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Machine learning in concrete science: applications, challenges,
and best practices
Zhanzhao Li 1✉, Jinyoung Yoon 1,2, Rui Zhang1, Farshad Rajabipour1, Wil V. Srubar III3,4, Ismaila Dabo5 and Aleksandra Radlińska 1

Concrete, as the most widely used construction material, is inextricably connected with human development. Despite conceptual
and methodological progress in concrete science, concrete formulation for target properties remains a challenging task due to the
ever-increasing complexity of cementitious systems. With the ability to tackle complex tasks autonomously, machine learning (ML)
has demonstrated its transformative potential in concrete research. Given the rapid adoption of ML for concrete mixture design,
there is a need to understand methodological limitations and formulate best practices in this emerging computational field. Here,
we review the areas in which ML has positively impacted concrete science, followed by a comprehensive discussion of the
implementation, application, and interpretation of ML algorithms. We conclude by outlining future directions for the concrete
community to fully exploit the capabilities of ML models.
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INTRODUCTION
Concrete is the most prevalent human-made material on Earth,
and the most consumed commodity after water1. Compared to
other engineering materials like steel, plastics, and wood, concrete
plays a pivotal role in the construction industry due to its unique
combination of strength, affordability, moldability, and durability2.
Buildings, roads, bridges, dams, and many common infrastructure
elements are primarily made of concrete. The annual consumption
of concrete in the world has reached 35 billion tons, which is twice
as much as that of all other building materials combined3,4.
As illustrated in Fig. 1, early concrete research has followed

three paradigms of science, namely, empiricism, theory, and
computation. The properties and performance of concrete can be
tailored to meet design requirements by varying the type and
quantity of the mixture constituents (e.g., cement, water,
aggregate, and admixtures). Traditional approaches for designing
concrete mixtures often rely on trial-and-error, iterative propor-
tioning, processing, and characterization until the target proper-
ties are achieved5 (the first paradigm: empirical science; Fig. 1).
Although this method has yielded some success, it requires
considerable investments in time and resources. For example, it is
possible to optimize the compressive strength of concrete
mixtures by adjusting the water/cement ratio, total aggregate/
cement ratio, and coarse aggregate/total aggregate ratio6. Yet the
practical application of this iterative refinement approach is
limited by the exponential increase in the number of specimens
and experiments when complex concrete mixtures are studied
and several compositional parameters are simultaneously con-
sidered as combinatorial variables. As a result, materials develop-
ment in concrete science involves time-consuming validation/
development cycles from laboratory trials to field applications.
Efforts to accelerate knowledge acquisition and materials design
in concrete science are thus of paramount importance.
Beginning in the 1980s, the development of microstructural

models of cement hydration has enabled a fundamental

understanding of microstructure–property relationships in con-
crete7, which has marked the second paradigm (theoretical
science; Fig. 1) by applying basic laws of kinetics, thermody-
namics, and mechanics, and providing analytical solutions to
cement hydration. Successful demonstrations include the three-
dimensional cement hydration and microstructure development
model (CEMHYD3D)8,9; the hydration, morphology, and structural
development model (HYMOSTRUC)10; the integrated particle
kinetics model11; and the microstructural modeling platform
(μic)12. These microstructural models simulate the hydration
process and microstructure development of cementitious sys-
tems (e.g., dissolution and diffusion, chemical reactions, and
precipitation of hydration products) by integrating kinetic laws,
being a basis for the description of time-dependent material
properties, including mechanical and transport properties. In
parallel, the application of thermodynamics in cement chemistry
has facilitated the systematic investigation of the stability and
performance of concrete mixtures13–15. However, the complex
nature of cement hydration makes it challenging to develop
accurate and generalizable models, and these modeling
approaches, to varying degrees, rely on thermochemical, physical,
and structural data that must be obtained either from accurate
experimental observations or from calculations at the atomistic
and molecular scales.
In this context, the use of density-functional theory (DFT) and

classical molecular dynamics (MD) simulations has been explored
in concrete science since the 2000s owing to the ever-growing
computing power16. This has given rise to the third paradigm
(computational science; Fig. 1), where the first-principle models
have been integrated and employed to further describe cementi-
tious materials properties and improve understanding of cement
hydration. Related simulation efforts have focused primarily on
cementitious phases such as the calcium silicate hydrate (C-S-H)
gel, the essential reaction product of cement hydration17,18.
Advanced knowledge gained from these simulations elucidates
the intrinsic behaviors of concrete at the atomistic and molecular

1Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA. 2Department of Structural Engineering Research, Korea
Institute of Civil Engineering and Building Technology (KICT), Goyang-si 10223, Republic of Korea. 3Department of Civil, Environmental, and Architectural Engineering, University
of Colorado Boulder, Boulder, CO 80309, USA. 4Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA. 5Department of Materials
Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA. ✉email: zzl244@psu.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00810-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00810-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00810-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-022-00810-x&domain=pdf
http://orcid.org/0000-0001-7674-7424
http://orcid.org/0000-0001-7674-7424
http://orcid.org/0000-0001-7674-7424
http://orcid.org/0000-0001-7674-7424
http://orcid.org/0000-0001-7674-7424
http://orcid.org/0000-0003-4451-0953
http://orcid.org/0000-0003-4451-0953
http://orcid.org/0000-0003-4451-0953
http://orcid.org/0000-0003-4451-0953
http://orcid.org/0000-0003-4451-0953
http://orcid.org/0000-0002-7977-4927
http://orcid.org/0000-0002-7977-4927
http://orcid.org/0000-0002-7977-4927
http://orcid.org/0000-0002-7977-4927
http://orcid.org/0000-0002-7977-4927
https://doi.org/10.1038/s41524-022-00810-x
mailto:zzl244@psu.edu
www.nature.com/npjcompumats


scales, while offering valuable insights (e.g., structural data or
kinetic parameters) into microstructure modeling and comple-
mentary interpretations of experimental studies; however, these
computational techniques require considerable computational
resources and thus come with significant challenges, such as their
limited time scales and the relatively small number of atoms in a
simulated system. In addition, it may be difficult to validate these
simulations with experiments, given the small time and length
scales and high-fidelity measurements required.
While the previous three paradigms of concrete science have

provided valuable contributions and yielded some success, there still
exist several challenges, including iterative trial-and-error cycles,
significant domain expertise required, and high labor and computa-
tional costs. Unlike other materials, concrete is inherently much more
complex and heterogeneous, due to the virtually infinite combina-
torial space of mixture constituents (including cement, water,
aggregate, and admixtures) and the wide variability in physical and
chemical properties of these constituents3,19. Thus, understanding
the process–structure–property–performance relationships for con-
crete materials with existing methods remains a difficult task.
As a complementary route, artificial intelligence and machine

learning (ML) approaches are establishing the fourth paradigm
(data-driven science; Fig. 1) in concrete research and offering fresh
perspectives and practical solutions for accelerating innovations in
the design and development of cementitious materials. By
leveraging existing datasets with data-driven models, ML can
automatically learn implicit patterns and extract valuable informa-
tion while accounting for the inherent complexity of concrete
mixtures and their properties5. As such, ML is being exploited as a
powerful tool to express process–structure–property–performance
relationships, identify cement hydration and concrete degradation
mechanisms, and assist concrete materials design and discovery,
together with high-throughput experimentation and computa-
tion. The use of ML in concrete science has been explored for
cement pastes20,21, mortars22,23, as well as various types of
concrete, including high performance concrete24–26, self-
consolidating concrete27–29, reinforced concrete30–32, pervious
concrete33, recycled aggregate concrete34–36, lightweight aggre-
gate concrete37,38, alkali-activated concrete39,40, and 3D-printed
concrete41,42, to name a few.

