
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Machine learning in customer‑driven product
configuration based on lifecycle metrics
Huang, Youliang
2007
Huang, Y. (2007). Machine learning in customer‑driven product configuration based on
lifecycle metrics. Master’s thesis, Nanyang Technological University, Singapore.
https://hdl.handle.net/10356/13602
https://doi.org/10.32657/10356/13602

Downloaded on 24 Aug 2022 20:10:15 SGT

Masters Thesis

Machine Learning in Customer-Driven Product

Configuration Based on Lifecycle Metrics

Huang Youliang

G0600867E

School of Computer Engineering

A thesis submitted to

Nanyang Technological University

in fulfillment of the requirement for the degree of

Master of Engineering

2007

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ABSTRACT

Mass customization has become a major trend for the manufacturing sector today,

as it enables companies to produce customized products that meet customers’

individual requirements at mass production rate. Product configuration tool is

an integral part of the manufacturing service system that has been recognized as

the key enabler to achieve mass customization. Although intensively studied in

the literature, the application of the product configuration is still in the initial

stage, due to the lack of systematic modeling and efficient configuration approach.

Heterogeneous product information in configuration has to be effectively managed. In

this thesis, firstly we give an intensive study on the state-of-the-art computer-aided

product configuration methodologies. The advantages and limitations of existing

approaches are evaluated. Constraint-based approach is proposed to model and

solve product configuration problem. It is based on Constraint Satisfaction Problem

(CSP) paradigm, where problem is modeled into variables, domains and constraints.

Based on the approach, a systematic product configuration system framework is

then defined. Novel product data model and knowledge representation model are

designed and developed to capture the domain problem. Moreover, to address

the limitation of the manual knowledge acquisition approach for knowledge-based

configuration system, a novel machine learning approach which deploys association

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ABSTRACT

rule mining technique is proposed and implemented to achieve automatic product

configuration knowledge generation. A product configuration software system is

developed to implement the constraint-based configuration approach proposed, which

demonstrates the significance of our modeling and reasoning approach. Constraint-

based configuration is proven to be an effective and efficient approach. To further

enhance our approach, the system is extended to take cost as design criteria. A cost

model that provides cost assessment for whole product life cyle has been developed. A

system module is developed and integrated with the configuration system to provide

cost estimation capability, which is a significant value-add for practical product

configuration application.

iii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ACKNOWLEDGEMENTS

First and foremost, I would like thank my advisor Associate Professor Ng Wee Keong

for his valuable guidance, consistent support and encouragement throughout the

course of my graduate study at Nanyang Technological University in Singapore. From

the start of my graduate course till the submission of this thesis, and Dr. Ng has

been inspirational and is the role model of a hardworking and creative scientist, who

has exhibited lots of passion in his work both in his teaching duties and research.

I would also like to thank Dr. Liu Haifeng for regular project meeting and

valuable ideas. I am grateful to Associate Professor Lu Wenfeng from National

University of Singapore in Singapore, and Dr Song Bin from Singapore Institute of

Manufacturing Technology for their guidance and advice. I must also thank Associate

Professor Lim Ee Peng and Dr Li Xiang for the suggestion and valuable advice during

the project discussion sessions.

Lastly, I want to thank my friends and colleagues from CAIS, Phua Si Jie, Wang

Lin, Han Shuguo for their generous help. Special thanks to my wife Chen Lihong for

her continuous support during the whole Masters study.

