)

images, are presented in Table 5. To all images evalu-

ated in our experiments, LB-CLAHE achieved a suitable

visual aspect.
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Fig. 8 Performance of LB-CLAHE and baselines regarding IQA techniques. Lower values are desired for GLED, MSE, and AMBE, while higher values

are desired for PSNR, SSIM, and VIF
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Table 5 Average similarity values for dataset 1 and

dataset 2

Dataset Method SSIM PSNR VIF MSE GLED AMBE

Dataset 1 Global HE 0.73 16.73 0.73 2046.12 1.76 26.65

Fixed CLAHE 0.78 18.36 0.84 1075.52 0.50 12.35

LB-CLAHE 0.90 23.39 0.89 396.26 0.22 8.78

Dataset 2 Global HE 0.75 16.51 0.69 2277.92 2.00 28.60

Fixed CLAHE 0.77 16.48 0.74 1949.75 0.60 25.56

LB-CLAHE 0.86 19.83 0.82 1181.10 0.17 20.91

Higher values are desired for SSIM, PSNR,and VIF. Lower values are desired for MSE,

GLED, and AMBE

Best performances are highlighted

3.4 Visual comparison

We applied our method to the same set of images

proposed by [26]. Although a full-reference com-

parison is not possible due to irreproducibility

of their work, we could observe in Fig. 11 that

both methods achieved similar visual results to all

images.

Notwithstanding, the authors proposed a computation-

ally costly task toward executing CLAHE with all pos-

sible hyperparameter combinations to reach the result

for a single image. Different from [26], our method

extracts the image features to predict the hyperpa-

rameters and perform CLAHE once. Also, we proved

our method’s ability to enhance thousands of images

over different contrast and illumination scenarios, while

the method mentioned above was not extensively

tested.

4 Conclusions
In this paper, we proposed the LB-CLAHE: a learning-

based hyperparameter selectionmethod for CLAHE using

image features. We investigated the performance of our

proposal with some well-known image sets and by the

use of a huge distorted contrast image dataset. Several

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

Fig. 9 LB-CLAHE’s high performance according to the IQA techniques in different contrast scenarios. Heavy decrease in contrast (A), mean decrease

in contrast (B), slight decrease in contrast (C), increase in contrast (D). Ideal image (1), distorted image (2), global HE (3), fixed CLAHE with CL = 0.01

and NT =[ 8, 8] (4), proposed LB-CLAHE (5)
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a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

d1 d2 d3 d4 d5

Fig. 10 LB-CLAHE’s low performance according to the IQA techniques. Best results achieved by global HE (A) and (B). Best results achieved by fixed

CLAHE (C) and (D). Ideal image (1), distorted image (2), global HE (3), fixed CLAHE with CL = 0.01 and NT =[ 8, 8] (4), proposed LB-CLAHE (5)

supervised regression algorithms were compared to build

a suitable performance model. The best results were

achieved by ensemble-based models induced with RF and

XGBoost algorithm. Analysing the impact of each image

feature in hyperparameter prediction, the RF impor-

tance showed that no feature significantly stood out

from the others. The experimental result confirmed that

LB-CLAHE, a learning-based hyperparameter selection

method for CLAHE, achieved superior performance in

comparison to the histogram equalization and CLAHE

with fixed and standard hyperparameters. Our method

was capable of adjusting the images from different sce-

narios, contrast, and illumination distortions. Further-

more, once the model was created, it can be applied

to quickly suggest the CLAHE’s hyperparameters for a

new image with superior performance over the compared

methods.

4.1 Limitations and future works

Although experiments were conducted with thousands

of real images, with different contrast levels and com-

plex scenarios, our method may need some adapta-

tion to be successfully applied in more specific com-

puter vision applications. In future works, we intend

to test our method’s ability to improve the perfor-

mance of subsequent computer vision tasks (especially

object detection). Also, we intend to better investi-

gate group-based feature selection in our solution, aim-

ing to make it faster and more suitable for real-time

applications.
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a

b

c

Fig. 11 Visual comparison between the entropy-based method proposed in [26] and LB-CLAHE. Office1 image (a), aerial image (b), announce

image (c)

Endnotes
1http://www.uel.br/grupo-pesquisa/remid/?page_id=145
2http://www.opencv.org
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Campos et al. EURASIP Journal on Image and Video Processing         (2019) 2019:59 Page 18 of 18

Za Automatiku, Mjerenje, Elektroniku, Računarstvo I Komunikacije. 53(4),
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