As ML models are becoming more accessible to users (an
extensive survey of open-source software packages in ML is
provided in ref. 43), it is expected that applications of ML will
further expand in the concrete field to guide data analysis and
enable scientific discovery. Thus, an overview of the current state
of ML adoption in concrete science will be helpful in the design
and development of cementitious materials. Existing reviews
largely depended on manual appraisals, potentially leading to
subjective interpretation. Moreover, there exist many challenges
in implementing and interpreting ML models, which have seldom
been examined in the literature. In order to tackle these
limitations, the objectives of this work are to: (1) provide a
comprehensive literature survey and an extensive bibliographic
analysis of ML studies in concrete science; (2) offer a high-level
summary of the most compelling ML applications and main
research interests in concrete science; and (3) systematically
assess the imminent challenges and opportunities for ML-based
concrete research.

APPLICATIONS
To begin with, we provide a literature survey and a bibliographic
analysis of 389 peer-reviewed publications on applications of ML
methods to concrete research (criteria of the literature survey are
explained in Supplementary Note 1 and compiled data associated
with the bibliographic analysis are provided in Supplementary
Dataset). A high-level summary of applications of ML in concrete
science (Table 1), commonly accessible datasets (Table 2), and
current research directions is also presented.
The earliest article identified in connection to concrete and ML

was published in 1992 (ref. 44), followed by a second one in 1994
(ref. 45). The number of publications remained relatively low and
did not reach double digits until 2009 (Fig. 2a). Since then, there
has been rapid growth in the number of ML studies, owing to
the emergence of petascale computing centers, publicly acces-
sible data repositories, and ready-for-use ML software libraries.
The majority of studies have focused on regression tasks (88.2%),
while research on classification (10.5%) has not emerged until
recently, when deep learning for computer vision started to
garner attention46–48.

Fig. 1 Four paradigms of concrete science: empirical, theoretical, computational, and data-driven. From left to right, representative
examples include: trial-and-error, iterative experiments (proportioning, processing, and characterization); numerical simulations on cement
hydration (e.g., hydration, morphology, and structural development model, HYMOSTRUC10); molecular dynamics simulations on cement
hydrates (e.g., calcium silicate hydrate gel224); and artificial intelligence and machine learning predictions using experimental and
computational data. Figure adapted with permission from ref. 225, CC BY 4.0.
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As can be inferred from Fig. 2b, c, the most commonly applied
ML algorithms are neural networks, which have been dominant in
concrete science from 1992 and employed for most classification
tasks. Other methods such as support vector machines, decision
trees, random forests, and k-nearest neighbors algorithms have
also entered the concrete field and stimulated remarkable
advances after 2010. A representative but not exhaustive list of
applications of these ML models in concrete science is provided in
Table 1, and commonly encountered ML terms are defined in
Supplementary Note 2. While a detailed algorithmic comparison
between different ML models is beyond the scope of this paper,
the reader is referred to refs. 5,49–52 for a comprehensive
presentation of existing ML techniques.
For publications focusing on regression tasks, the size of the

data sample varied from 5 to 262,569, with the median being 174
or 169, before or after data pre-processing, respectively (Fig. 2d).
In addition, most regression studies (93.6%) utilized data collected
from empirical experiments, whereas few (7.3%) of them used
data from computational simulations. Among the experimental
studies, 93.8% were based on laboratory tests and 8.4% on field
tests. (Note that some studies obtained data from both experi-
ments and simulations, and for experiments, from both laboratory

and field tests. Hence, the sums of these percentages are
over 100%.)
Facilitated by the availability of open-source ML algorithms

(Table 1) and of publicly released datasets (Table 2), the adoption
of ML in concrete science has enabled multiple materials
innovations. Some of the major research advancements are
showcased in Fig. 3 and discussed below:

(1) Property prediction. As seen in Table 1, one of the most
common and direct uses of ML in concrete science consists
of predicting the performance of concrete materials, such as
fresh, hardened, and durability properties, which are of
particular interest to the industry. By enabling the accurate
prediction of target properties as a function of composition,
ML can significantly accelerate the process of concrete
mixture design with little to no physical knowledge
prerequisite53,54. A representative example is compressive
strength prediction of concrete mixtures, where the type
and quantity of concrete constituents (e.g., cement, water,
aggregate, and admixtures) are related to compressive
strength, followed by an optimization procedure to identify
mixtures that minimize the cost and the estimated CO2

Table 1. Summary of applications of machine learning (ML) models in concrete science.

ML model Description Applications in concrete science

Neural network Uses interconnected neurons (core processing units)
that form input and output layers with intermediate
hidden layers; an activation function is used in each
neuron and a loss function is minimized by refining the
weights of the neuron connections to emulate learning

Prediction of compressive strength24,100,147, flexural
strength34,148, tensile strength30,147,149, shear
strength150,151, elastic modulus34,152, flowability153–155,
setting behavior156, hydration reactions20,157, pozzolanic
reactivity158,159, mechanical behavior of calcium silicate
hydrate (C-S-H)160,161, interatomic potentials for C-S-H75,
fracture properties of interfacial transition zone162,163,
creep164–166, shrinkage164,167,168, thermal
performance169; cement manufacturing process
optimization170,171; mix design optimization53,172,173;
pore structure analysis68,174,175; aggregate shape
identification176,177; fiber distribution evaluation31,32;
crack detection60,63,64; quality control for concrete
admixture manufacturing178 or 3D concrete
printing41,42; durability prediction such as
permeability148,179, freeze-thaw durability180,
carbonation181–183, chloride diffusion184,185, alkali-silica
reaction104, corrosion186,187, sulfate attack188,189, fire-
induced damage190,191

Support vector machine Establishes a hyperplane to best separate data with
different classes (for classification) or fit as many
instances as possible (for regression) while limiting
margin violations; a kernel function may be used for
nonlinear mapping

Prediction of compressive strength147,192,193, flexural
strength192, tensile strength147, elastic modulus35,194,
flowability195,196, elastic constant of C-S-H160, creep
dynamics of C-S-H197, chloride diffusion198,199, creep166,
permeability33; mix design optimization53,192; quality
control for concrete admixture manufacturing178;
mortar type classification200; identification of fiber
failure mode62; crack detection201–203