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

TABLE OF CONTENTS

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures viii

1 Introduction 1

1.1 Background . 1

1.2 Objective . 4

1.3 Organization of the Report . 5

2 Literature Review and System Overview 6

2.1 What is “Product Configuration”? 7

2.2 Knowledge-based Product Configuration 8

2.2.1 Rule-based Reasoning . 8

2.2.2 Model-based Reasoning . 10

2.2.3 Case-based Reasoning (CBR) 13

2.2.4 Summary . 14

2.3 Constraint Satisfaction Problem (CSP) 16

2.3.1 CSP Definition . 16

2.3.2 CSP Solving Algorithms . 17

2.4 Constraint-based Product Configuration 18

2.5 Configuration in Concurrent Engineering 21

2.6 Configuration System Overview . 22

2.7 Summary . 24

3 Product Data Management 27

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Table of Contents

3.1 Introduction . 27

3.2 Product Family Architecture . 27

3.3 Product Instance Model . 29

3.4 Cross-Family Product Configuration 33

3.4.1 Cross-Family Configuration Framework 34

3.4.2 Semantic Model for Product Family 35

3.4.3 Semantics Extraction . 36

3.5 Product Life Cycle Cost Model . 40

3.6 Summary . 42

4 Constraint Modeling and Knowledge Acquisition 43

4.1 Introduction . 43

4.2 Constraint Model . 44

4.2.1 Basic Constraint Construct 44

4.2.2 Constraint Clusters . 45

4.2.3 Constraint Types . 47

4.2.4 Example of a Configuration Constraint 48

4.3 Constraint Satisfaction Problem Solving 51

4.4 Constraint Acquisition . 52

4.4.1 Constraint Acquisition Approach 52

4.4.2 Experimental Result . 57

4.5 Summary . 58

5 System Implementation 59

5.1 Introduction . 59

5.2 System Architecture . 60

5.3 Product Data Management System 61

5.3.1 PDM System Architecture . 61

5.3.2 Class Diagram of PDM System 63

5.3.3 PDM System Walk-through 64

5.4 Constraint Manager . 69

5.5 Product Configuration Engine . 73

5.6 Life cycle Cost Estimation . 76

5.7 Workflow System . 78

5.8 Summary . 79

6 Conclusions And Future Work 81

6.1 Conclusions . 81

6.2 Future Work . 83

vi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Table of Contents

Author’s Publications 86

References 87

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

LIST OF FIGURES

2.1 Knowledge-based Approaches for Product Configuration 8

2.2 Resource-based Product Configuration 13

2.3 IMSS Manufacturing Service System Framework 23

2.4 Constraint Satisfaction Problem (CSP) and Configuration Problem . 24

2.5 Configuration System Flowchart . 25

3.1 Product Family Architecture (PFA) and Product Instances 28

3.2 Product Data Model . 30

3.3 XML representation of module“monitor” in computer configuration . 33

3.4 Product Family-based Configuration 35

3.5 Cross-Product Family-based Configuration 36

3.6 Hierarchical Structure of Product Data 37

3.7 Weightage assignment for requirement specification tree 38

3.8 Multiple match for one node in a requirement specification tree . . . 40

3.9 Product Data Model with Cost Information 41

3.10 XML Document of Cost Data . 41

4.1 Basic Constructs of Constraint Diagram 45

4.2 Constraint Clusters . 47

4.3 A Typical Water Heater Configuration 49

4.4 Water Heater Product Family Architecture 50

4.5 Constraint and PF relationships . 53

4.6 Compatibility and incompatibility constraint generation 56

5.1 Product Configuration System Architecture 62

5.2 PDM System Architecture . 64

5.3 Class Diagram of Product Data Model 65

5.4 MSSQL Controller Class Diagram . 66

5.5 Constraint Satisfaction Problem and Configuration Problem 67

viii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

5.6 Product Family Editor GUI . 68

5.7 3D CAD Drawing Display . 69

5.8 Starting Dialog for Open a Product Configuration 70

5.9 Product Data Editor GUI . 71

5.10 Constraint Data Model . 72

5.11 Constraint Editor GUI . 73

5.12 Configuration Engine Programming Flowchart 74

5.13 UML Diagram of Configuration Solver 75

5.14 Implementation of lifecycle Cost Assessment with PDM 77

5.15 UML Diagram of Abstract Lifecycle Cost Model 78

5.16 Workflow Editor GUI . 79

ix

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, the business environment for the manufacturing industry has

changed significantly. The global market becomes more and more competitive.

The manufacturing companies are facing great on-going challenges. Many product-

oriented organizations are being faced with the challenge of providing as much variety

of products as possible for market to meet the customer’s increasing personalized

need [33, 54]. They often have to struggle with the trade-off among time-to-market,

product variety and mass efficiency [47]. In order to be competitive, more and more

manufacturers are seeking for strategies to produce customized products with near

mass production efficiency. This trend has shifted the manufacturing paradigm from

mass production to mass customization.

Mass customization as a competitive strategy is getting progressively increasing

attention in both business and academic areas due to its high potential to provide

sustained strategic advantage in a unique fashion [24]. From the state-of-the-art, mass

customization can be defined either broadly or narrowly [43]. The broad concept has

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.1 Background

been focusing on the conceptual idea of the mass customization and how the parties

involved work together to achieve it. The definition can be found from the following

researchers’ work. Piller [44] gives a comprehensive definition of mass customization

as “customer co-design process of products and services, which meet the needs of

individual customer with regard to certain product features. All operations are

performed within a fixed solution space, characterized by stable but still flexible

and responsive processes. As a result, the costs associated with customization allow

for a price level that does not imply a switch in an upper market segment”. Similar

visionary views are provided by other researchers [15, 22, 44, 48] to illustrate the broad

concept. Another similar, but narrower and more practical concept, which focuses

on the technology aspect of achieving mass customization, are defined as “a system

that uses information technology, flexible processes, and organizational structures to

deliver a wide range of products and services that meet specific needs of individual

customers, at a cost near that of mass produced items”. In our research, we aim

to develop computer-aided approach and information system to equip manufacturers

with mass customization capability. Thus, our understanding of the definition is

closer to the narrower concept as discussed.

In order to achieve mass customization, the information technology that allows

products or services to be configured based on individual requirements in a fast

and accurate fashion is most critical. The system based on this technology is

known as product configurator [16], which has been recognized as key enabler

for mass customization. It has been recognized as an important integral part of

today’s manufacturing services system to manage product variants and generate

customized products that meet customers’ personalized need [21]. Automatic product

configuration using information technology can greatly enhance company’s mass

customization capability as it is fast and efficient. To be more specific, the core

of configuration task is selecting and arranging combinations of component variants

2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.1 Background

that satisfy given specifications on the basis of available product components and

predefined rules for component composition. A number of previous work has

dealt with IT-supported configuration for consumer products. Companies like Dell

Computer and American Power Conversion (APC) have implemented their own web-

based configurator to facilitate product sales [23]. It is useful for selecting highly

modularized product components which are stored in company’s database, where

customization is not necessary. However, due to the limitation of the configuration

technology, automatic configuration for most of the products in the market with

complex composition is still not feasible and the configuration research is still in the

early stage. Therefore, we are motivated by the need for a comprehensive product

configuration approach and related issues in the current research.

On the other hand, although meeting requirement specification is the first

priority of the configuration task, it is not sufficient for manufacturers to maintain

customer satisfaction. In a business-to-business transaction, customers are concerned

about three issues: requirements, cost, and delivery. Therefore, for a product

configuration system, while it generates product variants that meets requirement

specification, there would be a significant value-add to have the capability of cost

estimation and manufacturing capability and lead time assessment. Therefore,

product lifecycle cost and supply chain information are also key elements in a

configuration system. In this research, we will also investigate the issues in the

product lifecycle cost estimation and supply chain management. Appropriate

technology and system are developed to integrate the key elements into the

configuration system.

3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.2 Objective

1.2 Objective

Although product configuration has been intensively studied in the state-of-the-art,

the application is still in its initial stage and the effect is still limited. In order

for manufacturers to achieve mass customization capability, to support customer-

driven product configuration throughout the product’s life cycle, and to enable rapid

assessment and changes of product structure in response to customer requirement

changes, this project will focus on research into the issues in the configuration problem

and developing a computer-aided product configuration technology that supports

personalized product generation. Product configuration system will be developed

based on the technology to assist design engineers in generating more product variants.

Product life cycle information such as life cycle cost information will be integrated

with the configurator to provide designers and customers with more in-sight view of

the product configurations.

The scope of work includes:

• A comprehensive literature review will be carried out to review the existing

research technology contributed to the computer-aided product configuration.

Different approaches will be assessed and new approach is to be proposed over

the existing approaches;

• In order to model the configuration task, a product data model which is able

to capture the necessary product information including product composition,

component design information, and other lifecycle data has to be developed. It

should be developed for data storage, exchange and configuration execution;

• Proper knowledge representation approach needs to be developed to capture

design knowledge and provide fundamental support for configuration reasoning.

4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

1.3 Organization of the Report

• A configuration system needs to be developed based on our configuration

approaches.

• Research and investigate into the efficiency of the configuration system: Develop

functions and capabilities for the configuration system to increase the value-add.

1.3 Organization of the Report

In Chapter 2, a comprehensive literature review on product configuration approaches

is given. By comparing the various different approaches, Constraint-based product

configuration is intensively studied and different extensions are presented. Issues of

the current configuration research is discussed here. Overview of our configuration

system is also presented. Chapter 3 shows the product family-based product data

model. To enhance the representation power of the model, a cross-family product

model is proposed. A constraint model is developed to represent configuration

knowledge for constraint-based product configuration is shown and illustrated in

Chapter 4. Based on the proposed approach, a constraint-based product configuration

software system is designed and developed. It consists of several systems including

Product Data Management, Constraint Manager, etc, is presented in Chapter 5.

Lastly, Chapter 6 will conclude the work, list out the key contributions and bring up

the issues for future work.

