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ABSTRACT | In the last decade, machine-learning-based 

compilation has moved from an obscure research niche to a 

mainstream activity. In this paper, we describe the relationship 

between machine learning and compiler optimization and 

introduce the main concepts of features, models, training, 

and deployment. We then provide a comprehensive survey 

and provide a road map for the wide variety of different 

research areas. We conclude with a discussion on open issues 

in the area and potential research directions. This paper 

provides both an accessible introduction to the fast moving 

area of machine-learning-based compilation and a detailed 

bibliography of its main achievements.

KEYWORDS | Code optimization; compiler; machine learning; 

program tuning

I .  IN TRODUCTION

“Why would anyone want to use machine learning to build 

a compiler?” It is a view expressed by many colleagues over 

the last decade. Compilers translate programming languages 

written by humans into binary executable by computer hard-

ware. It is a serious subject studied since the 1950s [1]–[3] 

where correctness is critical and caution is a by-word. 

Machine learning, on the other hand, is an area of artificial 
intelligence (AI) aimed at detecting and predicting patterns. 

It is a dynamic field looking at subjects as diverse as galaxy 
classification [4] to predicting elections based on Tweeter 
feeds [5]. When an open-source machine learning compiler 

was announced by IBM in 2009 [6], some wry slashdot com-

mentators picked up on the AI aspect, predicting the start of 
sentient computers, global net, and the war with machines 

from the Terminator film series.
In fact, as we will see, in this paper, that compilers and 

machine learning are a natural fit and have developed into 
an established research domain.

Digital Object Identifier: 10.1109/JPROC.2018.2817118

A. It Is All About Optimization

Compilers have two jobs—translation and optimi-

zation. First, they must translate programs into binary 

correctly. Second, they have to find the most efficient 
translation possible. There are many different correct 
translations whose performance varies significantly. The 
vast majority of research and engineering practices is 

focused on this second goal of performance, traditionally 

misnamed optimization. The goal was misnamed because 
in most cases, until recently, finding an optimal transla-

tion was dismissed as being too hard to find and an unreal-
istic endeavor.1 Instead it focused on developing compiler 

heuristics to transform the code in the hope of improving 

performance but could in some instances damage it.

Machine learning predicts an outcome for a new data 

point based on prior data. In its simplest guise, it can be 

considered a form of interpolation. This ability to pre-

dict based on prior information can be used to find the 
data point with the best outcome and is closely tied to 

the area of optimization. It is at this overlap of looking 
at code improvement as an optimization problem and 

machine learning as a predictor of the optima where we 

find machine learning compilation.
Optimization as an area, machine learning based or 

otherwise, has been studied since the 1800s [8], [9]. An 

interesting question is therefore why has the convergence 

of these two areas taken so long? There are two funda-

mental reasons. First, despite the year-on-year increasing 

potential performance of hardware, software is increas-

ingly unable to realize it leading to a software gap. This 
gap has yawned right open with the advent of multicores 

(see also Section VI-B). Compiler writers are looking for 
new ways to bridge this gap.

Second, computer architecture evolves so quickly 
that it is difficult to keep up. Each generation has new 
quirks and compiler writers are always trying to play 
catchup. Machine learning has the desirable property 

of being automatic. Rather than relying on expert com-

piler writers to develop clever heuristics to optimize 

the code, we can let the machine learn how to optimize 

a compiler to make the machine run faster, an approach 
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sometimes referred to as autotuning [10]–[13]. Machine 

learning is, therefore, ideally suited to making any code 
optimization decision where the performance impact 

depends on the underlying platform. As described later in 

this paper, it can be used for topics ranging from selecting 

the best compiler flags to determining how to map paral-
lelism to processors.

Machine learning is part of a tradition in computer sci-

ence and compilation in increasing automation The 1950s 
to 1970s were spent trying to automate compiler translation, 

e.g., lex for lexical analysis [14] and yacc for parsing [15]; the 
last decade by contrast has focused on trying to automate 

compiler optimization. As we will see, it is not “magic” or a 

panacea for compiler writers, rather it is another tool allow-

ing automation of tedious aspects of compilation providing 

new opportunities for innovation. It also brings compilation 

nearer to the standards of evidence-based science. It intro-

duces an experimental methodology where we separate out 

evaluation from design and considers the robustness of solu-

tions. Machine-learning-based schemes, in general, have 

the problem of relying on black boxes whose working we do 
not understand and hence trust. This problem is just as true 
for machine-learning-based compilers. In this paper, we 

aim to demystify machine-learning-based compilation and 

show it is a trustworthy and exciting direction for compiler 

research.

The remainder of this paper is structured as follows. 
First, we give an intuitive overview for machine learning 

in compilers in Section II. Then, we describe how machine 
learning can be used to search for or to directly predict good 

compiler optimizations in Section III. This is followed by a 
comprehensive discussion in Section IV for a wide range of 

machine learning models that have been employed in prior 

work. Next, in Section V, we review how previous work 
chooses quantifiable properties, or features, to represent 
programs. We discuss the challenges and limitations for 

applying machine learning to compilation, as well as open 

research directions in Section VII before we summarize and 

conclude in Section VIII.

II .  OV ERV IE W OF M ACHINE LE A R NING 
IN COMPILER S

Given a program, compiler writers would like to know 
what compiler heuristic or optimization to apply in order 

to make the code better. Better often means execute faster, 
but can also mean smaller code footprint or reduced 

power. Machine learning can be used to build a model 

used within the compiler that makes such decisions for 
any given program.

There are two main stages involved: learning and 
deployment. The first stage learns the model based on train-

ing data, while the second uses the model on new unseen 

programs. Within the learning stage, we need a way of rep-

resenting programs in a systematic way. This representation 
is known as the program features [16].

Fig. 1 gives an intuitive view on how machine learning 

can be applied to compilers. This process, which includes 
feature engineering, learning a model, and deployment, is 

described in the following sections.

A. Feature Engineering

Before we can learn anything useful about programs, we 

first need to be able to characterize them. Machine learn-

ing relies on a set of quantifiable properties, or features, to 
characterize the programs [Fig. 1(a)]. There are many dif-
ferent features that can be used. These include the static 
data structures extracted from the program source code 

or the compiler intermediate representation (such as the 

number of instructions or branches), dynamic profiling 
information (such as performance counter values) obtained 

through runtime profiling, or a combination of the both.
Standard machine learning algorithms typically work on 

fixed length inputs, so the selected properties will be sum-

marized into a fixed length feature vector. Each element of 
the vector can be an integer, real or Boolean value. The pro-

cess of feature selection and tuning is referred to as feature 

engineering. This process may need to iteratively perform 
multiple times to find a set of high-quality features to build 

Fig. 1. A generic view of supervised machine learning in compilers. (a) Feature engineering. (b) Leaning a model. (c) Deployment.
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an accurate machine learning model. In Section V, we pro-

vide a comprehensive review of feature engineering for the 

topic of program optimization.

B. Learning a Model

The second step is to use training data to derive a model using 
a learning algorithm. This process is depicted in Fig. 1(b) . Unlike 
other applications of machine learning, we typically generate 

our own training data using existing applications or bench-

marks. The compiler developer will select training programs 
which are typical of the application domain. For each training 

program, we calculate the feature values, compiling the pro-

gram with different optimization options, and running and 

timing the compiled binaries to discover the best performing 

option. This process produces, for each training program, a 
training instance that consists of the feature values and the 

optimal compiler option for the program.

The compiler developer then feeds these examples to a 
machine learning algorithm to automatically build a model. 

The learning algorithm’s job is to find from the training 
examples a correlation between the feature values and the 

optimal optimization decision. The learned model can then 
be used to predict, for a new set of features, what the opti-

mal optimization option should be.

Because the performance of the learned model strongly 

depends on how well the features and training programs are 

chosen, the processes of featuring engineering and training 

data generation often need to repeat multiple times.

C. Deployment

In the final step, the learned model is inserted into the 
compiler to predict the best optimization decisions for new 

programs. This is demonstrated in Fig. 1(c) . To make a pre-

diction, the compiler first extracts the features of the input 
program, and then feeds the extracted feature values to the 

learned model to make a prediction.
The advantage of the machine-learning-based approach 

is that the entire process of building the model can be easily 

repeated whenever the compiler needs to target a new hard-

ware architecture, operating system, or application domain. 

The model built is entirely derived from experimental 
results and is hence evidence based.

D. Example

As an example to illustrate these steps, consider thread 

coarsening [18] for GPU programs. This code transforma-

tion technique works by giving multiple work items (or 
work elements) to one single thread. It is similar to loop 
unrolling, but applied across parallel work items rather than 
across serial loop iterations.

Fig. 2(a) shows a simple OpenCL kernel where a thread 
operates on a work item of the 1-D input array, in, at a time. 
The work item to be operated on is specified by the value 

returned from the OpenCL get_global_id() API. Fig. 2(b) 

shows the transformed code after applying a thread coarsen 

factor of two, where each thread processes two elements of 

the input array.