Decision tree Builds an arborescence by iteratively splitting the data
on features (nodes) so as to maximize the information
gain until reaching the end of the tree (leaf )

Prediction of compressive strength204–206, flexural
strength207, tensile strength204,205, shear strength208,
elastic modulus204,207, flowability206, elastic constant of
C-S-H160, shrinkage204, carbonation depth181, chloride
concentration185; void detection209; crack detection203

Random forest Is an ensemble learning method that consists of
multiple decision trees; the output is the class selected
by most trees (for classification) or the average of the
output values from different trees (for regression)

Prediction of compressive strength100,205,210, tensile
strength205, elastic modulus35, flowability196,206, setting
behavior124, cement hydration kinetics211, elastic
constant of C-S-H160, chloride concentration199, thermal
properties169,212; mix design optimization211; aggregate
shape identification213; crack detection60,202,214

k-nearest neighbors Assigns an instance to a class by a plurality vote (for
classification) or the average of the values (for
regression) of its k nearest neighbors; weights may be
given to account for the contributions of the neighbors

Prediction of compressive strength206, flowability206,
setting behavior124, elastic constant of C-S-H160, fire-
induced spalling215, crack damage grade216; quality
control for concrete admixture manufacturing178;
mortar type classification200; crack detection203
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impact for a given target strength54 (Fig. 3a). This approach
offers a solution to the problem of screening optimal
mixture proportions that can be further tailored to meet
different design specifications, while reducing time and
labor intensity in trial-batch testing.

(2) Materials characterization. Characterization technologies
with increasing spatial and temporal resolution are produ-
cing an immense quantity of experimental data, but are also
posing considerable challenges of data curation and data
interpretation. In this regard, ML has begun to play a key
role in processing and analyzing disparate data. A large
number of ML studies have been combined with non-
destructive testing approaches, including acoustic methods
(e.g., ultrasonic pulse velocity55–57, acoustic emission58,59,
and impact echo44,60), electromagnetic methods (e.g.,
ground-penetrating radar55,61 and electrical resistivity55,57),
and optical methods (e.g., digital photography62–64, laser
scanning65,66, and infrared thermography61,67) for concrete
properties evaluation and damage detection. Also of
interest are the applications of ML in concrete petrographic
analyses by flatbed scanning68, scanning electron micro-
scopy32,69, and X-ray computed tomography31,70,71, for
automated segmentation of pores, cracks, aggregates, or
fibers. These image-based characterization techniques can
leverage the power of deep learning to achieve human-level
accuracy and beyond. Figure 3b presents a framework for
analyzing complex, multi-phase cementitious composites
(e.g., fibre-reinforced concretes) by applying deep learning
to the automated segmentation of X-ray computed
tomography images70. The accurate and efficient segmenta-
tion of relevant constitutive phases enables quantification of
microstructures in terms of content, size, and orientation,

and thus facilitates microstructural reconstructions for
coupled experimental-numerical analyses70,71.

(3) Materials simulation. One application of ML in concrete
science that has received far less attention is the
improvement and acceleration of computational simula-
tions. For example, the combination of ML techniques with
kinetic20,72, thermodynamic40, and mechanical73,74 model-
ing enables determination of parameters that require
extensive experimental data, thereby assisting materials
design and optimization via high-throughput computa-
tional simulations. In addition, molecular simulations that
are limited by computational cost can immensely benefit
from ML acceleration. By approximating complex
quantum-chemistry potential energy surfaces, ML potential
has achieved an accuracy comparable to that of the
underlying DFT models, allowing a large-scale MD simula-
tion of an idealized nanoporous C-S-H model (with 3,084
atoms for 2 ns), which would be beyond the limit of typical
DFT calculations75 (Fig. 3c). ML interatomic potentials thus
offer a promising path in executing large-scale MD
simulations of realistic cement hydrates by minimizing
computational cost while preserving quantum-chemical
accuracy.

CHALLENGES
A typical ML study consists of six steps: (1) problem definition, (2)
data collection, (3) data pre-processing (or data cleaning), (4)
model development, (5) model evaluation, and (6) model
deployment76–78 (Fig. 4). In this section, we present challenges
that may arise when applying ML procedures in concrete research,

Table 2. Summary of publicly accessible datasets in concrete science for machine learning (ML) applications.

Release year Dataset Description Sample size ML application

2007 Concrete
compressive
strength
dataset24,112

Compressive strength data of high-performance
concrete made with ordinary portland cement
and cured under normal conditions, covering
different curing ages from 1 to 365 days

1030 Property prediction54,97

2009 Concrete slump test
dataset112,154

Slump, slump flow, and 28-day compressive
strength data of high-performance concrete

103 Property prediction195,196

2011 Concrete fire
dataset217

Mechanical properties (e.g., compressive
strength, elastic modulus, and tensile strength),
thermal properties (e.g., heat diffusivity and
thermal conductivity), and physical properties
(e.g., mass loss and spalling) of unreinforced
concrete under elevated temperatures

Up to 1932 Property prediction191

2015 Concrete creep and
shrinkage datasets96

So far largest worldwide collection of creep and
shrinkage laboratory data, covering long
measurement periods (some over 12 years) and
the influence of admixtures in modern concrete
mixtures (approximately 800 creep and
1,050 shrinkage curves contain admixtures)

About 1400 creep and
1800 shrinkage curves

Property prediction166,218

2017 Concrete tensile
strength dataset79

Splitting tensile strength data of concrete with
manufactured sand at different curing ages
ranging from 1 to 388 days

714 Property prediction147,205

2018 Concrete crack
image dataset219

Color images of walls and floors of concrete
buildings with a resolution of 227 × 227 pixels,
divided into cracked and noncracked classes
(20,000 images each)

40,000 Materials characterization64,220

2018 Structural defect
dataset
(SDNET2018)221

Color images of concrete bridge decks, walls, and
pavements with a resolution of 256 × 256 pixels,
divided into cracked and noncracked classes
(8484 and 47,608 images, respectively); crack
width varies from 0.06 mm to 25 mm

56,092 Materials characterization222,223
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focusing mainly on supervised regression problems (which are the
most employed, as shown in the survey presented above)—
although many of these challenges are in fact common to a
majority of ML problems. Specifically, challenges related to data
[corresponding to steps (2, 3)], validation [steps (4, 5)], and
interpretability [steps (5, 6)] in ML studies are discussed.

Data challenge
ML models require data to learn patterns and relationships, and
then generalize these trends to a larger population. The quality of
these data (i.e., their representativeness, completeness, and
correctness) is of primary importance to the performance and
validity of the model. In the following, we discuss the challenges
raised by data quality in concrete research.

