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Abstract: 

 

Background: Theoretical models have emphasized systems-level abnormalities in Major 

Depressive Disorder (MDD). For unbiased yet rigorous evaluations of pathophysiological 

mechanisms underlying MDD, it is critically important to develop data-driven approaches that 

harness whole-brain data to classify MDD and evaluate possible normalizing effects of targeted 

interventions. Here, using an experimental therapeutics approach coupled with machine-learning 

we investigated the effect of a pharmacological challenge aiming to enhance dopaminergic 

signaling on whole-brain’s response to reward-related stimuli in MDD. 

Methods: Using a double-blind placebo-controlled design, functional magnetic resonance 

imaging (fMRI) data from 31 unmedicated MDD participants receiving a single dose of 50 mg 

amisulpride (MDDAmisulpride), 26 MDD participants receiving placebo (MDDPlacebo), and 28 

healthy controls receiving placebo (HCPlacebo) were analyzed. An importance-guided machine 

learning technique for model selection was used on whole-brain fMRI data probing reward 

anticipation and consumption to identify features linked to MDD (MDDPlacebo vs. HCPlacebo) and 

dopaminergic enhancement (MDDAmisulpride vs. MDDPlacebo).   

Results: Highly predictive classification models emerged that distinguished MDDPlacebo from 

HCPlacebo (AUC=0.87) and MDDPlacebo from MDDAmisulpride (AUC=0.89). Although reward-related 

striatal activation and connectivity were among the most predictive features, the best truncated 

models based on whole-brain features were significantly better relative to models trained using 

striatal features only.  

Conclusions: Results indicate that, in MDD, enhanced dopaminergic signaling restores abnormal 

activation and connectivity in a widespread network of regions. These findings provide new 
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insights into the pathophysiology of MDD and pharmacological mechanism of antidepressants at 

the system level in addressing reward processing deficits among depressed individuals. 

 

ClinicalTrials.gov identifier: NCT01253421 and NCT01701258 
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Introduction 

Major depressive disorder (MDD) is a debilitating disorder, often characterized by 

anhedonia (1), which is poorly addressed by current treatments (1, 2). Converging evidence 

across species suggests that mesocorticolimbic dopaminergic pathways involving the striatum 

are essential for reward processing (3–5). Dysfunction in this circuit has been associated with 

deficits in reward processing across psychiatric diseases (6). In MDD, neuroimaging studies have 

documented decreased striatal activation and reduced functional connectivity between the 

striatum and other nodes of the brain reward system in response to reward-related stimuli (7–9). 

Notably, some of these abnormalities were found to be acutely restored by pharmacologically-

induced dopaminergic enhancement (10). 

Despite advancements in our understanding of the pathophysiology of MDD, an unresolved 

issue is how enhanced dopaminergic signaling might modulate large-scale whole-brain activation 

and functional coordination in MDD. Besides the striatum, other brain regions, including the 

orbitofrontal cortex, amygdala, and anterior cingulate cortex, have been implicated in reward 

processing (11–14). Given that antidepressant treatments aiming to increase dopaminergic 

signaling might have faster therapeutic onsets (15, 16), it is important to investigate the effects of 

dopaminergic enhancement to gain a more thorough understanding of the potential neural 

mechanism through which these interventions may address reward processing deficits in MDD. 

Equally important, for an unbiased yet rigorous evaluation of pathophysiological mechanisms 

underlying MDD, it is critically important to develop data-driven approaches that harness whole-

brain data to classify individuals with vs. without MDD and evaluate putative normalization of 