5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 2

LITERATURE REVIEW AND SYSTEM OVERVIEW

Representing and solving configuration problems have always been subjects of

interest for applying and developing AI techniques. It requires powerful knowledge-

representation models to capture the great variety and complexity of configurable

product models. Moreover, efficient reasoning methods are necessary to provide

intelligent interactive behavior in configurator software, such as solution search,

satisfaction of user preferences, optimization, diagnosis, etc. Today, the number of

configurable products available on the market is growing. The diversity and the

complexity are expanding from conventional equipment configuration to software

configuration, or service configuration, such as loans, insurance, travel packages, and

so forth. Configuration is more than ever a challenging area for applying novel AI

techniques since more and more sophisticated reasoning tasks are delegated to the

configurator software. This review starts with the definition and issue of product

congfugration. Various AI techniques will be presented and discussed.

6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.1 What is “Product Configuration”?

2.1 What is “Product Configuration”?

A product configurator is an effective software tool to successfully implement the

mass customization strategy [53]. Product configuration is a business process that

supports choices for customers to find the best-suited product variants [6, 39]. A

more comprehensive definition [11] is “software with logic capabilities to create,

maintain and use electronic product models that allow complete definition of all

possible product option and variation combinations, with a minimum of data entries

and maintenance.” And the core of a configuration task is selecting and arranging

combinations of parts that satisfy the given specifications [39]. It displays two key

features:

• The artifact being configured is assembled from instances of a fixed set of well-

defined component types;

• Components interact with each other in predefined ways, i.e., interact according

to the configuration and design rules.

Solving product configuration problem is like any other problem-solving activities. It

is divided into two steps. First, the problem needs to be represented. In product

configuration, the problem representation includes: (1) product data: the variation

of the products need to be properly captured with a product model; (2) configuration

knowledge: the predefined rules using which the components interact and are selected;

(3) requirement specifications representation: the input from customers to indicate

what final configuration results should be like. Second, an algorithm is needed to

produce solutions based on the representation, i.e., the problem solver with given

problem description and representation.

7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

2.2 Knowledge-based Product Configuration

Most configuration systems [9] work through well-defined phases: user specifications

lead to an abstract configuration, which then undergoes an expansion and refinement

process until it yields a complete, detail configuration. The key configuration task is

the domain knowledge modeling and reasoning. In this section, we present various

knowledge-based configuration approaches that have been deployed in the past. The

few popular approaches are shown in Figure 2.1, which will be briefly described and

compared.

Knowledge-based
configuration approach

Rule-based Model-based Case-based

Logic-based
approach

Resource-based
approach

Constraint-based
approach

Figure 2.1: Knowledge-based Approaches for Product Configuration

2.2.1 Rule-based Reasoning

There are numerical configuration systems [9, 29] developed using rule-based

reasoning. These systems are known as expert systems, which have the following

features:

8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

• Design knowledge is represented in specific rule language, which has its

predefined syntax. e.g., JESS [1] and DROOL [4] are two common seen rule

languages.

• Requirement specification acts as facts in the rule-based environment and is

tested with the conditions part of the rules in the working memory, where rules

are fired.

• Final configuration is produced when all rules are fired, and the firing process

is executed by a rule engine, which has rule firing algorithm implemented.

Rule-based configurators use production rules as a uniform mechanism for

representing both domain knowledge and control strategy and a working memory

as a temporal information storage during the rule execution. The production rules

has the form of “if condition, then consequence”. The working memory holds the

information of inputs and results from executing actions. The conditional part of the

production rule specifies tests on the working memory. If the condition is satisfied,

the system executes the rule’s consequence to bring the working memory to the new

state. For example, R1 [29] is a typical rule-based configuration system. The system

has a rule base that captures sufficient knowledge of the configuration domain and

peculiarities of the various configuration constraints in each step of the configuration

process. Consequently, a little search is required in order for it to configure a computer

system. The rule-based system derives solutions in either a forward or backward chain

manner. At each step, the system checks the entire set of rules and considers only the

rules it can execute next. Each rule carries its own complete triggering condition. The

system then selects and executes one of the rules under consideration by performing

its action part.

In the early stages, rule-based configuration displays advantage in power

of representing domain knowledge. The if-then structure makes the knowledge

representation easy and intuitive. Existing company’s design consideration and

9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

life cycle design criteria can be translated to production rules. However, as the

configuration systems grow, the rule base becomes very large. This may incur

enormous maintenance problem [9, 17]. Rules in the configuration system specify both

domain knowledge, including compatibilities and dependencies, and rule execution

control strategy. This lack of separation between domain knowledge and control

strategy and the spread of knowledge about a single entity over several rules make

the knowledge-maintenance task very difficult. In the case of updating certain rules,

it would be very difficult to be certain that one has found all the rules that need

changes.

2.2.2 Model-based Reasoning

Model-based reasoning, a subfield of AI research, was developed by researchers to

address the limitation of the expert systems, which is primarily the maintenance

problem. Model-based product configuration provides modeling facilities to enable

the differentiation among three kinds of knowledge [52]:

• Conceptual knowledge includes concepts, taxonomic and compositional rela-

tions as well as restrictions between arbitrary concepts;

• Procedural knowledge declaratively describes the configuration process;

• A task specification specifies properties and constraints known from the

customer that a product must fulfill.

There are three different types of model-based reasoning approaches, which are

shown in the following section.

Logic-based approach The logic-based approach is based on description logic

(DL) [7], which is formalism for representing and reasoning with knowledge.

10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

In configuration, logic-based approach provides a clear framework to capture

configuration semantics and simple logic operations to derive solutions. According to

McGuinness and Borgida [30], the three fundamental notions of DLs are:

• individuals, representing objects in the domain;

• concepts, describing sets of individuals;

• roles, showing binary relations between individuals.

Composite descriptions are formed using constructors. Take the following

representation as an example:

RED WINE ≡ (and(prim WINE)(fills color Red))

In the above representation, RED WINE is a concept that is defined using

the and constructor to conjoin the primitive concept WINE with the description

of individuals whose color role is filled by the individual RED. The main inference

mechanism in DLs is subsumption, which is the decision whether one concept is

more general than another. It is useful in integrating one concept into a concept

hierarchy. Particularly, in product configuration, the product data is usually treated

as a hierarchical structure. Thus, DL provides a good candidate for modeling the

product data.

Logic-based configuration presents the advantage in clearly representing knowl-

edge, which makes the knowledge acquisition and maintenance easy and efficient.

Moreover, during the problem-solving phase, DLs enable the efficient retrieval

of configuration constraints description, which is important add-on feature for

configuration system that allows operators to control the configuration process.

The limitation of the DLs approach lies in the tradeoff between expressiveness and

reasoning efficiency. There is a level of the formalism expressiveness beyond which

may it result in the situation that the reasoning efficiency become NP-complete.

