

Edinburgh Research Explorer

Machine Learning in Compiler Optimization

Citation for published version:
Wang, Z & O'Boyle, M 2018, 'Machine Learning in Compiler Optimization', Proceedings of the IEEE, vol.
106, no. 11, pp. 1879 - 1901. https://doi.org/10.1109/JPROC.2018.2817118

Digital Object Identifier (DOI):
10.1109/JPROC.2018.2817118

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the IEEE

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. Aug. 2022

https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://www.research.ed.ac.uk/en/publications/fca23279-b7ef-43fa-be83-c77a1c76ecfa

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Proceedings of the IEEE 1

ABSTRACT | In the last decade, machine-learning-based

compilation has moved from an obscure research niche to a

mainstream activity. In this paper, we describe the relationship

between machine learning and compiler optimization and

introduce the main concepts of features, models, training,

and deployment. We then provide a comprehensive survey

and provide a road map for the wide variety of different

research areas. We conclude with a discussion on open issues

in the area and potential research directions. This paper

provides both an accessible introduction to the fast moving

area of machine-learning-based compilation and a detailed

bibliography of its main achievements.

KEYWORDS | Code optimization; compiler; machine learning;

program tuning

I . IN TRODUCTION

“Why would anyone want to use machine learning to build

a compiler?” It is a view expressed by many colleagues over

the last decade. Compilers translate programming languages

written by humans into binary executable by computer hard-

ware. It is a serious subject studied since the 1950s [1]–[3]

where correctness is critical and caution is a by-word.

Machine learning, on the other hand, is an area of artificial
intelligence (AI) aimed at detecting and predicting patterns.

It is a dynamic field looking at subjects as diverse as galaxy
classification [4] to predicting elections based on Tweeter
feeds [5]. When an open-source machine learning compiler

was announced by IBM in 2009 [6], some wry slashdot com-

mentators picked up on the AI aspect, predicting the start of
sentient computers, global net, and the war with machines

from the Terminator film series.
In fact, as we will see, in this paper, that compilers and

machine learning are a natural fit and have developed into
an established research domain.

Digital Object Identifier: 10.1109/JPROC.2018.2817118

A. It Is All About Optimization

Compilers have two jobs—translation and optimi-

zation. First, they must translate programs into binary

correctly. Second, they have to find the most efficient
translation possible. There are many different correct
translations whose performance varies significantly. The
vast majority of research and engineering practices is

focused on this second goal of performance, traditionally

misnamed optimization. The goal was misnamed because
in most cases, until recently, finding an optimal transla-

tion was dismissed as being too hard to find and an unreal-
istic endeavor.1 Instead it focused on developing compiler

heuristics to transform the code in the hope of improving

performance but could in some instances damage it.

Machine learning predicts an outcome for a new data

point based on prior data. In its simplest guise, it can be

considered a form of interpolation. This ability to pre-

dict based on prior information can be used to find the
data point with the best outcome and is closely tied to

the area of optimization. It is at this overlap of looking
at code improvement as an optimization problem and

machine learning as a predictor of the optima where we

find machine learning compilation.
Optimization as an area, machine learning based or

otherwise, has been studied since the 1800s [8], [9]. An

interesting question is therefore why has the convergence

of these two areas taken so long? There are two funda-

mental reasons. First, despite the year-on-year increasing

potential performance of hardware, software is increas-

ingly unable to realize it leading to a software gap. This
gap has yawned right open with the advent of multicores

(see also Section VI-B). Compiler writers are looking for
new ways to bridge this gap.

Second, computer architecture evolves so quickly
that it is difficult to keep up. Each generation has new
quirks and compiler writers are always trying to play
catchup. Machine learning has the desirable property

of being automatic. Rather than relying on expert com-

piler writers to develop clever heuristics to optimize

the code, we can let the machine learn how to optimize

a compiler to make the machine run faster, an approach

Manuscript received October 30, 2017; accepted January 23, 2018.

(Corresponding author: Michael O'Boyle.)

Z. Wang is with the MetaLab, School of Computing and Communications, Lancaster

University, Lancaster LA1 4WA, U.K. (e-mail: z.wang@lancaster.ac.uk).

M. O'Boyle is with the School of Informatics, University of Edinburgh, Edinburgh EH8

9AB, U.K. (e-mail: mob@inf.ed.ac.uk).

Machine Learning in
Compiler Optimization
By Zheng Wa ng a nd M ich a el O’BOy l e

1In fact, the term superoptimizer [7] was coined to describe
systems that tried to find the optimum.

https://orcid.org/0000-0003-1619-5052

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

2 Proceedings of the IEEE

sometimes referred to as autotuning [10]–[13]. Machine

learning is, therefore, ideally suited to making any code
optimization decision where the performance impact

depends on the underlying platform. As described later in

this paper, it can be used for topics ranging from selecting

the best compiler flags to determining how to map paral-
lelism to processors.

Machine learning is part of a tradition in computer sci-

ence and compilation in increasing automation The 1950s
to 1970s were spent trying to automate compiler translation,

e.g., lex for lexical analysis [14] and yacc for parsing [15]; the
last decade by contrast has focused on trying to automate

compiler optimization. As we will see, it is not “magic” or a

panacea for compiler writers, rather it is another tool allow-

ing automation of tedious aspects of compilation providing

new opportunities for innovation. It also brings compilation

nearer to the standards of evidence-based science. It intro-

duces an experimental methodology where we separate out

evaluation from design and considers the robustness of solu-

tions. Machine-learning-based schemes, in general, have

the problem of relying on black boxes whose working we do
not understand and hence trust. This problem is just as true
for machine-learning-based compilers. In this paper, we

aim to demystify machine-learning-based compilation and

show it is a trustworthy and exciting direction for compiler

research.

The remainder of this paper is structured as follows.
First, we give an intuitive overview for machine learning

in compilers in Section II. Then, we describe how machine
learning can be used to search for or to directly predict good

compiler optimizations in Section III. This is followed by a
comprehensive discussion in Section IV for a wide range of

machine learning models that have been employed in prior

work. Next, in Section V, we review how previous work
chooses quantifiable properties, or features, to represent
programs. We discuss the challenges and limitations for

applying machine learning to compilation, as well as open

research directions in Section VII before we summarize and

conclude in Section VIII.

II . OV ERV IE W OF M ACHINE LE A R NING
IN COMPILER S

Given a program, compiler writers would like to know
what compiler heuristic or optimization to apply in order

to make the code better. Better often means execute faster,
but can also mean smaller code footprint or reduced

power. Machine learning can be used to build a model

used within the compiler that makes such decisions for
any given program.

There are two main stages involved: learning and
deployment. The first stage learns the model based on train-

ing data, while the second uses the model on new unseen

programs. Within the learning stage, we need a way of rep-

resenting programs in a systematic way. This representation
is known as the program features [16].

Fig. 1 gives an intuitive view on how machine learning

can be applied to compilers. This process, which includes
feature engineering, learning a model, and deployment, is

described in the following sections.

A. Feature Engineering

Before we can learn anything useful about programs, we

first need to be able to characterize them. Machine learn-

ing relies on a set of quantifiable properties, or features, to
characterize the programs [Fig. 1(a)]. There are many dif-
ferent features that can be used. These include the static
data structures extracted from the program source code

or the compiler intermediate representation (such as the

number of instructions or branches), dynamic profiling
information (such as performance counter values) obtained

through runtime profiling, or a combination of the both.
Standard machine learning algorithms typically work on

fixed length inputs, so the selected properties will be sum-

marized into a fixed length feature vector. Each element of
the vector can be an integer, real or Boolean value. The pro-

cess of feature selection and tuning is referred to as feature

engineering. This process may need to iteratively perform
multiple times to find a set of high-quality features to build

Fig. 1. A generic view of supervised machine learning in compilers. (a) Feature engineering. (b) Leaning a model. (c) Deployment.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 3

an accurate machine learning model. In Section V, we pro-

vide a comprehensive review of feature engineering for the

topic of program optimization.

B. Learning a Model

The second step is to use training data to derive a model using
a learning algorithm. This process is depicted in Fig. 1(b) . Unlike
other applications of machine learning, we typically generate

our own training data using existing applications or bench-

marks. The compiler developer will select training programs
which are typical of the application domain. For each training

program, we calculate the feature values, compiling the pro-

gram with different optimization options, and running and

timing the compiled binaries to discover the best performing

option. This process produces, for each training program, a
training instance that consists of the feature values and the

optimal compiler option for the program.

The compiler developer then feeds these examples to a
machine learning algorithm to automatically build a model.

The learning algorithm’s job is to find from the training
examples a correlation between the feature values and the

optimal optimization decision. The learned model can then
be used to predict, for a new set of features, what the opti-

mal optimization option should be.

Because the performance of the learned model strongly

depends on how well the features and training programs are

chosen, the processes of featuring engineering and training

data generation often need to repeat multiple times.

C. Deployment

In the final step, the learned model is inserted into the
compiler to predict the best optimization decisions for new

programs. This is demonstrated in Fig. 1(c) . To make a pre-

diction, the compiler first extracts the features of the input
program, and then feeds the extracted feature values to the

learned model to make a prediction.
The advantage of the machine-learning-based approach

is that the entire process of building the model can be easily

repeated whenever the compiler needs to target a new hard-

ware architecture, operating system, or application domain.

The model built is entirely derived from experimental
results and is hence evidence based.

D. Example

As an example to illustrate these steps, consider thread

coarsening [18] for GPU programs. This code transforma-

tion technique works by giving multiple work items (or
work elements) to one single thread. It is similar to loop
unrolling, but applied across parallel work items rather than
across serial loop iterations.

Fig. 2(a) shows a simple OpenCL kernel where a thread
operates on a work item of the 1-D input array, in, at a time.
The work item to be operated on is specified by the value

returned from the OpenCL get_global_id() API. Fig. 2(b)

shows the transformed code after applying a thread coarsen

factor of two, where each thread processes two elements of

the input array.

Thread coarsening can improve performance through
increasing instruction-level parallelism [19], reducing the

number of memory-access operations [20] and eliminating

redundant computation when the same value is computed

in every work item. However, it can also have several nega-

tive side effects, such as reducing the total amount of paral-

lelism and increasing the register pressure, which can lead

to slowdown performance. Determining when and how
to apply thread coarsening is nontrivial, because the best

coarsening factor depends on the target program and the

hardware architecture that the program runs on [17], [19].

Magni et al. show that machine learning techniques

can be used to automatically construct effective thread-

coarsening heuristics across GPU architectures [17]. Their
approach considers six coarsening factors (1, 2, 4, 8, 16, 32).
The goal is to develop a machine-learning-based model to
decide whether an OpenCL kernel should be coarsened on a
specific GPU architecture and, if so, what is the best coars-

ening factor. Among many machine learning algorithms,

they chose to use an artificial neural network to model2

the problem. Construing such a model follows the classical

three-step supervised learning process, which is depicted in

Fig. 1 and described in more details as follows.

1) Feature Engineering: To describe the input OpenCL
kernel, Magni et al. use static code features extracted from

the compiler’s intermediate representation. Specifically, they
developed a compiler-based tool to obtain the feature values

from the program’s LLVM bitcode [21]. They started from 17
candidate features. These include things like the number of

2In fact, Magni et al. employed a hierarchical approach consisting of
multiple artificial neural networks [17]. However, these networks are
trained using the same process.

Fig. 2. An OpenCL thread coarsening example reproduced from

[17]. The original OpenCL code is shown in (a) where each thread

takes the square of one element of the input array. When coarsened

by a factor of two, as shown in (b), each thread now processes two

elements of the input array.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

4 Proceedings of the IEEE

and types of instructions and memory level parallelism (MLP)

within an OpenCL kernel. Table 1 gives the list of candidate fea-

tures used in [17]. Typically, candidate features can be chosen
based on developers’ intuitions, suggestions from prior works,
or a combination of both. After choosing the candidate fea-

tures, a statistical method called principal component analysis

(PCA; see also Section IV-B) is applied to map the 17 candidate
features into seven aggregated features, so that each aggregated

feature is a linear combination of the original features. This
technique is known as “feature dimension reduction,” which
is discussed in Section V-D2. Dimension reduction helps
eliminating redundant information among candidate features,

allowing the learning algorithm to perform more effectively.

2) Learning the Model: For the work presented in [17],
16 OpenCL benchmarks were used to generate training
data. To find out which of the six coarsening factors per-

forms best for a given OpenCL kernel on a specific GPU
architecture, we can apply each of the six factors to an

OpenCL kernel and record its execution time. Since the
optimal thread-coarsening factor varies across hardware

architectures, this process needs to repeat for each target

architecture. In addition to finding the best performing
coarsening factor, Magni et al. also extracted the aggregated

feature values for each kernel. Applying these two steps on
the training benchmarks results in a training data set where
each training example is composed of the optimal coars-

ening factor and feature values for a training kernel. The
training examples are then fed into a learning algorithm

which tries to find a set of model parameters (or weights) so
that overall prediction error on the training examples can

be minimized. The output of the learning algorithm is an
artificial neural network model where its weights are deter-

mined from the training data.

3) Deployment: The learned model can then be used to
predict the optimal coarsening factor for unseen OpenCL

programs. To do so, static source code features are first
extracted from the target OpenCL kernel; the extracted
feature values are then fed into the model which decides

whether to coarsen or not and which coarsening factor

should be used. The technique proposed in [17] achieves an
average speedup between 1.11x and 1.33x across four GPU
architectures and does not lead to degraded performance on

a single benchmark.

III . METHODOLOGY

One of the key challenges for compilation is to select the
right code transformation, or sequence of transformations

for a given program. This requires effectively evaluating the
quality of a possible compilation option, e.g., how a code

transformation will affect eventual performance.

A naive approach is to exhaustively apply each legal

transformation option and then profile the program to
collect the relevant performance metric. Given that many

compiler problems have a massive number of options,

exhaustive search and profiling is infeasible, prohibiting the
use of this approach at scale. This search-based approach
to compiler optimization is known as iterative compila-

tion [22], [23] or autotuning [10], [24]. Many techniques
have been proposed to reduce the cost of searching a large

space [25], [26]. In certain cases, the overhead is justifiable
if the program in question is to be used many times, e.g.,

in a deeply embedded device. However, its main limitation
remains: it only finds a good optimization for one program
and does not generalize into a compiler heuristic.

There are two main approaches for solving the problem
of scalably selecting compiler options that work across pro-

grams. A high level comparison of both approaches is given

in Fig. 3. The first strategy attempts to develop a cost (or pri-
ority) function to be used as a proxy to estimate the quality

of a potential compiler decision, without relying on exten-

sive profiling. The second strategy is to directly predict the
best performing option.