MDD-related abnormalities.  
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Towards this goal, we used a machine learning based approach to analyze whole-brain 

functional magnetic resonance imaging (fMRI) data collected from a double-blind placebo-

controlled study, in which unmedicated individuals with MDD and healthy controls (HCs) 

performed a monetary incentive delay (MID) task after being randomized to either a single low 

dose of amisulpride (50 mg) or placebo. Amisulpride, a selective dopamine D2/D3 receptor 

antagonist, was selected because of its high affinity to block presynaptic autoreceptors at lower 

doses, thereby increasing dopamine release (17). In a first step, to identify the effects of 

enhanced dopaminergic transmission on reward-related brain activity, whole-brain fMRI data 

were entered into an importance-guided model selection procedure (based on the logistic 

regression with elastic net regularization; Fig. 1) to identify brain regions in which reward-

related metrics were most predictive of differences between the MDD individuals receiving 

amisulpride vs. placebo. Next, to investigate the potential normalizing effect of enhanced 

dopaminergic transmission on MDD-related abnormalities, brain regions from the above step 

were compared with those most predictive of differences between MDD and HC group receiving 

placebo. To further assess putative normalization, in secondary analyses, we compared MDD 

individuals randomized to amisulpride vs. HC receiving placebo. Based on prior findings 

(7,10,18–22), we hypothesized that (1) under placebo, MDD would be associated with 

widespread reward-related abnormalities along the brain’s reward pathway and (2) transient DA 

enhancement would rescue such abnormalities.   

Methods and Materials 

Participants 
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Participants were recruited by the Center for Depression, Anxiety and Stress Research at 

McLean Hospital using online advertisements, mailing and flyers within the Boston metropolitan 

areas for two independent studies using identical procedures.  

Across the first (ClinicalTrials.gov identifier: NCT01253421) and second (NCT01701258) 

study, 62 unmedicated individuals with MDD (34 randomized to amisulpride, 28 randomized to 

placebo) and 63 demographically-matched healthy controls (placebo: N=30, amisulpride: N=33) 

were run in the imaging session. For the current analyses, we focused on analyses aiming at 

classifying case vs. controls (MDDPlacebo vs. HCPlacebo model) and classify the potential 

normalizing effects of dopaminergic enhancement (MDDPlacebo vs. MDDAmisulpride model); thus, 

92 participants were considered. Among these 92, 85 had useable fMRI data. Note that a subset 

of these participants (46 MDD, 23 randomized to amisulpride, 23 to placebo; 20 HC controls 

randomized to placebo) were included in a recent study that used a region-of-interest (ROI) 

approach to probe the effects of MDD and amisulpride on striatal activation and functional 

connectivity (10). Groups were matched for age, gender, ethnicity, and years of education (Table 

1). General inclusion criteria were: right-handedness, age between 18–45, no MRI 

contraindications, no lifetime substance dependence, no past-year substance abuse, and no 

serious medical conditions. For the MDD groups, a diagnosis of MDD according to the 

Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) (2) was required, and 

exclusion criteria included: psychotropic medication in the past 2 weeks (6 weeks for fluoxetine, 

6 months for dopaminergic drugs or antipsychotics) and any other axis I disorders (however, 

social anxiety disorder, simple phobia, or generalized anxiety disorder were allowed if secondary 

to MDD). For HC, exclusion criteria were: any medication in the last 3 weeks, current or past 

psychiatric illnesses (SCID), and first-degree familial psychiatric illness. Participants received 
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$15/hour in addition to earnings in the fMRI task. The two protocols were approved by Partners 

Human Research Committee, and all participants provided written informed consent.  

 

Procedure 

The two studies followed identical procedures, pharmacological challenge, and MRI 

acquisition. In the first session, a PhD- or Masters-level clinician administered the SCID to 

determine eligibility, and participants filled out self-report scales (Table 1 and Supplement). In 

the second session, participants performed the MID task during fMRI scanning after receiving a 

single dose of amisulpride or placebo. The MID task was started one hour after pill 

administration due to pharmacokinetic data indicating that plasma concentration of amisulpride 

has a first peak approximately 1–1.5 hours after administration (17).  

 

fMRI Task 

The MID has been described in detail (10, 23). Briefly, the task includes anticipation and 

receipt of monetary rewards (and penalties), which robustly recruit mesocorticolimbic regions 

(12, 13) and has been used to uncover reward-related abnormalities in both magnitude of 

activation and functional connectivity in MDD (7, 9, 10, 22, 24). 