11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

Resource-based approach Resource-based configuration [18, 39] is another

model-based approach that represents knowledge in different way. It treats the

interface between elements including components and environment as resource. Each

element is characterized by the amount and type of resources it supplies and consumes.

The configuration tasks are basically the supply and consume of resources among the

elements. The final solution is derived when the overall resources reach a balance

statement. The visual representation is as shown in Figure 2.2. The arrows represent

the resource supply and consume relationship. The resource transactions are among

the components within a product, as well as between product and the environment.

Dotted arrow shows that the resource is used by the entity. Based on the modeling,

the reasoning starts with the resource demand from the environment which is the

requirement specification. The resource type that is not balanced yet is selected and

the components that can supply the corresponding resource are found. This process

repeats as the resource demand and supply propagates. Backtracking is performed

in case of dead end. The solution can be derived until all the resources are balanced,

i.e., the amounts of supply and demand are equal. Resource-based configuration

offers advantage in the case of function-component matching. With known functional

requirement and the function of a component, the approach is able to match them

efficiently. However, it loses its efficiency when considering the technical constraint

during configuration process, which is necessary for most of the technical configuration

system. Moreover, other than functional mapping, structural compatibility problem

is difficult to solve using this approach.

Constraint-based approach Constraint-based product configuration is one of

the most important model-based approaches which models a configuration task as

a Constraint Satisfaction Problem (CSP) [32]. A CSP is formulated by a set of

variables V , a domain D of possible values for each variable, and a set of constraints

12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

Resource

Resource

Product

Resource

Resource

Resource

Component

Component

Component

Component

Resource
Component

Resource

Environment

Figure 2.2: Resource-based Product Configuration: → Supply; ← Consume;

C defined to govern over the variables. A solution to a CSP is a complete assignment

of values to the variables such that all constraints are simultaneously satisfied.

Modeling configuration problem as CSP has the benefits of flexibility and generality.

Product knowledge including requirement specifications, design consideration, and

product data can be easily modeled as a CSP with concept of variables, domains and

constraints. Thereafter, the algorithms can be solved independently of the product

knowledge. Hence, the modeling and solving approaches are generic to the domain

problem: product configuration problem. The detail formalism and solving algorithms

of CSP will be further discussed in Section 2.4.

2.2.3 Case-based Reasoning (CBR)

Other than rule-based and model-based approach, case-based approach is another

popular way of solving configuration problem. The principle of case-based product

configuration is different from the other major configuration approaches. CBR

13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

assumes that the knowledge necessary for reasoning is stored mainly in historical cases

that record a set of configurations that existed in the past. CBR solves a configuration

by comparing the requirements with the historical data to find the similar transaction.

Solutions will be retrieved based on similar requirements. Minor adaptation is needed

to refine the similar solution to match with the current requirement. The major steps

performed in the CBR system are:

• Index assignment: Assign index to the product features or components of the

historical data in the database. The index will be used for identification during

similarity measure and the case retrieval process;

• Similarity measure: The system compares the current customer requirements

with the past transaction in existing database on the index assigned. Different

similarity measure algorithms have been presented in the literature [36, 37].

Based on the algorithm, the most similar solution will be retrieved;

• Case adaptation: Adjust the retrieved case to fit the solution to the current

status, which is usually done manually or with other AI approaches;

• Case storage: Update the database by storing the newly adapted case.

CBR had been successfully applied in several systems [13, 19, 27, 49] in the

past. CBR addresses the issue of knowledge acquisition for traditional knowledge-

based configuration system. However, the drawback that the method is not about

to generate a complete solution as certain knowledge is difficult to discover from the

cases. Therefore, using CBR in configuration problem alone is not optimized.

2.2.4 Summary

Each knowledge-based approach has its advantages and drawbacks. The comparison

is shown in Table 2.1.

14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.2 Knowledge-based Product Configuration

Table 2.1: Comparison among knowledge-based product configuration approaches

Approaches Advantage Limitation
Rule-based Reasoning Representing and evaluat-

ing reasoning heuristic rela-
tions; Intuitive way of rep-
resenting design knowledge

Lack of separation between
knowledge and reasoning
strategy, knowledge mainte-
nance very difficult

Model-based
Reasoning

Logic-based
Approach

Clear semantic and simple
logical operations

Reasoning efficiency trade-
off with high expressiveness

Resource-
based
Approach

Efficient in function-
component matching

Unable to handle the inter-
nal technical consideration
and constraints

Constraint-
based
Approach

Domain independent,
generic and flexible in
modeling knowledge

Potential complexity in
reasoning, i.e., consistency
check; Completeness of
configuration modeling is
to be improved

Case-based Reasoning Knowledge stored in ex-
isting cases, no need of
knowledge acquisition phase

May result in inaccurate
result; not suitable for new
configuration

We are interested in the approach with sufficient robustness and accuracy in

solving the domain problem. Rule-based approach has the drawback in maintenance

problem, which is difficult to eliminate. Case-based approach may result in inaccuracy

when the size of historical data is not sufficiently large. By comparing the various

approaches [9, 7, 19, 32], we recognize constraint-based product configuration to be

the best approach in terms of its generality and flexibility [45, 53]. Although its

potential drawback is in the solving efficiency, the complexity can be reduced with

proper problem modeling and efficiency solving algorithm. Despite the benefit of

adapting CSP in configuration we can foresee, there are still challenges to be overcome.

Novel value-addition to the system shown below is possible.

• Proper modeling is to be developed with our product data model to ensure

soundness and completeness;

• Efficient knowledge acquisition process can be developed to enhance the

acceptance of the system;

15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.3 Constraint Satisfaction Problem (CSP)

• Product life cycle information, such as lead time and cost, can be taken into

consideration in order to enhance the competitive edge of the system;

• Strategies can be implemented so that more product recommendations can be

generated to meet the diversified requirements.

2.3 Constraint Satisfaction Problem (CSP)

2.3.1 CSP Definition

Constraint Satisfaction Problem (CSP) has been recognized as a promising approach

for modeling and solving product configuration problem [53]. Basically, a CSP is

a problem composed of a finite set of variables, each of which is associated with

a finite domain, and a set of constraints that restricts the values the variables can

simultaneously take. The task is to assign a value to each variable satisfying all the

constraints. Formally, they are defined as:

Definition 1. The domain of a variable is a set of all possible values that can be

assigned to the variable. If x is a variable, then we use Dx to denote the domain of

it. A label is a variable-value pair that represents the assignment of the value to the

variable. 〈x, v〉 is used to denote the label of assigning the value v to the variable x.