A. Building a Cost Function

Many compiler heuristics rely on a cost function to esti-

mate the quality of a compiler option. Depending on the
optimization goal, the quality metric can be execution time,

the code size, or energy consumption, etc. Using a cost func-

tion, a compiler can evaluate a range of possible options to

choose the best one, without needing to compile and profile
the program with each option.

Table 1 Candidate Code Features Used in [17]

Fig. 3. There are, in general, two approaches to determine the

optimal compiler decision using machine learning. The first one

is to learn a cost or priority function to be used as a proxy to

select the best performing option (a). The second one is to learn a

predictive model to directly predict the best option (b).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 5

1) The Problem of Handcrafted Heuristics: Trad-
itionally, a compiler cost function is manually crafted. For

example, a heuristic of function inlining adds up a num-

ber of relevant metrics, such as the number of instruc-

tions of the target function to be inlined, the callee and

stack size after inlining, and compare the resulted value
against a predefined threshold to determine if it is prof-
itable to inline a function [27]. Here, the importance or
weights for metrics and the threshold are determined

by compiler developers based on their experience or via

“trail-and-error.” Because the efforts involved in tuning

the cost function are so expensive, many compilers simply

use “one-size-fits-all” cost function for inlining. However,
such a strategy is ineffective. For examples, Cooper et al.

show that a “one-size-fits-all” strategy for inlining often
delivers poor performance [28]; other studies also show
that the optimal thresholds to use to determine when to

inline change from one program to the other [29], [30].

Handcrafted cost functions are widely used in compil-
ers. Other examples include the work conducted by Wagner
et al. [31] and Tiwari et al. [32]. The former combines a
Markov model and a human-derived heuristic to statically
estimate the execution frequency of code regions (such

as function innovation counts). The latter calculates the
energy consumption of an application by assigning a weight

to each instruction type. The efficiency of these approaches
highly depends on the accuracy of the estimations given by

the manually tuned heuristic.

The problem of relying on a hand-tuned heuristic is
that the cost and benefit of a compiler optimization often

depend on the underlying hardware; while handcrafted
cost functions could be effective, manually developing

one can take months or years on a single architecture.
This means that tuning the compiler for each newly
released processor is hard and is often infeasible due to

the drastic efforts involved. Because cost functions are

important and manually tuning a good function is dif-

ficult for each individual architecture, researchers have

investigated ways to use machine learning to automate

this process.

In Section III-A2, we review a range of previous studies

on using machine learning to tune cost functions for per-

formance and energy consumption—many of which can be

applied to other optimization targets such as the code size

[33] or a tradeoff between energy and runtime.

2) Cost Functions for Performance: The Meta
Optimization framework [34] uses genetic programming
(GP) to search for a cost function y ⃪ f (x) , which takes in a
feature vector x and produces a real-valued priority y . Fig. 4
depicts the workflow of the framework. This approach is eval-
uated on a number of compiler problems, including hyper-

block formation,3 register allocation, and data prefetching,

showing that machine learned cost functions outperform

human-crafted ones. A similar approach is employed by

Cavazos et al. who find cost functions for performance and
compilation overhead for a Java just-in-time compiler [35].

The COLE compiler [36] uses a variance of the GP algorithm
called strength Pareto evolutionary algorithm 2 (SPEA2)
[37] to learn cost functions to balance multiple objectives

(such as program runtime, compilation overhead, and code

size). In Section IV-C, we describe the working mechanism
of GP-like search algorithms.

Another approach to tune the cost functions is to pre-

dict the execution time or speedup of the target program.

The Qilin compiler [38] follows such an approach. It uses
curve fitting algorithms to estimate the runtime for execut-
ing the target program of a given input size on the CPU
and the GPU. The compiler then uses this information to
determine the optimal loop iteration partition across the

CPU and the GPU. The Qilin compiler relies on an applica-

tion-specific function which is built on a per program base
using reference inputs. The curve fitting (or regression; see,
also, Section IV) model employed by the Qilin compiler
can model with continuous values, making it suitable for
estimating runtime and speedup. In [39], this approach is

extended, which developed a relative predictor that predicts

whether an unseen predictor will improve significantly on a
GPU relative to a CPU. This is used for runtime scheduling
of OpenCL jobs.

The early work conduced by Brewer proposed a regres-

sion-based model to predict the execution of a data layout

scheme for parallelization, by considering three parameters

[40]. Using the model, his approach can select the optimal

3Hyperblock formation combines basic blocks from multiple control
paths to form a predicated, larger code block to expose instruction level
parallelism.

Fig. 4. A simple view of the GP approach presented in [34] for tuning compiler cost functions. Each candidate cost function is represented

as an expression tree (a). The workflow of the GP algorithm is presented in (b).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

6 Proceedings of the IEEE

layout for over 99% of the time for a partial differential equa-

tion (PDE) solver across four evaluation platforms. Other
previous works also use curve fitting algorithms to build a
cost function to estimate the speedup or runtime of sequen-

tial [41]–[43], OpenMP [44]–[46], and, more recently, deep
learning applications [47].

3) Cost Functions for Energy Consumption: In addi-

tion to performance, there is an extensive body of work
that investigates ways to build energy models for software

optimization and hardware architecture design. As power or

energy readings are continuous real values, most of the prior

work on power modeling uses regression-based approaches.
Linear regression is a widely used technique for energy

modeling. Benini et al. developed a linear-regression-based

model to estimate power consumption at the instruction

level [48]. The framework presented by Rethinagiri et al.

[49] uses parameterized formulas to estimate power con-

sumption of embedded systems. The parameters of the for-

mulas are determined by applying a regression-based algo-

rithm to reference data obtained with handcrafted assembly

code and power measurements. In a more recent work,
Schürmans et al. also adopt a regression-based method for

power modeling [50], but the weights of the regression

model are determined using standard benchmarks instead
of handwritten assembly programs.

Other works employ the artificial neural network (ANN)
to automatically construct power models. Curtis-Maury et

al. develop an ANN-based model to predict the power con-

sumption of OpenMP programs on multicore systems [51].

The inputs to the model are hardware performance coun-

ter values such as the cache miss rate, and the output is

the estimated power consumption. Su et al. adopt a similar

approach by developing an ANN predictor to estimate the
runtime and power consumption for mapping OpenMP pro-

grams on nonuniform memory access (NUMA) multicores.
This approach is also based on runtime profiling of the target
program, but it explicitly considers NUMA-specific infor-

mation like local and remote memory accesses per cycle.

B. Directly Predicting the Best Option

While a cost function is useful for evaluating the quality

of compiler options, the overhead involved in searching for

the optimal option may still be prohibitive. For this reason,

researchers have investigated ways to directly predict the

best compiler decision using machine learning for relatively

small compilation problems.

Monsifrot et al. pioneered the use of machine learning to

predict the optimal compiler decision [16]. This work devel-
oped a decision-tree-based approach to determine whether it

is beneficial to unroll a loop based on information such as the
number of statements and arithmetic operations of the loop.

Their approach makes a binary decision on whether to unroll
a loop but not how many times the loop should be unrolled.

Later, Stephenson and Amarasinghe advanced [16] by directly

predicting the loop unroll factor [52] by considering eight

unroll factors (1, 2, …, 8) . They formulated the problem as a
multiclass classification problem (i.e., each loop unroll factor
is a class). They used over 2500 loops from 72 benchmarks to
train two machine learning models [a nearest neighbor and

a support vector machine (SVM) model] to predict the loop

unroll factor for unseen loops. Using a richer set of features
than [16], their techniques correctly predict the unroll fac-

tor for 65% of the testing loops, leading to, on average, a 5%

improvement for the SPEC 2000 benchmark suite.
For sequential programs, there is extensive work in pre-

dicting the best compiler flags [53], [54], code transforma-

tion options [55], or tile size for loops [56], [57]. This level
of interest is possibly due to the restricted nature of the

problem, allowing easy experimentation and comparison

against prior work.
Directly predicting the optimal option for parallel pro-

grams is harder than doing it for sequential programs, due to

the complex interactions between the parallel programs and

the underlying parallel architectures. Nonetheless, there
are works on predicting the optimal number of threads to
be used to run an OpenMP program [46], [58], the best
parameters to be used to compile a CUDA programs for a
given input [59], and the thread coarsening parameters for

OpenCL programs for GPUs [17]. These papers show that
supervised machine learning can be a powerful tool for

modeling problems with a relatively small number of opti-

mization options.

I V. M ACHINE LE A R NING MODELS

In this section, we review the wide range of machine learning

models used for compiler optimization. Table 2 summarizes
the set machine learning models discussed in this section.

There are two major subdivisions of machine learn-

ing techniques that have previously been used in compiler

optimizations: supervised and unsupervised learning. Using
supervised machine learning, a predictive model is trained

on empirical performance data (labeled outputs) and impor-

tant quantifiable properties (features) of representative
programs. The model learns the correlation between these
feature values and the optimization decision that delivers the

optimal (or near-optimal) performance. The learned correla-

tions are used to predict the best optimization decisions for

new programs. Depending on the nature of the outputs, the
predictive model can be either a regression model for con-

tinuous outputs or a classification model for discrete outputs.
In the other subdivision of machine learning, termed

unsupervised learning, the input to the learning algorithm is

a set of input values merely—there is no labeled output. One

form of unsupervised learning is clustering which groups the

input data items into several subsets. For example, SimPoint

[60], a simulation technique, uses clustering to pick repre-

sent program execution points for program simulation. It

does so by first dividing a set of program runtime information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 7

into groups (or clusters), such that points within each clus-

ter are similar to each other in terms of program structures

(loops, memory usages, etc.); it then chooses a few points
of each cluster to represent all the simulation points within

that group without losing much information.

There are also techniques that sit at the boundary of super-

vised and unsupervised learning. These techniques refine the
knowledge gathered during offline learning or previous runs
using empirical observations obtained during deployment.

We review such techniques in Section IV-C. This sections
concludes with a discussion of the relative merits of different

modeling approaches for compiler optimization.

A. Supervised Learning

1) Regression: A widely used supervised learning tech-

nique is called regression. This technique has been used in
various tasks, such as predicting the program execution time
input [38] or speedup [39] for a given input, or estimating

the tail latency for parallel workloads [61].
Regression is essentially curve fitting. As an example,

consider Fig. 5 where a regression model is learned from

five data points. The model takes in a program input size X

and predicts the execution time of the program Y . Adhering

to supervised learning nomenclature, the set of five known
data points is the training data set and each of the five points
that comprise the training data is called a training example.

Each training example (x i , y i) is defined by a feature vector
(i.e., the input size in our case) x i and a desired output (i.e.,

the program execution time in our case) y i . Learning in this

context is understood as discovering the relation between

the inputs (x i) and the outputs (y i) so that the predictive

model can be used to make predictions for any new, unseen
input features in the problem domain. Once the function f

is in place, one can use it to make a prediction by taking in a
new input feature vector x . The prediction y is the value of

the curve that the new input feature vector x corresponds to.

There are a range of machine learning techniques that
can be used for regression. These include the simple linear
regression model and more advanced models like SVMs and
ANNs. Linear regression is effective when the input (i.e.,

feature vectors) and output (i.e., labels) have a strong linear

relation. SVM and ANNs can model both linear and nonlin-

ear relations, but typically require more training examples

to learn an effective model when compared with simple lin-

ear regression models.

Table 3 gives some examples of regression techniques
that have been used in prior work for code optimization and
the problem to be modeled.

2)  Classification: Supervised classification is another
technique that has been widely used in prior work of machine-
learning-based code optimization. This technique takes in a
feature vector and predicts which of a set of classes the feature

vector is associated with. For example, classification can be
used to predict which of a set of unroll factors should be used

for a given loop, by taking in a feature vector that describes the
characteristics of the target loop (see also Section II-D).

The k-nearest neighbur (KNN) algorithm is a simple
yet effective classification technique. It finds the k closet

training examples to the input instance (or program) on the

feature space. The closeness (or distance) is often evaluated
using the Euclidean distance, but other metrics can also be
used. This technique has been used to predict the optimal
optimization parameters in prior works [52], [66], [67]. It

Table 2 Machine Learning Methods Discussed in Section IV

Fig. 5. A simple regression-based curve-fitting example. There are

five training examples in this case. A function f is trained with the

training data, which maps the input x to the output y . The trained

function can predict the output of an unseen x .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

8 Proceedings of the IEEE

works by first predicting which of the training programs
are closet (i.e., nearest neighbors) to the incoming program

on the feature space; it then uses the optimal parameters
(which are found during training time) of the nearest neigh-

bors as the prediction output. While it is effective on small

problems, KNN also has two main drawbacks. First, it must
compute the distance between the input and all training data

at each prediction. This can be slow if there is a large num-

ber of training programs to be considered. Second, the algo-

rithm itself does not learn from the training data; instead,
it simply selects the k nearest neighbors. This means that
the algorithm is not robust to noisy training data and could

choose an ill-suited training program as the prediction.

As an alternative, the decision tree has been used in

prior works for a range of optimization problems. These
include choosing the parallel strategy for loop parallelization

[69], determining the loop unroll factor [16], [70], decid-

ing the profitability of using GPU acceleration [68], [71],
and selecting the optimal algorithm implementation [72].

The advantage of a decision tree is that the learned model is
interpretable and can be easily visualized. This enables users
to understand why a particular decision is made by follow-

ing the path from the root node to a leaf decision node. For

example, Fig. 6 depicts the decision tree model developed in

[68] for selecting the best performing device (CPU or GPU)
to run an OpenCL program. To make a prediction, we start
from the root of the tree; we compare a feature value (e.g., the
communication–computation ratio) of the target program

against a threshold to determine which branch of the tree to

follow; and we repeat this process until we reach a leaf node
where a decision will be made. It is to note that the structure

and thresholds of the tree are automatically determined by

the machine learning algorithm, which may change when we

target a different architecture or application domain.

Decision trees make the assumption that the feature
space is convex, i.e., it can be divided up using hyperplanes

into different regions, each of which belongs to a different

category. This restriction is often appropriate in practice.
However, a significant drawback of using a single decision
tree is that the model can overfit due to outliers in the train-

ing data (see also Section IV-D). Random forests [73] have,
therefore, been proposed to alleviate the problem of over-

fitting. Random forests are an ensemble learning method
[74]. As illustrated in Fig. 7, it works by constructing mul-
tiple decision trees at training time. The prediction of each
tree depends on the values of a random vector sampled inde-

pendently on the feature value. In this way, each tree is ran-

domly forced to be insensitive to some feature dimensions.

To make a prediction, random forests then aggregate the out-
comes of individual trees to form an overall prediction. It has

been employed to determine whether to inline a function or

not [75], delivering better performance than a single-model-

based approach. We want to highlight that random forests

can also be used for regression tasks. For instances, it has
been used to model energy consumption of OpenMP [76]

and CUDA [77] programs.
Logical regression is a variation of linear regression but

is often used for classification. It takes in the feature vec-

tor and calculates the probability of some outcome. For

example, Cavazos and O’Boyle used logical regression to
determine the optimization level of Jike RVM. Like decision
trees, logical regression also assumes that the feature values

and the prediction has a linear relation.