 

Data Acquisition and Preprocessing 

For both studies, MRI data were acquired at the McLean Imaging Center using a Siemens 

Tim Trio 3T MR scanner equipped with a 32-channel head coil. See Supplementary Methods for 

acquisition parameters and preprocessing.  
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Feature Extraction 

The features used in our classifiers consisted of coefficients from the single-subject level 

general linear models (GLM) averaged according to the AAL template (25). To obtain these 

features, for each participant, we first fitted a GLM to the fMRI data during the MID task (see 10 

for more details). Next, for each regressor in the GLM, the estimated coefficients were averaged 

according to the AAL template, producing one averaged coefficient for each ROI. ROIs for the 

left and right nucleus accumbens (NAcc) were further extracted according to a manually 

segmented MNI-152 brain (26) and added to the existing AAL ROIs, resulting in 118 ROIs. The 

following BOLD contrasts were included as features in our classification models to represent 

reward anticipation and consumption, respectively: 1) reward cue minus neutral cue and 2) 

reward outcome minus no-change outcome following reward cue. In addition, two striatal 

connectivity features emerging from (10) were included in our classification models, 

representing the psychophysiological interaction (PPI) under the reward outcome condition 

between 1) caudate and dorsal anterior cingulate cortex and 2) NAcc and mid-cingulate cortex. 

In total, 238 features (118 ROIs x 2 contrasts + 2 PPIs) were included in the classification 

models. All features were standardized to zero mean and unit variance before entered into the 

models. 

 

Classification and Importance-guided Sequential Model Selection 

Two main classifiers were built to classify 1) MDDPlacebo vs. HCPlacebo and 2) MDDPlacebo vs. 

MDDAmisulpride. These were designed to capture features linked to 1) MDD, and 2) the effect of 

acute dopaminergic enhancement on whole-brain BOLD activation. To further test the 

hypothesis that dopaminergic enhancement transiently normalized reward-related abnormalities 
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in MDD, a third classifier was built to classify MDDAmisulpride vs. HCPlacebo. Across analyses, we 

used logistic regression with elastic net regularization (27) as our classification models. The 

elastic net regularization has been shown to be well-suited for problems where the number of 

features is much greater than the number of observations (27). The models were trained and 

tested via the following nested cross-validation procedure. First, we performed model training on 

a development set containing 80% of the participants via a 3-fold grid search cross-validation 

procedure (stratified using class labels; Fig. 1b). Then, the model with the best regularization 

parameters was further tested on the evaluation set containing an independent set of 20% 

participants which the model had not seen during the training and validation phases. The above 

procedure was repeated 100 times to ensure stable performance was obtained on a large number 

of development-evaluation splits. The area under the receiver operating characteristics curve 

(AUC) was selected as the metric to quantify model performance. 

To identify the set of most predictive features for each classifier (i.e., MDDPlacebo vs. 

HCPlacebo and MDDPlacebo vs. MDDAmisulpride), we adopted the following importance-guided 

sequential model selection procedure (Fig. 1a). Specifically, we first rank-ordered the features 

using the mean model weights across 100 implementations as a measure of predictability. Then, 

we built a series of truncated models such that each model only took the top k most predictive 

features as inputs to perform the classification tasks, with k varying from the top 1 most 

predictive feature to the number of participants involved in a given classifier. Imposing the 

number of participants as the upper limit was to ensure that models’ performance was not mainly 

driven by the regularization term. All truncated models underwent the nested cross-validation 

procedure described above and the test performance from each truncated model on the 
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independent evaluation set was obtained. The set of features used by the truncated model 

achieving the highest AUC on the evaluation set were deemed as the optimal feature set. 

 

Statistical Analysis 

The significance of the models’ performances against chance level was tested using a 

random permutation test scheme in which the truncated model based on the optimal feature set 

were re-trained on label shuffled training data (28). The entire test procedure was iterated 1000 

times to empirically construct the null distribution of test AUCs. The p-values were obtained by 

comparing the AUC from the best truncated model based on unshuffled data against the 

empirical null distribution. The performances between models were statistically compared via 

Mann-Whitney U tests. Effect sizes between two distributions were calculated using Cohen’s d. 