〈x, v〉 is meaningful only if v is in the domain of x (i.e. v ∈ Dx). Compound label

can be represented as (〈x1, v1〉, 〈x2, v2〉, ..., 〈xn, vn〉), meaning that labels v1, v2, ..., vn

are assigned to x1, x2, ..., xn respectively.

Definition 2. A constraint on a set of variables is a restriction on the values that

they can take simultaneously. Conceptually, a constraint can be seen as a set that

contains all the legal compound labels for the subject variables; The constraint on the

set of variables x is denoted as Cx.

16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.3 Constraint Satisfaction Problem (CSP)

Definition 3. If the variables of the compound label X are the same as those variables

of the elements of the compound labels in constraint C, then X satisfies C if and only

if X is an element of C. Mathematically it is represented as:

satisfies((〈x1, v1〉〈x2, v2〉...〈xk, vk〉)|Cx1,x2,...,xk
) ≡

(〈x1, v1〉〈x2, v2〉...〈xk, vk〉) ∈ Cx1,x2,...,xk

Definition 4. A Constraint Satisfaction Problem is a triplet

(Z,D, C)

where Z = finite set of variables {x1, x2, ..., xn},

D = a set of domain {Dx1
, Dx2

, ..., Dxn
} that maps with the variables in Z;

C = finite set of constraints on an arbitrary subset of variables in Z.

2.3.2 CSP Solving Algorithms

CSP can be solved using the generate-and-test method, in which each possible

combination of the variables is systematically generated and then tested to see if it

satisfies all the constraints. The number of combinations considered by this method

is the size of the Cartesian product of all the variable domains, which makes this

method inefficient. Another more efficient way is to treat CSP as a search problem

and use the backtracking method [41, 55]. Variables are instantiated sequentially in

this method and the validity of the constraint is checked. If the instantiation violates

any of the constraints, backtracking is performed to the most recently instantiated

variable that still has alternative values. Although better than generate-and-test,

the complexity for backtracking is still exponential, mainly due to its thrashing.

The thrashing is caused by node inconsistency or arc inconsistency which results

17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 Constraint-based Product Configuration

in repetitive backtracking. An arc (x, y) in the constraint graph of a CSP (Z,D, C)

is arc-consistent if and only if for every value a in the domain of x which satisfies

the constraint on x, there exists a value in the domain of y which is compatible with

〈x, a〉. In CSP research, various arc-consistency checking algorithms [10, 12] have

been developed to enhance the complexity. Another factor that affects the practical

CSP solving efficiency is the variable-ordering, which is known to have a potentially

profound effect on its efficiency, and various heuristics [8] have been investigated for

choosing good orderings. Therefore, constraint-based product configuration can adopt

the existing solving algorithms with proper modeling domain problem and ordering

of variables for the particular application.

2.4 Constraint-based Product Configuration

The attempt of applying a CSP to a configuration problem was first presented by

Mittal and Frayman [32]. In their approach, a product was defined as a composition

of a fixed, pre-defined set of components. Each components is characterized by a

set of properties and ports for connecting to other components. The properties

and ports are represented as variables with discrete and finite domains, and the

restrictions on how the various components can be combined to form a valid

configuration are represented as compatibility constraints. A configuration task is

to assign values to all the variables without violating any constraint. They have

shown that constraint-based approach has the advantage of a simple and domain-

independent representation for a configuration problem. However, the assumption of

a fixed and pre-defined set of components types make it inadequate to address more

complex configuration problems. To address this issue, Dynamic Constraint-based

Configuration (DCSP) [40], which is an extension to the classical CSP was proposed.

In this approach, Activity Constraint is introduced to specify conditions under which

18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 Constraint-based Product Configuration

a variable may or may not be actively considered as a part of a final solution. With

DCSP, a product configuration can dynamically include or exclude a component type

depending on the selections. The model of DCSP is represented below.

A Dynamic CSP P ≡ {V , D, Vi, Cc, Ca}

where:

• V {V1, V2, ..., Vn}: A set of variables;

• D{D1, D2, ..., Dn}: Variable Domains;

• Vi{Vi1 , Vi2 , ..., Vin}: A set of initial variables, Vi ⊆ V ;

• Cc{Cc1 , Cc2 , ..., Ccn
}: A set of compatibility constraints

• Ca{Ca1
, Ca2

, ..., Ccn
}: A set of activity constraints

The variables which are not Initial Variables is optional and may not assign a value

in the final solution if it is not active. A variable can be activated by the activity

constraint. Compatibility constraint Cc is active when all the variables it constrains

is active.

Generative CSP [45] is proposed to further extend the DCSP models to make

it more generic by specifying constraint among components in a meta-level instead

of component instances. Generative CSP allows variables to have infinite domain

values, which enhances the expressiveness. However, these extensions are still limited

to model variables with discrete domains. In practical product configurations,

continuous and numerical variables with a range of possible values are usually

encountered, especially for the component parameters. Aldanondo et al. [5] proposed

the requirements for modeling continuous variables and numerical constraints over

both discrete and continuous variables. They pointed out that very few commercial

configurators supported discrete and continuous variables. Based on the analysis,

Xie et al. [53] proposed their constraint model, in which three types of constraint

19

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4 Constraint-based Product Configuration

are defined: compatibility constraint, inequality constraint, and equality constraint.

The inequality and equality constraints are represented intentionally by mathematical

expressions or computable procedures that indicate a valid or invalid assignment

for a consistency check. They also introduce dependent variables and independent

variables to reflect the dependent relationship among different variables during the

assignment, which in turn provides support for the variable ordering that affects

the solving efficiency. To enhance systematic modeling of configuration problem,

Sabin and Freuder [38] proposed a composite constraint satisfaction approach. In

the approach, value for variables can be an entire set of subproblem. For problem

P ≡ 〈V, Dv, Cv〉, instead of V taking atomic values, it can take a value representing

an entire subproblem P ′ ≡ 〈V ′, Dv
′, Cv

′〉. The effect of instantiating a variable Vp to

the value of P ′ is that the problem we have to solve is dynamically modified and

becomes P ′′ ≡ 〈V ′′, D′′
v , C

′′
v 〉, where:

• V ′′ = V ∪ V ′ − {Vp},

• D′′
v = D′

v ∪ {DX |X ∈ V, X 6= U},

• C ′′
v = Cv ∪ C ′

v ∪ Cv′,v − C{U}

C{U} is the set of all constraints between variable U and other variable in V , and

Cv′,v is the set of all constraints connecting a variable in V ′ to a variable in V . The

constraints in Cv′,v can be seen as a refinement of the constraints in C{U} in the sense

that previous restrictions imposed on U , by its neighbors in the constraint graph,

become now more precise, referring explicitly to variables in U ’s internal structure.

