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Machine learning identifies a strong 
association between warming and 
reduced primary productivity in an 
oligotrophic ocean gyre
Domenico D’Alelio  1,5*, Salvatore Rampone  2,5, Luigi Maria Cusano2, Valerio Morfino2, 
Luca Russo1, Nadia Sanseverino2, James E. Cloern3 & Michael W. Lomas4*

Phytoplankton play key roles in the oceans by regulating global biogeochemical cycles and production 
in marine food webs. Global warming is thought to affect phytoplankton production both directly, by 
impacting their photosynthetic metabolism, and indirectly by modifying the physical environment in 
which they grow. In this respect, the Bermuda Atlantic Time-series Study (BATS) in the Sargasso Sea 
(North Atlantic gyre) provides a unique opportunity to explore effects of warming on phytoplankton 
production across the vast oligotrophic ocean regions because it is one of the few multidecadal records 
of measured net primary productivity (NPP). We analysed the time series of phytoplankton primary 
productivity at BATS site using machine learning techniques (ML) to show that increased water 
temperature over a 27-year period (1990–2016), and the consequent weakening of vertical mixing in the 
upper ocean, induced a negative feedback on phytoplankton productivity by reducing the availability 
of essential resources, nitrogen and light. The unbalanced availability of these resources with warming, 
coupled with ecological changes at the community level, is expected to intensify the oligotrophic state 
of open-ocean regions that are far from land-based nutrient sources.

Phytoplankton play key roles in the oceans by regulating global biogeochemical cycles and production in marine 
food webs1,2. Global warming is thought to a�ect phytoplankton production both directly, by impacting photo-
synthetic metabolism3, and indirectly by modifying the physical environment4. Interest in the impact of global 
warming on phytoplankton has grown during the last decade5, with observations of synchronous increases of 
surface ocean temperature and an apparent global decrease of phytoplankton biomass, primarily inferred from 
changes in chlorophyll a (Chl a) concentration6,7.

However, the conclusion about a decrease of phytoplankton across the last century is weakly supported 
because of the paucity of data before the 1980s8, and because some observational studies have shown an opposite 
trend while others revealed that Chl a declines were partly due to photo-acclimation: other photosynthetic pig-
ments rose to dominance through changes at the cellular level and alternations between di�erent phytoplankton 
groups9,10. �us, the relationship between ocean physics and phytoplankton blooms can be mediated by a number 
of ecological factors, such as inter-group competition, which confound our understanding of long-term produc-
tivity trends11,12.

Most studies on the relation between primary production and global change have been grounded in obser-
vations of phytoplankton biomass, rather than direct measurements of primary productivity. However, phyto-
plankton biomass is determined by multiple sources and sinks and a myriad of mortality factors (e.g., grazing by 
zooplankton and infection by parasites)13. As a result, changes in phytoplankton biomass over time do not nec-
essarily parallel changes in the rate of primary production, i.e. the primary productivity, which re�ects the level 
of photosynthetic activity of planktonic microalgae and is strongly linked to the availability of primary resources, 
such as nutrients and light energy.
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From this conceptual basis, global warming is thought to reduce vertical mixing in the oceans and its trans-
port of nutrients from deep waters to the photic zone. As a result, primary productivity is expected to decrease 
in a warming ocean. Although empirical evidence is not su�ciently robust to fully validate this concept, sev-
eral model examples yield results that are consistent with it14,15. A main limitation of these models is that they 
are based on phytoplankton data taken from the ocean surface. Further validations are possible with long-term 
data representative of changes over the photic-zone depth that extends well below the surface in oligotrophic 
oceans16.

Stratification is classically considered as a main mechanism controlling variability in ocean productivity 
because it determines the availability of light and nutrients17, especially in those sectors far from continen-
tal shelves where surface water cannot be replenished of nutrients from land runoff18. One such region is 
the Sargasso Sea, which hosts the Bermuda Atlantic Time-series Study (BATS) that has measured primary 
productivity over a period of multiple decades16 (Fig. 1). The BATS series provides a unique opportunity 
to explore effects of warming and, thus, reduced stratification, on primary productivity across the vast 
oligotrophic ocean regions because it is one of the few multidecadal records of measured net primary pro-
ductivity (NPP).