Thread coarsening can improve performance through 
increasing instruction-level parallelism [19], reducing the 

number of memory-access operations [20] and eliminating 

redundant computation when the same value is computed 

in every work item. However, it can also have several nega-

tive side effects, such as reducing the total amount of paral-

lelism and increasing the register pressure, which can lead 

to slowdown performance. Determining when and how 
to apply thread coarsening is nontrivial, because the best 

coarsening factor depends on the target program and the 

hardware architecture that the program runs on [17], [19].

Magni et al. show that machine learning techniques 

can be used to automatically construct effective thread-

coarsening heuristics across GPU architectures [17]. Their 
approach considers six coarsening factors ( 1, 2, 4, 8, 16, 32 ). 
The goal is to develop a machine-learning-based model to 
decide whether an OpenCL kernel should be coarsened on a 
specific GPU architecture and, if so, what is the best coars-

ening factor. Among many machine learning algorithms, 

they chose to use an artificial neural network to model2 

the problem. Construing such a model follows the classical 

three-step supervised learning process, which is depicted in 

Fig. 1 and described in more details as follows.

1) Feature Engineering: To describe the input OpenCL 
kernel, Magni et al. use static code features extracted from 

the compiler’s intermediate representation. Specifically, they 
developed a compiler-based tool to obtain the feature values 

from the program’s LLVM bitcode [21]. They started from 17 
candidate features. These include things like the number of 

2In fact, Magni et al. employed a hierarchical approach consisting of 
multiple artificial neural networks [17]. However, these networks are 
trained using the same process.

Fig. 2. An OpenCL thread coarsening example reproduced from 

[17]. The original OpenCL code is shown in (a) where each thread 

takes the square of one element of the input array. When coarsened 

by a factor of two, as shown in (b), each thread now processes two 

elements of the input array.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

4 Proceedings of the IEEE

and types of instructions and memory level parallelism (MLP) 

within an OpenCL kernel. Table 1 gives the list of candidate fea-

tures used in [17]. Typically, candidate features can be chosen 
based on developers’ intuitions, suggestions from prior works, 
or a combination of both. After choosing the candidate fea-

tures, a statistical method called principal component analysis 

(PCA; see also Section IV-B) is applied to map the 17 candidate 
features into seven aggregated features, so that each aggregated 

feature is a linear combination of the original features. This 
technique is known as “feature dimension reduction,” which 
is discussed in Section V-D2. Dimension reduction helps 
eliminating redundant information among candidate features, 

allowing the learning algorithm to perform more effectively.

2) Learning the Model: For the work presented in [17], 
16 OpenCL benchmarks were used to generate training 
data. To find out which of the six coarsening factors per-

forms best for a given OpenCL kernel on a specific GPU 
architecture, we can apply each of the six factors to an 

OpenCL kernel and record its execution time. Since the 
optimal thread-coarsening factor varies across hardware 

architectures, this process needs to repeat for each target 

architecture. In addition to finding the best performing 
coarsening factor, Magni et al. also extracted the aggregated 

feature values for each kernel. Applying these two steps on 
the training benchmarks results in a training data set where 
each training example is composed of the optimal coars-

ening factor and feature values for a training kernel. The 
training examples are then fed into a learning algorithm 

which tries to find a set of model parameters (or weights) so 
that overall prediction error on the training examples can 

be minimized. The output of the learning algorithm is an 
artificial neural network model where its weights are deter-

mined from the training data.

3) Deployment: The learned model can then be used to 
predict the optimal coarsening factor for unseen OpenCL 

programs. To do so, static source code features are first 
extracted from the target OpenCL kernel; the extracted 
feature values are then fed into the model which decides 

whether to coarsen or not and which coarsening factor 

should be used. The technique proposed in [17] achieves an 
average speedup between 1.11x and 1.33x across four GPU 
architectures and does not lead to degraded performance on 

a single benchmark.

III .  METHODOLOGY

One of the key challenges for compilation is to select the 
right code transformation, or sequence of transformations 

for a given program. This requires effectively evaluating the 
quality of a possible compilation option, e.g., how a code 

transformation will affect eventual performance.

A naive approach is to exhaustively apply each legal 

transformation option and then profile the program to  
collect the relevant performance metric. Given that many 

compiler problems have a massive number of options, 

exhaustive search and profiling is infeasible, prohibiting the 
use of this approach at scale. This search-based approach 
to compiler optimization is known as iterative compila-

tion [22], [23] or autotuning [10], [24]. Many techniques 
have been proposed to reduce the cost of searching a large 

space [25], [26]. In certain cases, the overhead is justifiable 
if the program in question is to be used many times, e.g., 

in a deeply embedded device. However, its main limitation 
remains: it only finds a good optimization for one program 
and does not generalize into a compiler heuristic.

There are two main approaches for solving the problem 
of scalably selecting compiler options that work across pro-

grams. A high level comparison of both approaches is given 

in Fig. 3. The first strategy attempts to develop a cost (or pri-
ority) function to be used as a proxy to estimate the quality 

of a potential compiler decision, without relying on exten-

sive profiling. The second strategy is to directly predict the 
best performing option.

A. Building a Cost Function

Many compiler heuristics rely on a cost function to esti-

mate the quality of a compiler option. Depending on the 
optimization goal, the quality metric can be execution time, 

the code size, or energy consumption, etc. Using a cost func-

tion, a compiler can evaluate a range of possible options to 

choose the best one, without needing to compile and profile 
the program with each option.

Table 1 Candidate Code Features Used in [17]

Fig. 3. There are, in general, two approaches to determine the 

optimal compiler decision using machine learning. The first one 

is to learn a cost or priority function to be used as a proxy to 

select the best performing option (a). The second one is to learn a 

predictive model to directly predict the best option (b).
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1) The Problem of Handcrafted Heuristics: Trad-
itionally, a compiler cost function is manually crafted. For 

example, a heuristic of function inlining adds up a num-

ber of relevant metrics, such as the number of instruc-

tions of the target function to be inlined, the callee and 

stack size after inlining, and compare the resulted value 
against a predefined threshold to determine if it is prof-
itable to inline a function [27]. Here, the importance or 
weights for metrics and the threshold are determined 

by compiler developers based on their experience or via 

“trail-and-error.” Because the efforts involved in tuning 

the cost function are so expensive, many compilers simply 

use “one-size-fits-all” cost function for inlining. However, 
such a strategy is ineffective. For examples, Cooper et al. 

show that a “one-size-fits-all” strategy for inlining often 
delivers poor performance [28]; other studies also show 
that the optimal thresholds to use to determine when to 

inline change from one program to the other [29], [30].

Handcrafted cost functions are widely used in compil-
ers. Other examples include the work conducted by Wagner 
et al. [31] and Tiwari et al. [32]. The former combines a 
Markov model and a human-derived heuristic to statically 
estimate the execution frequency of code regions (such 

as function innovation counts). The latter calculates the 
energy consumption of an application by assigning a weight 

to each instruction type. The efficiency of these approaches 
highly depends on the accuracy of the estimations given by 

the manually tuned heuristic.

The problem of relying on a hand-tuned heuristic is 
that the cost and benefit of a compiler optimization often 

depend on the underlying hardware; while handcrafted 
cost functions could be effective, manually developing 

one can take months or years on a single architecture. 
This means that tuning the compiler for each newly 
released processor is hard and is often infeasible due to 

the drastic efforts involved. Because cost functions are 

important and manually tuning a good function is dif-

ficult for each individual architecture, researchers have 

investigated ways to use machine learning to automate 

this process.

In Section III-A2, we review a range of previous studies 

on using machine learning to tune cost functions for per-

formance and energy consumption—many of which can be 

applied to other optimization targets such as the code size 

[33] or a tradeoff between energy and runtime.

2) Cost Functions for Performance: The Meta 
Optimization framework [34] uses genetic programming 
(GP) to search for a cost function  y   ⃪ f (x) , which takes in a 
feature vector  x  and produces a real-valued priority  y . Fig. 4 
depicts the workflow of the framework. This approach is eval-
uated on a number of compiler problems, including hyper-

block formation,3 register allocation, and data prefetching, 

showing that machine learned cost functions outperform 

human-crafted ones. A similar approach is employed by 

Cavazos et al. who find cost functions for performance and 
compilation overhead for a Java just-in-time compiler [35]. 

The COLE compiler [36] uses a variance of the GP algorithm 
called strength Pareto evolutionary algorithm 2 (SPEA2) 
[37] to learn cost functions to balance multiple objectives 

(such as program runtime, compilation overhead, and code 

size). In Section IV-C, we describe the working mechanism 
of GP-like search algorithms.

Another approach to tune the cost functions is to pre-

dict the execution time or speedup of the target program. 

The Qilin compiler [38] follows such an approach. It uses 
curve fitting algorithms to estimate the runtime for execut-
ing the target program of a given input size on the CPU 
and the GPU. The compiler then uses this information to 
determine the optimal loop iteration partition across the 

CPU and the GPU. The Qilin compiler relies on an applica-

tion-specific function which is built on a per program base 
using reference inputs. The curve fitting (or regression; see, 
also, Section IV) model employed by the Qilin compiler 
can model with continuous values, making it suitable for 
estimating runtime and speedup. In [39], this approach is 

extended, which developed a relative predictor that predicts 

whether an unseen predictor will improve significantly on a 
GPU relative to a CPU. This is used for runtime scheduling 
of OpenCL jobs.