This formulation enables the variables to have the hierarchical structure,

which matches with the data structure of the majority of product model. This

approach offers an increased representational power and efficiency for configuration

problem. However, it only considers the compatibility constraints with discrete

domain variables. Taking other constraints type and continuous variables in this

20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.5 Configuration in Concurrent Engineering

approach may result in high complexity. From the classical CSP to the various CSP

extensions, the expressive power and efficiency in modeling configuration problem

have been improved. Although CSP has been applied to solve configuration problem,

its modeling is still under development for optimal representation power and efficiency.

2.5 Configuration in Concurrent Engineering

In concurrent engineering [31], product design and configuration phase have been

known to have great influence on the down stream activities, especially affecting

the cost that would be incurred in the down stream life cycle phases, including

material, manufacturing, assembly and testing cost. Weustink et al. [50] claimed

that cost estimation before configuration process is critical and they proposed a

framework to estimate cost in design, process planning and production in the early

life cycle stage. Shehab and Abdalla [42] developed an intelligent knowledge-based

system which is capabable of selecting a material, as well as machining processes and

parameters based on a set of design and production parameters, and of estimating

the product cost throughout the entire product development cycle including assembly

cost. This work has significant contribution to the cost estimation. However,

separating the configuration process with cost estimation suppresses the benefit of

the cost estimation technology. By integrating the cost estimation capability into the

configuration process, cost becomes one of the configuration criteria which support

the designers’ decision towards producing a product with an optimal quality and cost

combination, i.e., better quality and lower cost.

21

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.6 Configuration System Overview

2.6 Configuration System Overview

With the existing research work as fundamental support, we have proposed our

configuration system framework. Figure 2.3 shows the overall system framework of

the product configuration system. The bottom layer shows the product data model

capturing necessary product lifecycle data, which provides a fundamental support for

the product configuration and lifecycle cost assessment. In the data modeling layer,

data model is classified to be used in different sub-functional modules. Here, we

focus on the Original Equipment Manufacturing (OEM) sector instead of consumer

products, where requirements from customers are usually stated in technical terms.

Therefore, the configuration module will directly take the requirement specification

from customers. With the data model and theory support, product configurator and

lifecycle estimation module will be implemented and the interface will be developed

for user interaction and system input/output. In this thesis, detail modeling and

solving approach for the configuration module will be shown and discussed.

In the configuration module, one of the important task is to represent a product

and its components. A product has to be represented in a product architecture in

which the fundamental elements are arranged into physical units and the way in

which these units interact. As discussed in the literature, configuration problem can

be modeled as a generic CSP problem. Elements in configuration problem can be

modeled and mapped into the CSP model. As shown in Figure 2.4, product data

are modeled as variables in CSP. The possible values for the product components

and component parameters are modeled as variable domains. Design knowledge and

requirement specification indicate the restrictions on the selection of the component

value which are modeled as constraints in CSP. With proper modeling of the variables

and constraints, the configuration task can then be treated as a CSP solving process.

22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.6 Configuration System Overview

Figure 2.3: IMSS Manufacturing Service System Framework

Figure 2.5 shows the flowchart of the constraint-based product configuration.

From the figure, we can see that the key elements in the configuration system includes

product data model, constraint model, and the constraint solver. Product data

model provides fundamental support to the system, which is required to capture

the product design data, as well as other related life cycle data into computational

model. As the number of product variants in mass customization is large, it is critical

for the product data model to be able to efficiently manage the variety. Based on

the product data model, constraint model acts as templates/schema capturing the

semantics of requirement specification and design knowledge. CSP algorithm will be

implemented in the CSP solver to generate product variants based on the product data

23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.7 Summary

Variable and domains

Constraints

CSP solving

Product Family modules and
parameters with their possible

value ranges

Design knowledge and design
requirement specifications

Product Configuration:
A process that generates a list of

configurations based on the
requirements and the design

knowledge

CSP
Product Configuration

Problem

Figure 2.4: Constraint Satisfaction Problem and Configuration Problem

and constraints. The three key elements will be discussed in detail in the following

sections.

2.7 Summary

Configuration problems have been defined and presented in the literature. As

computer-aided product configuration can significantly enhance the efficiency in

solving configuration problem, it has been a topic of interest in knowledge-based

research. Researchers have been using different knowledge-based approach to model

the problem, including three major ones presented: Rule-based, Model-based and

Case-based approach. These approaches have been compared and constraint-based

configuration, one of the model-based approach, have been adopted in this work.

We review the general solving algorithms and knowledge modeling of constraint-

based configuration. The significance from the past researchers has been shown.

24

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.7 Summary

Product Data
Model

Constraint
Model

Constraint
Solver

Product
Variants

Requirement
Specification

Design
Knowledge

Figure 2.5: Configuration System Flowchart

However, traditional constraint-based Product Configuration can be enhanced by

systematic modeling of the domain problem, including product and constraint

modeling, variables and constraint ordering. Moreover, knowledge acquisition process

in traditional systems is usually done manually, which is inefficient and error-

prone. Efficiency can be enhanced by incorporating automatic knowledge acquision

process into product configuration system. On the other hand, the manufacturing

environment today become very competitive. Companies also compete with each

other on lead time and cost. Therefore, life cycle information has been taken into

consideration in the design and configuration phase as it is cost sensitive. The

life cycle cost information becomes one of the criteria in the configuration decision

making, which would significantly enhance the value of the traditional constraint-

based product configuration. In this chapter, we also present a overview on our

25

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.7 Summary

product configuration framework. Detail discussion on each individual module will

be presented in the following chapters.

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 3

PRODUCT DATA MANAGEMENT

3.1 Introduction

In product lifecycle management, proper data modeling is critical to integrate the

information from different stages of lifecycle for design consideration. However, the

challenge in capturing product data lies in the huge variety of the product data.

Therefore, a comprehensive modeling concept must be introduced. In this chapter, we

present a product-family modeling paradigm, product family architecture, to capture

the hierarchical nature of product data and to cluster products into different sectors to

ease the data management. Cross-family product data management is also proposed

to enhance the features of the family-based data model.

3.2 Product Family Architecture

A Product Family Architecture (PFA) [14] consists of modules. A module is a physical

or conceptual grouping of components. Modularity is the concept of decomposing a

system into independent parts or modules that can be treated as logical units. In

27

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.2 Product Family Architecture

product modeling, the PFA has been recognized as an effective means of organizing

product variations. A product family is defined as a set of individual products that

share a common technology and address a related set of market segments. These

individual products are commonly referred as product instances of the product family.

PFA provides a simple and efficient hierarchical structure to model a product family.

Figure 3.1 shows a PFA of a desktop PC and its product instances. The building

block in PFA displays general functionally it provides and the one in product instance

displays the structural and physical components.