In this paper, we analysed an oceanographic dataset from BATS that represents variability over the entire 
photic zone (upper 120 m depth) to search for mechanistic links between primary productivity, vertical mixing, 
and availability of nutrient and light resources. We analysed a time series of phytoplankton primary productivity 
over a 27-year period (1990–2016) in comparison with physical-chemical data, using both linear statistics and 
machine learning techniques (ML). Finally, we discuss the ecological implication of changes in phytoplankton 
activity potentially driven by global warming.

Figure 1. Study system and working hypothesis: productivity changes at the BATS site. (A) Geographic 
location of the BATS time series site in the western boundary of the North Atlantic gyre. (B) Vertical extension 
of the sampling site, in comparison with the shelf pro�le (the surface water layer is shown in green). (C) Factors 
that potentially a�ect primary production and a conceptual scheme for the decrease of phytoplankton biomass 
in the surface waters as warming proceeds.
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Physical-Ecological Context and Study Design
�e Bermuda Atlantic Time-series Study is a biogeochemical time-series with a focus on how plankton impact 
the cycling of carbon and other biogeochemically relevant elements. �e BATS station is located in the north 
western quadrant of the Sargasso Sea, 82 km south east of Bermuda (31°40′N, 64°10′W), where monthly sampling 
(fortnightly during the winter/spring mixing period) began in October of 198819. �e maximum depth is ~4680 m 
in this area, a vast and deep region of the subtropical sector of the North Atlantic.

�e Sargasso Sea is isolated from other basins by an ocean gyre, a clockwise oceanic circulation extending 
from the Gulf of Mexico to the Azores (e.g.20,21). �is condition isolates the BATS site from terrigenous in�uences 
originating from the East Coast of the United States (Fig. 1). �us, the upper Sargasso Sea has oligotrophic char-
acteristics, with nutrient concentrations at or below the detection threshold with standard methods. For instance, 
the highest nitrate and phosphate concentrations are detected below 80–100 m and 150–100 m, respectively19.

As a consequence, the clear water condition results in a deep euphotic zone of roughly 100 m, so phytoplank-
ton primary production is highly dependent on events of deepened vertical circulation that transport nutrients to 
the surface. �ese environmental characteristics make BATS site a valuable case-study for investigating relation-
ships between phytoplankton productivity, water strati�cation and mixing, as suggested by previous observations 
of both year and year-over-year variabilities at that site16 (Fig. 1).

From the BATS record, we constructed a 1990–2016 time series from measurements made in the photic zone 
(0–120 m). �e time series included measurements of: (i) net phytoplankton productivity (integrated between 0 
and 120 m); (ii) water temperature (0–120 m mean); (iii) degree of strati�cation (as the ratio between densities at 
20 and 120 m); (iv) depth of the mixed layer; and (v) concentrations of macronutrients (i.e., NO3, PO4, SiO2,) and 
four photosynthetic pigments (i.e., chlorophyll a and b, fucoxanthin, and lutein plus zeaxanthin), all integrated 
over the upper 120 m (Fig. 2A). We explored changes in these variables over time, with a focus on interannual 
variability, with traditional and more advanced (machine learning) statistics (detailed procedures are provided 
in the Methods).

We �rst explored long-term trends over the full time series by applying the nonparametric Seasonal Kendall 
test to physical/chemical/biological data aggregated by month. �is step revealed the presence or absence of 
signi�cant changes over the full record, and identi�ed possible associations between variables based on their 
co-variance in time. Next, we applied the same trend test on sequential 10-year windows of the data series to 
identify decadal patterns of change that occurred within the complete series. �is step is useful, for example, in 
identifying oscillations within a series having a long-term trend22.

Guided by these analyses, we then applied linear and non-linear machine-learning (ML) tools to the 
physical-chemical-biological dataset over the full record to: (i) test the associations between variables with more 
robust mathematical methods, (ii) identify the mathematical laws (i.e. equations, say, functions) that de�ne inter-
relations between variables, and (iii) search for possible mechanisms underlying the observed patterns.

In general terms, we employed the so-called supervised machine learning, suitable for time series forecast-
ing23, in which an algorithm ‘learns’ to derive the mapping function between a number of input variables (x) 
and one output variable (y). �e goal is to approximate the real underlying mapping so well that, using the �nal 
function, it is possible to use new input variables to predict the unknown output variable. In our speci�c case, the 
net primary productivity was the output variable.