The early work conduced by Brewer proposed a regres-

sion-based model to predict the execution of a data layout 

scheme for parallelization, by considering three parameters 

[40]. Using the model, his approach can select the optimal 

3Hyperblock formation combines basic blocks from multiple control 
paths to form a predicated, larger code block to expose instruction level 
parallelism.

Fig. 4. A simple view of the GP approach presented in [34] for tuning compiler cost functions. Each candidate cost function is represented 

as an expression tree (a). The workflow of the GP algorithm is presented in (b).
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layout for over 99% of the time for a partial differential equa-

tion (PDE) solver across four evaluation platforms. Other 
previous works also use curve fitting algorithms to build a 
cost function to estimate the speedup or runtime of sequen-

tial [41]–[43], OpenMP [44]–[46], and, more recently, deep 
learning applications [47].

3) Cost Functions for Energy Consumption: In addi-

tion to performance, there is an extensive body of work 
that investigates ways to build energy models for software 

optimization and hardware architecture design. As power or 

energy readings are continuous real values, most of the prior 

work on power modeling uses regression-based approaches.
Linear regression is a widely used technique for energy 

modeling. Benini et al. developed a linear-regression-based 

model to estimate power consumption at the instruction 

level [48]. The framework presented by Rethinagiri et al. 

[49] uses parameterized formulas to estimate power con-

sumption of embedded systems. The parameters of the for-

mulas are determined by applying a regression-based algo-

rithm to reference data obtained with handcrafted assembly 

code and power measurements. In a more recent work, 
Schürmans et al. also adopt a regression-based method for 

power modeling [50], but the weights of the regression 

model are determined using standard benchmarks instead 
of handwritten assembly programs.

Other works employ the artificial neural network (ANN) 
to automatically construct power models. Curtis-Maury et 

al. develop an ANN-based model to predict the power con-

sumption of OpenMP programs on multicore systems [51]. 

The inputs to the model are hardware performance coun-

ter values such as the cache miss rate, and the output is 

the estimated power consumption. Su et al. adopt a similar 

approach by developing an ANN predictor to estimate the 
runtime and power consumption for mapping OpenMP pro-

grams on nonuniform memory access (NUMA) multicores. 
This approach is also based on runtime profiling of the target 
program, but it explicitly considers NUMA-specific infor-

mation like local and remote memory accesses per cycle.

B. Directly Predicting the Best Option

While a cost function is useful for evaluating the quality 

of compiler options, the overhead involved in searching for 

the optimal option may still be prohibitive. For this reason, 

researchers have investigated ways to directly predict the 

best compiler decision using machine learning for relatively 

small compilation problems.

Monsifrot et al. pioneered the use of machine learning to 

predict the optimal compiler decision [16]. This work devel-
oped a decision-tree-based approach to determine whether it 

is beneficial to unroll a loop based on information such as the 
number of statements and arithmetic operations of the loop. 

Their approach makes a binary decision on whether to unroll 
a loop but not how many times the loop should be unrolled. 

Later, Stephenson and Amarasinghe advanced [16] by directly 

predicting the loop unroll factor [52] by considering eight 

unroll factors  (1, 2, …, 8 ) . They formulated the problem as a 
multiclass classification problem (i.e., each loop unroll factor 
is a class). They used over 2500 loops from 72 benchmarks to 
train two machine learning models [a nearest neighbor and 

a support vector machine (SVM) model] to predict the loop 

unroll factor for unseen loops. Using a richer set of features 
than [16], their techniques correctly predict the unroll fac-

tor for 65% of the testing loops, leading to, on average, a 5% 

improvement for the SPEC 2000 benchmark suite.
For sequential programs, there is extensive work in pre-

dicting the best compiler flags [53], [54], code transforma-

tion options [55], or tile size for loops [56], [57]. This level 
of interest is possibly due to the restricted nature of the 

problem, allowing easy experimentation and comparison 

against prior work.
Directly predicting the optimal option for parallel pro-

grams is harder than doing it for sequential programs, due to 

the complex interactions between the parallel programs and 

the underlying parallel architectures. Nonetheless, there 
are works on predicting the optimal number of threads to 
be used to run an OpenMP program [46], [58], the best 
parameters to be used to compile a CUDA programs for a 
given input [59], and the thread coarsening parameters for 

OpenCL programs for GPUs [17]. These papers show that 
supervised machine learning can be a powerful tool for 

modeling problems with a relatively small number of opti-

mization options.

I V.  M ACHINE LE A R NING MODELS

In this section, we review the wide range of machine learning 

models used for compiler optimization. Table 2 summarizes 
the set machine learning models discussed in this section.

There are two major subdivisions of machine learn-

ing techniques that have previously been used in compiler 

optimizations: supervised and unsupervised learning. Using 
supervised machine learning, a predictive model is trained 

on empirical performance data (labeled outputs) and impor-

tant quantifiable properties (features) of representative 
programs. The model learns the correlation between these 
feature values and the optimization decision that delivers the 

optimal (or near-optimal) performance. The learned correla-

tions are used to predict the best optimization decisions for 

new programs. Depending on the nature of the outputs, the 
predictive model can be either a regression model for con-

tinuous outputs or a classification model for discrete outputs.
In the other subdivision of machine learning, termed 

unsupervised learning, the input to the learning algorithm is 

a set of input values merely—there is no labeled output. One 

form of unsupervised learning is clustering which groups the 

input data items into several subsets. For example, SimPoint 

[60], a simulation technique, uses clustering to pick repre-

sent program execution points for program simulation. It 

does so by first dividing a set of program runtime information 
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into groups (or clusters), such that points within each clus-

ter are similar to each other in terms of program structures 

(loops, memory usages, etc.); it then chooses a few points 
of each cluster to represent all the simulation points within 

that group without losing much information.

There are also techniques that sit at the boundary of super-

vised and unsupervised learning. These techniques refine the 
knowledge gathered during offline learning or previous runs 
using empirical observations obtained during deployment. 

We review such techniques in Section IV-C. This sections 
concludes with a discussion of the relative merits of different 

modeling approaches for compiler optimization.

A. Supervised Learning

1) Regression: A widely used supervised learning tech-

nique is called regression. This technique has been used in 
various tasks, such as predicting the program execution time 
input [38] or speedup [39] for a given input, or estimating 

the tail latency for parallel workloads [61].
Regression is essentially curve fitting. As an example, 

consider Fig. 5 where a regression model is learned from 

five data points. The model takes in a program input size  X  

and predicts the execution time of the program  Y  . Adhering 

to supervised learning nomenclature, the set of five known 
data points is the training data set and each of the five points 
that comprise the training data is called a training example. 

Each training example  ( x i  ,  y i  )  is defined by a feature vector 
(i.e., the input size in our case)   x i    and a desired output (i.e., 

the program execution time in our case)   y i    . Learning in this 

context is understood as discovering the relation between 

the inputs (  x i   ) and the outputs (  y i   ) so that the predictive 

model can be used to make predictions for any new, unseen 
input features in the problem domain. Once the function  f  

is in place, one can use it to make a prediction by taking in a 
new input feature vector  x  . The prediction  y  is the value of 

the curve that the new input feature vector  x  corresponds to.

There are a range of machine learning techniques that 
can be used for regression. These include the simple linear 
regression model and more advanced models like SVMs and 
ANNs. Linear regression is effective when the input (i.e., 

feature vectors) and output (i.e., labels) have a strong linear 

relation. SVM and ANNs can model both linear and nonlin-

ear relations, but typically require more training examples 

to learn an effective model when compared with simple lin-

ear regression models.

Table 3 gives some examples of regression techniques 
that have been used in prior work for code optimization and 
the problem to be modeled.

2)  Classification: Supervised classification is another 
technique that has been widely used in prior work of machine-
learning-based code optimization. This technique takes in a 
feature vector and predicts which of a set of classes the feature 

vector is associated with. For example, classification can be 
used to predict which of a set of unroll factors should be used 

for a given loop, by taking in a feature vector that describes the 
characteristics of the target loop (see also Section II-D).

The k-nearest neighbur (KNN) algorithm is a simple 
yet effective classification technique. It finds the  k  closet 

training examples to the input instance (or program) on the 

feature space. The closeness (or distance) is often evaluated 
using the Euclidean distance, but other metrics can also be 
used. This technique has been used to predict the optimal 
optimization parameters in prior works [52], [66], [67]. It 

Table 2 Machine Learning Methods Discussed in Section IV

Fig. 5. A simple regression-based curve-fitting example. There are 

five training examples in this case. A function  f  is trained with the 

training data, which maps the input  x  to the output  y . The trained 

function can predict the output of an unseen  x .
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works by first predicting which of the training programs 
are closet (i.e., nearest neighbors) to the incoming program 

on the feature space; it then uses the optimal parameters 
(which are found during training time) of the nearest neigh-

bors as the prediction output. While it is effective on small 

problems, KNN also has two main drawbacks. First, it must 
compute the distance between the input and all training data 

at each prediction. This can be slow if there is a large num-

ber of training programs to be considered. Second, the algo-

rithm itself does not learn from the training data; instead, 
it simply selects the  k  nearest neighbors. This means that 
the algorithm is not robust to noisy training data and could 

choose an ill-suited training program as the prediction.