Desktop PC

Monitor CPU Accessory

Keyboard Mouse

PC Model A

Monitor : Model X 1 CPU: Model Y 1
Accessory Model

Z1

Keyboard Model K 1 Mouse Model M 1

PC Model B

Monitor : Model X 2 CPU: Model Y2
Accessory Model

Z2

Keyboard Model K 2 Mouse Model M 2

PFA

Product Instance A

Product Instance B

Figure 3.1: Product Family Architecture (PFA) and Product Instances

Modularity of PFA The concepts of modules and modularity are central in

constructing a PFA. A product family architecture consists of a set of modules

which are the conceptual grouping of product components. The modularity separates

a system into independent parts or modules that can be treated as logical units,

which makes the configuration task possible. Each module in the structural view

has features showing the function that it provides and make the matching with

28

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3 Product Instance Model

functional requirements possible. Moreover, high level functional requirements can

be decomposed to match with individual modules. The modularity also reduces

the interaction between modules. Modules are defined in such a way that between

modules interactions are minimized whereas within module-interaction is maximized.

Commonality versus Variety In PFA, modules are classified into two main

categories, namely common modules and differentiation modules. Common modules

are the elements that are shared by all the products across a product family. These

modules in different products display common features from the functional view

and they consist of common product structure and components. Differentiation

module are the basic elements making a product within a product family different

from another product. They are the source of variety for a product family. The

differentiation modules are determined during the configuration according to the

customers’ requirements.

Scale-based PFA In a product family, the common modules are not necessarily

identical. To allow generation of more product variants within a product family,

the parameters in the common modules can be scaled according to the requirement

specification, provided that the features of the common modules do not change.

3.3 Product Instance Model

The product family concept is used to model product data. Figure 3.2 shows

the Entity Relationship Diagram (ERD) of the product model. A product family

model which consists of a list of compound/primitive modules can be instantiated to

generate a list of product variants by assigning values to parameters and/or selecting

component alternatives. Based on this product model, a product data management

(PDM) interface shown in Figure 3.2 is implemented to facilitate the product variants

29

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3 Product Instance Model

management, as well as component and parameters design and editing. The product

model module is considered as a fundamental support for the configurator.

has

Product Family

Common
Parameters

Parameter

Interface

Module

implement

Consist of implement

has

has

has

Parameter
Attributes

Component
Features

Component

Product

unitdomainnameweight

Mname

Mcode

MType2

MType1

has

include

has

Implydimension

Connection
type

value

default ID

Common or differentiation

Standard or parametric

unit

ID

1 n

1

1

1

1

n

n

n

n

n

nn

n

1

1

1

1

1

1

MType3

Compound and Primitive

Figure 3.2: Product Data Model

There are two main threads in our Product Data Model (PDM), namely Product

Family and Product. Entities are organized within the two main scopes and their

internal relationships are captured. The key elements are listed and illustrated as

follows.

30

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3 Product Instance Model

Product Family The entity product family is the top level element that consists

of a list of modules. The module are the main constitutions of a product family. It

has three different attributes called module type. The module type can be:

• Common Module or Differentiation Module: These refer to the common

and variety of the product family as discussed earlier. Common module

is commonly shared across the product family and it is mandatory during

the product generation, whereas differentiation module is the key enabler for

product variety and it is optional during the product variant generation.

• Compound Module or Primitive Module: Primitive module is the lowest

level element in a product family structure. Compound module consists of at

least two sub-modules. It corresponds to the assembly in the product structure.

• Standard Module or Parametric Module: Standard module has industry

standard parts. Its corresponding product component can be retrieved from the

existing product database. They are usually associated with a standard part

number. Parametric module requires customization and parameter setting.

The entity Module has a relational link to itself to form a nested module

structure, which allows to capture the hierarchical structure of PFA. Each Module

has an Interface, which provides the requirements or constraints for different module

to assemble them together.

Entity Parameter is associated with Module. Each Module can have more than

one Parameter, which is used to capture different attributes of Module. For example,

a Parameter can be “Color”, “Weight”, etc. Each Parameter entity has attributes

including, domain, value, unit, etc.

Product Entity Product in the PDM is an instantiation of Product Family. It

consists of multiple Component, which is the instance of Module. Corresponding to

31

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3 Product Instance Model

the module structure, Component also has a nested structure and there are compound

components and primitive components. Each Component has attributes including

value, unit, etc, as its properties. When a configuration is complete, the attributes will

be filled with the values so that the product configuration matches the requirements.

The mathematical model of the PDM: Module is the key element in the PDM

that provides mapping relationship between product’s functional view and structural

view. Each module corresponds to a set of components. Variations of final product

configuration can be managed by assigning different components to the modules. As

product family is designed to meet customer requirements, the product family model

must not only capture structural information, it should also represent the functional

view of modules, as the requirements are usually specified as functions of the building

blocks. Therefore, the notation of the module must take into account these issues.

We use the following formalism to represent modules:

Module : (NS, NF,
−−→
NV ,

−→
A,

−−→
CN)

• NS : Structural view of a node;

• NF : Functional view of a node;

•
−−→
NV : Node variants: A vector that captures all the varieties of instances of a

module;

•
−→
A : Attributes list of a module;

•
−−→
CN : Child nodes of a module.

The product data model is implemented into MS SQL database. It is also

represented in the XML document. An example of XML document is shown in

Figure 3.3. It is used for data exchange and integration with other systems. The

product data management system is developed based on the model. It allows user to

manipulate and populate module data through interface.

32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

 <Module>
 <NS>Monitor</NS> <!--node's structural notation-->
 <NF>Display</NF> <!--node's fucntional notation-->
 <ATTLIST> <!--attribute list of the node-->
 <ATT1>Size</ATT1> <!-- attirbute label of the node-->
 <ATT2>Type</ATT2>
 <ATT3>Color</ATT3>
 </ATTLIST>
 <CNLIST> <!--child node list of the node-->
 <CN1>Frame</CN1> <!-- child node label-->
 <CN2>Circuits</CN2>
 </CNLIST>
 <NVLIST> <!-- node variants list-->
 <NV1>Model 221</NV1> <!--one node variant label-->
 <NV2>Model 312</NV2>
 </NVLIST>
</Module>

Figure 3.3: XML representation of module“monitor” in computer configuration

3.4 Cross-Family Product Configuration

In product family architecture, products must inherit the common structure and

features of their corresponding product families. To a certain degree, PFA constrains

the variations of the product instances. How to generate more variety to meet

customers’ personalized needs with minimum resources is a challenge faced by

product-oriented organizations [34]. In order to address this issue, we introduce the

concept of cross family product configuration. Unlike traditional product family

based configuration, where a product instance is configured based on a singular

predefined PFA, cross family product configuration adds feature to allow product

instance to be generated from two or more PFAs. The product instance inherits

a portion of features from the PFAs that it is derived. In cross family product

configuration, requirements specification is generally matched by more than one PFAs.