More advanced models, such as SVM classification,
have been used for various compiler optimization tasks
[46], [79]–[81]. SVMs use kernel functions to compute the
similarity of feature vectors. The radial basis function (RBF)
is commonly used in prior works [46], [82] because it can
model both linear and nonlinear problems. It works by map-

ping the input feature vector to a higher dimensional space

where it may be easier to find a linear hyperplane to well
separate the labeled data (or classes).

Other machine learning techniques, such as kernel
canonical correlation analysis and naive Bayes, have also

Fig. 6. A decision tree for determining which device (CPU or GPU) to use to run an OpenCL program. This diagram is reproduced from [68].

Table 3 Regression Techniques Used in Prior Works

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 9

been used in prior works to predict stencil program configu-

rations [83] or detect parallel patterns [84].

3) Deep Neural Networks: In recent years, deep neural

networks [85] have been shown to be a powerful tool for
tackling a range of machine learning tasks such as image rec-

ognition [86], [87] and audio processing [88]. Deep neural
networks (DNNs) have recently been used to model program
source code [89] for various software engineering tasks (see
also Section VI-C), but so far there is little work of apply-

ing DNNs to compiler optimization. A recent attempt in
this direction is the DeepTune framework [78], which uses
DNNs to extract source code features (see also Section V-C).

The advantage of DNNs is that they can compactly rep-

resent a significantly larger set of functions than a shallow
network, where each function is specialized at processing

part of the input. This capability allows DNNs to model the
complex relationship between the input and the output (i.e.,

the prediction). As an example, consider Fig. 8 that visual-

izes the internal state of DeepTune [78] when predicting
the optimal thread coarsening factor for an OpenCL kernel
(see Section II-D). Fig. 8(a) shows the first 80 elements of
the input source code tokens as a heatmap in which each
cell’s color reflects an integer value assigned to a specific
token. Fig. 8(b) shows the neurons of the first DNN for
each of the four GPU platforms, using a red–blue heatmap
to visualize the intensity of each activation. If we have a

close look at the heatmap, we can find a number of neurons
in the layer with different responses across platforms. This
indicates that the DNN is partly specialized to the target
platform. As information flows through the network [layers
(c) and (d) in Fig. 8], the layers become progressively more

specialized to the specific platform.

B. Unsupervised Learning

Unlike supervised learning models which learn a correla-

tion from the input feature values to the corresponding out-

puts, unsupervised learning models only take it from the input
data (e.g., the feature values). This technique is often used to
model the underlying structure of distribution of the data.

Clustering is a classical unsupervised learning problem.

The k-means clustering algorithm [90] groups the input data
into k clusters. For example, in Fig. 9, a k-means algorithm
is used to group data points into three clusters on a 2-D

Fig. 7. Random forests are an ensemble learning algorithm. It

aggregates the outputs of multiple decision trees to form a final

prediction. The idea is to combine the predictions from multiple

individual models together to make a more robust, accurate

prediction than any individual model.

Fig. 8. A simplified view of the internal state for the DeepTune DNN framework [78] when it predicts the optimal OpenCL thread coarsening

factor. Here, a DNN is learned for each of the four target GPU architectures. The activations in each layer of the four models increasingly

diverge (or specialize) toward the lower layers of the model. It is to note that some of the DeepTune layers are omitted to aid presentation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

10 Proceedings of the IEEE

feature space. The algorithm works by grouping data points
that are close to each other on the feature space into a clus-

ter. K-means is used to characterize program behavior [60],
[91]. It does so by clustering program execution into phase

groups, so that we can use a few samples of a group to rep-

resent the entire program phases within a group. K-means
is also used in the work presented in [92] to summarize the
code structures of parallel programs that benefit from simi-
lar optimization strategies. In addition to k-means, Martins
et al. employed the fast Newman clustering algorithm [93]
which works on network structures to group functions that
may benefit from similar compiler optimizations [94].

PCA is a statistical method for unsupervised learning.

This method has been heavily used in prior work to reduce
the feature dimension [17], [25], [95]–[97]. Doing so allows
us to model a high-dimensional feature space with a smaller

number of representative variables which, in combination,

describe most of the variability found in the original feature

space. PCA is often used to discover the common pattern in

the data sets in order to help clustering exercises. It is used

to select representative programs from a benchmark suite
[95], [98]. In Section V-D, we discuss PCA in further details.

Autoencoders are a recently proposed artificial neural
network architecture for discovering the efficient codings of
input data in an unsupervised fashion [99]. This technique
can be used in combination of a natural language model to

first extract features from program source code and then find
a compact representation of the source code features [100].

We discuss autoencoders in Section V-D when reviewing
feature dimensionality reduction techniques.

C. Online Learning

1) Evolutionary Search: Evolutionary algorithms (EAs)
or evolutionary computation such as genetic algorithms

(GAs), GP,4 and stochastic-based search have been employed

to find a good optimization solution from a large search space.
An EA applies principles inspired by biological evolution to
find an optimal or near-optimal solution for the target prob-

lem. For instance, the SPIRAL autotuning framework uses a
stochastic evolutionary search algorithm to choose a fast for-

mula (or transformation) for signal processing applications

[101]. Li et al. use GAs to search for the optimal configura-

tion to determine which sorting algorithm to use based on

the unsorted data size [102]. The Petabricks compiler offers
a more general solution by using EAs to search for the best
performing configurations for a set of algorithms specified
by the programmer [103]. In addition to code optimization,

EAs have also been used to create Pareto optimal program
benchmarks under various criteria [104].

As an example, consider how an EA can be employed in
the context of iterative compilation to find the best com-

piler flags for a program [25], [36], [105]. Fig. 10 depicts
how an EA can be used for this purpose. The algorithm
starts from several populations of randomly chosen com-

piler flag settings. It compiles the program using each indi-
vidual compiler flag sequence, and uses a fitness function
to evaluate how well a compiler flag sequence performs. In
our case, a fitness function can simply return the recipro-

cal of a program runtime measurement, so that compiler

settings that give faster execution time will have a higher

fitness score. In the next epoch, the EA algorithm generates

Fig. 9. Using k-means to group data points into three clusters. In

this example, we group the data points into three clusters on a 2-D

feature space.

4A GA is represented as a list of actions and values, often a string,
while a GP is represented as a tree structure of actions and values. For
example, GP is applied to the abstract syntax tree of a program to search
for useful features in [70].

Fig. 10. Using an EA to perform iterative compilation. The

algorithm starts from several initial populations of randomly

chosen compiler flag sequences. It evaluates the performance of

individual sequences to remove poorly performing sequences in

each population. It then applies crossover and mutation to create

a new generation of populations. The algorithm returns the best

performing program binary when it terminates.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 11

the next populations of compiler settings via mechanisms

such as reproduction (crossover) and mutation among

compiler flag settings. This results in a new generation of
compiler flag settings and the quality of each setting will
be evaluated again. In a mechanism analogous to natural

selection, a certain number of poorly performing compiler

flags within a population are chosen to die in each genera-

tion. This process terminates when no further improve-

ment is observed or the maximum number of generations is

reached, and the algorithm will return the best found pro-

gram binary as a result.

There are three key operations in an EA algorithm: selec-

tion, crossover, and mutation. The probability of an opti-
mization option being selected for dying is often inversely

proportional to its fitness score. In other words, options that
are relatively fitter (e.g., give faster program runtime) are
more likely to survive and remain a part of the population
after selection. In crossover, a certain number of offsprings

are produced by mixing some existing optimization options

(e.g., compiler flags). The likelihood of an existing option
being chosen for crossover is again proportional to its fit-
ness. This strategy ensures that good optimizations will be
preserved over generations, while poorly performing opti-

mizations will gradually die out. Finally, mutation randomly

changes a preserved optimization, e.g., by turning on/off

an option or replacing a threshold value in a compiler flag
sequence. Mutation reduces the chance that the algorithm

gets stuck with a locally optimal optimization.
EAs are useful for exploring a large optimization space

where it is infeasible to just enumerate all possible solu-

tions. This is because an EA can often converge to the most
promising area in the optimization space quicker than a
general search heuristic. The EA is also shown to be faster
than a dynamic-programming-based search [24] in finding
the optimal transformation for the fast Fourier transforma-

tion (FFT) [101]. When compared to supervised learning,
EAs have the advantage of requiring little problem-specific
knowledge, and hence they can be applied on a broad range
of problems. However, because an EA typically relies on the
empirical evidences (e.g., running time) for fitness evalu-

ation, the search time can still be prohibitively expensive.

This overhead can be reduced by using a machine-learning-
based cost model [43] to estimate the potential gain (e.g.,
speedup) of a configuration (see also Section III-A). Another
approach is to combine supervised learning and EAs [25],
[106] by first using an offline learned model to predict the
most promising areas of the design space (i.e., to narrow

down the search areas), and then searching over the pre-

dicted areas to refine the solutions. Moreover, instead of
predicting where in the search space to focus on, one can

also first prune the search space to reduce the number of
options to search over. For example, Jantz and Kulkarni
show that the search space of phase ordering5 can be greatly

reduced if we can first remove phases whose application
order is irrelevant to the produced code [107]. Their tech-

niques are claimed to prune the exhaustive phase order

search space size by 89% on average.

2) Reinforcement Learning: Another class of online

learning algorithms is reinforcement learning (RL) which

is sometimes called “learning from interactions.” The algo-

rithm tries to learn how to maximize the rewards (or perfor-

mance) itself. In other words, the algorithm needs to learn,

for a given input, what the correct output or decision to take
is. This is different from supervised learning where the cor-

rect input/output pairs are presented in the training data.

Fig. 11 illustrates the working mechanism of RL. Here
the learning algorithm interacts with its environment over a

discrete set of time steps. At each step, the algorithm evalu-

ates the current state of its environment, and executes an

action. The action leads to a change in the state of the envi-
ronment (which the algorithm can evaluate in the next time

step), and produces an immediate reward. For example, in

a multitasking environment, a state could be the CPU con-

tention; when processor cores are idle, an action could be
where to place a process, and a reward could be the overall

system throughput. The goal of RL is to maximize the long-
term cumulative reward by learning an optimal strategy to

map states to actions.

RL is particularly suitable for modeling problems that

have an evolving natural, such as dynamic task scheduling,
where the optimal outcome is achieved through a series of

actions. RL has been used in prior research to schedule RAM

memory traffics [108], select software component configu-

rations at runtime [109], and configure virtual machines
[110]. An early work of using RL for program optimization
was conduced by Lagoudakis and Littman [111]. They use
RL to find the cutoff point to switch between two sorting
algorithms: quickSort and insertionSort. CALOREE
combines machine learning and control theories to sched-

ule CPU resources on heterogeneous multicores [112]. For a
given application, CALOREE uses control-theoretic methods
to dynamically adjust the resource allocation, and machine

learning to estimate the application’s latency and power for
a given resource allocation plan (to offer decision supports).

An interesting RL-based approach for scheduling paral-

lel OpenMP programs is presented in [113]. This approach
predicts the best number of threads for a target OpenMP

5Compiler phase ordering determines at which order a set of
compiler optimization passes should be applied to a given program.

Fig. 11. The working mechanism of reinforcement learning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

12 Proceedings of the IEEE

program when it runs with other competing workloads,
aiming to make the target program run faster. This approach
first learns a reward function offline based on static code
features and runtime system information. The reward func-

tion is used to estimate the reward of a runtime scheduling

action, i.e., the expected speedup when assigning a certain

number of processor cores to an OpenMP program. In the

next scheduling epoch, this approach uses the empiri-

cal observation of the application speedup to check if the
reward function was accurate and the decision was good,

and update the reward function if the model is found to be

inaccurate.

In general, RL is an intuitive and comprehensive solu-

tion for autonomous decision making. But its performance
depends on the effectiveness of the value function, which

estimates the immediate reward. An optimal value function

should lead to the greatest cumulative reward in the longer

term. For many problems, it is difficult to design an effective
value function or policy, because the function needs to fore-

see the impact of an action in the future. The effectiveness of
RL also depends on the environment; if the number of pos-

sible actions is large, it can take RL a long time to converge
to a good solution. RL also requires the environment to be

fully observed, i.e., all the possible states of the environment

can be anticipated ahead of time. However, this assumption
may not hold in a dynamic computing environment due

to unpredictable disturbances, e.g., changes in application

inputs or application mixes. In recent years, deep learning

techniques have been used in conjunction with RL to learn

a value function. The combined technique is able to solve
some problems that were deemed impossible in the past

[114]. However, how to combine deep learning with RL to
solve compilation and code optimization problems remains

an open question.

D. Discussion

What model is best is the $64 000 question. The answer
is: it depends. More sophisticated techniques may provide
greater accuracy but they require large amounts of labeled

training data—a real problem in compiler optimization.

Techniques such as linear regression and decision trees
require less training data compared to more advanced mod-

els such as SVMs and ANNs. Simple models typically work
well when the prediction problem can be described using a

feature vector that has a small number of dimensions, and

when the feature vector and the prediction are linearly cor-

related. More advanced techniques such as SVMs and ANNs
can model both linear and nonlinear problems on a higher

dimensional feature space, but they often require more

training data to learn an effective model. Furthermore, the

performance of an SVM and an ANN also highly depends on
the hyperparameters used to train the model. The optimal
hyperparameter values can be chosen by performing cross

validation on the training data. However, how to select

parameters to avoid overfitting while achieving a good pre-

diction accuracy remains an outstanding challenge.

Choosing which modeling technique to use is nontrivial.

This is because the choice of model depends on a number
of factors: the prediction problem (e.g., regression or clas-

sification), the set of features to use, the available train-

ing examples, the training and prediction overhead, etc.

In prior works, the choice of modeling technique largely
relied on developer experience and empirical results. Many

of the studies in the field of machine-learning-based code
optimization do not fully justify the choice of the model,

although some do compare the performance of alternate

techniques. The OpenTuner framework addresses the prob-

lem by employing multiple techniques for program tuning

[115]. OpenTuner runs multiple search techniques at the
same time. Techniques which perform well will be given
more candidate tuning options to examine, while poorly

performed algorithms will be given fewer choices or disa-

bled entirely. In this way, OpenTuner can discover which
algorithm works best for a given problem during search.

One technique that has seen little investigation is the use

of Gaussian processes [116]. Before the recent widespread

interest in DNNs, these were a highly popular method in
many areas of machine learning [117]. They are particularly
powerful when the amount of training data is sparse and

expensive to collect. They also automatically give a confi-

dence interval with any decision. This allows the compiler
writer to trade off risk versus reward depending on the
application scenario.