As an alternative, the decision tree has been used in 

prior works for a range of optimization problems. These 
include choosing the parallel strategy for loop parallelization 

[69], determining the loop unroll factor [16], [70], decid-

ing the profitability of using GPU acceleration [68], [71], 
and selecting the optimal algorithm implementation [72]. 

The advantage of a decision tree is that the learned model is 
interpretable and can be easily visualized. This enables users 
to understand why a particular decision is made by follow-

ing the path from the root node to a leaf decision node. For 

example, Fig. 6 depicts the decision tree model developed in 

[68] for selecting the best performing device (CPU or GPU) 
to run an OpenCL program. To make a prediction, we start 
from the root of the tree; we compare a feature value (e.g., the 
communication–computation ratio) of the target program 

against a threshold to determine which branch of the tree to 

follow; and we repeat this process until we reach a leaf node 
where a decision will be made. It is to note that the structure 

and thresholds of the tree are automatically determined by 

the machine learning algorithm, which may change when we 

target a different architecture or application domain.

Decision trees make the assumption that the feature 
space is convex, i.e., it can be divided up using hyperplanes 

into different regions, each of which belongs to a different 

category. This restriction is often appropriate in practice. 
However, a significant drawback of using a single decision 
tree is that the model can overfit due to outliers in the train-

ing data (see also Section IV-D). Random forests [73] have, 
therefore, been proposed to alleviate the problem of over-

fitting. Random forests are an ensemble learning method  
[74]. As illustrated in Fig. 7, it works by constructing mul-
tiple decision trees at training time. The prediction of each 
tree depends on the values of a random vector sampled inde-

pendently on the feature value. In this way, each tree is ran-

domly forced to be insensitive to some feature dimensions. 

To make a prediction, random forests then aggregate the out-
comes of individual trees to form an overall prediction. It has 

been employed to determine whether to inline a function or 

not [75], delivering better performance than a single-model-

based approach. We want to highlight that random forests 

can also be used for regression tasks. For instances, it has 
been used to model energy consumption of OpenMP [76] 

and CUDA [77] programs.
Logical regression is a variation of linear regression but 

is often used for classification. It takes in the feature vec-

tor and calculates the probability of some outcome. For 

example, Cavazos and O’Boyle used logical regression to 
determine the optimization level of Jike RVM. Like decision 
trees, logical regression also assumes that the feature values 

and the prediction has a linear relation.

More advanced models, such as SVM classification, 
have been used for various compiler optimization tasks 
[46], [79]–[81]. SVMs use kernel functions to compute the 
similarity of feature vectors. The radial basis function (RBF) 
is commonly used in prior works [46], [82] because it can 
model both linear and nonlinear problems. It works by map-

ping the input feature vector to a higher dimensional space 

where it may be easier to find a linear hyperplane to well 
separate the labeled data (or classes).

Other machine learning techniques, such as kernel 
canonical correlation analysis and naive Bayes, have also 

Fig. 6. A decision tree for determining which device (CPU or GPU) to use to run an OpenCL program. This diagram is reproduced from [68].

Table 3 Regression Techniques Used in Prior Works
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been used in prior works to predict stencil program configu-

rations [83] or detect parallel patterns [84].

3) Deep Neural Networks: In recent years, deep neural 

networks [85] have been shown to be a powerful tool for 
tackling a range of machine learning tasks such as image rec-

ognition [86], [87] and audio processing [88]. Deep neural 
networks (DNNs) have recently been used to model program 
source code [89] for various software engineering tasks (see 
also Section VI-C), but so far there is little work of apply-

ing DNNs to compiler optimization. A recent attempt in 
this direction is the DeepTune framework [78], which uses 
DNNs to extract source code features (see also Section V-C).

The advantage of DNNs is that they can compactly rep-

resent a significantly larger set of functions than a shallow 
network, where each function is specialized at processing 

part of the input. This capability allows DNNs to model the 
complex relationship between the input and the output (i.e., 

the prediction). As an example, consider Fig. 8 that visual-

izes the internal state of DeepTune [78] when predicting 
the optimal thread coarsening factor for an OpenCL kernel 
(see Section II-D). Fig. 8(a) shows the first 80 elements of 
the input source code tokens as a heatmap in which each 
cell’s color reflects an integer value assigned to a specific 
token. Fig. 8(b) shows the neurons of the first DNN for 
each of the four GPU platforms, using a red–blue heatmap 
to visualize the intensity of each activation. If we have a 

close look at the heatmap, we can find a number of neurons 
in the layer with different responses across platforms. This 
indicates that the DNN is partly specialized to the target 
platform. As information flows through the network [layers 
(c) and (d) in Fig. 8], the layers become progressively more 

specialized to the specific platform.

B. Unsupervised Learning

Unlike supervised learning models which learn a correla-

tion from the input feature values to the corresponding out-

puts, unsupervised learning models only take it from the input 
data (e.g., the feature values). This technique is often used to 
model the underlying structure of distribution of the data.

Clustering is a classical unsupervised learning problem. 

The k-means clustering algorithm [90] groups the input data 
into  k  clusters. For example, in Fig. 9, a k-means algorithm 
is used to group data points into three clusters on a 2-D 

Fig. 7. Random forests are an ensemble learning algorithm. It 

aggregates the outputs of multiple decision trees to form a final 

prediction. The idea is to combine the predictions from multiple 

individual models together to make a more robust, accurate 

prediction than any individual model.

Fig. 8. A simplified view of the internal state for the DeepTune DNN framework [78] when it predicts the optimal OpenCL thread coarsening 

factor. Here, a DNN is learned for each of the four target GPU architectures. The activations in each layer of the four models increasingly 

diverge (or specialize) toward the lower layers of the model. It is to note that some of the DeepTune layers are omitted to aid presentation.
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feature space. The algorithm works by grouping data points 
that are close to each other on the feature space into a clus-

ter. K-means is used to characterize program behavior [60], 
[91]. It does so by clustering program execution into phase 

groups, so that we can use a few samples of a group to rep-

resent the entire program phases within a group. K-means 
is also used in the work presented in [92] to summarize the 
code structures of parallel programs that benefit from simi-
lar optimization strategies. In addition to k-means, Martins 
et al. employed the fast Newman clustering algorithm [93] 
which works on network structures to group functions that 
may benefit from similar compiler optimizations [94].

PCA is a statistical method for unsupervised learning. 

This method has been heavily used in prior work to reduce 
the feature dimension [17], [25], [95]–[97]. Doing so allows 
us to model a high-dimensional feature space with a smaller 

number of representative variables which, in combination, 

describe most of the variability found in the original feature 

space. PCA is often used to discover the common pattern in 

the data sets in order to help clustering exercises. It is used 

to select representative programs from a benchmark suite 
[95], [98]. In Section V-D, we discuss PCA in further details.

Autoencoders are a recently proposed artificial neural 
network architecture for discovering the efficient codings of 
input data in an unsupervised fashion [99]. This technique 
can be used in combination of a natural language model to 

first extract features from program source code and then find 
a compact representation of the source code features [100]. 

We discuss autoencoders in Section V-D when reviewing 
feature dimensionality reduction techniques.

C. Online Learning

1) Evolutionary Search: Evolutionary algorithms (EAs) 
or evolutionary computation such as genetic algorithms 

(GAs), GP,4 and stochastic-based search have been employed 

to find a good optimization solution from a large search space. 
An EA applies principles inspired by biological evolution to 
find an optimal or near-optimal solution for the target prob-

lem. For instance, the SPIRAL autotuning framework uses a 
stochastic evolutionary search algorithm to choose a fast for-

mula (or transformation) for signal processing applications 

[101]. Li et al. use GAs to search for the optimal configura-

tion to determine which sorting algorithm to use based on 

the unsorted data size [102]. The Petabricks compiler offers 
a more general solution by using EAs to search for the best 
performing configurations for a set of algorithms specified 
by the programmer [103]. In addition to code optimization, 

EAs have also been used to create Pareto optimal program 
benchmarks under various criteria [104].

As an example, consider how an EA can be employed in 
the context of iterative compilation to find the best com-

piler flags for a program [25], [36], [105]. Fig. 10 depicts 
how an EA can be used for this purpose. The algorithm 
starts from several populations of randomly chosen com-

piler flag settings. It compiles the program using each indi-
vidual compiler flag sequence, and uses a fitness function 
to evaluate how well a compiler flag sequence performs. In 
our case, a fitness function can simply return the recipro-

cal of a program runtime measurement, so that compiler 

settings that give faster execution time will have a higher 

fitness score. In the next epoch, the EA algorithm generates 

Fig. 9. Using k-means to group data points into three clusters. In 

this example, we group the data points into three clusters on a 2-D 

feature space.

4A GA is represented as a list of actions and values, often a string, 
while a GP is represented as a tree structure of actions and values. For 
example, GP is applied to the abstract syntax tree of a program to search 
for useful features in [70].