 

Results 

Classification Performances 

The best parsimonious models selected by the importance-guided model selection procedure 

(Fig. 1) based on most predictive features from whole-brain BOLD activations and striatal 

connectivity achieved high predictive performances (Table 2; see Fig. S1 for model performance 

as a function of top features). For both MDDPlacebo vs. HCPlacebo and MDDPlacebo vs. 

MDDAmisulpride, the AUC of the best parsimonious models were significantly above chance level 

(MDDPlacebo vs. HCPlacebo: mean AUC = 0.87, p = 0.004; MDDPlacebo vs. MDDAmisulpride: mean 

AUC = 0.89, p = 0.002; Fig. 2a, b; Fig. S2). Compared with models trained using striatal features 

only (Supplementary Methods), the performances of the best parsimonious models based on 

whole-brain features were significantly better for both contrasts (p’s < 0.001, Mann-Whitney U 
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test). The histograms of sum scores created by summing up the top feature values while taking 

into account the sign of the corresponding model weights demonstrated high separability 

between MDDPlacebo and HCPlacebo as well as between MDDPlacebo and MDDAmisulpride (Fig. 2c, d). 

Overall, these results indicate that our models were able to extract highly predictive information 

embedded in the whole-brain BOLD signal. 

 

Brain Regions Specific to Reward Anticipation 

Positive model weights. The best parsimonious model for MDDPlacebo vs. MDDAmisulpride 

identified the lateral orbitofrontal cortex (lOFC), visual cortex, anterior cingulate cortex (ACC), 

dorsomedial prefrontal cortex (dmPFC), mid-cingulate cortex (MCC), and precuneus as most 

predictive features with positive weights during reward anticipation (Fig. 3a; Table S1). This 

indicates that, within the MDD group, BOLD activation in these regions related to the contrast of 

reward cue minus neutral cue was reduced following administration of amisulpride compared to 

placebo. Critically, the lOFC, visual cortex, and MCC were also selected by the best MDDPlacebo 

vs. HCPlacebo model as top features having positive weights (Fig. 3b; Table S2), and at the same 

time these regions, except a right occipital region, were not among the most predictive features 

in the MDDAmisulpride vs. HCPlacebo model (Fig. S3). Collectively, these findings indicate that, 

within the MDD group, amisulpride largely normalized the heightened BOLD activation in these 

regions toward reward cues. Other regions with positive weights in the MDDPlacebo vs. HCPlacebo 

classification included the thalamus, supplementary motor area (SMA), and the ventromedial 

prefrontal cortex (vmPFC). Again, these regions were not among the top features in the 

MDDAmisulpride vs. HCPlacebo model (Fig. S3), suggesting that amisulpride mitigated the 

hyperactivation in these regions within the MDD group. 
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Negative model weights. Regions selected by the best MDDPlacebo vs. MDDAmisulpride model 

with negative model weights included the putamen, pallidum, amygdala, posterior parietal cortex 

(PPC), and temporal cortex (Fig. 3a; Table S1). The negative weights observed in the putamen 

and pallidum were consistent with the hypothesis that amisulpride might have increased 

dopaminergic signaling in the basal ganglia in MDD (10, 14). This effect is rather pronounced as 

the MDDAmisulpride vs. HCPlacebo model showed that the contrast of reward cue minus neutral cue 

evoked higher activation in the putamen in the MDDAmisulpride group even compared with the 

HCPlacebo group (Fig. S3). Within the MDDPlacebo group, reduced activation in the operculum, 

hippocampus, parahippocampal gyrus (PHG), and dmPFC was observed relative to HCs during 

reward anticipation (features in the MDDPlacebo vs. HCPlacebo model with negative weights; Fig. 

3b; Table S2). The reduced activation in the hippocampus and operculum persisted in the 

MDDAmisulpride vs. HCPlacebo model (Fig. S3), indicating that amisulpride had limited effects in 

these regions. 