Among ML techniques applied herein, the Genetic Programming24 was the most sophisticated one: it is based 
on ‘evolving’ algorithms25, which generate and evolve unknown functions automatically, usually represented as 
tree structures, which can both mutate and reciprocally recombine, as it happens with the evolving DNA26. �e 
�nal equation of each ML experiment was tested with a sensitivity analysis that allowed us to identify the di�er-
ential impact exerted by all the potential input variables on NPP.

Results and Discussion
Temperature and productivity trends. �e analysis of the whole dataset, employing traditional statistics 
on the monthly series, is shown in Figs. 2, 3 and Tables S1 and 2. Along with raw data (Fig. 2A), we also show 
the long-term series of annually averaged data (Fig. 2B). �is record showed large interannual variability of all 
variables, revealing patterns more complex than simple and synchronous monotonic changes in time. Trend 
analysis identi�ed highly signi�cant long-term changes in only two variables as: temperature increase and NPP 
decrease (p < 0.001; Table S1). Phosphate concentration also showed a positive trend that was statistically signif-
icant (p < 0.001), but this result was less reliable because it was driven by one isolated spike in the dataset at the 
end of the series. Slightly signi�cant trends (p < 0.05) were detected for concentrations of silicate (negative trend) 
and chlorophyll b (positive trend). No signi�cant trend was identi�ed for the mixed-layer depth or the density 
gradient.

As further evidence of the putative association between temperature and NPP, the time-windowed analysis 
identi�ed an opposite covariance of these variables over the whole record (Fig. 3). Positive trends in temperature 
were detected in the periods 1994–2004 (p < 0.01) and 2007–2016 (p = 0.02), with the �rst being the decade of 
fastest warming. Positive trends of NPP were detected over the period 1993–2003 (p < 0.01), in agreement with 
analyses of Saba and co-authors27 and Lomas et al.16 who reported a 2% increase per year in NPP from 1989 to 
2007. However, our analysis of the 1990–2016 record identi�ed two eras of NPP decrease a�er 2007: 1999–2010 
(p = 0.01), and 2005–2016 (p < 0.01), with the fastest decrease occurring between 2007 and 2016. �ese results 
suggest the possibility of a biogeochemical transition at the BATS site beginning in the mid-2000s.

Based on our working hypothesis, the overall negative NPP trend could be related to the long-term changes in 
the physical properties of the water column, driven by the multi-decadal rising of temperature in the photic zone. 
However, as revealed by the time-windowed analysis, the fastest decade of decreased NPP occurred at the end of 
the record, while the fastest temperature increase occurred from 1994–2004. �us, even though 2010–2016 was 
the period of highest heat accumulation in the upper (<−700 m depth) Atlantic Ocean over the last 150 years28, 
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we cannot attribute the largest drops in NPP (occurring in the last decade of the time series) solely to warming 
because there was an earlier decade when temperature increased at a faster rate. One possible explanation for this 
observation is that the fast warming between 1995 and 2004 induced a a physiological response in phytoplankton 
(e.g., changing C:P ratios in cells) that maintained high NPP levels, whereas the following further warming led to 
conditions outside the cells’ physiological range and, thus, the collapse of NPP. However, as a general considera-
tion, mechanistic interpretations should be limited at this stage because of potential inter-dependencies of several 
variables that can a�ect NPP.

Mechanisms behind productivity trend. Ocean monitoring is increasingly applied to use observed 
dynamics of physical-chemical variables to hindcast, and eventually forecast, the dynamics of key processes such 
as primary productivity. However, oceanographic databases o�en include sparse and missing values of variables 
having large-amplitude �uctuations and high variance. As a result, these datasets contain weak signals when 

Figure 2. Long term series at the BATS station. (A) Time series for the environmental and biological variables 
investigated herein. (B) Time series of annual means from 1990 to 2016; units in the y-axis are the same as in (A).
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explored with traditional statistical techniques, which basically work under the assumption of linearity. In fact, 
ecological processes are driven by nonlinear responses to perturbation29,30, such as changes in community com-
position, physiological acclimation and evolutionary adaptation to change, which can be fast and dramatic in 
phytoplankton31. Moreover, due to the complexity of plankton communities, environmental factors can a�ect 
key functional groups both directly and indirectly, e.g. through indirect e�ects playing at community level32, and 
long-term ampli�cations occurring at ecosystem scale33.