Using a single model has a significant drawback in prac-

tice. This is because a one-size-fits-all model is unlikely to
precisely capture behaviors of diverse applications, and no

matter how parameterized the model is, it is highly unlikely
that a model developed today will always be suited for

tomorrow. To allow the model to adapt to the change of the
computing environment and workloads, ensemble learning
was exploited in prior works [73], [118], [119]. The idea of
ensemble learning is to use multiple learning algorithms,

where each algorithm is effective for particular problems, to

obtain better predictive performance than could be obtained

from any of the constituent learning algorithm alone [120],

[121]. Making a prediction using an ensemble typically
requires more computational time than doing that using a

single model, so ensembles can be seen as a way to com-

pensate for poor learning algorithms by performing extra

computation. To reduce the overhead, fast algorithms such
as decision trees are commonly used in ensemble methods

(e.g., random forests), although slower algorithms can ben-

efit from ensemble techniques as well.

V. FE AT U R E ENGINEER ING

Machine-learning-based code optimization relies on hav-

ing a set of high-quality features that capture the important

characteristics of the target program. Given that there is an

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 13

unbounded number of potential features, finding the right
set is a nontrivial task. In this section, we review how pre-

vious work chooses features, a task known as feature engi-
neering. Tables 4 and 5 summarize the range of program
features and feature engineering techniques discussed in

this section, respectively.

A. Feature Representation

Various forms of program features have been used in

compiler-based machine learning. These include static code
structures [122] and runtime information such as system

load [118], [123] and performance counters [53].

1) Static Code Features: Static program features such

as the number and type of instructions are often used to

describe a program. These features are typically extracted
from the compiler intermediate representations [29], [46],
[52], [80] in order to avoid using information extracted from

dead code. Table 6 gives some of the static code features that
were used in previous studies. Raw code features are often

used together to create a combined feature. For example, one

can divide the number of load instructions by the number of

total instructions to get the memory load ratio. An advantage

of using static code features is that the features are readily

available from the compiler intermediate representation.

2) Tree- and Graph-Based Features: Singer and Veloso

represent the FFT in a split tree [124]. They extract from the
tree a set of features, by counting the number of nodes of var-

ious types and quantifying the shape of the tree. These tree-
based features are then used to build a neural-network-based

cost function that predicts which of the two FFT formulas
runs faster. The cost function is used to search for the best
performing transformation.

Park et al. present a unique graph-based approach for

feature representations [125]. They use an SVM where the
kernel is based on a graph similarity metric. Their technique
requires hand-coded features at the basic block level, but
thereafter, graph similarity against each of the training pro-

grams takes the place of global features. Mailike shows that
spatial-based information, i.e., how instructions are distrib-

uted within a program, extracted from the program’s data
flow graph could be a useful feature for machine-learning-
based compiler optimization [126]. Nobre et al. also exploit

graph structures for code generation [26]. Their approach
targets the phase ordering problem. The order of compiler
optimization passes is represented as a graph. Each node of
the graph is an optimization pass and connections between

nodes are weighted in a way that subsequences with higher

aggregated weights are more likely to lead to faster runtime.
The graph is automatically constructed and updated using
iterative compilation (where the target program is complied

using different compiler passes with different orders). A

design space exploration algorithm is employed to drive the

iterative compilation process.

3) Dynamic Features: While static code features are

useful and can be extracted at static compile time (hence

feature extraction has no runtime overhead), they have

drawbacks. For examples, static code features may con-

tain information of code segments that rarely get executed,

and such information can confuse the machine learning

model; some program information such as the loop bound
depends on the program input, which can only be obtained

during execution time; and static code features often may
not precisely capture the application behavior in the runt-

ime environment [such as resource contention and input/

output (I/O) behavior] as such behavior highly depends on

the computing environment such as the number of available

processors and corunning workloads.
As illustrated in Fig. 12, dynamic features can be

extracted from multiple layers of the runtime environment.

At the application layer, we can obtain information such

as loop iteration counts that cannot be decided at compile

time, dynamic control flows, frequently executed code
regions, etc. At the operating system level, we can observe

the memory and I/O behavior of the application as well

as CPU load and thread contention, etc. At the hardware

Table 4 Summary of Features Discussed in Section V

Table 5 Feature Engineering Techniques Discussed in Section V.

Table 6 Example Code Features Used in Prior Works

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

14 Proceedings of the IEEE

level, we can use performance counters to track information
such as how many instructions have been executed and of

what types, and the number of cache loads/stores as well as

branch misses, etc.

Hardware performance counter values, such as executed
instruction counts and cache miss rate, are therefore used

to understand the application’s dynamic behaviors [53],
[127], [128]. These counters can capture low-level pro-

gram information such as data access patterns, branches,

and computational instructions. One of the advantages of

performance counters is that they capture how the target

program behaves on a specific hardware and avoid the irrel-
evant information that static code features may bring in. In

addition to hardware performance counters, operating sys-

tem level metrics, such as system load and I/O contention,

are also used to model an application’s behavior [39], [123].
Such information can be externally observed without instru-

menting the code, and can be obtain during offline profiling
or program execution time.

While effective, collecting dynamic information could

incur prohibitively overhead and the collected information

can be noisy due to competing workloads and operating sys-

tem scheduling [129] or even subtle settings of the execu-

tion environment [130]. Another drawback of performance
counters and dynamic features is that they can only capture

the application’s past behavior. Therefore, if the applica-

tion behaves significantly different in the future due to the
change of program phases or inputs, then the prediction will

be drawn on an unreliable observation. As such, dynamic

and static features are often used in combination in prior

works in order to build a robust model.

B. Reaction-Based Features

Cavazos et al. present a reaction-based predictive model

for software–hardware codesign [131]. Their approach pro-

files the target program using several carefully selected com-

piler options to see how program runtime changes under

these options for a given microarchitecture setting. They
then use the program “reactions” to predict the best avail-

able application speedup. Fig. 13 illustrates the difference

between a reaction-based model and a standard program

feature-based model. A similar reaction-based approach is

used in [132] to predict speedup and energy efficiency for
an application that is parallelized thread-level speculation

(TLS) under a given microarchitectural configuration. Note
that while a reaction-based approach does not use static

code features, developers must carefully select a few set-

tings from a large number of candidate options for profiling,
because poorly chosen options can significantly affect the
quality of the model.

C. Automatic Feature Generation

As deriving good features is a time-consuming task, a
few methods have been proposed to automatically gener-

ate features from the compiler’s intermediate representa-

tion (IR) [70], [133]. The work of [70] uses GP to search
for features, but required a huge grammar to be written,

some 160 kB in length. Although much of this can be cre-

ated from templates, selecting the right range of capabili-

ties and search space bias is nontrivial and up to the expert.

The work of [133] expresses the space of features via logic
programming over relations that represent information

from the IRs. It greedily searches for expressions that rep-

resent good features. However, their approach relies on
expert selected relations, combinators, and constraints

to work. Both approaches closely tie the implementation
of the predictive model to the compiler IR, which means

changes to the IR will require modifications to the model.
Furthermore, the time spent in searching features could be

significant for these approaches.
The first work to employ neural network to extract fea-

tures from program source code for compiler optimization

was conducted by Cummins et al. [78]. Their system, namely
DeepTune, automatically abstracts and selects appropri-
ate features from the raw source code. Unlike prior work

Fig. 12. Dynamic features can be extracted from multiple layers of

the computing environment.

Fig. 13. Standard feature-based modeling (a) versus reaction-based

modeling (b). Both models try to predict the speedup for a given

compiler transformation sequence. The program feature-based

predictor takes in static program features extracted from the

transformed program, while the reaction-based model takes in the

target transformation sequence and the measured speedups of the

target program, obtained by applying a number of carefully selected

transformation sequences. Diagrams are reproduced from [131].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 15

where the predictive model takes in a set of human-crafted
features, program code is used directly in the training data.

Programs are fed through a series of neural-network-based
language models which learn how the code correlates with

the desired optimization options (see also Fig. 8). Their
work also shows that the properties of the raw code that
are abstracted by the top layers of the neural networks are
mostly independent of the optimization problem. While

promising, it is worth mentioning that dynamic informa-

tion such as the program input size and performance coun-

ter values are often essential for characterizing the behavior

of the target program. Therefore, DeepTune does not com-

pletely remove human involvement for feature engineering

when static code features are insufficient for the optimiza-

tion problem.

D. Feature Selection and Dimension Reduction

Machine learning uses features to capture the essential

characteristics of a training example. Sometimes we have

too many features. As the number of features increases, so

does the number of training examples needed to build an

accurate model [134]. Hence, we need to limit the dimen-

sion of the feature space. In compiler research, commonly,

an initial large, high-dimensional candidate feature space is

pruned via feature selection [52], or projected into a lower

dimensional space [17]. In this section, we review a number

of feature selection and dimension reduction methods.

1) Feature Selection: Feature selection requires under-

standing how a particular feature affects the prediction

accuracy. One of the simplest methods for doing this is

applying the Pearson correlation coefficient. This metric
measures the linear correlation between two variables and is

used in numerous works [55], [92], [122], [135] to filter out
redundant features by removing features that have a strong

correlation with an already selected feature. It has also been

used to quantify the relation of the select features in regres-

sion. One obvious drawback of using Pearson correlation as
a feature ranking mechanism is that it is only sensitive to a
linear relationship.

Another approach for correlation estimation is mutual

information [131], [136], which quantifies how much infor-

mation of one variable (or feature) can be obtained through

another variable (feature). Like correlation coefficient,
mutual information can be used to remove redundant fea-

tures. For example, if the information of feature x can be

largely obtained through another existing feature y , feature

x can then be taken out from the feature set without losing
much information on the reduced feature set.

Both correlation coefficient and mutual information
evaluate each feature independently with respect to the pre-

diction. A different approach is to utilize regression analysis

for feature ranking. The underlying principal of regression
analysis is that if the prediction is the outcome of regres-

sion model based on the features, then the most important

features should have the highest weights (or coefficients) in
the model, while features uncorrelated with the output vari-

ables should have weights close to zero. For example, least

absolute shrinkage and selection operator (LASSO) regres-

sion analysis is used in [137] to remove less useful features

to build a compiler-based model to predict performance.

LASSO has also been used for feature selection to tune the

compiler heuristics for the TRIPS processor [138].
In general, feature selection remains an open problem

for machine learning, and researchers often follow a “trail-

and-error” approach to test a range of methods and feature

candidates. This makes automatic feature selection frame-

work like FEAST [139] and HERCULES [140] attractive.
The former framework employs a range of existing feature
selection methods to select useful candidate features, while

the latter searches for the most important static code fea-

tures from a set of predefined patterns for loops.

2) Feature Dimensionality Reduction: While feature

selection allows us to select the most important features,

the resulted feature set can still be too large to train a good

model, especially when we only have a small number of

training examples. By reducing the number of dimensions,

the learning algorithm can often perform more efficiently
on a limited training data set. Dimension reduction is also
important for some machine learning algorithms such as

KNN to avoid the effect of the curse of dimensionality [141].
PCA is a well-established feature reduction technique

[142]. It uses orthogonal linear transformations to reduce the
dimensionality of a set of variables, i.e., features in our case.

Fig. 14 demonstrates the use of PCA to reduce the num-

ber of dimensions. The input in this example is a 3-D space
defined by M 1 , M 2 , and M 3 , as shown in Fig. 14(a). Three
components, P C 1 , P C 2 , and P C 3 , which account for the vari-

ance of the data, are first calculated. Here, P C 1 and P C 2 con-

tribute most to the variance of the data and P C 3 accounts

for the least variance. Using only P C 1 and P C 2 , one can

transform the original, 3-D space into a new, 2-D coordinate

Fig. 14. Using PCA to reduce dimensionality of a 3-D feature space.

The principal components are first computed (a). Then, the first two

principal components (P C 1 and P C 2) are selected to represent the

original 3-D feature space on a new 2-D space (b).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

16 Proceedings of the IEEE

system [as illustrated in Fig. 14(b)] while preserving much
of the variance of the original data.

PCA has been used in many prior compiler research

works for feature reduction [17], [25], [55], [92], [95]–[97],
[143]. It has also been used in prior works to visualize the
working mechanism of a machine learning model, e.g., to
show how benchmarks can be grouped in the feature space
[123], by projecting features from a high-dimensional space

into a 2-D space.
We want to stress that PCA does not select some fea-

tures and discard the others. Instead, it linearly combines

the original features to construct new features that can sum-

marize the list of the original features. PCA is useful when

there is some redundancy in the raw features, i.e., some of

the features are correlated with one another. Similar feature

reduction methods include factor analysis and linear discri-

minant analysis (LDA), which all try to reduce the number
of features by linearly combining multiple raw features.

However, PCA seems to be the most popular feature reduc-

tion method used in compiler research, probably due to its

simplicity.

An alternative way of reducing the number of features

used is via an autoencoder [144]. It is a neural network
that finds a representation (encoding) for a set of data, by
dimensionality reduction. Autoencoders works by learning
an encoder and a decoder from the input data. The encoder
tries to compress the original input into a low-dimensional

representation, while the decoder tries to reconstruct the

original input based on the low-dimension representations

generated by the encoder. As a result, the autoencoder has

been widely used to remove the data noise as well as to

reduce the data dimension [145].
Autoencoders have been applied to various natural lan-

guage processing tasks [99], often being used together with
DNNs. Recently, it has been employed to model program
source code to obtain a compact set of features that can

characterize the input program source [78], [146]–[149].

V I. SCOPE

Machine learning has been used to solve a wide range of

problems, from the early successful work of selecting com-

piler flags for sequential programs, to recent works on
scheduling and optimizing parallel programs on heteroge-

neous multicores. In this section, we review the types of

problems that have been exploited in prior works.

A. Optimizing Sequential Programs

Early works for machine learning in compilers look at
how, or if, a compiler optimization should be applied to a

sequential program. Some of the previous studies build

supervised classifiers to predict the optimal loop unroll fac-

tor [52], [70] or to determine whether a function should be

inlined [29], [35]. These works target a fixed set of compiler

options, by representing the optimization problem as a mul-

ticlass classification problem, where each compiler option
is a class. For example, Leather et al. [70] considered a

loop unroll factor between 0 and 15 (16 configurations in
total), treating each candidate unroll factor as a class; they
compiled and profiled each training program by trying all
16 configurations to find out the best loop unroll factor for
each program, and then learned a decision tree model from

the training data.

There are other compiler problems where the number of
possible options is massive. For instance, the work presented
in [55] considers 54 code transformations of GCC. While
these options are only a subset from the over hundreds of

transformations provided by GCC, the resulted combinato-

rial compiler configurations lead to a space of approximately
10 34 . Although it is possible to build a classifier to directly
predict the optimal setting from a large space, to learn an

effective model would require a large volume of training

programs in order to have an adequate sampling over the

space. Doing so is difficult because 1) there are only a few
dozen common benchmarks available; and 2) compiler
developers need to generate the training data themselves.