 

Brain Regions Specific to Reward Consumption 

Positive model weights. Examining features selected from the contrast of reward minus no 

change outcomes in the MDDPlacebo vs. MDDAmisulpride model revealed that the lOFC, PPC, 

superior frontal gyrus, and the pre- and post-central gyrus were selected as most predictive 

features with positive weights (Fig. 4a, Table S3). This indicates reduced activation in these 

regions during reward consumption in MDDAmisulpride compared with MDDPlacebo. Of note, the 

lOFC and PPC emerged as among the most predictive features with positive weights in the 

MDDPlacebo vs. HCPlacebo model (Fig. 4c, Table S4). Additionally, while the lOFC hyperactivation 

was still observed in the MDDAmisulpride vs. HCPlacebo model, the PPC was not identified as a 
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predictive feature (Fig. S3). Overall, these results suggest that, under placebo, the MDD group 

was characterized by increased BOLD activity in these regions during reward consumption 

relative to HC and that the hyperactivation was reduced by amisulpride. Other brain regions 

identified as most predictive features with positive weights in the MDDPlacebo vs. HCPlacebo model 

included the inferior frontal gyrus, PCC, precuneus, and MCC. The lack of predictability from 

these regions between MDDAmisulpride and HCPlacebo (Fig. S3) again suggests a mitigating effect of 

amisulpride on the hyperactivation in these regions.  

Negative model weights. The most predictive regions from the contrast of reward minus no 

change outcomes with negative weights in the MDDPlacebo vs. MDDAmisulpride model included the 

putamen, NAcc, PHG, and temporal pole (Fig. 4a, Table S3), as well as the connectivity between 

the NAcc and MCC (Fig. 4b). This suggests that, within the MDD group, amisulpride increased 

BOLD activation and corticostriatal connectivity to reward feedback in these regions. 

Highlighting again convergence, the NAcc, PHG, temporal pole, and the NAcc-MCC 

connectivity were also selected as most predictive features having negative weights in the 

MDDPlacebo vs. HCPlacebo classification (Fig. 4c, d, Table S4), and none of these regions was 

selected as among the top predictive features in the MDDAmisulpride vs. HCPlacebo model (Fig. S3). 

Thus, in MDD, amisulpride normalized both hypoactivation and hypoconnectivity in response to 

rewards in these regions. Other most predictive features with negative weights in the MDDPlacebo 

vs. HCPlacebo model included the visual cortex, inferior temporal cortex, operculum, ACC, and the 

connectivity between the caudate and dACC. These features, except the caudate-dACC 

connectivity, were not identified as among the top features in the MDDAmisulpride vs. HCPlacebo 

model (Fig. S3), indicating increased activation to rewards in these regions following 

amisulpride administration in the MDD group. The fact that amisulpride did not normalize the 
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hypoconnectivity between caudate and dACC in the MDD group is consistent with previously 

published ROI-based results obtained on a subset of the participants (10). 

 

Discussion 

This study utilized a machine learning based approach (importance guided sequential 

variable selection using logistic regression with elastic net regularization; Fig. 1) to identify 

reliable features across the entire brain that distinguished unmedicated individuals with MDD 

from HC (under placebo condition) as well as features linked to normalization of putative MDD-

related abnormalities after an acute pharmacological challenge hypothesized to increase 

dopaminergic signaling along mesolimbic pathways. In addition to increased striatal activation in 

the MDDAmisulpride relative to MDDPlacebo group (which is consistent with ROI-based conventional 

analyses of a smaller subset of the participants included here, 10), the classification model also 

identified an extensive set of brain regions differentiating individuals with MDD receiving 

amisulpride vs. placebo. Notably, the classification performance from models relying on whole-

brain features was significantly higher than the performance of models based only on striatal 

features, indicating that a pharmacological challenge that putatively increased dopaminergic 

signaling induced widespread differential BOLD activity among depressed individuals during 

reward processing. Comparing the most predictive brain regions between the MDDPlacebo vs. 