To explore mechanistic relationships between phytoplankton productivity, the chemical environment, and 
strati�cation dynamics, and to identify the mathematical laws mapping those relationships, we applied di�erent 
categories of ML techniques to the BATS dataset. Results from ML are summarized in Table 1, showing corre-
lation coe�cients between measured and mathematically-predicted NPP and the Mean Absolute Error (MAE) 
as a metric of model skill34. Among all techniques, the best match (highest correlation, smallest MAE) between 
measured and predicted NPP was obtained from Genetic Programming (GP), and we discuss herein the outcome 
of that analysis in detail. Nonetheless, we must note that the best performing ML method still has a 25% error. 
�is re�ects the complexity of oceanic systems, including many other potential driving factors that are missed 
from our analysis, such as biological interactions and algal physiological plasticity that can have cascading e�ects 
on ocean biogeochemistry33,35–37.

�e match between observed and predicted NPP by the ten di�erent GP experiments is shown in Fig. 4 (see 
also equations in Methods). Most equations from ML experiments were successful at predicting NPP based on 
inputs of the physical/chemical/biological variables we considered. In seven out of ten experiments, the corre-
lation coe�cient between predicted and measured NPP was higher than 0.7 (Fig. 4A). As a main driving factor, 
temperature negatively impacted NPP, as it showed a minus sign in the equations derived in nine of the ten 
experiments (Fig. 4B, Tables S4–13). When considering the sensitivity analysis, deriving from a 10-fold validation 
procedure performed for each experiment, the negative impact of temperature on NPP was 100% probable in 
each experiment. �is observation veri�es the strong dependence of NPP variability on temperature at the BATS 
station over the 1990–2016 observation period, consistent with the long-term trend analysis above. However, 
unlike trend analysis, ML allowed us to analyse the impact of other, potentially interconnected variables on net 
primary productivity that did not show long-term trends.

For instance, the density gradient negatively impacted NPP in eight out of ten experiments and this impact 
was 100% probable, based on 10-fold validation (Fig. 4B, Tables S4–13). �is means that, over the whole period of 
observation, the smallest NPP coincided with the highest density di�erences between the surface and deep layers. 

Figure 3. Associated trends of temperature and net primary productivity at the BATS site. �e annual averaged 
time-series of temperature and net primary productivity (NPP) are shown, in comparison with the results of 
time-windowed Seasonal Kendall tests (window = 10 years) conducted on the monthly-averaged time series. 
In the uppermost plot, red boxes highlight periods of signi�cant warming; in the lowermost plot, green and 
blue boxes highlight periods of signi�cant increasing and decreasing of NPP, respectively. In both plots, arrows 
indicate overlapping between subsequent windows showing statistically signi�cant ten-years trends.

Method
Correlation 
coe�cient

Mean absolute 
error

Gaussian Processes (Linear Kernel) 0.65 74%

Linear Regression Model 0.64 73%

Multilayer Perceptron (Automatic) 0.28 122%

Random Forest 0.523 81%

Support Vector Machine 0.63 77%

Multilayer Perceptron (Manual) 0.72 43%

Genetic Programming 0.70 25%

Table 1. Statistical tests applied to BATS dataset (machine learning). Machine learning techniques utilized in 
the present study and applied to the BATS dataset (See Methods).
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�is association reinforces the hypothesis that NPP decreased between mid-2000s and 2016 due to the parallel 
stabilization of the water column as strati�cation intensi�ed. However, we must note that the depth of the mixed 
layer (MLD) did not show the same in�uence on NPP as the density gradient. A�er ML, MLD was present in the 
�nal equation in only three out of ten experiments and in two of them it showed a signi�cantly negative impact 

Figure 4. Results of genetic programming analyses on the BATS dataset. (A) Comparisons between observed 
values of net primary productivity (NPP) and those predicted by ten di�erent GP experiments; the regression 
coe�cient ‘r’ and the Mean Absolute Error ‘E’ are indicated for each experiment. �e Mean Absolute Error 
in Table 1 is the average of values indicated in this �gure. �e experiments with the best match between real 
and predicted data are in bold. (B) Synthetic representation of the impact of di�erent variables (N = nitrates; 
P = phosphates; Lut-Zea = lutein-zeaxanthin; Si = silicates; J-day = Julian day; Y-day = the day of the year, i.e. a 
parameter used to express the progress of seasons; T = temperature; MLD = mixed layer depth, ∆D = density 
gradient; Chl b = chlorophyll b; Chl a = chlorophyll a; Fuco = fucoxanthin) on net primary productivity NPP, 
according to ten GP experiments, coded as (1–10) in the graphs; green and blue arrows indicate either positive 
or negative impacts of a variable on NPP, respectively; arrow thickness is proportional to the magnitude of the 
impact.
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(see experiments #2, 10; yet, in exp. #3 MLD could impact NPP both positively and negatively with the same 50% 
probability; Fig. 4B, Tables S4–13). �e apparent disconnect between the density gradient and the mixed-layer 
depth can be explained as follows.