EAs such as generic search are often used to explore a
large design space (see also Section IV-C1). Prior works have
used EAs to solve the phase ordering problem (i.e., at which
order a set of compiler transformations should be applied)

[150]–[152], determining the compiler flags during iterative
compilation [153]–[156], selecting loop transformations

[157], tuning algorithmic choices [11], [103], etc.

B. Optimizing Parallel Programs

How to effectively optimize parallel programs has
received significant attentions in the past decade, largely
because the hardware industry has adopted multicore

design to avoid the power wall [158]. While multicore and

many-core architectures provide the potential for high-

performance and energy-efficient computing, the potential
performance can only be unlocked if the application pro-

grams are suitably parallel and can be made to match the

underlying heterogeneous platform. Without this, the myr-

iad cores on multicore processors and their specialized pro-

cessing elements will sit idle or poorly utilized. To this end,
researchers have extended the reach of machine learning to

optimize parallel programs.

A line of research in parallel program optimization is

parallelism mapping. That is, given an already parallelized
program, how to map the application parallelism to match

the underlying hardware to make the program run as fast
as possible or be as energy efficient as possible. Zhang et

al. developed a decision-tree-based approach to predict the

scheduling policy to use for an OpenMP parallel region

[159]. The work presented in [46] employs two machine
learning techniques to predict the optimal number of

threads as well as the scheduling policy to use for OpenMP

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 17

parallel loop. Specifically, it uses a regression-based ANN
model to predict the speedup of a parallel loop when it

runs with a given number of threads (to search for the opti-

mal number threads), and an SVM classifier to predict the
scheduling policy. There are also works that use machine
learning to determine the optimum degree of parallelism for

transactional memory [160] and hardware source allocation

[161], or to select a code version from a pool of choices to

use [162]. Castro et al. developed a decision tree classifier
to predict the thread mapping strategy in the context of soft-

ware transactional memory [163]. Jung et al. constructed an

ANN-based predictor to select an effective data structure on
a specific microarchitecture [164].

The work presented in [92] and [165] is a unique
approach for applying machine learning to map complex

parallel programs with unbounded parallel graph structures.

The work considers the question of finding the optimal graph
structure of a streaming program. The idea was that rather
than trying to predict a sequence of transformations over an

unbounded graph, where legality and consistency is a real

problem, we should consider the problem from the dual

feature space. The work showed that it is possible to pre-

dict the best target feature (i.e., the characteristics that an

ideal transformed program should have) which then can be

used to evaluate the worth of candidate transformed graphs

(without compiling and profiling the resulted graphs) in the
original feature space.

The Petabricks project [103], [166], [167] takes an evolu-

tionary approach for program tuning. The Petabricks com-

piler employs genetic search algorithms to tune algorithmic

choices. Due to the expensive overhead of the search, much
of autotuning is done at static compile time. Their work
shows that one can utilize the idle processors on a multi-

core systems to perform online tuning [168], where half of

the cores are devoted to a known safe program configura-

tion, while the other half are used for an experimental pro-

gram configuration. In this way, when the results of the
faster configuration are returned, the slower version will be
terminated.

The idea of combining compile-time knowledge and
runtime information to achieve better optimizations has

been exploited by the ADAPT compiler [169]. Using the
ADAPT compiler, users describe what optimizations are
available and provide heuristics for applying these optimi-

zations. The compiler then reads these descriptions and
generates application-specific runtime systems to apply the
heuristics. Runtime code tuning is also exploited by Active

Harmony [170], which utilizes the computing resources in
HPC systems to evaluate different code variants on different
nodes to find the best performing version.

There is also an extensive body of work on how to opti-
mize programs on heterogeneous multicore systems. One of

the problems for heterogeneous multicore optimization is

to determine when and how to use the heterogeneous pro-

cessors. Researchers have used machine learning to build

classifiers to determine which processor to use [68] and at
which clock frequency the processor should operate [80],
[171]. Others used regression techniques to build curve fit-
ting models to search for the sweat spot for work partition-

ing among processors [38] or a tradeoff of energy and per-

formance [172].

Another line of research combines compiler-based

analysis and machine learning to optimize programs in the

presence of competing workloads. This research problem
is important because programs rarely run in isolation and

must share the computing resources with other corunning

workloads. In [173] and [174], an ANN model based on
static code features and runtime information was built to

predict the number of threads to use for a target program

when it runs with external workloads. Later, in [118], an
ensemble-learning-based approach was used, which leads to

significantly better performance over [173]. In [118], several
models are first trained offline; and then one of the model is
selected at runtime, taking into consideration the compet-
ing workloads and available hardware resources. The central
idea is that instead of using a single monolithic model, we

can use multiple models where each model is specialized for

modeling a subset of applications or a particular runtime

scenario. Using this approach, a model is used when its pre-

dictions are effective.

Some recent works developed machine learning models
based on static code features and dynamic runtime informa-

tion to schedule OpenCL programs in the presence of GPU
contention. The work presented in [175] uses SVM classifi-

cation to predict the work partition ratio between the CPU
and GPU when multiple programs are competing to run on a
single GPU. The work described in [39] aims to improve the
overall system throughput when there are multiple OpenCL

programs competing to run on the GPU. They developed an
ANN model to predict the potential speedup for running an
OpenCL kernel on the GPU. The speedup prediction is then
used as a proxy to determine which of the waiting OpenCL

tasks get to run on the GPU and in what order.
The approaches presented in [176] and [177] target task

colocation in a data center environment. They use com-

piler-based code transformations to reduce the contention

for multiple corunning tasks. A linear regression model was
employed to calculate the contention score of code regions

based on performance counter values. Then, a set of com-

piler-based code transformations is applied to reduce the

resource demands of highly contentious code.

C. Other Research Problems

Many works have demonstrated that machine learning
is a powerful technique in performance and cost modeling

[47], [178]–[180], and in task and resource scheduling [161],
[181]–[183]. We envision that many of these techniques can

be used to provide evidence to support runtime program

optimizations through, e.g., just-in-time compilation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

18 Proceedings of the IEEE

While not directly target code optimization, compiler-

based code analysis and machine learning techniques have

been used in conjunction to solve various software engineer-

ing tasks. These include detecting code similarities [184],
[185], automatic comment generation [186], mining API

usage patterns [187], [188], predicting program properties

[189], code de-obfuscation for malware detection [190],

etc. It is worth mentioning that many of these recent works
show that the past development knowledge extracted from
large code bases such as GitHub are valuable for learning an
effective model. There were two recent studies performed by
Cummins et al., which mine Github to synthesize OpenCL

benchmarks [148] and code extract features from source
code [78]. Both studies demonstrate the usefulness of large

code bases and deep learning techniques for learning pre-

dictive models for compiler optimizations. We envision that

the rich information in large open source code bases could

provide a powerful knowledge base for training machine
learning models to solve compiler optimization problems,

and deep learning could be used as an effective tool to

extract such knowledge from massive program source code.

V II. DISCUSSION

One of the real benefits of machine-learning-based
approaches is that it forces an empirically driven approach

to compiler construction. New models have to be based on
empirical data which can then be verified by independent
experimentation. This experiment, hypothesis, test cycle is
well known in the physical sciences but is a relatively new
addition compiler construction.

As machine-learning-based techniques require a sam-

pling of the optimization space for training data, we typi-

cally know the best optimization for any program in the
training set. If we exclude this benchmark from training,
we therefore have access to an upper bound on performance

or oracle for this program. This immediately lets us know
how good existing techniques are. If they are 50% of this

optimum or 95% of this optimum, this immediately tells us

whether the problem is worth exploring.

Furthermore, we can construct naive techniques, e.g.,

a random optimization, and see its performance. If it per-

formed a number of times, it will have an expected value

of the mean of the optimization speedups. We can then

demand that any new heuristic should outperform this,

though in our experience there have been cases where state-

of-the-art work was actually less than random.

A. Not a Panacea

This paper has, by and large, been very upbeat about the
use of machine learning. However, there are a number of
hurdles to overcome to make it a practical reality and this
opens up new questions about optimization.

Training cost is an issue that many find alarming. In
practice, the cost is much less than a compiler writer, and

techniques such as active learning can be employed to

reduce overhead of training data generation [191]–[194].
Although its true to say that generating many differently

compiled programs and executing and timing them are

entirely automatic, finding the right data requires careful
consideration. If the optimizations explored have little posi-

tive performance on the programs, then there is nothing

worth learning.

The most immediate problem continues to be gathering
enough sufficient high quality training data. Although there
are numerous benchmark sites publicly available, the num-

ber of programs available is relatively sparse compared to the

number that a typical compiler will encounter in its lifetime.

This is particularly true in specialist domains where there
may not be any public benchmarks. Automatic benchmark
generation work will help here, but existing approaches do
not guarantee that the generated benchmarks effectively
represent the design space. Therefore, the larger issue of the
structure of the program space remains.

A really fundamental problem is that if we build our

optimization models based purely on empirical data, then

we must guarantee that these data are correct and represent-

ative; we must learn the signal, not the noise. Peer review of
a machine learning approach is difficult. Black box mode-

ling prevents the quality of the model from being questioned

unlike handcrafted heuristics. In a sense, reviewers now
have to scrutinize that the experiments were fairly done.

This means all training and test data must be publicly availa-

ble for scrutiny. This is common practice in other empirical
sciences. The artefact evaluation committee is an example
of this [195], [196].

Although the ability to automatically learn how to best

optimize an application and adapt to change is a big step

forward, machine learning can only learn from what is pro-

vided by the compiler writer. Machine learning can neither

invent new program transformations to apply nor derive

analysis that determines whether a transformation is legal;
all of this is beyond its scope.

B. Will This Put Compiler Writers Out of a Job?

In fact, machine-learning-based compilation will para-

doxically lead to a renaissance in compiler optimization.

Compilers have become so complex that adding a new opti-

mization or compiler phase can lead to performance regres-

sions. This, in turn, has led to a conservative mind set where
new transformations are not considered if they may rock the
boat. The core issue is that systems are so complex that it
is impossible to know for sure when to use such an opti-
mization. Machine learning can remove this uncertainty by

automatically determining when an optimization is prof-

itable. This now frees the compiler writer to develop ever
more sophisticated techniques. He/she does not need to
worry about how they interfere with other optimizations—

machine learning looks after this. We can now develop opti-
mizations that will typically only work for specific domains,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 19

and not worry about coordinating their integration into a

general purpose system. It allows different communities to

develop novel optimizations and naturally integrate them.

So rather than closing down the opportunity for new ideas,

it opens up new vistas.

C. Open Research Directions

Machine learning has demonstrated its utility as a means

of automating compiler profitability analysis. It will con-

tinue to be used for more complex optimization problems

and is likely to be the default approach to selecting compiler
optimizations in the coming decade.

The open research directions go beyond predicting the
best optimizations to apply. One central issue is what the

program space looks like. We know that programs with lin-

ear array accesses inside perfect loop nests need different

treatment compared to, say, distributed graph processing

programs. If we could have a map that allows us to meas-

ure distances between programs, then we could see whether

there are regions that are well served by compiler charac-

terization and other regions that are sparse and currently

ignored. If we could do the same for hardware, then we

may be better able to design hardware likely to be of use for
emerging applications.

Can machine learning also be applied to compiler analy-

sis? For instance is it possible to learn dataflow or point-to
analysis? As deep learning has the ability to automatically

construct features, can we find a set of features that are com-

mon across all optimizations and analyses? Can we learn

the ideal compiler intermediate representation? There is
a wide range of interesting research questions that remain

unexplored.

V III. CONCLUSION

This paper has introduced machine-learning-based com-

pilation and described its power in determining an evi-

dence-based approach to compiler optimization. It is the

latest stage in 50 years of compiler automation. Machine-

learning-based compilation is now a mainstream compiler

research area and, over the last decade or so, has generated

a large amount of academic interest and papers. While it is

impossible to provide a definitive cataloger of all research,
we have tried to provide a comprehensive and accessible

survey of the main research areas and future directions.

Machine learning is not a panacea. It can only learn the data

we provide. Rather than, as some fear, it dumbs down the

role of compiler writers, it opens up the possibility of much

greater creativity and new research areas. 

REFERENCES

 [1] J. Chipps, M. Koschmann, S. Orgel, A. Perlis,
and J. Smith, “A mathematical language
compiler,” in Proc. 11th ACM Nat. Meeting,
1956, pp. 114–117.

 [2] P. B. Sheridan, “The arithmetic translator-
compiler of the IBM FORTRAN automatic
coding system,” Commun. ACM, vol. 2, no. 2,
pp. 9–21, 1959.

 [3] M. D. McIlroy, “Macro instruction
extensions of compiler languages,” Commun.
ACM, vol. 3, no. 4, pp. 214–220, 1960.

 [4] A. Gauci, K. Z. Adami, and J. Abela. (2010).
“Machine learning for galaxy morphology
classification.” [Online]. Available: https://
arxiv.org/abs/1005.0390

 [5] H. Schoen, D. Gayo-Avello, P. T. Metaxas,
E. Mustafaraj, M. Strohmaier, and P. Gloor,
“The power of prediction with social media,”
Internet Res., vol. 23, no. 5, pp. 528–543,
2013.

 [6] Slashdot. (2009). IBM Releases Open Source
Machine Learning Compiler. [Online].
Available: https://tech.slashdot.org/
story/09/07/03/0143233/ibm-releases-open-
source-machine-learning-compiler

 [7] H. Massalin, “Superoptimizer: A look at the
smallest program,” ACM SIGPLAN Notices,
vol. 22, no. 10, pp. 122–126, 1987.

 [8] J. Ivory, “I. On the method of the least squares,”
Philos. Mag. J., Comprehending Various Branches
Sci., Liberal Fine Arts, Agriculture, Manuf.
Commerce, vol. 65, no. 321, pp. 3–10, 1825.

 [9] R. J. Adcock, “A problem in least squares,”
Analyst, vol. 5, no. 2, pp. 53–54, 1878.

 [10] K. Datta et al., “Stencil computation
optimization and auto-tuning on state-of-
the-art multicore architectures,” in Proc.
ACM/IEEE Conf. Supercomput., Nov. 2008,
pp. 1–12.

 [11] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski,
A. Edelman, and S. Amarasinghe, “Language
and compiler support for auto-tuning
variable-accuracy algorithms,” in Proc. Int.
Symp. Code Generat. Optim. (CGO), Apr. 2011,
pp. 85–96.

 [12] J. Kurzak, H. Anzt, M. Gates, and
J. Dongarra, “Implementation and tuning of
batched Cholesky factorization and solve for
NVIDIA GPUs,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 7, pp. 2036–2048, Jul. 2016.