Fig. 10. Using an EA to perform iterative compilation. The 

algorithm starts from several initial populations of randomly 

chosen compiler flag sequences. It evaluates the performance of 

individual sequences to remove poorly performing sequences in 

each population. It then applies crossover and mutation to create 

a new generation of populations. The algorithm returns the best 

performing program binary when it terminates.
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the next populations of compiler settings via mechanisms 

such as reproduction (crossover) and mutation among 

compiler flag settings. This results in a new generation of 
compiler flag settings and the quality of each setting will 
be evaluated again. In a mechanism analogous to natural 

selection, a certain number of poorly performing compiler 

flags within a population are chosen to die in each genera-

tion. This process terminates when no further improve-

ment is observed or the maximum number of generations is 

reached, and the algorithm will return the best found pro-

gram binary as a result.

There are three key operations in an EA algorithm: selec-

tion, crossover, and mutation. The probability of an opti-
mization option being selected for dying is often inversely 

proportional to its fitness score. In other words, options that 
are relatively fitter (e.g., give faster program runtime) are 
more likely to survive and remain a part of the population 
after selection. In crossover, a certain number of offsprings 

are produced by mixing some existing optimization options 

(e.g., compiler flags). The likelihood of an existing option 
being chosen for crossover is again proportional to its fit-
ness. This strategy ensures that good optimizations will be 
preserved over generations, while poorly performing opti-

mizations will gradually die out. Finally, mutation randomly 

changes a preserved optimization, e.g., by turning on/off 

an option or replacing a threshold value in a compiler flag 
sequence. Mutation reduces the chance that the algorithm 

gets stuck with a locally optimal optimization.
EAs are useful for exploring a large optimization space 

where it is infeasible to just enumerate all possible solu-

tions. This is because an EA can often converge to the most 
promising area in the optimization space quicker than a 
general search heuristic. The EA is also shown to be faster 
than a dynamic-programming-based search [24] in finding 
the optimal transformation for the fast Fourier transforma-

tion (FFT) [101]. When compared to supervised learning, 
EAs have the advantage of requiring little problem-specific 
knowledge, and hence they can be applied on a broad range 
of problems. However, because an EA typically relies on the 
empirical evidences (e.g., running time) for fitness evalu-

ation, the search time can still be prohibitively expensive. 

This overhead can be reduced by using a machine-learning-
based cost model [43] to estimate the potential gain (e.g., 
speedup) of a configuration (see also Section III-A). Another 
approach is to combine supervised learning and EAs [25], 
[106] by first using an offline learned model to predict the 
most promising areas of the design space (i.e., to narrow 

down the search areas), and then searching over the pre-

dicted areas to refine the solutions. Moreover, instead of 
predicting where in the search space to focus on, one can 

also first prune the search space to reduce the number of 
options to search over. For example, Jantz and Kulkarni 
show that the search space of phase ordering5 can be greatly 

reduced if we can first remove phases whose application 
order is irrelevant to the produced code [107]. Their tech-

niques are claimed to prune the exhaustive phase order 

search space size by 89% on average.

2) Reinforcement Learning: Another class of online 

learning algorithms is reinforcement learning (RL) which 

is sometimes called “learning from interactions.” The algo-

rithm tries to learn how to maximize the rewards (or perfor-

mance) itself. In other words, the algorithm needs to learn, 

for a given input, what the correct output or decision to take 
is. This is different from supervised learning where the cor-

rect input/output pairs are presented in the training data.

Fig. 11 illustrates the working mechanism of RL. Here 
the learning algorithm interacts with its environment over a 

discrete set of time steps. At each step, the algorithm evalu-

ates the current state of its environment, and executes an 

action. The action leads to a change in the state of the envi-
ronment (which the algorithm can evaluate in the next time 

step), and produces an immediate reward. For example, in 

a multitasking environment, a state could be the CPU con-

tention; when processor cores are idle, an action could be 
where to place a process, and a reward could be the overall 

system throughput. The goal of RL is to maximize the long-
term cumulative reward by learning an optimal strategy to 

map states to actions.

RL is particularly suitable for modeling problems that 

have an evolving natural, such as dynamic task scheduling, 
where the optimal outcome is achieved through a series of 

actions. RL has been used in prior research to schedule RAM 

memory traffics [108], select software component configu-

rations at runtime [109], and configure virtual machines 
[110]. An early work of using RL for program optimization 
was conduced by Lagoudakis and Littman [111]. They use 
RL to find the cutoff point to switch between two sorting 
algorithms: quickSort and insertionSort. CALOREE 
combines machine learning and control theories to sched-

ule CPU resources on heterogeneous multicores [112]. For a 
given application, CALOREE uses control-theoretic methods 
to dynamically adjust the resource allocation, and machine 

learning to estimate the application’s latency and power for 
a given resource allocation plan (to offer decision supports).

An interesting RL-based approach for scheduling paral-

lel OpenMP programs is presented in [113]. This approach 
predicts the best number of threads for a target OpenMP 

5Compiler phase ordering determines at which order a set of 
compiler optimization passes should be applied to a given program.

Fig. 11. The working mechanism of reinforcement learning.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

12 Proceedings of the IEEE

program when it runs with other competing workloads, 
aiming to make the target program run faster. This approach 
first learns a reward function offline based on static code 
features and runtime system information. The reward func-

tion is used to estimate the reward of a runtime scheduling 

action, i.e., the expected speedup when assigning a certain 

number of processor cores to an OpenMP program. In the 

next scheduling epoch, this approach uses the empiri-

cal observation of the application speedup to check if the 
reward function was accurate and the decision was good, 

and update the reward function if the model is found to be 

inaccurate.

In general, RL is an intuitive and comprehensive solu-

tion for autonomous decision making. But its performance 
depends on the effectiveness of the value function, which 

estimates the immediate reward. An optimal value function 

should lead to the greatest cumulative reward in the longer 

term. For many problems, it is difficult to design an effective 
value function or policy, because the function needs to fore-

see the impact of an action in the future. The effectiveness of 
RL also depends on the environment; if the number of pos-

sible actions is large, it can take RL a long time to converge 
to a good solution. RL also requires the environment to be 

fully observed, i.e., all the possible states of the environment 

can be anticipated ahead of time. However, this assumption 
may not hold in a dynamic computing environment due 

to unpredictable disturbances, e.g., changes in application 

inputs or application mixes. In recent years, deep learning 

techniques have been used in conjunction with RL to learn 

a value function. The combined technique is able to solve 
some problems that were deemed impossible in the past 

[114]. However, how to combine deep learning with RL to 
solve compilation and code optimization problems remains 

an open question.

D. Discussion

What model is best is the $64 000 question. The answer 
is: it depends. More sophisticated techniques may provide 
greater accuracy but they require large amounts of labeled 

training data—a real problem in compiler optimization. 

Techniques such as linear regression and decision trees 
require less training data compared to more advanced mod-

els such as SVMs and ANNs. Simple models typically work 
well when the prediction problem can be described using a 

feature vector that has a small number of dimensions, and 

when the feature vector and the prediction are linearly cor-

related. More advanced techniques such as SVMs and ANNs 
can model both linear and nonlinear problems on a higher 

dimensional feature space, but they often require more 

training data to learn an effective model. Furthermore, the 

performance of an SVM and an ANN also highly depends on 
the hyperparameters used to train the model. The optimal 
hyperparameter values can be chosen by performing cross 

validation on the training data. However, how to select 

parameters to avoid overfitting while achieving a good pre-

diction accuracy remains an outstanding challenge.

Choosing which modeling technique to use is nontrivial. 

This is because the choice of model depends on a number 
of factors: the prediction problem (e.g., regression or clas-

sification), the set of features to use, the available train-

ing examples, the training and prediction overhead, etc. 

In prior works, the choice of modeling technique largely 
relied on developer experience and empirical results. Many 

of the studies in the field of machine-learning-based code 
optimization do not fully justify the choice of the model, 

although some do compare the performance of alternate 

techniques. The OpenTuner framework addresses the prob-

lem by employing multiple techniques for program tuning 

[115]. OpenTuner runs multiple search techniques at the 
same time. Techniques which perform well will be given 
more candidate tuning options to examine, while poorly 

performed algorithms will be given fewer choices or disa-

bled entirely. In this way, OpenTuner can discover which 
algorithm works best for a given problem during search.

One technique that has seen little investigation is the use 

of Gaussian processes [116]. Before the recent widespread 

interest in DNNs, these were a highly popular method in 
many areas of machine learning [117]. They are particularly 
powerful when the amount of training data is sparse and 

expensive to collect. They also automatically give a confi-

dence interval with any decision. This allows the compiler 
writer to trade off risk versus reward depending on the 
application scenario.

Using a single model has a significant drawback in prac-

tice. This is because a one-size-fits-all model is unlikely to 
precisely capture behaviors of diverse applications, and no 

matter how parameterized the model is, it is highly unlikely 
that a model developed today will always be suited for 

tomorrow. To allow the model to adapt to the change of the 
computing environment and workloads, ensemble learning 
was exploited in prior works [73], [118], [119]. The idea of 
ensemble learning is to use multiple learning algorithms, 

where each algorithm is effective for particular problems, to 

obtain better predictive performance than could be obtained 

from any of the constituent learning algorithm alone [120], 

[121]. Making a prediction using an ensemble typically 
requires more computational time than doing that using a 

single model, so ensembles can be seen as a way to com-

pensate for poor learning algorithms by performing extra 

computation. To reduce the overhead, fast algorithms such 
as decision trees are commonly used in ensemble methods 

(e.g., random forests), although slower algorithms can ben-

efit from ensemble techniques as well.