Phytoplankton productivity in the open ocean is regulated by the transport of nutrient-rich deep waters to the 
photic zone. �is transport is mediated by vertical mixing that is damped by thermal strati�cation13. Based on 
our analyses, NPP is negatively impacted by surface warming and its strengthening of strati�cation, measured as 
the density gradient. GP results indicate that MLD had little e�ect on NPP, suggesting that other factors, such as 
the rate of mixing and not its absolute vertical extension, are more determinant in the production dynamics17. For 
example, if mixing is slow enough, due to a stronger density gradient, nutrients in the photic zone are exhausted 
more quickly, thus limiting phytoplankton productivity.

Analogous to the density gradient, Julian day was also well represented in the �nal equations derived from GP: 
this variable was included in the outcome of all ten experiments and exerted a strong and negative impact (prob-
ability = 100%) over NPP in eight of them (Fig. 4B, Tables S4–13). In this respect, GP con�rms the long-term 
decrease of NPP – i.e., temperature increases and NPP decreases as the observations extend over time.

On the contrary, the day of the year (Y-day) – i.e. an independent variable representing seasons in the math-
ematical equation from GP – showed no e�ect on NPP. �is result could stem from the fact that the codi�cation 
of the Y-day from 1 to 365 is not adequate, because it could fail to convey the cyclical character of the seasonal 
changes, unless it is transformed using periodic functions (e.g. Gregor et al.38). We addressed this point by run-
ning GP with transformed Y-day data, but this operation yielded lower predictive power: in this way Y-day had a 
forced proportionality with temperature, resulting in a weak correlation between measured and predicted NPP 
(MAE > 300%). As a matter of fact, formulas deriving from genetic programming (see the ten GP equations in 
the methods section) identi�ed no role played by annual periodicity in driving the long-term trend of primary 
productivity. �e trend of decreasing NPP was mainly associated with interannual and decadal variability of con-
trolling factors, as already indicated by our trend analysis using linear statistics.

In synthesis, based on GP analysis, temperature, strati�cation and time (expressed as Julian day) were highly 
statistically interrelated – i.e., they all showed negative associations in the mathematical formulation of NPP as a 
function of all the other variables (see GP equations in Methods). �ese three variables exerted a similar impact 
on NPP (see sensitivity analyses results in Tables S4–13).

Unlike temperature and strati�cation, the concentrations of pigments Chl a and fucoxanthin exerted a pos-
itive impact on NPP, with Chl a showing a 100% sensitivity in six out of ten experiments, and fucoxanthin in 
seven out of ten (Fig. 4B; see also equations in Methods and sensitivity analyses results in Tables S4–13). �is 
suggests that the largest increments of phytoplankton productivity in the Sargasso Sea were generated by blooms 
of eukaryotic microalgae (i.e., diatoms which contain fucoxanthin), which reach the highest biomass peaks at 
the BATS station39. However, since Chl a and fucoxanthin are positively associated with NPP, the long-term 
productivity decrease could be explained by weakening of phytoplankton blooms during the investigated period. 
Lutein-zeaxanthin, which is diagnostic of Synechococcus cyanobacteria, also exerted a positive but smaller mag-
nitude impact on NPP (100% positive sensitivity was gathered in four experiments only, Fig. 4B; Tables S4–13). 
Chl b, diagnostic of Prochlorococcus cyanobacteria, had no association with NPP.

Ocean chemistry and productivity decrease. Our results are consistent with previous studies showing 
that both eukaryotic and prokaryotic microalgae drive phytoplankton biomass variability at the BATS site. Based 
on previous studies, the relative contributions from eukaryotes/prokaryotes can change in response to: (i) sea-
sonal hydrodynamic modi�cations in the water column (production is generally higher during winter-spring), 
and (ii) shi�s in the dominant circulation regime occurring in the Sargasso Sea over multi-annual time scales (i.e., 
relating to the North Atlantic Oscillation)39.