 [13] Y. M. Tsai, P. Luszczek, J. Kurzak, and
J. Dongarra, “Performance-portable
autotuning of OpenCL kernels for
convolutional layers of deep neural
networks,” in Proc. Workshop Mach. Learn.
HPC Environ. (MLHPC), 2016, pp. 9–18.

 [14] M. E. Lesk and E. Schmidt, “Lex—A lexical
analyzer generator,” Tech. Rep., 1975.

 [15] S. C. Johnson, Yacc: Yet Another Compiler-
Compiler, vol. 32. Murray Hill, NJ, USA: Bell
Laboratories, 1975.

 [16] A. Monsifrot, F. Bodin, and R. Quiniou,
“A machine learning approach to automatic
production of compiler heuristics,” in Proc.
Int. Conf. Artif. Intell. Methodol. Syst. Appl.,
2002, pp. 41–50.

 [17] A. Magni, C. Dubach, and M. O’Boyle,
“Automatic optimization of thread-
coarsening for graphics processors,” in Proc.
23rd Int. Conf. Parallel Archit. Compilation
(PACT), 2014, pp. 455–466.

 [18] S. Unkule, C. Shaltz, and A. Qasem,
“Automatic restructuring of GPU kernels for
exploiting inter-thread data locality,” in Proc.
21st Int. Conf. Compil. Construction (CC),
2012, pp. 21–40.

 [19] V. Volkov and J. W. Demmel, “Benchmarking
GPUs to tune dense linear algebra,” in Proc.
ACM/IEEE Conf. Supercomput. (SC),
Nov. 2008, pp. 1–11.

 [20] Y. Yang, P. Xiang, J. Kong, M. Mantor, and
H. Zhou, “A unified optimizing compiler
framework for different gpgpu
architectures,” ACM Trans. Archit. Code
Optim., vol. 9, no. 2, p. 9, 2012.

 [21] C. Lattner and V. Adve, “LLVM: A
compilation framework for lifelong program
analysis & transformation,” in Proc. Int.
Symp. Code Generat. Optim. (CGO), 2004,
pp. 75–86.

 [22] F. Bodin, T. Kisuki, P. Knijnenburg,
M. O’Boyle, and E. Rohou, “Iterative
compilation in a non-linear optimization
space,” in Proc. Workshop Profile Feedback-
Directed Compilation, 1998.

 [23] P. M. Knijnenburg, T. Kisuki, and
M. F. O’Boyle, “Combined selection of tile
sizes and unroll factors using iterative
compilation,” J. Supercomput., vol. 24, no. 1,
pp. 43–67, 2003.

 [24] M. Frigo and S. G. Johnson, “The design and
implementation of FFTW3,” Proc. IEEE,
vol. 93, no. 2, pp. 216–231, Feb. 2005.

 [25] F. Agakov et al., “Using machine learning to
focus iterative optimization,” in Proc. Int.
Symp. Code Generat. Optim. (CGO), 2006,
pp. 295–305.

 [26] R. Nobre, L. G. A. Martins, and
J. M. P. Cardoso, “A graph-based iterative
compiler pass selection and phase ordering
approach,” in Proc. 17th ACM SIGPLAN/
SIGBED Conf. Lang. Compil. Tools Theory
Embedded Syst. (LCTES), 2016, pp. 21–30.

 [27] R. Leupers and P. Marwedel, “Function
inlining under code size constraints for
embedded processors,” in Dig. Tech. Papers
IEEE/ACM Int. Conf. Comput.-Aided Design,
Nov. 1999, pp. 253–256.

 [28] K. D. Cooper, T. J. Harvey, and T. Waterman,
“An adaptive strategy for inline substitution,”
in Proc. Joint Eur. Conf. Theory Pract. Softw.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

20 Proceedings of the IEEE

17th Int. Conf. Compil. Construction (CC/
ETAPS), 2008, pp. 69–84.

 [29] D. Simon, J. Cavazos, C. Wimmer, and
S. Kulkarni, “Automatic construction of
inlining heuristics using machine learning,”
in Proc. IEEE/ACM Int. Symp. Code Generat.
Optim. (CGO), 2013, pp. 1–12.

 [30] P. Zhao and J. N. Amaral, “To inline or not to
inline? Enhanced inlining decisions,” Lang.
Compil. Parallel Comput., pp. 405–419, 2004.

 [31] T. A. Wagner, V. Maverick, S. L. Graham,
and M. A. Harrison, “Accurate static
estimators for program optimization,” in
Proc. ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), 1994, pp. 85–96.

 [32] V. Tiwari, S. Malik, and A. Wolfe, “Power
analysis of embedded software: A first step
towards software power minimization,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, Nov. 1994, pp. 384–390.

 [33] K. D. Cooper, P. J. Schielke, and
D. Subramanian, “Optimizing for reduced
code space using genetic algorithms,” in
Proc. ACM SIGPLAN Workshop Lang. Compil.
Tools Embedded Syst. (LCTES), 1999, pp. 1–9.

 [34] M. Stephenson, S. Amarasinghe, M. Martin,
and U.-M. O‘Reilly, “Meta optimization:
Improving compiler heuristics with machine
learning,” in Proc. ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI),
2003, pp. 77–90.

 [35] J. Cavazos and M. F. P. O’Boyle, “Automatic
tuning of inlining heuristics,” in Proc. ACM/
IEEE Conf. Supercomput. (SC), Nov. 2005, p. 14.

 [36] K. Hoste and L. Eeckhout, “Cole: Compiler
optimization level exploration,” in Proc. 6th
Annu. IEEE/ACM Int. Symp. Code Generat.
Optim. (CGO), 2008, pp. 165–174.

 [37] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe,
“SPEA2+: Improving the performance of the
Strength Pareto Evolutionary Algorithm 2,” in
Proc. Int. Conf. Parallel Problem Solving from
Nature, 2004, pp. 742–751.

 [38] C.-K. Luk, S. Hong, and H. Kim, “Qilin:
Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping,” in
Proc. 42nd Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Dec. 2009, pp. 45–55.

 [39] Y. Wen, Z. Wang, and M. F. P. O’Boyle,
“Smart multi-task scheduling for OpenCL
programs on CPU/GPU heterogeneous
platforms,” in Proc. 21st Ann. IEEE Int. Conf.
High Perform. Comput. (HiPC), Dec. 2014,
pp. 1–10.

 [40] E. A. Brewer, “High-level optimization via
automated statistical modeling,” in Proc. 5th
ACM SIGPLAN Symp. Principles Pract. Parallel
Program. (PPOPP), 1995, pp. 80–91.

 [41] K. Vaswani, M. J. Thazhuthaveetil,
Y. N. Srikant, and P. J. Joseph,
“Microarchitecture sensitive empirical
models for compiler optimizations,” in Proc.
Int. Symp. Code Generat. Optim. (CGO),
Mar. 2007, pp. 131–143.

 [42] B. C. Lee and D. M. Brooks, “Accurate and
efficient regression modeling for
microarchitectural performance and power
prediction,” in Proc. 12th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS),
2006, pp. 185–194.

 [43] E. Park, L.-N. Pouche, J. Cavazos, A. Cohen,
and P. Sadayappan, “Predictive modeling in a
polyhedral optimization space,” in Proc. 9th
Annu. IEEE/ACM Int. Symp. Code Generat.
Optim. (CGO), Apr. 2011, pp. 119–129.

 [44] M. Curtis-Maury, A. Shah, F. Blagojevic,
D. S. Nikolopoulos, B. R. de Supinski, and

M. Schulz, “Prediction models for multi-
dimensional power-performance
optimization on many cores,” in Proc. 17th
Int. Conf. Parallel Archit. Compilation Techn.
(PACT), 2008, pp. 250–259.

 [45] K. Singhet et al., “Comparing scalability
prediction strategies on an SMP of CMPs,”
in Proc. Eur. Conf. Paralell Process., 2010,
pp. 143–155.

 [46] Z. Wang and M. F. O’Boyle, “Mapping
parallelism to multi-cores: A machine
learning based approach,” in Proc. 14th ACM
SIGPLAN Symp. Principles Pract. Parallel
Program. (PPoPP), 2009, pp. 75–84.

 [47] Y. Kang et al., “Neurosurgeon: Collaborative
intelligence between the cloud and mobile
edge,” in Proc. 22nd Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 2017,
pp. 615–629.

 [48] L. Benini, A. Bogliolo, M. Favalli, and G. De
Micheli, “Regression models for behavioral
power estimation,” Integr. Comput.-Aided
Eng., vol. 5, no. 2, pp. 95–106, 1998.

 [49] S. K. Rethinagiri, R. B. Atitallah, and
J.-L. Dekeyser, “A system level power
consumption estimation for MPSoC,” in
Proc. Int. Symp. Syst. Chip (SoC), 2011,
pp. 56–61.

 [50] S. Schürmans, G. Onnebrink, R. Leupers,
G. Leupers, and X. Chen, “Frequency-aware
ESL power estimation for ARM cortex-A9
using a black box processor model,” ACM
Trans. Embedded Comput. Syst., vol. 16, no. 1,
p. 26, 2016.

 [51] M. Curtis-Maury et al., “Identifying energy-
efficient concurrency levels using machine
learning,” in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2007, pp. 488–495.

 [52] M. Stephenson and S. Amarasinghe,
“Predicting unroll factors using supervised
classification,” in Proc. Int. Symp. Code
Generat. Optim. (CGO), 2005, pp. 123–134.

 [53] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla,
M. F. P. O’Boyle, and O. Temam, “Rapidly
selecting good compiler optimizations using
performance counters,” in Proc. Int. Symp.
Code Generat. Optim. (CGO), 2007,
pp. 185–197.

 [54] J. Cavazos and M. F. P. O’Boyle, “Method-
specific dynamic compilation using logistic
regression,” in Proc. 21st Annu. ACM SIGPLAN
Conf. Object-Oriented Program. Syst. Lang.
Appl. (OOPSLA), 2006, pp. 229–240.

 [55] C. Dubach, J. Cavazos, B. Franke, G. Fursin,
M. F. O’Boyle, and O. Temam, “Fast compiler
optimization evaluation using code-feature
based performance prediction,” in Proc. 4th
Int. Conf. Comput. Frontiers (CF), 2007,
pp. 131–142.

 [56] T. Yuki, L. Renganarayanan, S. Rajopadhye,
C. Anderson, A. E. Eichenberger, and
K. O’Brien, “Automatic creation of tile size
selection models,” in Proc. 8th Annu. IEEE/
ACM Int. Symp. Code Generat. Optim. (CGO),
2010, pp. 190–199.

 [57] A. M. Malik, “Optimal tile size selection
problem using machine learning,” in Proc.
Optim. Tile Size Selection Problem Using Mach.
Learn., vol. 2. Dec. 2012, pp. 275–280.

 [58] R. W. Moore and B. R. Childers, “Building
and using application utility models
to dynamically choose thread counts,”
J. Supercomput., vol. 68, no. 3,
pp. 1184–1213, 2014.

 [59] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-
input adaptive framework for GPU program
optimizations,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., May 2009, pp. 1–10.

 [60] E. Perelman, G. Hamerly, M. Van
Biesbrouck, T. Sherwood, and B. Calder,
“Using simpoint for accurate and efficient
simulation,” in Proc. ACM SIGMETRICS Int.
Conf. Meas. Modeling Comput. Syst., 2003,
pp. 318–319.

 [61] Y. Zhang, D. Meisner, J. Mars, and L. Tang,
“Treadmill: Attributing the source of tail
latency through precise load testing and
statistical inference,” in Proc. 43rd Int. Symp.
Comput. Archit. (ISCA), 2016, pp. 456–468.

 [62] B. C. Lee, D. M. Brooks, B. R. de Supinski,
M. Schulz, K. Singh, and S. A. McKee,
“Methods of inference and learning for
performance modeling of parallel
applications,” in Proc. 12th ACM SIGPLAN
Symp. Principles Pract. Parallel Program.
(PPoPP), 2007, pp. 249–258.

 [63] M. Curtis-Maury, J. Dzierwa,
C. D. Antonopoulos, and D. S. Nikolopoulos,
“Online power-performance adaptation of
multithreaded programs using hardware
event-based prediction,” in Proc. 20th
Annu. Int. Conf. Supercomput. (ICS), 2006,
pp. 157–166.

 [64] P. E. Bailey, D. K. Lowenthal, V. Ravi,
B. Rountree, M. Schulz, and B. R. de
Supinski, “Adaptive configuration selection
for power-constrained heterogeneous
systems,” in Proc. 43rd Int. Conf. Parallel
Process., 2014, pp. 371–380.

 [65] J. L. Berral et al., “Towards energy-aware
scheduling in data centers using machine
learning,” in Proc. 1st Int. Conf. Energy-
Efficient Comput. Netw. (e-Energy), 2010,
pp. 215–224.

 [66] D. D. Vento, “Performance optimization on a
supercomputer with ctuning and the PGI
compiler,” in Proc. 2nd Int. Workshop Adapt.
Self-Tuning Comput. Syst. Exaflop Era
(EXADAPT), 2012, pp. 12–20.

 [67] P.-J. Micolet, A. Smith, and C. Dubach,
“A machine learning approach to mapping
streaming workloads to dynamic multicore
processors,” ACM SIGPLAN Notices, vol. 51,
no. 5, pp. 113–122, 2016.

 [68] D. Grewe, Z. Wang, and M. F. P. O’Boyle,
“Portable mapping of data parallel programs
to OpenCL for heterogeneous systems,” in
Proc. Proc. IEEE/ACM Int. Symp. Code
Generation Optim. (CGO), Feb. 2013, pp. 1–10.

 [69] H. Yu and L. Rauchwerger, “Adaptive
reduction parallelization techniques,” in
Proc. 14th Int. Conf. Supercomput. (ICS), 2000,
pp. 66–77.

 [70] H. Leather, E. Bonilla, and M. O’Boyle,
“Automatic feature generation for machine
learning based optimizing compilation,” in
Proc. 7th Annu. IEEE/ACM Int. Symp. Code
Generat. Optim. (CGO), Mar. 2009, pp. 81–91.

 [71] Z. Wang, D. Grewe, and M. F. P. O’Boyle,
“Automatic and portable mapping of data
parallel programs to opencl for GPU-based
heterogeneous systems,” ACM Trans. Archit.
Code Optim., vol. 11, no. 4, p. 42, 2014.

 [72] Y. Ding, J. Ansel, K. Veeramachaneni,
X. Shen, U.-M. O’Reilly, and S. Amarasinghe,
“Autotuning algorithmic choice for input
sensitivity,” in Proc. 36th ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI),
2015, pp. 379–390.

 [73] T. K. Ho, “Random decision forests,” in
Proc. 3rd Int. Conf. Document Anal. Recognit.
(ICDAR), vol. 1. 1995, pp. 278–282.