Data sparsity. The collection and curation of extensive datasets
are critical to ML; however, data collection is especially costly and
time-consuming in the concrete science domain, where multiple
samples are required to be cast and tested after a long curing
duration (typically 28 days for engineering applications, and up to
several years for durability studies). While hundreds of thousands
of concrete mixtures and their corresponding properties have
been reported in the literature over the past few decades, it is
daunting to collect and organize these experimental data in a
systematic manner. Different reporting formats (e.g., as text or in
figures, tables, and schematics) and experimental parameters (e.g.,

type and quantity of individual constituents) are used in the
literature and not all the experimental results are reported with
the same level of completeness. In the open-access concrete
tensile strength dataset79 (Table 2), for example, a considerable
portion of the 714 concrete mixtures were reported without
information related to cement strength class: 34.6% and 38.0% of
the mixtures have missing cement compressive and tensile
strengths, respectively. These mixtures may be excluded if cement
strengths are of special interest as inputs, unless a proper data
imputation procedure is used.
As a result, datasets used in ML-based concrete research tend to

be small. Figure 2d shows that the distribution of the sample sizes
is indeed strongly skewed to the right (i.e., with a long tail toward
large samples). The inset shows that over 55% of studies had
sample sizes of less than 200, while only about 11% contained
more than 1,000 samples (below which a dataset is often
considered insufficient80,81). Failure to assemble a sufficiently
large dataset raises the risk of overfitting82 (Fig. 5). A small but
potentially complex dataset can prevent ML models from
producing accurate and generalizable results. Scarcity of observed
data would also lead to high-dimensionality and data-bias
problems, as explained in the following sections.

High dimensionality. The generalizability of a given ML model
depends not only on the sample size but also on the number of
input variables (i.e., dimensionality). Many algorithms work
adequately in low dimensions but become intractable as the

Fig. 2 Data characteristics from the literature survey of 389 peer-reviewed publications on machine learning for concrete science.
a–d, Number of publications based on publication year (a, b); algorithm used (overlapped regions in the bar ‘NN’ indicate that publications of
interest include both regression and classification tasks or both classification and clustering tasks) (c); and sample size (presented as relative
frequency with a fixed bin width of 100 or unequal bin sizes (inset); only for publications with regression tasks; maximum values were selected
if more than one dataset was used in a publication) (d). Data source: Web of Science; period: 1990–2020; survey criteria and collected data can
be found in Supplementary Note 1 and Supplementary Dataset, respectively. NN neural network, SVM support vector machine, DT decision
tree, RF random forest, KNN, k-nearest neighbors.
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dimensionality increases (the so-called ‘curse of dimensional-
ity’)83. The number of samples required for model training grows
exponentially with the input space to achieve sufficient
confidence or certainty84. If the sample size is relatively small
(as is generally the case in practical scenarios), the input variables
of a dataset can lose their discriminating ability, as all samples in
the dataset seem very distinct from each other with high
dimensionality85.
This problem has become of increasing importance, especially

in concrete research, where fresh and hardened properties of
concrete are dependent on a wide range of variables including
individual constituent characteristics (e.g., the type, quantity,
physical and chemical properties of cementitious materials,
aggregates, and admixtures) and spatiotemporal environmental
conditions (i.e., temperature and humidity). As a general rule, the
ratio of the number of samples to the number of input variables
should be of at least one order of magnitude86. Note that this is
based on historical statistical models but may be insufficient for
some of the most complex ML models. In that case, feature
selection and feature engineering can be adopted to reduce the
input dimensionality and thus increase the ratio between the

number of samples and the number of variables87,88. A thorough
review of this subject can be found in refs. 87,89.

Data bias. The effectiveness of ML techniques is critically
dependent on whether the collected data are representative of
the entire data population. Unfortunately, the representativeness
of the sampled data is rarely sufficient in concrete science due to
limited sample size, causing data bias that may exist in many types
and forms90–92. Four common types of data bias in concrete
science are discussed below:

(1) Representation bias occurs when the sample underrepre-
sents the population90. Data in many ML studies were
collected from published literature, where mean values and
standard deviations for the output (e.g., compressive
strength) instead of all the measured values were typically
reported. Researchers tend to assemble the dataset by
collecting these reported mean values, which would
produce fewer data for training and add another layer of
inaccuracy by not taking the additional uncertainty into
account.

Fig. 3 Applications of machine learning (ML) in concrete science. a Concrete compressive strength prediction (left) followed by mixture
design optimization, e.g., strength-cost optimization (middle) and strength-cost-CO2 optimization (right)54. b Automated segmentation of
X-ray computed tomography images for multi-phase cementitious composites with pores, aggregates, fibers, and cement matrix70. c Large-
scale molecular dynamics (MD) simulation of calcium silicate hydrate (C-S-H) using ML potential75. DFT, density-functional theory; MSD, mean
square displacement. Figure adapted with permission from: a, ref. 54, Elsevier; b, ref. 70, Elsevier; and c, ref. 75, Elsevier.
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(2) Measurement bias happens from the way the variables are
selected, collected, and computed90. One possible issue in
concrete studies is that the variables of the models are
often oversimplified. For example, fly ash can be classified
into two types, namely, Class C and Class F, both of which
have distinct chemical compositions, reactivities, and thus
different suggested dosages93. However, the essential
information regarding the type or property of fly ash is
often neglected during data collection, and thus the
material is treated identically regardless of its classifications,
making it less feasible to fully capture the contribution of fly
ash in a ML model.

(3) Temporal bias arises when populations or behaviors differ
over time92. A telling example can be found in concrete
mixture design, where old types of concrete have higher
water/cement ratios and lower strengths, whereas modern
concretes tend to contain more admixtures and exhibit
higher strengths94,95. Additionally, the chemical and physi-
cal properties of cementitious materials have been chan-
ging over time due to various factors like production
technology and raw material supply, which leads to a
higher alkali content in modern cements96. As a result, data
collected from old literature may fail to adequately
represent current compositions.

(4) Deployment bias arises from the mismatch between the
problem a model is designed to solve and the way it is
actually used in practice90. Extensive studies have demon-
strated the ability of ML models to predict properties of
laboratory concrete. Despite their vast potential, various
challenges hinder their systematic adoption in the con-
struction industry. One key question is whether a model
built for laboratory concrete can be used for field concrete,
given variable environmental conditions and other opera-
tional uncertainties introduced during concrete construc-
tion and curing97 (cf. Section ‘Linking laboratory and field
data’). As the population of laboratory concrete can be
quite different from that of field concrete, there is no
guarantee that the estimated performance of the devel-
oped model on laboratory concrete will represent actual
field performance.

Validation challenge
The ultimate goal of ML is to obtain a model that is generalizable
to practical situations. Ensuring this generalizability requires

adequate validation methods; however, validation methods may
not be systematically used in the concrete literature, especially
when the sample size is limited. In the following, we provide a
concise discussion of this frequent problem.