However, at both annual and multi-annual time scales, phytoplankton composition depends on the state of the 
chemical environment, i.e., which nutrients are present and at what concentrations and supply rates13. In this con-
text, nutrient remineralization plays an important role in open-ocean productivity, by driving processes under-
lying NPP trends. Based on our ML analyses, nitrates are the only inorganic compound exerting a signi�cant 
impact on primary production in the Sargasso Sea, while phosphates and silicates do not (the former never being 
signi�cant and the latter showing a 100% positive sensitivity in only one experiment; see Fig. 4; Tables S4–13). 
Furthermore, since ML analysis was based on raw data points, we can reliably exclude that the analysis of the 
association between NPP and phosphates was a�ected by the single and isolated spike shown by the latter at the 
end of the time series (see Fig. 2A).

Thus, nitrates showed a significant positive impact on NPP (100% sensitivity) in five out of ten 
ML-experiments, and these nutrients were interrelated with pigments (they all had positive coe�cients in the 
equations resulting from GP). �is suggests that higher concentrations of nitrates were essential to drive blooms 
of phytoplankton groups having Chl a and fucoxanthin, such as diatoms. �us, a decrease of nitrate supply to 
surface waters by the intensi�cation of strati�cation would have reduced phytoplankton bloom magnitude in the 
photic zone. Conversely, the lack of in�uence of phosphates and silicates on NPP, revealed by GP results, could 
be explained as follows.

Firstly, phosphate is quickly re-mineralised and, therefore, made biologically available in the upper 50 m of 
the water column of the observed region40. �is fast recycling would limit the negative impact exerted by the 
enhanced strati�cation on phosphate replenishment in the photic zone. In addition, changes in phytoplankton 
composition due to the relative increase of prokaryotes (see the higher values of Chl b, in comparison to Chl a, 
during the last decade of the BATS series; Fig. 2) can change phytoplankton C:P ratios to an extent that they need 
50–67% less phosphates to maintain the same level of NPP35.

Secondly, silicates are essential for some eukaryotic microalgae to build exoskeletons, but concentrations in 
the upper 100 m of the Sargasso Sea are never depleted to levels observed for nitrates19. �e surface ocean is 
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under-saturated in silicate because the frustules of dead diatoms dissolve rapidly and release Si that is quickly 
assimilated by living diatom cells that require low concentrations to support vegetative growth41,42.

Concluding Remarks
Our analyses of a 27-year oceanographic observational record show that a temperature increase of +0.021 °C 
per year was synchronous with a phytoplankton-productivity decrease of −5.6 mg C m−2 d−1 per year in the 
sub-tropical Sargasso Sea. �ese changes likely modi�ed biogeochemical cycles at a regional scale and, eventually, 
induced important ecological changes in those marine systems43.

Our analyses also explain why full understanding of NPP trends and their implications requires consideration 
of both ecological and biogeochemical processes, in addition to the state and dynamics of chemical and physical 
variables that have been the focus of most studies (Fig. 5).

Machine learning results suggest that pigments Chl a and fucoxanthin (indicators of community composition) 
act in synergy with nitrates (a potentially limiting factor) in driving NPP at BATS. However, silicates have a much 
weaker association and phosphates have no association with NPP changes. �ese observations can be explained 
by several factors, including:

 (i) higher plasticity of phytoplankton cells in their P-storage than N-storage, which makes N a local nutrient 
control for all phytoplankton);

 (ii) the quantitatively important, but poorly understood and measured, roles of dissolved organic N and P; and
 (iii) a weak regulative role played by Si relative to other nutrients.

�e ML-based associations between water temperature, strati�cation and primary productivity, plus other 
systemic properties such as nutrient concentrations and photosynthetic pigments in the Sargasso Sea at BATS 
station (Fig. 5) validate simulations with biogeochemical models that show a negative e�ect of global warming on 
phytoplankton activity through its in�uence on vertical circulation in the surface ocean14,15 (Fig. 1).

Finally, our results highlight the urgent need to couple long-term ocean monitoring with short-term meas-
urements of key processes, eventually employing next-generation techniques like meta-omics, to strengthen our 
mechanistic understanding of past trends in order to forecast the state of future oceans44,45.

Methods
Data. Data used in this study were downloaded from http://bats.bios.edu/bats-data/. Methods pertaining to 
the sample collection and analysis and data production are available in19. �e analyses presented herein consid-
ered data collected from 1990 to 2016.