V. FE AT U R E ENGINEER ING

Machine-learning-based code optimization relies on hav-

ing a set of high-quality features that capture the important 

characteristics of the target program. Given that there is an 
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unbounded number of potential features, finding the right 
set is a nontrivial task. In this section, we review how pre-

vious work chooses features, a task known as feature engi-
neering. Tables 4 and 5 summarize the range of program 
features and feature engineering techniques discussed in 

this section, respectively.

A. Feature Representation

Various forms of program features have been used in 

compiler-based machine learning. These include static code 
structures [122] and runtime information such as system 

load [118], [123] and performance counters [53].

1) Static Code Features: Static program features such 

as the number and type of instructions are often used to 

describe a program. These features are typically extracted 
from the compiler intermediate representations [29], [46], 
[52], [80] in order to avoid using information extracted from 

dead code. Table 6 gives some of the static code features that 
were used in previous studies. Raw code features are often 

used together to create a combined feature. For example, one 

can divide the number of load instructions by the number of 

total instructions to get the memory load ratio. An advantage 

of using static code features is that the features are readily 

available from the compiler intermediate representation.

2) Tree- and Graph-Based Features: Singer and Veloso 

represent the FFT in a split tree [124]. They extract from the 
tree a set of features, by counting the number of nodes of var-

ious types and quantifying the shape of the tree. These tree-
based features are then used to build a neural-network-based 

cost function that predicts which of the two FFT formulas 
runs faster. The cost function is used to search for the best 
performing transformation.

Park et al. present a unique graph-based approach for 

feature representations [125]. They use an SVM where the 
kernel is based on a graph similarity metric. Their technique 
requires hand-coded features at the basic block level, but 
thereafter, graph similarity against each of the training pro-

grams takes the place of global features. Mailike shows that 
spatial-based information, i.e., how instructions are distrib-

uted within a program, extracted from the program’s data 
flow graph could be a useful feature for machine-learning-
based compiler optimization [126]. Nobre et al. also exploit 

graph structures for code generation [26]. Their approach 
targets the phase ordering problem. The order of compiler 
optimization passes is represented as a graph. Each node of 
the graph is an optimization pass and connections between 

nodes are weighted in a way that subsequences with higher 

aggregated weights are more likely to lead to faster runtime. 
The graph is automatically constructed and updated using 
iterative compilation (where the target program is complied 

using different compiler passes with different orders). A 

design space exploration algorithm is employed to drive the 

iterative compilation process.

3) Dynamic Features: While static code features are 

useful and can be extracted at static compile time (hence 

feature extraction has no runtime overhead), they have 

drawbacks. For examples, static code features may con-

tain information of code segments that rarely get executed, 

and such information can confuse the machine learning 

model; some program information such as the loop bound 
depends on the program input, which can only be obtained 

during execution time; and static code features often may 
not precisely capture the application behavior in the runt-

ime environment [such as resource contention and input/

output (I/O) behavior] as such behavior highly depends on 

the computing environment such as the number of available 

processors and corunning workloads.
As illustrated in Fig. 12, dynamic features can be 

extracted from multiple layers of the runtime environment. 

At the application layer, we can obtain information such 

as loop iteration counts that cannot be decided at compile 

time, dynamic control flows, frequently executed code 
regions, etc. At the operating system level, we can observe 

the memory and I/O behavior of the application as well 

as CPU load and thread contention, etc. At the hardware 

Table 4 Summary of Features Discussed in Section V

Table 5 Feature Engineering Techniques Discussed in Section V.

Table 6 Example Code Features Used in Prior Works



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Wang and O'Boyle: Machine Learning in Compiler Optimization

14 Proceedings of the IEEE

level, we can use performance counters to track information 
such as how many instructions have been executed and of 

what types, and the number of cache loads/stores as well as 

branch misses, etc.

Hardware performance counter values, such as executed 
instruction counts and cache miss rate, are therefore used 

to understand the application’s dynamic behaviors [53], 
[127], [128]. These counters can capture low-level pro-

gram information such as data access patterns, branches, 

and computational instructions. One of the advantages of 

performance counters is that they capture how the target 

program behaves on a specific hardware and avoid the irrel-
evant information that static code features may bring in. In 

addition to hardware performance counters, operating sys-

tem level metrics, such as system load and I/O contention, 

are also used to model an application’s behavior [39], [123]. 
Such information can be externally observed without instru-

menting the code, and can be obtain during offline profiling 
or program execution time.

While effective, collecting dynamic information could 

incur prohibitively overhead and the collected information 

can be noisy due to competing workloads and operating sys-

tem scheduling [129] or even subtle settings of the execu-

tion environment [130]. Another drawback of performance 
counters and dynamic features is that they can only capture 

the application’s past behavior. Therefore, if the applica-

tion behaves significantly different in the future due to the 
change of program phases or inputs, then the prediction will 

be drawn on an unreliable observation. As such, dynamic 

and static features are often used in combination in prior 

works in order to build a robust model.

B. Reaction-Based Features

Cavazos et al. present a reaction-based predictive model 

for software–hardware codesign [131]. Their approach pro-

files the target program using several carefully selected com-

piler options to see how program runtime changes under 

these options for a given microarchitecture setting. They 
then use the program “reactions” to predict the best avail-

able application speedup. Fig. 13 illustrates the difference 

between a reaction-based model and a standard program 

feature-based model. A similar reaction-based approach is 

used in [132] to predict speedup and energy efficiency for 
an application that is parallelized thread-level speculation 

(TLS) under a given microarchitectural configuration. Note 
that while a reaction-based approach does not use static 

code features, developers must carefully select a few set-

tings from a large number of candidate options for profiling, 
because poorly chosen options can significantly affect the 
quality of the model.

C. Automatic Feature Generation

As deriving good features is a time-consuming task, a 
few methods have been proposed to automatically gener-

ate features from the compiler’s intermediate representa-

tion (IR) [70], [133]. The work of [70] uses GP to search 
for features, but required a huge grammar to be written, 

some 160 kB in length. Although much of this can be cre-

ated from templates, selecting the right range of capabili-

ties and search space bias is nontrivial and up to the expert. 

The work of [133] expresses the space of features via logic 
programming over relations that represent information 

from the IRs. It greedily searches for expressions that rep-

resent good features. However, their approach relies on 
expert selected relations, combinators, and constraints 

to work. Both approaches closely tie the implementation 
of the predictive model to the compiler IR, which means 

changes to the IR will require modifications to the model. 
Furthermore, the time spent in searching features could be 

significant for these approaches.
The first work to employ neural network to extract fea-

tures from program source code for compiler optimization 

was conducted by Cummins et al. [78]. Their system, namely 
DeepTune, automatically abstracts and selects appropri-
ate features from the raw source code. Unlike prior work 

Fig. 12. Dynamic features can be extracted from multiple layers of 

the computing environment.

Fig. 13. Standard feature-based modeling (a) versus reaction-based 

modeling (b). Both models try to predict the speedup for a given 

compiler transformation sequence. The program feature-based 

predictor takes in static program features extracted from the 

transformed program, while the reaction-based model takes in the 

target transformation sequence and the measured speedups of the 

target program, obtained by applying a number of carefully selected 

transformation sequences. Diagrams are reproduced from [131].
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where the predictive model takes in a set of human-crafted 
features, program code is used directly in the training data. 

Programs are fed through a series of neural-network-based 
language models which learn how the code correlates with 

the desired optimization options (see also Fig. 8). Their 
work also shows that the properties of the raw code that 
are abstracted by the top layers of the neural networks are 
mostly independent of the optimization problem. While 

promising, it is worth mentioning that dynamic informa-

tion such as the program input size and performance coun-

ter values are often essential for characterizing the behavior 

of the target program. Therefore, DeepTune does not com-

pletely remove human involvement for feature engineering 

when static code features are insufficient for the optimiza-

tion problem.

D. Feature Selection and Dimension Reduction

Machine learning uses features to capture the essential 

characteristics of a training example. Sometimes we have 

too many features. As the number of features increases, so 

does the number of training examples needed to build an 

accurate model [134]. Hence, we need to limit the dimen-

sion of the feature space. In compiler research, commonly, 

an initial large, high-dimensional candidate feature space is 

pruned via feature selection [52], or projected into a lower 

dimensional space [17]. In this section, we review a number 

of feature selection and dimension reduction methods.

1) Feature Selection: Feature selection requires under-

standing how a particular feature affects the prediction 

accuracy. One of the simplest methods for doing this is 

applying the Pearson correlation coefficient. This metric 
measures the linear correlation between two variables and is 

used in numerous works [55], [92], [122], [135] to filter out 
redundant features by removing features that have a strong 

correlation with an already selected feature. It has also been 

used to quantify the relation of the select features in regres-

sion. One obvious drawback of using Pearson correlation as 
a feature ranking mechanism is that it is only sensitive to a 
linear relationship.

Another approach for correlation estimation is mutual 

information [131], [136], which quantifies how much infor-

mation of one variable (or feature) can be obtained through 

another variable (feature). Like correlation coefficient, 
mutual information can be used to remove redundant fea-

tures. For example, if the information of feature  x  can be 

largely obtained through another existing feature  y , feature  

x  can then be taken out from the feature set without losing 
much information on the reduced feature set.