Hold-out method. The simplest validation technique is the two-
way hold-out method, where available data are randomly
partitioned into two subsets, namely, the training and testing
sets (Fig. 6a). In this process, some fixed hyper-parameter values
have to be defined arbitrarily based on intuition, prior knowledge,
or default setting. A model is then built on the training set and
evaluated on the testing set. Since the testing set is designed to
represent new, unseen data to the model, it should only be used
once to avoid data leakage (unintentionally revealing information
from the testing set98) and overly optimistic estimates of the
generalization performance. This approach is intended for model
evaluation, rather than model selection, as no special hyper-
parameter tuning should be performed. However, researchers
might be tempted to mistakenly reuse the testing set multiple
times and modify some aspects of their approaches (e.g., pre-
determined model hyper-parameters) in light of the final results,
thereby introducing data leakage and overfitting43 (Fig. 5).
To avoid reusing testing data while tuning hyperparameters for

model selection, a slight modification can be applied to the initial
hold-out method: instead of the two-part split, the dataset is
randomly divided into three subsets (so-called three-way hold-out
method), i.e., training, validation, and testing sets (Fig. 6b). In the
three-way hold-out method, multiple models with various
combinations of hyper-parameters are trained on the training
set; the model with the best combination of hyper-parameters
that gives the highest accuracy on the validation set is then
chosen as the final model and evaluated on the testing set. This
method allows one to keep the testing set independent for model
evaluation and thus has been one of the widely used validation
techniques in the concrete literature. Nevertheless, both the two-
way and three-way hold-out methods only apply a single split to
the data, which can be less robust when the size of the dataset
becomes smaller. In fact, using these procedures, an issue may
arise when concrete datasets are not sufficiently large to be split
into two or three statistically representative subsets (cf. Section
‘Data sparsity’), thereby introducing biases and unreliable
performance estimates.

Cross-validation. Cross-validation (CV) provides a solution to
evaluating generalization performance in the case of scarce

Fig. 4 General workflow of machine learning (ML) in concrete science. Six steps are typically involved in ML workflows, from (1) problem
definition, (2) data collection, and (3) data pre-processing to (4) model development, (5) model evaluation, and (6) model deployment.
Developed ML models can be deployed to identify new concrete mixtures with desired properties, which are then validated through
empirical or computational experiments, with the outcome appended to the collected datasets and iteratively calibrating the models.
Relevant terminology and reporting guidelines can be found in Supplementary Notes 2 and 3, respectively.
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sample size99. The most commonly used CV method is the k-fold
CV (cf. Supplementary Note 2 for the definition), which includes k
splits rather than a single split to achieve multiple iterations for
model validation and thus more robust estimations. Similar to the
hold-out methods, the k-fold CV can be used for model evaluation
or model selection. For model evaluation, a k-fold CV is performed
on the whole dataset (Fig. 6c), which we refer to as outer CV to
clearly distinguish it from the inner and nested CV methods
described below. Compared with the two-way hold-out method,
the outer CV results in k different models fitted to distinct yet
partially overlapping training sets and evaluated on non-
overlapping testing sets, providing more statistically consistent
measures when dealing with small datasets.
In practice, k-fold CV is more commonly used for model

selection. In this case, the dataset is split into a full training set
(including a validation set) and an independent testing set,

followed by CV on the full training set (here referred to as inner
CV; see Fig. 6d). The inner CV is preferred over the three-way hold-
out method since it offers more robustness (i.e., k iterations) for
hyper-parameter tuning when the dataset is relatively small89

(which is often the case in concrete science). However, the three-
way hold-out method was often used in the early concrete
literature as it is computationally cheaper without any iteration,
which questions the validity and reliability of the early ML studies
with small datasets.
Thanks to recent advances in computational performance, CV

has been rapidly adopted in ML studies within the concrete
science domain54,100. However, two potential limitations arise in
this context. Firstly, the term CV is used loosely in the literature.
Hyper-parameter tuning and model selection are typically
reported in research papers, but researchers do not always clearly
specify whether CV is performed on the training set (Fig. 6d) or

Fig. 5 Trade-off between underfitting and overfitting. a An illustrative low-dimensional example in concrete science, consisting of 40 real
concrete mixtures (from the publicly accessible concrete compressive strength dataset24,112 in Table 2) with one input (water/cement ratio)
and one output (compressive strength, MPa). The dataset was divided into a training set and a validation set by an 80/20 split. Three
polynomial models with polynomial degrees p= 1, 3, or 10 were fitted to the training data. The polynomial of degree three was identified as
the optimal model based on the good prediction performance on the validation set, while those of degrees one and ten were showcased as
underfitting (too simple to capture patterns in the data) and overfitting (too complex such that noise was learned), respectively. b Error (root
mean square error, MPa) in the prediction of the training and validation sets as a function of model complexity (i.e., polynomial degree
herein). Simple statistical models may underfit the data, whereas complex models tend to overfit without extreme caution. The optimal model
complexity yields the best generalization performance. As machine learning models are generally much more complex than traditional
statistical models, proper implementation and validation are required, especially when dealing with small datasets.

Fig. 6 Common validation approaches. a Two-way hold-out method (a single split of the whole dataset into training and testing sets).
b Three-way hold-out method (a single split of the whole dataset into training, validation, and testing sets). c k-fold outer cross-validation (CV;
on the whole dataset). d k-fold inner CV (a single split of the whole dataset into training and testing sets, followed by CV on the training set).
e n × k nested CV with n-fold outer CV loops each containing k-fold inner CV. For illustration purposes, an 80/20 split was showcased in
methods (a) and (d) for the training/testing split; a 60/20/20 split was showcased in method (b) for the training/validation/testing split; and
both n and k were set as 5 for CV approaches. Note that methods (a) and (c) are merely used for model evaluation, while the remaining
methods can be adopted for both model selection and model evaluation.
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mistakenly on the whole dataset (Fig. 6c). The latter case can
markedly inflate the accuracy, especially for small and high
dimensional datasets, and lead to erroneous overoptimism as well
as misleading conclusions. We thus emphasize the importance of
providing a detailed description of the CV methods in publications
and the need to develop a standard procedure for reporting ML
analyses (cf. Section ‘Sharing data and tools’ and Supplementary
Note 3). Second, CV for model selection (i.e., inner CV; Fig. 6d)
involves a single training/testing split prior to performing CV on
the full training set. The accuracy on the testing set can be quite
sensitive to how exactly this single split is applied, especially for a
small dataset, where the testing set is unlikely to share the same
distribution with the training set. A testing set only containing
‘easy’ samples will result in overoptimistic performance estimates.
Conversely, a testing set only containing ‘hard’ samples would
lead to pessimistically biased estimates. According to the
simulations in Vabalas et al.99, the bias introduced by k-fold CV
is still substantial even with a sample size of 1000. This questions
the suitability of the validation methods currently used in the
concrete literature (~89% datasets have a sample size less than
1000, as shown in Fig. 2d).
An alternative to k-fold CV is n × k nested CV, which can

produce robust and unbiased performance estimates regardless of
the size of datasets99. The n × k nested CV is a nesting of inner and
outer CV loops. It consists of n different k-fold inner CV for model
selection and n distinct testing sets for model evaluation (Fig. 6e).
The average performance on the n testing sets gives almost
completely unbiased estimates of the true generalization perfor-
mance101,102, although the computational cost would be higher.
There are many validation approaches for model selection and

model evaluation. As discussed, some of them may be ill-suited
for concrete research, given the limited sizes of the typical
datasets compiled and used in existing studies. We stress that
proper validation methods should be selected depending on
research tasks and available data to offer valuable insights into
concrete science.