Most of the variables we analysed were expressed as depth-integrated values. �is choice was driven by the fact 
that we focused on NPP, which is a vector quantity – it can assume either positive or negative values (e.g., when 

Figure 5. Systemic impact on net primary productivity at the BATS site. Overall impact of di�erent variables 
(N = nitrates; P = phosphates; Lut-Zea = lutein-zeaxanthin; Si = silicates; J-day = Julian day; Y-day = the day 
of the year; T = temperature; MLD = mixed layer depth, ∆D = density gradient; Chl b = chlorophyll b; Chl 
a = chlorophyll a; Fuco = fucoxanthin) on net primary productivity NPP, according to the average of ten GP 
experiments shown in Fig. 4; green and blue arrows indicate either positive or negative impacts of a variable on 
NPP, respectively; arrow thickness is proportional to the magnitude of the impact.
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respiration is higher than production) – and, by convention, it is more frequently expressed as an integrated value 
in oceanography. Among environmental variables, temperature is a scalar quantity and it is usually expressed as 
an average value. We followed this convention since these di�erences could not a�ect our mathematical tests, 
apart from constant factors.

Long-term trend analysis. �e analysis of long-term trends was performed from 1990 to 2016. Long-term 
trends were detected with the Seasonal Kendall test of monthly time series, implemented with the seaKen function 
in R package wql (a maintained version of now-archived package wq: http://cran.r-project.org/package=wq)46,47. 
Time-windowed analysis was carried out using the seaRoll function in R package wql with a window width of 
ten years. As regular monthly sampling of all variables at BATS did not begin until 1992 and the early data gaps 
could in�uence long-term trends, we interpolated missing data for the those very �rst years of the record. Data 
gaps were �lled by interpolation using function interpTs, �lling missing values with means for the corresponding 
month.

Machine learning (ML): summary. We employed a procedure called ‘supervised machine learning’, in 
which a training set, i.e. a set of ‘known’ data composed of a list of rows in which x and y variables are both 
de�ned, is used to train the function. Knowing the correct answers, the algorithm iteratively makes predictions 
based on the training data and is corrected by making updates. Learning stops when the algorithm achieves an 
acceptable level of performance, which is assessed by means of a validation test called k-fold Cross-Validation48,49. 
�e validation test estimates how the algorithm is expected to perform in general when used to make predictions 
using data not used during the training phase.

In all the ML experiments we performed, we searched for a formula y = f(x) satisfying the equation:

‐ ‐ ‐= ∆NPP f N P Lut Zea Si J day Y day T MLD D Chl Chl Fuco( , , , , , , , , , b, a, )

where NPP = net primary productivity (integrated values, between 0 and 120 m depths); N = nitrates (integrated, 
0–120 m); P = phosphates (integrated, 0–120 m); Lut-Zea = lutein-zeaxanthin (integrated, 0–120 m); Si = silicates 
(integrated, 0–120 m); J-day = Julian day; Y-day = the day of the year, ordered from 1 to 365 (or 366, in leap years), 
i.e. a parameter used to associate a day of the year to the other variables taken in consideration and to express the 
progress of seasons; T = temperature (average, 0–120 m); MLD = mixed layer depth, ∆D = density gradient, as 
the ratio between densities at 20 and 120 m depts; Chl b = chlorophyll b (integrated, 0–120 m); Chl a = chlorophyll 
a (integrated, 0–120 m); Fuco = fucoxanthin (integrated, 0–120 m). All ML analyses were carried out using raw 
data but using only dates including values for each of the above-listed variables, thus excluding dates showing 
missing values.

In conducting ML, we employed mathematical techniques selected among the most commonly used in envi-
ronmental studies, because of their power to identify plausible causative relationships between high-variance and 
inter-dependent variables50,51. �e techniques applied herein were: (i) Gaussian Processes (Linear Kernel)52, (ii) 
Linear Regression Model52, (iii) Random Forest53, (iv) Support Vector Machine52, (v-vi) Multilayer Perceptron 
(automatic and manual modes)50,52,54–56, and (vii) Genetic Programming24–26,57. Techniques (i-v) (more details 
in Supporting methods) were applied by using the Waikato Environment for Knowledge Analysis (Weka), i.e. a 
comprehensive suite of Java class libraries that implement many state-of-the-art machine learning, data mining 
algorithms and data pre-processing tools, developed by the University of Waikato, New Zealand, and available as 
open source so�ware58. Details for the analysis pertaining to Multilayer Perceptron (manual mode), and Genetic 
Programming are added in the following paragraphs. All the applied ML techniques were evaluated by a k-fold 
Cross-Validation.