Both correlation coefficient and mutual information 
evaluate each feature independently with respect to the pre-

diction. A different approach is to utilize regression analysis 

for feature ranking. The underlying principal of regression 
analysis is that if the prediction is the outcome of regres-

sion model based on the features, then the most important 

features should have the highest weights (or coefficients) in 
the model, while features uncorrelated with the output vari-

ables should have weights close to zero. For example, least 

absolute shrinkage and selection operator (LASSO) regres-

sion analysis is used in [137] to remove less useful features 

to build a compiler-based model to predict performance. 

LASSO has also been used for feature selection to tune the 

compiler heuristics for the TRIPS processor [138].
In general, feature selection remains an open problem 

for machine learning, and researchers often follow a “trail-

and-error” approach to test a range of methods and feature 

candidates. This makes automatic feature selection frame-

work like FEAST [139] and HERCULES [140] attractive. 
The former framework employs a range of existing feature 
selection methods to select useful candidate features, while 

the latter searches for the most important static code fea-

tures from a set of predefined patterns for loops.

2) Feature Dimensionality Reduction: While feature 

selection allows us to select the most important features, 

the resulted feature set can still be too large to train a good 

model, especially when we only have a small number of 

training examples. By reducing the number of dimensions, 

the learning algorithm can often perform more efficiently 
on a limited training data set. Dimension reduction is also 
important for some machine learning algorithms such as 

KNN to avoid the effect of the curse of dimensionality [141].
PCA is a well-established feature reduction technique 

[142]. It uses orthogonal linear transformations to reduce the 
dimensionality of a set of variables, i.e., features in our case.

Fig. 14 demonstrates the use of PCA to reduce the num-

ber of dimensions. The input in this example is a 3-D space 
defined by   M 1   ,   M 2   , and   M 3   , as shown in Fig. 14(a). Three 
components,  P  C 1   ,  P  C 2   , and  P  C 3   , which account for the vari-

ance of the data, are first calculated. Here,  P  C 1    and  P  C 2    con-

tribute most to the variance of the data and  P  C 3    accounts 

for the least variance. Using only  P  C 1    and  P  C 2   , one can 

transform the original, 3-D space into a new, 2-D coordinate 

Fig. 14. Using PCA to reduce dimensionality of a 3-D feature space. 

The principal components are first computed (a). Then, the first two 

principal components ( P  C 1    and  P  C 2   ) are selected to represent the 

original 3-D feature space on a new 2-D space (b). 
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system [as illustrated in Fig. 14(b)] while preserving much 
of the variance of the original data.

PCA has been used in many prior compiler research 

works for feature reduction [17], [25], [55], [92], [95]–[97], 
[143]. It has also been used in prior works to visualize the 
working mechanism of a machine learning model, e.g., to 
show how benchmarks can be grouped in the feature space 
[123], by projecting features from a high-dimensional space 

into a 2-D space.
We want to stress that PCA does not select some fea-

tures and discard the others. Instead, it linearly combines 

the original features to construct new features that can sum-

marize the list of the original features. PCA is useful when 

there is some redundancy in the raw features, i.e., some of 

the features are correlated with one another. Similar feature 

reduction methods include factor analysis and linear discri-

minant analysis (LDA), which all try to reduce the number 
of features by linearly combining multiple raw features. 

However, PCA seems to be the most popular feature reduc-

tion method used in compiler research, probably due to its 

simplicity.

An alternative way of reducing the number of features 

used is via an autoencoder [144]. It is a neural network 
that finds a representation (encoding) for a set of data, by 
dimensionality reduction. Autoencoders works by learning 
an encoder and a decoder from the input data. The encoder 
tries to compress the original input into a low-dimensional 

representation, while the decoder tries to reconstruct the 

original input based on the low-dimension representations 

generated by the encoder. As a result, the autoencoder has 

been widely used to remove the data noise as well as to 

reduce the data dimension [145].
Autoencoders have been applied to various natural lan-

guage processing tasks [99], often being used together with 
DNNs. Recently, it has been employed to model program 
source code to obtain a compact set of features that can 

characterize the input program source [78], [146]–[149].

V I.  SCOPE

Machine learning has been used to solve a wide range of 

problems, from the early successful work of selecting com-

piler flags for sequential programs, to recent works on 
scheduling and optimizing parallel programs on heteroge-

neous multicores. In this section, we review the types of 

problems that have been exploited in prior works.

A. Optimizing Sequential Programs

Early works for machine learning in compilers look at 
how, or if, a compiler optimization should be applied to a 

sequential program. Some of the previous studies build 

supervised classifiers to predict the optimal loop unroll fac-

tor [52], [70] or to determine whether a function should be 

inlined [29], [35]. These works target a fixed set of compiler 

options, by representing the optimization problem as a mul-

ticlass classification problem, where each compiler option 
is a class. For example, Leather et al. [70] considered a 

loop unroll factor between 0 and 15 (16 configurations in 
total), treating each candidate unroll factor as a class; they 
compiled and profiled each training program by trying all 
16 configurations to find out the best loop unroll factor for 
each program, and then learned a decision tree model from 

the training data.

There are other compiler problems where the number of 
possible options is massive. For instance, the work presented 
in [55] considers 54 code transformations of GCC. While 
these options are only a subset from the over hundreds of 

transformations provided by GCC, the resulted combinato-

rial compiler configurations lead to a space of approximately   
10   34  . Although it is possible to build a classifier to directly 
predict the optimal setting from a large space, to learn an 

effective model would require a large volume of training 

programs in order to have an adequate sampling over the 

space. Doing so is difficult because 1) there are only a few 
dozen common benchmarks available; and 2) compiler 
developers need to generate the training data themselves.

EAs such as generic search are often used to explore a 
large design space (see also Section IV-C1). Prior works have 
used EAs to solve the phase ordering problem (i.e., at which 
order a set of compiler transformations should be applied) 

[150]–[152], determining the compiler flags during iterative 
compilation [153]–[156], selecting loop transformations 

[157], tuning algorithmic choices [11], [103], etc.

B. Optimizing Parallel Programs

How to effectively optimize parallel programs has 
received significant attentions in the past decade, largely 
because the hardware industry has adopted multicore 

design to avoid the power wall [158]. While multicore and 

many-core architectures provide the potential for high-

performance and energy-efficient computing, the potential 
performance can only be unlocked if the application pro-

grams are suitably parallel and can be made to match the 

underlying heterogeneous platform. Without this, the myr-

iad cores on multicore processors and their specialized pro-

cessing elements will sit idle or poorly utilized. To this end, 
researchers have extended the reach of machine learning to 

optimize parallel programs.

A line of research in parallel program optimization is 

parallelism mapping. That is, given an already parallelized 
program, how to map the application parallelism to match 

the underlying hardware to make the program run as fast 
as possible or be as energy efficient as possible. Zhang et 

al. developed a decision-tree-based approach to predict the 

scheduling policy to use for an OpenMP parallel region 

[159]. The work presented in [46] employs two machine 
learning techniques to predict the optimal number of 

threads as well as the scheduling policy to use for OpenMP 
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parallel loop. Specifically, it uses a regression-based ANN 
model to predict the speedup of a parallel loop when it 

runs with a given number of threads (to search for the opti-

mal number threads), and an SVM classifier to predict the 
scheduling policy. There are also works that use machine 
learning to determine the optimum degree of parallelism for 

transactional memory [160] and hardware source allocation 

[161], or to select a code version from a pool of choices to 

use [162]. Castro et al. developed a decision tree classifier 
to predict the thread mapping strategy in the context of soft-

ware transactional memory [163]. Jung et al. constructed an 

ANN-based predictor to select an effective data structure on 
a specific microarchitecture [164].

The work presented in [92] and [165] is a unique 
approach for applying machine learning to map complex 

parallel programs with unbounded parallel graph structures. 

The work considers the question of finding the optimal graph 
structure of a streaming program. The idea was that rather 
than trying to predict a sequence of transformations over an 

unbounded graph, where legality and consistency is a real 

problem, we should consider the problem from the dual 

feature space. The work showed that it is possible to pre-

dict the best target feature (i.e., the characteristics that an 

ideal transformed program should have) which then can be 

used to evaluate the worth of candidate transformed graphs 

(without compiling and profiling the resulted graphs) in the 
original feature space.

The Petabricks project [103], [166], [167] takes an evolu-

tionary approach for program tuning. The Petabricks com-

piler employs genetic search algorithms to tune algorithmic 

choices. Due to the expensive overhead of the search, much 
of autotuning is done at static compile time. Their work 
shows that one can utilize the idle processors on a multi-

core systems to perform online tuning [168], where half of 

the cores are devoted to a known safe program configura-

tion, while the other half are used for an experimental pro-

gram configuration. In this way, when the results of the 
faster configuration are returned, the slower version will be 
terminated.

The idea of combining compile-time knowledge and 
runtime information to achieve better optimizations has 

been exploited by the ADAPT compiler [169]. Using the 
ADAPT compiler, users describe what optimizations are 
available and provide heuristics for applying these optimi-

zations. The compiler then reads these descriptions and 
generates application-specific runtime systems to apply the 
heuristics. Runtime code tuning is also exploited by Active 

Harmony [170], which utilizes the computing resources in 
HPC systems to evaluate different code variants on different 
nodes to find the best performing version.