Interpretability challenge
Conventional approaches for the analysis and design of experi-
ments in concrete science are primarily developed from mathe-
matical analysis, mechanistic modeling, and statistical
inference5,103, where the formulas or models are explicit and thus
often readily understood and accepted by the community.
However, the recent shift towards correlation-based ML models
due to their promising performance has raised challenges for the

practitioner to interpret the models. We herein discuss two critical
aspects associated with ML interpretability in concrete science,
namely, diagnostics and causality.

Diagnostics. Once a ML model is developed, one simple yet
useful way to interpret it is to conduct sensitivity analyses.
Sensitivity of a model describes the influence of each input
variable on the uncertainty in the prediction of the model104–106.
Common techniques for such analysis are permutation-based
diagnostic methods, including permutation feature importance,
partial dependence plots, and individual conditional expectation
plots107. These techniques provide global and statistically
coherent insights into the model while avoiding tuning para-
meters and re-training it108. However, these methods can be
misleading when correlations exist between input variables107,109.
For instance, permutation feature importance consists of

randomly shuffling the values of an input variable while keeping
other input variables unchanged; the decrease in the prediction
accuracy of the model after permuting is then quantified and
reported as a measure of importance110,111. This permutation
feature importance measure works well if input variables are
independent, but it can produce unrealistic data points if input
variables are fully or partially dependent109. Figure 7 shows two
examples in concrete strength prediction, where permutation
generates unrealistic concrete mixtures. The use of superplastici-
zers (high-range water-reducing admixtures) is known to reduce
the water content by 20 to 30% and increase the flowability2. In
the concrete compressive strength dataset24,112 (Table 2) using
the absolute volume method, the superplasticizer dosage varies
from 0 to 32 kg/m3 and the water content from 122 to 247 kg/m3.
The negative relationship between superplasticizer and water
seems reasonable and the Pearson correlation coefficient (the
most common, straightforward measure of correlation) was
calculated as –0.66 (black circles in Fig. 7a). However, some
concrete mixtures generated after permutation (red pluses in
Fig. 7a) can be meaningless and misleading. Those mixtures
located in the upper right corner (high water content and high
superplasticizer dosage) may lead to segregation or excessive
bleeding; those in the lower-left corner (low water content with no
superplasticizer) tend to be sticky. In other words, both fail to
meet the workability requirement.
The same issue can occur among the input variables for

cementitious materials, namely, cement and supplementary
cementitious materials (SCMs, including fly ash and slag). Since
cement is often partially replaced by SCMs for environmental,
economic, and durability considerations, the content of cement is

Fig. 7 Illustration of unrealistic concrete mixtures generated by permutation feature importance method. Data were obtained from the
concrete compressive strength dataset available in the UC Irvine Machine Learning Repository24,112 (Table 2). a, b The variable for water (a) or
cement (b) was randomly shuffled while keeping other variables constant. The black circles refer to the observed mixtures, the red pluses to
the generated mixtures after shuffling, and their transparency represents the frequency. SCMs, supplementary cementitious materials.
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expected to decrease with the application of SCMs, as shown in
Fig. 7b, where the original mixtures (black circles) have a Pearson
correlation coefficient between cement and SCMs as –0.55.
Nevertheless, the permutation approach can produce unrealistic
concrete mixtures, e.g., high cement and SCM contents (red pluses
in the upper right corner) or low cement content with no SCMs
(red pluses in the lower-left corner), making the water/cementi-
tious materials ratio too low or too high, respectively, and thus
producing unrealistic mixtures in terms of practical applications.
These unrealistic concrete mixtures force the model to probe

regions where there is little to no data during training and in
reality. This can inflate model uncertainty and greatly bias the
estimated feature importance. There is, therefore, a critical need to
eliminate these potential outliers before applying permutation-
based diagnostic tools. Correlation between input variables needs
to be checked during data pre-processing (a detailed discussion of
correlation measures is provided in ref. 109) and some of the highly
correlated ones should be removed. When the model has to
contain correlated variables, which is often the case in practice,
additional information about the distribution and correlation
among the data should be reported. Alternative methods include
conditional permutation or simulation (e.g., accumulated local
effects plot), re-evaluation after dropping a variable (yet requiring
re-training), and their combination107. Recent advances in inter-
pretable ML have also provided some promising approaches such
as SHAP (SHapley Additive exPlanations)108,113,114. As this problem
remains an open question in the ML community, robust solutions
must still be developed and comprehensive comparisons between
existing strategies are still needed. In particular, specialized
methods are required in the field of concrete research.

Causality. As causes play a crucial role in the accuracy of a given
model, researchers are usually tempted to interpret the result of
ML models (which typically show superior accuracy) from a causal
perspective109,115. However, it is important to note that ML models
are not designed to identify causal relationships but rather
association relationships116. Identification of associations between
variables is just the first step towards causal inference, followed by
prediction of the effect of interventions and evaluation of
counterfactual queries117. While ML models are not guaranteed
to reflect causality that is of interest in many scientific domains,
these models can still be an essential starting point to search for
relevant patterns of association and propose novel scientific
hypotheses that can be further investigated. However, researchers
should refrain from extrapolating conclusions from ML models,
especially when working with small and potentially unrepresenta-
tive data118.
In the context of concrete research, inappropriate conclusions

of causation are exacerbated by the fact that the information
provided by the input variables is often insufficient. For example,
the knowledge of the amount of individual constituents used for
the prediction of concrete properties may not be adequate to
describe the underlying physical and chemical interactions
between each constituent (cf. Section ‘Data bias’). Hence, a model
built from those input variables will fail to offer causal insights,
even though some variables may help to reconstruct the
unobserved influence on the output. To improve consistency,
accuracy, and interpretability of ML studies in concrete science, we
provide a list of potentially missing yet crucial variables in
currently available datasets and call for a detailed evaluation of
their effects on ML models:

(1) Characteristics of aggregate. Porosity, density, shape, surface
texture, mineralogical composition, and gradation of aggre-
gates are well-known to affect the behavior of fresh and
hardened concrete2.

(2) Properties of cementitious materials. The reactivity of
cementitious materials including cement and SCMs relies

not only on their quantity but their physical and chemical
properties, e.g., shape, fineness, density, chemical composi-
tion (especially the contents of CaO, SiO2, and Al2O3), loss on
ignition, among other properties. These properties can vary
significantly from region to region.