 [74] T. G. Dietterich, “Ensemble methods
in machine learning,” in Proc. 1st Int.
Workshop Multiple Classifier Syst. (MCS),
2000, pp. 1–15.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 21

 [75] P. Lokuciejewski, F. Gedikli, P. Marwedel,
and K. Morik, “Automatic WCET reduction
by machine learning based heuristics for
function inlining,” in Proc. 3rd Workshop
Statistical Mach. Learn. Approaches Archit.
Compilation (SMART), 2009, pp. 1–15.

 [76] S. Benedict, R. S. Rejitha, P. Gschwandtner,
R. Prodan, and T. Fahringer, “Energy
prediction of OpenMP applications using
random forest modeling approach,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp.
Workshop, May 2015, pp. 1251–1260.

 [77] R. S. Rejitha, S. Benedict, S. A. Alex, and
S. Infanto, “Energy prediction of CUDA
application instances using dynamic
regression models,” Computing, vol. 99,
no. 8, pp. 765–790, 2017.

 [78] C. Cummins, P. Petoumenos, Z. Wang, and
H. Leather, “End-to-end deep learning of
optimization heuristics,” in Proc. 26th Int.
Conf. Parallel Archit. Compilation Techn.
(PACT), 2017, pp. 219–232.

 [79] Z. Wang, G. Tournavitis, B. Franke, and
M. F. P. O’Boyle, “Integrating profile-driven
parallelism detection and machine-learning-
based mapping,” ACM Trans. Archit. Code
Optim., vol. 11, no. 1, p. 2, 2014.

 [80] B. Taylor, V. S. Marco, and Z. Wang,
“Adaptive optimization for OpenCL
programs on embedded heterogeneous
systems,” in Proc. 18th Annu. ACM SIGPLAN/
SIGBED Conf. Lang. Compil. Tools Embedded
Syst. (LCETS), 2017, pp. 11–20.

 [81] P. Zhang, J. Fang, T. Tang, C. Yang, and
Z. Wang, “Auto-tuning streamed applications
on Intel Xeon Phi,” in Proc. 32nd IEEE Int.
Parallel Distrib. Process. Symp. (IPDPS), 2018.

 [82] P. J. Joseph, K. Vaswani, and
M. J. Thazhuthaveetil, “A predictive
performance model for superscalar
processors,” in Proc. 39th Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO),
Dec. 2006, pp. 161–170.

 [83] A. Ganapathi, K. Datta, A. Fox, and D.
Patterson, “A case for machine learning to
optimize multicore performance,” in Proc.
1st USENIX Conf. Hot Topics Parallelism
(HotPar), 2009, p. 1.

 [84] E. Deniz and A. Sen, “Using machine
learning techniques to detect parallel
patterns of multi-threaded applications,”
Int. J. Parallel Program., vol. 44, no. 4,
pp. 867–900, 2016.

 [85] Y. LeCun, Y. Bengio, and G. Hinton, Deep
Learning, 2015.

 [86] A. Krizhevsky, I. Sutskever, and G. E.
Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), 2012,
pp. 1097–1105.

 [87] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

 [88] H. Lee, Y. Largman, P. Pham, and A. Y. Ng,
“Unsupervised feature learning for audio
classification using convolutional deep belief
networks,” in Proc. 22nd Int. Conf. Neural Inf.
Process. Syst. (NIPS), 2009, pp. 1096–1104.

 [89] M. Allamanis, E. T. Barr, P. Devanbu, and
C. Sutton (2017). “A survey of machine
learning for big code and naturalness.”
[Online]. Available: https://arxiv.org/
abs/1709.06182

 [90] J. MacQueen, “Some methods for
classification and analysis of multivariate
observations,” in Proc. 5th Berkeley Symp.
Math. Statist. Prob., 1967, pp. 281–297.

 [91] T. Sherwood, E. Perelman, G. Hamerly,
and B. Calder, “Automatically
characterizing large scale program
behavior,” in Proc. 10th Int. Conf. Archit.
Support Program. Lang. Operat. Syst.
(ASPLOS), 2002, pp. 45–57.

 [92] Z. Wang and M. F. O’Boyle, “Partitioning
streaming parallelism for multi-cores: A
machine learning based approach,” in Proc.
19th Int. Conf. Parallel Archit. Compilation
Techn. (PACT), 2010, pp. 307–318.

 [93] M. Newman, Networks: An Introduction.
New York, NY, USA: Oxford Univ. Press,
2010.

 [94] L. G. Martins, R. Nobre, A. C. B. Delbem,
E. Marques, and J. A. M. Cardoso,
“Exploration of compiler optimization
sequences using clustering-based
selection,” in Proc. SIGPLAN/SIGBED Conf.
Lang. Compil. Tools Embedded Syst. (LCTES),
2014, pp. 63–72.

 [95] L. Eeckhout, H. Vandierendonck, and
K. D. Bosschere, “Workload design:
Selecting representative program-input
pairs,” in Proc. Int. Conf. Parallel Archit.
Compilation Techn., 2002, pp. 83–94.

 [96] Y. Chen et al., “Evaluating iterative
optimization across 1000 datasets,” in Proc.
31st ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), 2010,
pp. 448–459.

 [97] A. H. Ashouri, G. Mariani, G. Palermo,
and C. Silvano, “A Bayesian network
approach for compiler auto-tuning for
embedded processors,” in Proc. IEEE 12th
Symp. Embedded Syst. Real-time Multimedia
(ESTIMedia), Oct. 2014, pp. 90–97.

 [98] A. Phansalkar, A. Joshi, and L. K. John,
“Analysis of redundancy and application
balance in the spec cpu2006 benchmark
suite,” in Proc. 34th Annu. Int. Symp.
Comput. Archit. (ISCA), 2007, pp. 412–423.

 [99] P. Vincent, H. Larochelle, Y. Bengio, and
P.-A. Manzagol, “Extracting and composing
robust features with denoising
autoencoders,” in Proc. 25th Int. Conf. Mach.
Learn. (ICML), 2008, pp. 1096–1103.

 [100] X. Gu, H. Zhang, D. Zhang, and S. Kim
(2016). Deep API learning. [Online].
Available: https://arxiv.org/abs/1605.08535

 [101] B. Singer and M. Veloso, “Learning to
construct fast signal processing
implementations,” J. Mach. Learn. Res.,
vol. 3, pp. 887–919, Dec. 2002.

 [102] X. Li, M. J. Garzaran, and D. Padua,
“Optimizing sorting with genetic
algorithms,” in Proc. Int. Symp. Code
Generat. Optim. (CGO), 2005, pp. 99–110.

 [103] J. Ansel et al., “Petabricks: A language and
compiler for algorithmic choice,” in Proc.
ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2009, pp. 38–49.

 [104] M. Harman, W. B. Langdon, Y. Jia, D. R.
White, A. Arcuri, and J. A. Clark, “The
GISMOE challenge: Constructing the
Pareto program surface using genetic
programming to find better programs
(keynote paper),” in Proc. 27th IEEE/ACM
Int. Conf. Autom. Softw. Eng. (ASE), Sep.
2012, pp. 1–14.

 [105] U. Garciarena and R. Santana,
“Evolutionary optimization of compiler
flag selection by learning and exploiting
flags interactions,” in Proc. Genetic Evol.
Comput. Conf. Companion (GECCO), 2016,
pp. 1159–1166.

 [106] M. Zuluaga, E. Bonilla, and N. Topham,
“Predicting best design trade-offs: A case

study in processor customization,” in Proc.
Design Autom. Test Eur. Conf. Exhibit.
(DATE), 2012, pp. 1030–1035.

 [107] M. R. Jantz and P. A. Kulkarni, “Exploiting
phase inter-dependencies for faster
iterative compiler optimization phase order
searches,” in Proc. Int. Conf. Compil. Archit.
Synthesis Embedded Syst. (CASES),
Oct. 2013, pp. 1–10.

 [108] E. Ipek, O. Mutlu, J. F. Martínez, and
R. Caruana, “Self-optimizing memory
controllers: A reinforcement learning
approach,” in Proc. IEEE 35th Int. Symp.
Comput. Archit. (ISCA), Jun. 2008, pp. 39–50.

 [109] B. Porter, M. Grieves, R. R. Filho, and
D. Leslie, “Rex: A development platform
and online learning approach for runtime
emergent software systems,” in Proc. Usenix
Conf. Symp. Oper. Syst. Design Implement.,
Nov. 2016, pp. 333–348.

 [110] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin,
“Vconf: A reinforcement learning approach
to virtual machines auto-configuration,” in
Proc. 6th Int. Conf. Autonom. Comput. (ICAC),
2009, pp. 137–146.

 [111] M. G. Lagoudakis and M. L. Littman,
“Algorithm selection using reinforcement
learning,” in Proc. 7th Int. Conf. Mach.
Learn. (ICML), 2000, pp. 511–518.

 [112] N. Mishra, J. D. Lafferty, H. Hoffmann, and
C. Imes, “CALOREE: Learning control for
predictable latency and low energy,” in Proc.
23rd Int. Conf. Archit. Support Program. Lang.
Oper. Syst. (ASPLOS), 2018, pp. 184–198.

 [113] M. K. Emani and M. O’Boyle, “Change
detection based parallelism mapping:
Exploiting offline models and Online
adaptation,” in Proc. 27th Int. Workshop
Lang. Compil. Parallel Comput. (LCPC),
2014, pp. 208–223.

 [114] Y. Li, “Deep reinforcement learning: An
overview,” CoRR, 2017.

 [115] J. Ansel et al., “Opentuner: An extensible
framework for program autotuning,” in
Proc. PACT, 2014, pp. 303–316.

 [116] C. K. Williams and C. E. Rasmussen,
“Gaussian processes for regression,” in
Proc. Adv. Neural Inf. Process. Syst., 1996,
pp. 514–520.

 [117] C. E. Rasmussen and C. K. Williams,
Gaussian Processes for Machine Learning,
vol. 1. Cambridge, MA, USA: MIT Press,
2006.

 [118] M. K. Emani and M. O’Boyle, “Celebrating
diversity: A mixture of experts approach
for runtime mapping in dynamic
environments,” in Proc. 36th ACM SIGPLAN
Conf. Program. Lang. Design Implement.
(PLDI), 2015, pp. 499–508.

 [119] H. D. Nguyen and F. Chamroukhi (2017).
“An introduction to the practical and
theoretical aspects of mixture-of-experts
modeling.” [Online]. Available: https://
arxiv.org/abs/1707.03538

 [120] R. Polikar, “Ensemble based systems in
decision making,” IEEE Circuits Syst. Mag.,
vol. 6, no. 3, pp. 21–45, Sep. 2006.

 [121] L. Rokach, “Ensemble-based classifiers,”
Artif. Intell. Rev., vol. 33, nos. 1–2, pp. 1–39,
2010.

 [122] Y. Jiang et al., “Exploiting statistical
correlations for proactive prediction of
program behaviors,” in Proc. 8th Annu.
IEEE/ACM Int. Symp. Code Generat. Optim.
(CGO), Apr. 2010, pp. 248–256.

 [123] V. S. Marco, B. Taylor, B. Porter, and
Z. Wang, “Improving spark application

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

22 Proceedings of the IEEE

throughput via memory aware task
co-location: A mixture of experts
approach,” in Proc. ACM/IFIP/USENIX
Middleware Conf., 2017, pp. 95–108.

 [124] B. Singer and M. M. Veloso, “Learning to
predict performance from formula
modeling and training data,” in Proc. 7th
Int. Conf. Mach. Learn. (ICML), 2000,
pp. 887–894.

 [125] E. Park, J. Cavazos, and M. A. Alvarez,
“Using graph-based program
characterization for predictive modeling,”
in Proc. 10th Int. Symp. Code Generat. Optim.
(CGO), 2012, pp. 196–206.

 [126] A. M. Malik, “Spatial based feature
generation for machine learning based
optimization compilation,” in Proc. 9th Int.
Conf. Mach. Learn. Appl., 2010,
pp. 925–930.

 [127] M. Burtscher, R. Nasre, and K. Pingali,
“A quantitative study of irregular programs
on GPUs,” in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Nov. 2012,
pp. 141–151.

 [128] Y. Luo, G. Tan, Z. Mo, and N. Sun, “Fast: A
fast stencil autotuning framework based on
an optimal-solution space model,” in Proc.
29th ACM Int. Conf. Supercomput., 2015,
pp. 187–196.

 [129] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci, “A portable programming interface
for performance evaluation on modern
processors,” Int. J. High Perform. Comput. Appl.,
vol. 14, no. 3, pp. 189–204, 2000.

 [130] T. Mytkowicz, A. Diwan, M. Hauswirth,
and P. F. Sweeney, “Producing wrong data
without doing anything obviously wrong!”
in Proc. 14th Int. Conf. Archit. Support
Program. Lang. Operat. Syst. (ASPLOS XIV),
2009, pp. 265–276.

 [131] J. Cavazos et al., “Automatic performance
model construction for the fast software
exploration of new hardware designs,” in
Proc. Int. Conf. Compil. Archit. Synthesis
Embedded Syst. (CASES), 2006, pp. 24–34.

 [132] S. Khan, P. Xekalakis, J. Cavazos, and
M. Cintra, “Using predictivemodeling for
cross-program design space exploration in
multicore systems,” in Proc. IEEE 16th Int.
Conf. Parallel Archit. Compilation Techn.,
Sep. 2007, pp. 327–338.

 [133] M. Namolaru, A. Cohen, G. Fursin,
A. Zaks, and A. Freund, “Practical
aggregation of semantical program
properties for machine learning based
optimization,” in Proc. Proc. Int. Conf.
Compil. Archit. Synth. Embedded Syst.
(CASES), 2010, pp. 197–206.

 [134] C. M. Bishop, Pattern Recognition and
Machine Learning (Information Science and
Statistics). Secaucus, NJ, USA: Springer-
Verlag, 2006.

 [135] K. Hoste, A. Phansalkar, L. Eeckhout,
A. Georges, L. K. John, and K. de
Bosschere, “Performance prediction based
on inherent program similarity,” in Proc.
IEEE Int. Conf. Parallel Archit. Compilation
Techn. (PACT), Swep. 2006, pp. 114–122.

 [136] N. E. Rosenblum, B. P. Miller, and X. Zhu,
“Extracting compiler provenance from
program binaries,” in Proc. 9th ACM
SIGPLAN-SIGSOFT Workshop Program Anal.
Softw. Tools Eng. (PASTE), 2010, pp. 21–28.

 [137] A. Bhattacharyya, G. Kwasniewski, and
T. Hoefler, “Using compiler techniques to
improve automatic performance
modeling,” in Proc. Int. Conf. Parallel Archit.
Compilation (PACT), 2015, pp. 468–479.

 [138] M. E. Taylor, K. E. Coons, B. Robatmili,
B. A. Maher, D. Burger, and K. S.
McKinley, “Evolving compiler heuristics to
manage communication and contention,”
in Proc. 24th Conf. Artif. Intell. (AAAI), 2010,
pp. 1690–1693.