MDDAmisulpride model and the MDDPlacebo vs. HCPlacebo model suggested that amisulpride had a bi-

directionally normalizing effect on reward-related activation and functional connectivity of brain 

regions spanning the lOFC, NAcc, PHG, MCC, PPC, and areas of the visual cortex among 

depressed individuals. Taken together, these results highlight the unique contribution of machine 

learning-based approaches to examine pharmacologically-induced effects across the entire brain 
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when assessing circuit engagement by targeted treatment options for mood and psychiatric 

disorders. The study provides novel evidence for the mechanism through which (transient) 

dopaminergic enhancement might restore system-level activity during reward processing among 

individuals with MDD. 

Amisulpride appeared to have bi-directional normalizing effects on brain activation and 

functional coordination among depressed individuals. Within the striatum, consistent with 

previous ROI-based analyses based on a subset of the participants used here (10), results from 

our classification models showed that decreased striatal/basal ganglia activation and 

corticostriatal connectivity among depressed individuals were enhanced following acute 

administration of amisulpride. This supports the validity of the importance-guided model 

selection procedure and fits the view that lower doses of amisulpride enhance dopaminergic 

signaling in the striatum (17).  

Among regions outside the striatum, one notable finding was that increased lOFC activation 

during reward anticipation in MDD was reduced after administration of amisulpride. 

Neurophysiological evidence has shown that subpopulations of neurons in the lOFC respond to 

non-reward/unpleasant events and maintain elevated firing rate after such events (29). This led to 

the theory implicating overly reactive and prolonged activation of the lOFC non-reward circuit 

as a potential mechanism underlying depression (30). Previous studies have documented 

increased lOFC activation in MDD (31), and our result fits this theoretical view. In the 

MDDAmisulpride group, reduced lOFC activation suggests that amisulpride may normalize reward 

processing by decreasing lOFC hyperactivation, consistent with previous reports that 

improvements in depressive symptoms were accompanied by reduced lOFC activation (32) and 

electrical stimulation of the lOFC acutely improved depressive symptoms (33). 
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In addition to effects in frontostriatal circuitry, amisulpride restored hypoactivation in the 

parahippocampal gyrus and temporal pole in MDD. The hippocampus and parahippocampal 

complex connect with the medial OFC and are hypothesized to facilitate the formation of 

episodic memory regarding reward (34). Decreased hippocampal activation has emerged in 

MDD and prolonged/repeated depressive episodes have been linked to reduced hippocampal 

volume (35, 36). These abnormalities have been linked to dysfunctions in both memory encoding 

and retrieval characteristic of MDD, even after treatment (37, 38). The fact that amisulpride 

restored parahippocampal and temporal pole activation suggests that interventions aiming to 

increase dopaminergic signaling might improve encoding and retrieval of positive memories in 

MDD. However, it should be noted that hippocampal activation did not differentiate between the 

MDDAmisulpride and MDDPlacebo group, suggesting that the effects on memory might be limited 

following a single acute pharmacological challenge. 

Hyperactivation in the mid-cingulate cortex towards the reward cue was also reduced among 

depressed individuals after amisulpride. Moreover, amisulpride also reduced reward cue-evoked 

activations in adjacent ACC and dmPFC. The supracallosal part of the cingulate cortex receives 

neuronal projections from the lOFC and is thought to also encode non-reward and punishing 

events such as physical and social pain (39, 40). A recent study has identified a nociceptive 

pathway between the mid-cingulate cortex and posterior insula responsible for generating a 

hypersensitive state for pain, providing a mechanism for the increased pain sensitivity by 

psychosocial factors (41). The reduced hyperactivation in these regions following amisulpride 

administration may indicate decreased sensitivity to negative affective states among individuals 

with MDD and therefore priming or biasing them toward reward.  
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In MDD, amygdalar activation evoked by reward cues was enhanced following amisulpride. 

Reduced amygdalar response to positive and rewarding stimulus, coupled with heightened 

amygdalar activation toward negative stimulus, are well-documented findings in MDD, which 

highlights an imbalanced reactivity toward emotionally-salient cues (42). Antidepressant 

treatment has been shown to address this imbalance by partially normalizing the bi-directional 

abnormal amygdalar activation (42, 43). These findings were further bolstered by the recent 

report that enhanced amygdalar response toward positive memories through real-time fMRI 

neurofeedback was associated with reduction in depressive symptoms (44). The increased 

amygdalar activation evoked by reward cues is consistent with these studies and implicates 

improved sensitivity toward reward following acute dopaminergic enhancement. 