(3) Properties of chemical admixtures. Water-reducing admix-
tures, for example, contain different types of plasticizing
surfactants with varying efficiency, including lignosulfonate,
melamine sulfonate, naphthalene sulfonate, and polycar-
boxylate119. Their chemical composition and solid content
depending on manufacturers have a direct impact on their
dosage and the effects on the fresh and hardened
performance of concrete mixtures.

(4) Curing regimes. Performance of concrete materials can be
influenced by various laboratory and field curing regimes.
Detailed information regarding temperature and relative
humidity as well as any applicable standards is essential and
should be provided.

BEST PRACTICES
In the preceding sections, we presented a critical overview of the
applications and challenges of ML in the domain of concrete
science. Despite a substantial number of publications on ML
applications to cement and concrete research over the past
decade, current challenges are hindering the adoption of ML in
the construction industry. Here, we provide our perspectives on
best practices in ML to foster the development of a robust, data-
informed concrete science ecosystem.

Sharing data and tools
ML algorithms enable one to examine extensive, multidimensional
datasets and automatically capture complex relationships from
these data. However, most ML models in the realm of concrete
science were trained and tested on insufficient data due to long
experimental duration and inconsistent data formats (cf. Section
‘Data sparsity’). Very few large datasets are publicly accessible to
the community to date (Table 2), and as part of the current move
towards open science, research efforts to fill this gap should be
intensified.
A possible approach for addressing data sparsity is to develop

new data repositories and broaden the accessibility to existing
data. For example, the UC Irvine Machine Learning Repository112

serves as a platform maintaining a collection of datasets from
different scientific domains; the Materials Project120 has built a
large and rich materials database to accelerate advanced materials
discovery and deployment. Another example is the FHWA
InfoMaterials Web portal121, which is being developed and
maintained to offer characterization data of pavement concrete
materials. Researchers should be encouraged to make their
experimental data accessible to the public, either as supplemen-
tary materials to published research articles, or as data repositories
on data-sharing platforms. Even negative or null results constitute
valuable information, especially for training ML models. Although
there may be other considerations such as data protection and
ownership, we believe these challenges will be overcome as a
cultural shift is underway toward improving the accessibility and
traceability of research data.
Inconsistency or incompleteness of data across literature

studies should also be addressed. Depending on the testing
standards adopted or the laboratory conventions, specimen
preparation, testing procedure, and measuring timing can be
different96. Another problem commonly encountered in the
literature pertains to the description of materials and methods122.
For example, the categorizations for types of cement and SCMs
may differ from country to country, and simple descriptions
like Type I cement and Class C fly ash may cause ambiguities.
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Their physical and chemical properties are often unknown during
data collection, although this information could be useful for
concrete property prediction (cf. Section ‘Causality’). There is,
therefore, a need for the concrete community to develop
unambiguous standards for reporting and sharing experimental
data with consistent categorization across research studies.
In addition to data dissemination, the sharing of computational

methodologies (including proposed models, adopted procedures,
and source codes) would lower the barriers to data and model
verification. Due to the emerging role of increasingly elaborate ML
models, the lack of reproducibility and generalizability of ML
studies has become a critical hurdle. External validation of those
studies by employing the same tools on the same datasets (for
reproducibility) and real-world data (for generalizability) is needed,
although it has not been traditionally incentivized in concrete
research. Besides, the proposed computational methodologies can
serve as baseline for other researchers to further extend the
models and develop new ones. Addressing this growing problem
requires comprehensive descriptions of the methodological steps,
including problem definition, data collection, data pre-processing,
model development, and model evaluation. Supplementary Note 3
provides some recommendations for reporting ML analyses in
future concrete research.

Linking laboratory and field data
Extensive efforts have been made to develop ML models and predict
concrete properties using laboratory concrete datasets (93.8% of ML
studies using experimental data were based on laboratory tests, as
mentioned in Section ‘Applications’). While these models show
adequate prediction performance50, there are hesitations in deploy-
ing them to construction projects, because their validity for field-
placed concrete has not been assessed.
Laboratory conditions are usually well-controlled but fail to

reflect the variability and complexity in actual practice. Variations
in materials (e.g., aggregate, cementitious materials, and chemical
admixtures) and processes (e.g., mixing, transportation, place-
ment, and curing) can introduce additional noise to field concrete
data. For instance, raw material properties (cf. Section ‘Causality’)
and environmental conditions (temperature and humidity) are
often varying at construction sites depending on material
availability and local weather, respectively; there can be tremen-
dous variation in operations between skilled and unskilled
construction workers; and additional water is sometimes mis-
takenly added for various reasons in field practice (e.g., leftover
water from washing ready-mix trucks that is unaccounted for in
the mixture design). A model built for laboratory concrete is thus
likely to underperform when employed for concrete in the field
due to deployment bias (cf. Section ‘Data bias’).
It is expected that a model trained on field data can achieve

satisfying predictions for field concrete properties54,97, since the
sampled data used for model development is an estimation of
the population. Unlike laboratory data, however, field data are less
straightforward to collect and field concrete mixtures tend to be
more common and widely acceptable in the industry. Hence, the
development of approaches for accurate prediction of properties
of field concrete (i.e., knowledge transformation from laboratory
to field, especially for new mixtures proposed in laboratories) is an
important research priority.
One possible solution to this challenge is the hybridization of

laboratory and field data for training ML models. DeRousseau
et al.97 investigated the effect of replacement percentages of field
data in the training dataset (i.e., 0%, 10%, 20%, 30%, 40%, and
50%) on field compressive strength prediction using a random
forest laboratory model, as shown in Fig. 8, and found that a
replacement percentage of 10% significantly improves the
prediction performance and reduces the root mean square error
by 43% compared with that of 0% (i.e., only laboratory data were

used). This result revealed the potential for improving the
performance prediction of field-placed concrete even with limited
field data. Future research in this area should explore different ML
algorithms with the hybridization of laboratory and field data and
incorporate other new hybridization strategies (cf. Section
‘Conclusions and outlook’).

Starting with simple models
One advantage of ML models over traditional statistical models
lies in their ability to account for complex relationships. However,
a common mistake is to implement opaque and complex ML
models (e.g., neural networks) when interpretable and simple
models (e.g., linear regression models and decision trees) are
sufficient, i.e., when the prediction performance of traditional
statistical models is only negligibly worse—or even the same or
better—than that of ML models. In this case, simpler models with
fewer coefficients or assumptions are preferable to complex ones
(Occam’s razor)123.
There is also an argument between the prediction accuracy

and the data accuracy (i.e., representativeness to the ground-true
population): when the collected data have biases and fail to
represent the population, it makes little to no sense to increase
the model complexity to simply improve the prediction accuracy.
This is because the accuracy of a model is measured by the
observed data and does not account for the ability to explain
the underlying physical processes (which produce the ground-
true population)115. As elaborated in Section ‘Data challenge’,
data quality in concrete science for ML studies is typically
insufficient. In particular, cumulative random errors introduced
by experiments (such as variation of raw materials, operators,
and apparatuses between laboratories) cannot be ignored. As a
result, the prediction error by simple models may not be
significant in contrast to the random errors; i.e., the prediction
capability from simple models could be comparable or even
more reliable to the reproducibility of experiments in different
laboratories124. In this case, there may be no need to develop a
more complex ML model.
Once the research question is well-defined, a good practice is to

start with simple, interpretable models and gradually increase the
complexity in a stepwise manner, where the prediction

Fig. 8 Effect of field data portion in a training dataset (containing
laboratory and field data) on field compressive strength predic-
tion97. Insets show the comparisons between measured and
predicted strength values at the replacement percentages of 0%,
10%, 30%, and 50% by field data (transparency of the data points
represents their frequency). RMSE, root mean square error. Figure
adapted with permission from ref. 97, Elsevier.
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performance is evaluated with caution. Complex models with less
interpretability may only be utilized when additional accuracy gain
is significant and necessary.