Validation of ML results. A k-fold Cross-Validation methodology was applied48,49. k-fold Cross-Validation 
is a data handling procedure used in machine learning to estimate generated predictive models (say, equations), 
i.e. in order to estimate how the model is expected to perform in general when used to make predictions on data 
not used during the training phase. k-fold Cross-Validation is a common method because it is easily applied and 
it shows a lower bias within all statistical evaluation methods48,49.

�e general procedure is as follows:

 1. Split the dataset into k disjoint groups of the same size;
 2. For each unique group:

 I. Take the group as a hold out or validation data set;
 II. Take the remaining k-1 groups as a training data set;
 III. Fit a model on the training set and evaluate it on the validation set;
 IV. Retain the evaluation score and discard the model;
 V. Repeat the procedure from step I;

 3. Summarize the skill of the model using the sample of model evaluation scores.

k is a parameter and represents how many subsets can be derived from an original dataset. Generally, we must 
be careful when choosing a value for k because we need to subdivide the dataset maintaining a good representa-
tion of the whole set. Otherwise we can occur in a high variance or bias that means we are overestimating the 
models. k = 5 or k = 10 would lead to models with limited bias and lower variance; for the present study we set 
k = 10.
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Multi-layer perceptron (manual mode). �is is a category of Arti�cial Neural Network (ANN)52,54–56. 
In the manual case the ANN topology (number of hidden layers, number of neurons in the hidden layers) was 
selected by a pruning/growing methodology50, starting from an initial random choice. �e resulting topology 
was quite simple, and consisted of 8 input, one hidden layer – made up of 3 neurons - and one output. �e initial 
network weights Wt were randomly chosen in a �xed range. �e learning rate, a measure of the in�uence degree, 
in the formula for updating weights of the actual error, and the momentum term, that determines the in�uence 
of the history of weight changes, were determined by a trials-and-errors methodology. �e training was made 
by the back-propagation procedure55. �e number of epochs (training cycles) was dynamically determined by an 
early stopping criterion. �e experiments were performed on the basis of the dataset described in the previous 
section, by using a neural network Excel-based simulation environment developed by Angshuman Saha (available 
at http://xoomer.virgilio.it/srampone/NNpred01.zip). �e ANN settings are reported in Table S3.

Genetic programming. Genetic Programming (GP)24–26,57 relied on a set of component functions, 
which include arithmetic operators (+, −, *, /), trigonometric functions (sine, cosine and tangent and hyperbolic 
versions) including their inverse, the exponential and the natural logarithm, the logistic function, and the gauss 
function. �e function quality (�tness measure) was the Absolute Error. �e GP experiments were performed 
by the genetic programming so�ware tool Eureqa59, run for about 200,000 generations. Ten independent GP 
experiments were run (as replicates), resulting in ten distinct equations describing NPP in function of the other 
independent variables (see equations below):

= . + . ∗ + . ∗ − . ∗ − . ∗ − . ∗ ∗
−y x x x x x x7 114e 0 06431 2 427e 0 003803 7 022e 0 0009147 (1)9 11 11 4 1 5
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where, y is the net primary productivity integrated between 0 and 120 m depths, x1 is the Julian day, x2 is the day 
of the year, x3 is the mixed layer depth, x4 is the density gradient between 20 and 120 m depths, x5 is the average 
temperature between 0 and 120 m depths, x6–12 are the integrated values of nitrate, phosphate, silicate, fucoxan-
thin, chlorophyll b, chlorophyll a, and lutein + zeaxanthin, respectively, between 0 and 120 m depths (integrated 
values).

�e relevance of each characteristic variable in determining the solution of the equation shown above was 
determined in terms of: (i) Sensitivity, i.e., the relative impact that the variable has on the solution result; (ii) 
% Positive, i.e., the likelihood that, by increasing the variable, the solution result will increase; (iii) Positive 
Magnitude, i.e., a measure of how big the positive impact of the variable is; (iv) % Negative, i.e., the likelihood 
that, by increasing this variable, the solution result will decrease; and (v) Negative Magnitude, a measure of how 
big the negative impact of the variable is. �e synthetic results of sensitivity analyses are shown in Supporting 
information (Tables S4–14).

Data availability
Data used in this study are available at http://bats.bios.edu/bats-data/. Methods pertaining to the sample 
collection and analysis and data production are available in19.
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