 [139] P.-S. Ting, C.-C. Tu, P.-Y. Chen, Y.-Y. Lo,
and S.-M. Cheng (2016). “FEAST: An
automated feature selection framework for
compilation tasks.” [Online]. Available:
https://arxiv.org/abs/1610.09543

 [140] E. Park, C. Kartsaklis, and J. Cavazos,
“HERCULES: Strong patterns towards
more intelligent predictive modeling,” in
Proc. 43rd Int. Conf. Parallel Process., 2014,
pp. 172–181.

 [141] K. Beyer, J. Goldstein, R. Ramakrishnan,
and U. Shaft, “When is ‘nearest neighbor’
meaningful?” in Proc. Int. Conf. Database
Theory, 1999, pp. 217–235.

 [142] I. Fodor, “A survey of dimension reduction
techniques,” Lawrence Livermore Nat.
Lab., Tech. Rep., 2002.

 [143] J. Thomson, M. F. O’Boyle, G. Fursin, and
B. Franke, “Reducing training time in a
one-shot machine learning-based
compiler,” Lang. Compil. Parallel Comput.,
vol. 5898, pp. 399–407, 2009.

 [144] Y. Bengio, “Learning deep architectures for
AI,” Found. Trends Mach. Learn., vol. 2, no.
1, pp. 1–127, 2009.

 [145] L. Deng, M. L. Seltzer, D. Yu, A. Acero,
A.-R. Mohamed, and G. Hinton, “Binary
coding of speech spectrograms using a
deep auto-encoder,” in Proc. 11th Annu.
Conf. Int. Speech Commun. Assoc., 2010.

 [146] L. Mou, G. Li, L. Zhang, T. Wang, and
Z. Jin, “Convolutional neural networks
over tree structures for programming
language processing,” in Proc. AAAI, 2016,
pp. 1287–1293.

 [147] M. White, M. Tufano, C. Vendome, and
D. Poshyvanyk, “Deep learning code
fragments for code clone detection,” in
Proc. ASE 31st IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2016, pp. 87–98.

 [148] C. Cummins, P. Petoumenos, Z. Wang, and
H. Leather, “Synthesizing benchmarks for
predictive modeling,” in Proc. Int. Symp. Code
Generat. Optim. (CGO), 2017, pp. 86–99.

 [149] M. White, M. Tufano, and M. Martinez,
M. Monperrus, and D. Poshyvanyk (2017).
“Sorting and transforming program repair
ingredients via deep learning code
similarities.” [Online]. Available: https://
arxiv.org/abs/1707.04742

 [150] L. Almagor et al., “Finding effective
compilation sequences,” in Proc. ACM
SIGPLAN/SIGBED Conf. Lang. Compil. Tools
Embedded Syst. (LCTES), 2004, pp. 231–239.

 [151] K. D. Cooper et al., “ACME: Adaptive
compilation made efficient,” in Proc. ACM
SIGPLAN/SIGBED Conf. Lang. Compil.
Embedded Syst. (LCTES), 2005, pp. 69–77.

 [152] A. H. Ashouri, A. Bignoli, G. Palermo,
C. Silvano, S. Kulkarni, and J. Cavazos,
“MiCOMP: Mitigating the compiler phase-
ordering problem using optimization sub-
sequences and machine learning,” ACM
Trans. Archit. Code Optim., vol. 14, no. 3,
p. 29, 2017.

 [153] K. D. Cooper, D. Subramanian, and
L. Torczon, “Adaptive optimizing compilers
for the 21st century,” J. Supercomput.,
vol. 23, no. 1, pp. 7–22, 2002.

 [154] D. R. White, A. Arcuri, and J. A. Clark,
“Evolutionary improvement of programs,”

IEEE Trans. Evol. Comput., vol. 15, no. 4,
pp. 515–538, Aug. 2011.

 [155] G. Fursin and O. Temam, “Collective
optimization: A practical collaborative
approach,” ACM Trans. Archit. Code Optim.,
vol. 7, no. 4, p. 20, Dec. 2010.

 [156] J. Kukunas, R. D. Cupper, and
G. M. Kapfhammer, “A genetic algorithm
to improve linux kernel performance on
resource-constrained devices,” in Proc. 12th
Annu. Conf. Companion Genetic Evol.
Comput. (GECCO), 2010, pp. 2095–2096.

 [157] L.-N. Pouchet, C. Bastoul, A. Cohen, and
J. Cavazos, “Iterative optimization in the
polyhedral model: Part II,
multidimensional time,” in Proc. 29th ACM
SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2008, pp. 90–100.

 [158] K. Asanovic et al., “The landscape of parallel
computing research: A view from Berkeley,”
Univ. California, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2006-183, 2006.

 [159] Y. Zhang, M. Voss, and E. S. Rogers,
“Runtime empirical selection of loop
schedulers on hyperthreaded SMPs,” in
Proc. 19th IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), Apr. 2005, p. 44b.

 [160] D. Rughetti, P. D. Sanzo, B. Ciciani, and
F. Quaglia, “Machine learning-based self-
adjusting concurrency in software
transactional memory systems,” in Proc.
IEEE 20th Int. Symp. Modeling Anal.
Simulation Comput. Telecommun. Syst.,
Aug. 2012, pp. 278–285.

 [161] C. Delimitrou and C. Kozyrakis, “Quasar:
Resource-efficient and Qos-aware cluster
management,” in Proc. 19th Int. Conf. Archit.
Support Program. Lang. Operat. Syst.
(ASPLOS), 2014, pp. 127–144.

 [162] X. Chen and S. Long, “Adaptive multi-
versioning for openmp parallelization via
machine learning,” in Proc. 15th Int. Conf.
Parallel Distrib. Syst. (ICPADS), 2009,
pp. 907–912.

 [163] M. Castro, L. F. W. Góes, C. P. Ribeiro,
M. Cole, M. Cintra, and J. F. Méhaut, “A
machine learning-based approach for
thread mapping on transactional memory
applications,” in Proc. 18th Int. Conf. High
Perform. Comput., 2011, pp. 1–10.

 [164] C. Jung, S. Rus, B. P. Railing, N. Clark, and
S. Pande, “Brainy: Effective selection of
data structures,” in Proc. 32nd ACM
SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2011, pp. 86–97.

 [165] Z. Wang and M. F. P. O’Boyle, “Using
machine learning to partition streaming
programs,” ACM Trans. Archit. Code Optim.,
vol. 10, no. 3, p. 20, 2013.

 [166] C. Chan, J. Ansel, Y. L. Wong,
S. Amarasinghe, and A. Edelman,
“Autotuning multigrid with petabricks,” in
Proc. ACM/IEEE Conf. Supercomput. (SC),
2009, Art. no. 5.

 [167] M. Pacula, J. Ansel, S. Amarasinghe, and
U.-M. O’Reilly, “Hyperparameter tuning in
bandit-based adaptive operator selection,”
in Proc. Eur. Conf. Appl. Evol. Comput.
(EuroSys), 2012, pp. 73–82.

 [168] J. Ansel, “Siblingrivalry: Online autotuning
through local competitions,” in Proc. Int.
Conf. Compil., Archit. Synth. Embedded Syst.
(CASES), 2012, pp. 91–100.

 [169] M. J. Voss and R. Eigemann, “High-level
adaptive program optimization with
adapt,” in Proc. 8th ACM SIGPLAN Symp.
Principles Pract. Parallel Program. (PPoPP),
2001, pp. 93–102.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

Proceedings of the IEEE 23

 [170] A. Tiwari and J. K. Hollingsworth, “Online
adaptive code generation and tuning,” in
Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), May 2011, pp. 879–892.

 [171] J. Ren, L. Gao, H. Wang, and Z. Wang,
“Optimise Web browsing on heterogeneous
mobile platforms: A machine learning
based approach,” in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), May 2017,
pp. 1–9.

 [172] Y. Zhu and V. J. Reddi, “High-performance
and energy-efficient mobile Web browsing
on big/little systems,” in Proc. HPCA,
Feb. 2013, pp. 13–24.

 [173] Z. Wang, M. F. P. O’Boyle, and
M. K. Emani, “Smart, adaptive mapping of
parallelism in the presence of external
workload,” in Proc. IEEE/ACM Int. Symp.
Code Generat. Optim. (CGO), Feb. 2013,
pp. 1–10.

 [174] D. Grewe, Z. Wang, and M. F. P. O’Boyle,
“A workload-aware mapping approach for
data-parallel programs,” in Proc. 6th Int.
Conf. High Perform. Embedded Archit.
Compil. (HiPEAC), 2011, pp. 117–126.

 [175] D. Grewe, Z. Wang, and M. F. O’Boyle,
“OpenCL task partitioning in the presence
of GPU contention,” in Proc. Int. Workshop
Lang. Compil. Parallel Comput., 2013,
pp. 87–101.

 [176] L. Tang, J. Mars, and M. L. Soffa,
“Compiling for niceness: Mitigating
contention for Qos in warehouse scale
computers,” in Proc. 10th Int. Symp. Code
Generat. Optim. (CGO), 2012, pp. 1–12.

 [177] L. Tang, J. Mars, W. Wang, T. Dey, and
M. L. Soffa, “Reqos: Reactive static/
dynamic compilation for Qos in warehouse
scale computers,” in Proc. 18th Int. Conf.
Archit. Support Program. Lang. Oper. Syst.
(ASPLOS), 2013, pp. 89–100.

 [178] A. Matsunaga and J. A. B. Fortes, “On the
use of machine learning to predict the time
and resources consumed by applications,”
in Proc. 10th IEEE/ACM Int. Conf. Cluster

Cloud Grid Comput. (CCGRID), 2010,
pp. 495–504.

 [179] S. Venkataraman, Z. Yang, M. J. Franklin,
B. Recht, and I. Stoica, “Ernest: Efficient
performance prediction for large-scale
advanced analytics,” in Proc. NSDI, 2016,
pp. 363–378.

 [180] S. Sankaran, “Predictive modeling based
power estimation for embedded multicore
systems,” in Proc. ACM Int. Conf. Comput.
Frontiers (CF), 2016, pp. 370–375.

 [181] Y. Zhang, M. A. Laurenzano, J. Mars, and
L. Tang, “Smite: Precise QoS prediction on
real-system smt processors to improve
utilization in warehouse scale computers,”
in Proc. 47th Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO-47), Dec. 2014, pp.
406–418.

 [182] V. Petrucci, “Octopus-man: QoS-driven
task management for heterogeneous
multicores in warehouse-scale computers,”
in Proc. IEEE 21st Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2015, pp.
246–258.

 [183] N. J. Yadwadkar, B. Hariharan,
J. E. Gonzalez, and R. Katz, “Multi-task
learning for straggler avoiding predictive
job scheduling,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 3692–3728, 2016.

 [184] Y. David and E. Yahav, “Tracelet-based
code search in executables,” in Proc.
35th ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), 2014,
pp. 349–360.

 [185] Y. David, N. Partush, and E. Yahav,
“Statistical similarity of binaries,” in Proc.
37th ACM SIGPLAN Conf. Program. Lang.
Design Implement. (PLDI), 2016,
pp. 266–280.

 [186] E. Wong, T. Liu, and L. Tan, “Clocom:
Mining existing source code for automatic
comment generation,” in Proc. IEEE 22nd
Int. Conf. Softw. Anal. Evol. Reeng. (SANER),
Mar. 2015, pp. 380–389.

 [187] J. Fowkes and C. Sutton, “Parameter-free
probabilistic api mining across GitHub,” in
Proc. 24th ACM SIGSOFT Int. Symp. Found.
Softw. Eng. (FSE), 2016, pp. 254–265.

 [188] A. T. Nguyen et al., “API code
recommendation using statistical learning
from fine-grained changes,” in Proc. 24th
ACM SIGSOFT Int. Symp. Found. Softw. Eng.
(FSE), 2016, pp. 511–522.

 [189] V. Raychev, P. Bielik, and M. Vechev,
“Probabilistic model for code with decision
trees,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program. Syst. Lang. Appl.
(OOPSLA), 2016, pp. 731–747.

 [190] B. Bichsel, V. Raychev, P. Tsankov, and
 M. Vechev, “Statistical deobfuscation of
Android applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2016, pp. 343–355.

 [191] P. Balaprakash, R. B. Gramacy, and
S. M. Wild, “Active-learning-based surrogate
models for empirical performance tuning,”
in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), Sep. 2013, pp. 1–8.

 [192] W. F. Ogilvie, P. Petoumenos, Z. Wang, and
H. Leather, “Fast automatic heuristic
construction using active learning,” in
Proc. Int. Workshop Lang. Compil. Parallel
Comput., 2014, pp. 146–160.

 [193] M. Zuluaga, G. Sergent, A. Krause, and
M. Püschel, “Active learning for multi-
objective optimization,” in Proc. Int. Conf.
Mach. Learn., 2013, pp. 462–470.

 [194] W. F. Ogilvie, P. Petoumenos, Z. Wang, and
H. Leather, “Minimizing the cost of
iterative compilation with active learning,”
in Proc. Int. Symp. Code Generat. Optim.
(CGO), 2017, pp. 245–256.

 [195] A. Evaluation. About Artifact Evaluation.
[Online]. Available: http://www.artifact-
eval.org/about.html

 [196] cTuning Foundation. Artifact Evaluation for
Computer Systems Research. [Online].
Available: http://ctuning.org/ae/

ABOUT THE AUTHORS

Zheng Wang received the Ph.D. degree in com-

puter science from The University of Edinburgh,

Edinburgh, U.K., in 2011.

Currently, he is an Assistant Professor at

Lancaster University, Lancaster, U.K., where he

leads the Distributed Systems research group.

From 2005 to 2007, he worked as an R&D Engi-

neer at IBM China. His research focus is in the

areas of parallel compilers, runtime systems,

code security, and the application of machine learning to tackle the chal-

lenging optimization problems within these areas.

Prof. Wang received three best paper awards for his work on machine-

learning-based compiler optimization (PACT'10, CGO'17, and PACT'17).

Michael O'Boyle is a Professor of Computer Sci-

ence at the University of Edinburgh, Edinburgh,

U.K. He is a founding member of HiPEAC, the

Director of the ARM Research Centre of Excel-

lence at Edinburgh, and the Director of the Engi-

neering and Physical Sciences Research Council

(EPSRC) Centre for Doctoral Training in Perva-

sive Parallelism. He is best known for his work in

incorporating machine learning into compilation

and parallelization, automating the design and construction of optimizing

technology. He has published over 100 papers and received three best

paper awards.

Prof. O'Boyle is a Senior Research Fellow of EPSRC and a Fellow of the

British Computer Society (BCS). He was presented with the ACM Interna-

tional Symposium on Code Generation and Optimization (ACM CGO) Test

of Time award in 2017. v