Knowing when to trust a model
Concrete research generally adopts the 2-sigma (p value ≤ 0.05)
rule to validate experimental results125–127. However, due to a lack
of reproducibility, the 2-sigma statistical criterion may not be as
reliable as typically assumed128–130. Past evidence thus raises
challenges regarding the use of arbitrary thresholds to evaluate
the performance of a predictive model. As ML models have
become ubiquitous in the concrete science domain, a consensus
on when to trust the models needs to be reached. Because of
major safety concerns, inconsiderate applications of ML models in
the construction industry can lead to catastrophic consequences.
Reported performance measures (e.g., accuracy) of ML models

should be interpreted with caution. The results of the metrics then
call into question whether or not a model with an accuracy level of
90% (and possibly higher complexity) would be more trustworthy
compared to that with 70%. First, there can be some inappropriate
implementations—during data collection, data pre-processing,
model development and evaluation—that lead to overoptimistic
performance estimates (cf. Sections ‘Data challenge’ and ‘Valida-
tion challenge’). To make the modeling process transparent,
detailed descriptions are required when reporting the models and
their performance (Supplementary Note 3). Second, the reported
accuracy of a model for the testing data may not precisely reflect
its performance on real-world data, when there is a substantial
mismatch between testing and practical cases. For instance, the
performance of a model built for laboratory concrete is not
necessarily a good indicator of its performance on field-placed
concrete (as discussed in Section ‘Linking laboratory and field
data’). This challenge highlights the need for researchers to report
the potential sources of uncertainties in evaluating the perfor-
mance of the model (e.g., the intended use of the proposed
model, characteristics of the data served to train and evaluate the
model, and detailed metrics that reflect the potential practical
impacts of the model), and for users to assess the model in
practical scenarios before deploying it131.
Additionally, as ML models become more complex and thus

potentially more opaque, the inability to understand how the
algorithms work is a central concern, especially when a
discrepancy occurs between evaluation and deployment environ-
ments with potentially catastrophic consequences for civil
infrastructure. Hence, trust in ML models is strongly related to
their interpretability, which has thus become a focus of active
research in the ML community116,132. Moving forward, ML studies
in the concrete science domain should be extended to system-
atically assess the interpretability of the models, thereby accel-
erating their practical adoption in the industry.

CONCLUSIONS AND OUTLOOK
The field of data-driven concrete science has recently experienced
a surge of interest, and ML models are being applied for accurate
property prediction, advanced materials characterization and
analysis, and accelerated simulations of increasingly complex
cementitious systems. Despite the widespread adoption of ML in
concrete studies, their validity and reliability are rarely questioned
and examined. In this work, we have highlighted the importance
of data preparation, model validation, and model interpretation
and discussed critical aspects of their challenges raised by
implementing and interpreting ML models without necessary
caution. In doing so, we have underscored the critical need for
sharing data and methodologies, linking laboratory and field data,
starting with simple models, and knowing when to trust a model.

As applications of ML to concrete science are still in their
infancy, we propose the following directions of development:

(1) Physics-guided ML. ML models purely built on data are often
agnostic of the underlying physical processes (e.g., the
process–structure–property–performance relationships),
which leads to inability to produce physically consistent
results with limited available training data133,134. This further
prevents the models from reliable generalization and
extrapolation. Hence, the integration of prior physical
knowledge into ML-based models has recently been
explored135–138. Specifically, physical laws describing micro-
mechanical responses139, degradation mechanisms104,140,
and chemical reactivity141 have been utilized for data pre-
processing (e.g., feature selection, feature engineering, and
data augmentation) during the development of ML models
in concrete research. Other promising yet under-developed
physics-ML integration approaches include, but are not
limited to, adding physics-based loss function terms, pre-
training ML models on data produced by physcis-based
models, encoding physical principles into ML architecture
design136. Although this research area is still nascent in
concrete science, it is expected that transforming data-
driven ML models into physics-aware surrogate models
would increase their interpretability, make them more
robust and generalizable to field-relevant scenarios, and
reduce the sample size required for their training and thus
their overall computation cost.

(2) Transfer learning. Another powerful approach that can
address data sparsity is transfer learning, whereby the
knowledge gained from an initial training task is used in a
different but related problem142. In the context of concrete
materials, there remains a substantial difference in data
quantity between different target properties (Table 2), while
most examples of ML in concrete science use separate
models for each property, resulting in potentially insufficient
data for training and an overwhelming number of
parameters with few of them shared across models.
However, multiple properties (e.g., compressive, flexural,
and tensile strengths) of the same mixture are often closely
related. Likewise, the nature of the relationship between
inputs and output may be interrelated in similar concrete
types (e.g., concretes reinforced with different types of
fibers32). In this regard, the knowledge shared in inter-
dependent properties of the same material or in the same
property of similar concrete types can be transferred to
accelerate the training process and improve the accuracy
performance of ML models, even with relatively small
amounts of available data143,144.

(3) Natural language processing (NLP). Empirical experiments
and computational simulations toward concrete mixture
design optimization have produced an immense amount of
data in the publication and patent literature; however, it is
challenging to manually collect and organize these data due
to their inconsistent data formats (e.g., text, figures, tables,
and schematics; cf. Section ‘Data sparsity’). This offers the
opportunity for NLP to extract materials data from millions
of documents in an automated and more efficient manner,
compared with the manual collection, and thus establish
large datasets that can leverage the power of ML
techniques134. Another exciting outcome from NLP is to
extract the process–structure–property–performance rela-
tionships by mining text corpora, which has enabled one to
discover new materials145 and identify materials synthesis
procedures146, although there have been limited applica-
tions of this approach in concrete science.

To conclude, ML has already changed the field of concrete
science and facilitated the discovery, design, and deployment of
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new concrete materials. Although the arguments presented in this
paper are not exhaustive, we hope to have initiated a constructive
discussion on current practices and encouraged cautious
approaches in applying ML techniques to concrete research. With
continual improvements in data availability and data-driven
models, ML is poised to become an accurate, transparent, and
interpretable complement to existing experimental and computa-
tional techniques that together will propel concrete science into
the 21st century and beyond.
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