There is also an extensive body of work on how to opti-
mize programs on heterogeneous multicore systems. One of 

the problems for heterogeneous multicore optimization is 

to determine when and how to use the heterogeneous pro-

cessors. Researchers have used machine learning to build 

classifiers to determine which processor to use [68] and at 
which clock frequency the processor should operate [80], 
[171]. Others used regression techniques to build curve fit-
ting models to search for the sweat spot for work partition-

ing among processors [38] or a tradeoff of energy and per-

formance [172].

Another line of research combines compiler-based 

analysis and machine learning to optimize programs in the 

presence of competing workloads. This research problem 
is important because programs rarely run in isolation and 

must share the computing resources with other corunning 

workloads. In [173] and [174], an ANN model based on 
static code features and runtime information was built to 

predict the number of threads to use for a target program 

when it runs with external workloads. Later, in [118], an 
ensemble-learning-based approach was used, which leads to 

significantly better performance over [173]. In [118], several 
models are first trained offline; and then one of the model is 
selected at runtime, taking into consideration the compet-
ing workloads and available hardware resources. The central 
idea is that instead of using a single monolithic model, we 

can use multiple models where each model is specialized for 

modeling a subset of applications or a particular runtime 

scenario. Using this approach, a model is used when its pre-

dictions are effective.

Some recent works developed machine learning models 
based on static code features and dynamic runtime informa-

tion to schedule OpenCL programs in the presence of GPU 
contention. The work presented in [175] uses SVM classifi-

cation to predict the work partition ratio between the CPU 
and GPU when multiple programs are competing to run on a 
single GPU. The work described in [39] aims to improve the 
overall system throughput when there are multiple OpenCL 

programs competing to run on the GPU. They developed an 
ANN model to predict the potential speedup for running an 
OpenCL kernel on the GPU. The speedup prediction is then 
used as a proxy to determine which of the waiting OpenCL 

tasks get to run on the GPU and in what order.
The approaches presented in [176] and [177] target task 

colocation in a data center environment. They use com-

piler-based code transformations to reduce the contention 

for multiple corunning tasks. A linear regression model was 
employed to calculate the contention score of code regions 

based on performance counter values. Then, a set of com-

piler-based code transformations is applied to reduce the 

resource demands of highly contentious code.

C. Other Research Problems

Many works have demonstrated that machine learning 
is a powerful technique in performance and cost modeling 

[47], [178]–[180], and in task and resource scheduling [161], 
[181]–[183]. We envision that many of these techniques can 

be used to provide evidence to support runtime program 

optimizations through, e.g., just-in-time compilation.
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While not directly target code optimization, compiler-

based code analysis and machine learning techniques have 

been used in conjunction to solve various software engineer-

ing tasks. These include detecting code similarities [184], 
[185], automatic comment generation [186], mining API 

usage patterns [187], [188], predicting program properties 

[189], code de-obfuscation for malware detection [190], 

etc. It is worth mentioning that many of these recent works 
show that the past development knowledge extracted from 
large code bases such as GitHub are valuable for learning an 
effective model. There were two recent studies performed by 
Cummins et al., which mine Github to synthesize OpenCL 

benchmarks [148] and code extract features from source 
code [78]. Both studies demonstrate the usefulness of large 

code bases and deep learning techniques for learning pre-

dictive models for compiler optimizations. We envision that 

the rich information in large open source code bases could 

provide a powerful knowledge base for training machine 
learning models to solve compiler optimization problems, 

and deep learning could be used as an effective tool to 

extract such knowledge from massive program source code.

V II.  DISCUSSION

One of the real benefits of machine-learning-based 
approaches is that it forces an empirically driven approach 

to compiler construction. New models have to be based on 
empirical data which can then be verified by independent 
experimentation. This experiment, hypothesis, test cycle is 
well known in the physical sciences but is a relatively new 
addition compiler construction.

As machine-learning-based techniques require a sam-

pling of the optimization space for training data, we typi-

cally know the best optimization for any program in the 
training set. If we exclude this benchmark from training, 
we therefore have access to an upper bound on performance 

or oracle for this program. This immediately lets us know 
how good existing techniques are. If they are 50% of this 

optimum or 95% of this optimum, this immediately tells us 

whether the problem is worth exploring.

Furthermore, we can construct naive techniques, e.g., 

a random optimization, and see its performance. If it per-

formed a number of times, it will have an expected value 

of the mean of the optimization speedups. We can then 

demand that any new heuristic should outperform this, 

though in our experience there have been cases where state-

of-the-art work was actually less than random.

A. Not a Panacea

This paper has, by and large, been very upbeat about the 
use of machine learning. However, there are a number of 
hurdles to overcome to make it a practical reality and this 
opens up new questions about optimization.

Training cost is an issue that many find alarming. In 
practice, the cost is much less than a compiler writer, and 

techniques such as active learning can be employed to 

reduce overhead of training data generation [191]–[194]. 
Although its true to say that generating many differently 

compiled programs and executing and timing them are 

entirely automatic, finding the right data requires careful 
consideration. If the optimizations explored have little posi-

tive performance on the programs, then there is nothing 

worth learning.

The most immediate problem continues to be gathering 
enough sufficient high quality training data. Although there 
are numerous benchmark sites publicly available, the num-

ber of programs available is relatively sparse compared to the 

number that a typical compiler will encounter in its lifetime. 

This is particularly true in specialist domains where there 
may not be any public benchmarks. Automatic benchmark 
generation work will help here, but existing approaches do 
not guarantee that the generated benchmarks effectively 
represent the design space. Therefore, the larger issue of the 
structure of the program space remains.

A really fundamental problem is that if we build our 

optimization models based purely on empirical data, then 

we must guarantee that these data are correct and represent-

ative; we must learn the signal, not the noise. Peer review of 
a machine learning approach is difficult. Black box mode-

ling prevents the quality of the model from being questioned 

unlike handcrafted heuristics. In a sense, reviewers now 
have to scrutinize that the experiments were fairly done. 

This means all training and test data must be publicly availa-

ble for scrutiny. This is common practice in other empirical 
sciences. The artefact evaluation committee is an example 
of this [195], [196].

Although the ability to automatically learn how to best 

optimize an application and adapt to change is a big step 

forward, machine learning can only learn from what is pro-

vided by the compiler writer. Machine learning can neither 

invent new program transformations to apply nor derive 

analysis that determines whether a transformation is legal; 
all of this is beyond its scope.

B. Will This Put Compiler Writers Out of a Job?

In fact, machine-learning-based compilation will para-

doxically lead to a renaissance in compiler optimization. 

Compilers have become so complex that adding a new opti-

mization or compiler phase can lead to performance regres-

sions. This, in turn, has led to a conservative mind set where 
new transformations are not considered if they may rock the 
boat. The core issue is that systems are so complex that it 
is impossible to know for sure when to use such an opti-
mization. Machine learning can remove this uncertainty by 

automatically determining when an optimization is prof-

itable. This now frees the compiler writer to develop ever 
more sophisticated techniques. He/she does not need to 
worry about how they interfere with other optimizations—

machine learning looks after this. We can now develop opti-
mizations that will typically only work for specific domains, 
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and not worry about coordinating their integration into a 

general purpose system. It allows different communities to 

develop novel optimizations and naturally integrate them. 

So rather than closing down the opportunity for new ideas, 

it opens up new vistas.

C. Open Research Directions

Machine learning has demonstrated its utility as a means 

of automating compiler profitability analysis. It will con-

tinue to be used for more complex optimization problems 

and is likely to be the default approach to selecting compiler 
optimizations in the coming decade.

The open research directions go beyond predicting the 
best optimizations to apply. One central issue is what the 

program space looks like. We know that programs with lin-

ear array accesses inside perfect loop nests need different 

treatment compared to, say, distributed graph processing 

programs. If we could have a map that allows us to meas-

ure distances between programs, then we could see whether 

there are regions that are well served by compiler charac-

terization and other regions that are sparse and currently 

ignored. If we could do the same for hardware, then we 

may be better able to design hardware likely to be of use for 
emerging applications.

Can machine learning also be applied to compiler analy-

sis? For instance is it possible to learn dataflow or point-to 
analysis? As deep learning has the ability to automatically 

construct features, can we find a set of features that are com-

mon across all optimizations and analyses? Can we learn 

the ideal compiler intermediate representation? There is 
a wide range of interesting research questions that remain 

unexplored.

V III.  CONCLUSION

This paper has introduced machine-learning-based com-

pilation and described its power in determining an evi-

dence-based approach to compiler optimization. It is the 

latest stage in 50 years of compiler automation. Machine-

learning-based compilation is now a mainstream compiler 

research area and, over the last decade or so, has generated 

a large amount of academic interest and papers. While it is 

impossible to provide a definitive cataloger of all research, 
we have tried to provide a comprehensive and accessible 

survey of the main research areas and future directions. 

Machine learning is not a panacea. It can only learn the data 

we provide. Rather than, as some fear, it dumbs down the 

role of compiler writers, it opens up the possibility of much 

greater creativity and new research areas. 
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