It should be noted that while several regions showed predictive power following the 

administration of amisulpride, it is difficult to assess whether changes in these regions reflected a 

direct modulation resulting from the enhanced dopaminergic signaling or alternatively reflected 

secondary responses through network interactions. Future studies could utilize network analysis 

and/or neural perturbation methods to further dissociate direct vs. indirect effects (33). In 

addition, amisulpride also has 5-HT7 antagonism (45), which has been hypothesized to contribute 

to its antidepressant property. While we cannot rule out that the effects observed here may be 

partially caused by this off-target mechanism, additional research is needed to distinguish the 

effect of dopaminergic enhancement vs. 5-HT7 antagonism of amisulpride. Lastly, we only 

focused on investigating the effects of dopaminergic enhancement on reward processing among 

depressed individuals. Future studies could seek to examine the effect of enhanced dopamine on 

whole-brain fMRI activity in depression under additional conditions.  
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Figure Legends 

 
Figure 1: a) An illustration of the importance-guided sequential model selection procedure used 

to find the optimal set of features. First, a full model including all features is trained using 

logistic regression with elastic net regularization to determine relative importance of individual 

features. Next, a series of truncated models were trained based on a progressively increasing set 

of top features rank ordered by the full model. The set of features in the best parsimonious model 

on the evaluation set were deemed as the optimal feature set. b) An illustration of the nested 

cross-validation procedure used to train, validate, and test the models. A grid search procedure 

with 3-fold cross-validation was implemented on the developmental set to determine the best 

model parameters. The resulting model was further tested on the evaluation set, which contained 

an independent set of participants not used in training and validation. The entire procedure was 

repeated on 100 different random partitioning of the data to allow for stable model performance.  

 

Figure 2: Comparing classification performance between the data-driven models based on 

features selected from the whole-brain and the hypothesis-driven models based only on striatal 

features for a) MDDPlacebo vs. HCPlacebo and b) MDDPlacebo vs. MDDAmisulpride classifications. 

Asterisks denote significantly different median area under the Receiver Operating Characteristic 

(ROC) curve measures between the data-driven and hypothesis-driven models as assessed by the 

Mann-Whitney U test. The black markers denote outliers falling outside the ±1.5 interquartile 

range. The histogram of the signed sum score from the model-identified most predictive brain 

regions show high separability between c) MDDPlacebo vs. HCPlacebo and d) MDDPlacebo vs. 

MDDAmisulpride. 
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Figure 3: Weight maps showing the most predictive brain regions for the contrast of the reward 

minus neutral cue conditions. a) Weight map for the MDDPlacebo vs. MDDAmisulpride model. 

Positive weights indicate higher BOLD in the MDDPlacebo group relative to the MDDAmisulpride 

group and negative weights indicate the opposite direction. b) Weight map for the MDDPlacebo vs. 

HCPlacebo model, with positive weights indicating higher BOLD in the MDDPlacebo group relative 

to the HCPlacebo group and vice versa. ACC: anterior cingulate cortex; Amyg: amygdala; Cal: 

calcarine sulcus; Cu: cuneus; dmPFC: dorsomedial prefrontal cortex; Hipp: hippocampus; Ins: 

insula; lOFC: lateral orbitofrontal cortex; MCC: middle cingulate cortex; OC: occipital cortex; 

Oper: operculum; Pal: pallidum; PHG: parahippocampal gyrus; PPC: posterior parietal cortex; 

Precu: precuneus; Put: putamen; SMA: supplementary motor area; TC: temporal cortex;  

vmPFC: ventromedial prefrontal cortex. 

 

Figure 4: Weight maps showing the most predictive brain regions/connectivity for the contrast 

of reward minus no-change outcomes. a) Weight map for the MDDPlacebo vs. MDDAmisulpride 

model, with positive weights indicating higher BOLD in the MDDPlacebo group relative to the 

MDDAmisulpride group and vice versa. b) Negative weight assigned to the NAcc-MCC connectivity 

in the MDDPlacebo vs. MDDAmisulpride model. c) Weight map for the MDDPlacebo vs. HCPlacebo 

model. Positive weights indicate higher BOLD in the MDDPlacebo group relative to the 

MDDAmisulpride group and vice versa. d) Negative weights assigned to the Caudate-dACC and 

NAcc-MCC connectivity features by the MDDPlacebo vs. HCPlacebo model. Abbreviations followed 

those used in Fig. 2. Cau: caudate; dACC: dorsal anterior cingulate cortex; IFG: inferior frontal 

gyrus; ITC: inferior temporal cortex; PCC: posterior cingulate cortex; PreCG/PostCG: pre- and 

post-central gyrus; SFG: superior frontal gyrus; TP: temporal pole.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/669887doi: bioRxiv preprint 

https://doi.org/10.1101/669887
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

Tables 
 
Table 1: Clinical and demographic characteristics of the participants 
 

 MDDAmisulpride 

N = 31 

MDDPlacebo 

N = 26 

HCPlacebo 

N = 28 

Characteristic Mean SD Mean SD Mean SD 

Age (years) 27.2 7.7 25.6 5.0 25.1 6.1 

Education (years) 15.4 2.2 16.8 3.0 15.2 2.9 

Beck Depression Inventory 2nd Ed. 26.3 7.9 26.7 7.9 1.8 2.7 

Hamilton Depression Rating Scale 15.6 3.7 16.7 5.3 1.0 1.2 

Mood and Anxiety Symptom Questionnaire       

  Total Score 168.5 22.9 174.1 21.7 91.5 13.3 

  General Distress Anxiety Subscore 23.6 5.1 25.4 6.6 12.3 1.2 

  General Distress Depression Subscore 37.9 9.4 39.0 9.3 13.9 2.0 

  Anxious Arousal Subscore 24.0 6.0 25.6 6.4 18.4 2.0 

  Anhedonic Depression Subscore 82.9 11.2 84.1 9.1 47.0 11.3 

Snaith-Hamilton Pleasure Scale 31.7 4.7 31.4 7.0 22.8 6.7 

Duration of Current Major Depressive Episode (months) 17.3 20.0 17.6 31.9 N/A N/A 

Number of Past Depressive Episodes 3.2 2.6 3.3 3.2 N/A N/A 

       

 N % N % N % 

Female 28 90.3 19 73.1 22 81.5 

Caucasian 20 64.5 13 50.0 13 48.1 

Current Comorbid Anxiety Disorders 10 32.3 11 42.3 N/A N/A 

Past Comorbid Anxiety Disorders 13 41.9 12 46.2 N/A N/A 

 
Note: Groups were matched for age, gender, race, and years of education (one-way ANOVA; χ2-
test). All participants were right-handed. Between the MDDAmisulpride and MDDPlacebo group, 
participants were matched for current and past comorbid anxiety disorders, as well as clinical 
scale measures (χ2-test; two-sample t-test). 
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Table 2: Classification performance for the best parsimonious models 
 
 MDDPlacebo vs. 

HCPlacebo 

MDDPlacebo vs.  

MDDAmisulpride 

MDDPlacebo vs. 

HCPlacebo: Striatum Only 

MDDPlacebo vs. MDDAmisulpride: 

Striatum Only 

 Mean SD Mean SD Mean SD Mean SD 

AUC 0.87 0.12 0.89 0.09 0.59 0.14 0.61 0.17 

Accuracy 0.77 0.12 0.80 0.10 0.59 0.13 0.59 0.13 

Sensitivity 0.84 0.18 0.89 0.11 0.58 0.25 0.65 0.19 

Specificity 0.72 0.22 0.67 0.24 0.59 0.22 0.50 0.28 

Number of Features 48 44 6 11 
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All Participants

Developmental Set (80% of data): 

Training + Validation

Evaluation Set 

(20% of data): Testing

Repeat 100 times: 
each iteration with 
a random partition 

of the data

Training
Validation

3 fold grid search

cross-validation
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