In order to enable on-the-fly cross family product configuration, it is critical to rapidly

extract the semantics content, which are the rationales of the configuration, from the

existing source. Therefore, product family semantics content should be properly

33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

modeled and a methodology must be proposed to search for semantics in the existing

product families and extract it for configuration.

3.4.1 Cross-Family Configuration Framework

Figure 3.4 shows the framework for integrating our product semantic model into

traditional product family-based configuration. Customer requirements are captured

by the specification model, which is a hierarchical structure that consists of functional

modules and features for a particular product family. The knowledge in the

specification model is derived from customer requirements analysis. The semantic

model is designed to capture the semantic content of the knowledge for product

configuration. It consists of the PFA model and the corresponding constraint model.

The requirements that are properly represented in the specification model can be

quickly matched to its corresponding product family. The semantic model for product

family can be retrieved and used by the CSP solver. A set of final product variants

that satisfy the constraints can then be generated.

However, it turns out that in some cases, the specification model does not

entirely match any particular PFA model. This is the case when cross family

product configuration comes into play. Figure 3.5 shows the framework of the cross

family product configuration. The similarity between the requirements specification

and the available product family features are compared and indexed. A novel

algorithm for tree similarity measure is proposed and illustrated in Section 3.4.3.

Using the algorithm, related product family compositions will be identified and the

corresponding constraints can be extracted and integrated. Post-processing is carried

out by a configuration knowledge engineer to check for completeness of the constraints.

The completed semantic information can then be used by the CSP solver to generate

a set of final product configurations that meet the requirements specification.

34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

Specification Model

PFA Model Constraint Model

Product Variants

CSP solving
Constraint

Satisfaction Problem
(CSP) Solving

Final configuration

Selected Product
Family Architecture

(PFA) and its
Constraint Model

Specifications for
product family

Figure 3.4: Product Family-based Configuration

3.4.2 Semantic Model for Product Family

The semantic model is a core component in the whole configuration process. It

provides the linkage among different system modules, including the requirements

specification and the CSP solver. Therefore, it should capture semantic contents

in different aspects. As shown in Figure 3.6, the model consists of two parts: the

PFA model and the constraint model. A product family is represented using a tree

structure that shows the composition of the product family as well as the structural

relationships among the components. The constraints are represented in the graph-

based model as shown. It can be seen visually that the constraint model is a projection

of the product family tree onto the ground. The model demonstrates the concept of

35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

Specification Model

Product
Variants

CSP
solving

PFA Model
Constraint

Model

PFA Model Constraint Model

Post-
process

Specifications with
domain vocabulary

Semantic Model :
Product Family

Architecture (PFA) &
Constraints

Cross Product Family :
 Model and Constraints :

Extracted according to
specification

Check for
completeness

Constraint
Satisfaction Problem

(CSP) Solving

Final
configuration

Figure 3.5: Cross-Product Family-based Configuration

separating the constraints from the PFA. Their dynamic dependency is maintained

through the individual modules.

3.4.3 Semantics Extraction

In the cross family product configuration, the requirements specification is partially

matched of various product families. In order for the product configuration system to

respond to customers rapidly, it is necessary to extract the useful semantic contents

embodied in existing product family models, as it is the knowledge used in product

variants generation. With semantics modeling, we propose an approach to discover

36

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

Figure 3.6: Hierarchical Structure of Product Data

and extract semantics from existing product families. The approach consists of three

steps:

1. Generate candidate product families by match-making between requirements

specification and product family structures;

2. Integrate the useful semantics from the candidate product families;

3. Perform post-processing to ensure the completeness of the semantics.

Candidate Product Family Extraction In our analysis, the requirement spec-

ifications are represented as product functions. This corresponds to the functional

view; i.e., NF , in our PFA model’s module annotation. As the function can usually

be decomposed into sub-functions, we organize the requirement specifications into

function hierarchical structure. Each function node corresponds to the functional

module in the product family tree structure. In the computer configuration example,

functional requirement “display” matches the module “monitor”. Therefore, we

formally define the match-making criterion as:

37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

Definition 5. A module A of a product family P meets the requirements specification

R when the label of a node n in R matches the function of A; i.e., NF (A) ≡ Label(n),

where R and P are represented as trees. All the child modules of A are said to match

the child nodes of n.

In product configuration, one functional requirement can be matched by multiple

product families, as they may share common modules and the overlapping may occur

during the extraction. Therefore, the eligible product families, referred as candidate

product families, must be evaluated. Weights are assigned to the requirement

specification nodes for the evaluation. The bottom-up weightage assignment is shown

in Figure 3.7. Each leaf node is assigned a weight value 1. The weight of the parent

node is the sum of the weights of the leaf nodes. Nodes at the same level counted

from bottom have the same weight value, which is obtained from the largest weight

value of the node in the same level.

6

3 3

1 1 11

Figure 3.7: Weightage assignment for requirement specification tree

With the above definitions and weight assignment, we propose a search algorithm

as shown in Algorithm 1 to discover candidate product families.

38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.4 Cross-Family Product Configuration

Algorithm 1 Candidate Product Families Generation

Input: (1) Requirement specification tree R, with the functional requirements as the tree nodes:

N1, ..., Nm; (2) Product family set PF1, PF2, ..., PFn;

Output: (1) Modules which matches the requirement specification; (2) Candidate product family

trees where modules are embodied; (3) Weightage for each candidate product family.

1: Searching traverses from root node of R: N1

2: Search matches for N1:

3: for j = 1 to n do

4: Search modules that match Ni in PFj

5: Add PFj to be candidate product family

6: Add weightage WN1 to PFj

7: end for

8: Stop traversing in R once candidate for N1is found

9: Else, traverse down to N2, one of the child nodes of N1

10: Search matches for N2;

11: Stop traversing to the child nodes of N2 if its corresponding candidate PF is found

12: Traverse to sibling nodes and search for matches

13: Stop when all nodes at the same level are matched

14: Traverse to the children of the nodes that are not matched

15: Continue to traverse in R and search in PFs

16: End when no child nodes nor sibling nodes to traverse.

Integrating Candidate Product Families From the algorithm, we obtain

matchings as shown in Figure 3.8. The nodes with underlined node label are traversed

during the search in the search algorithm. The weight of each node is labeled above the

nodes. Node N3 in this case matches two product families PF1 and PF2. Therefore,

integrating all the candidate product families will result in duplication. Thus, we need

to evaluate the candidate product families for node N3. In this case, PF1 matches

N6 and N3, and PF2 matches N3 and N4. Based on the weight assignment, PF2

has an aggregated weightage of 6, which is larger than that of PF1. Therefore, PF2

39

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.5 Product Life Cycle Cost Model

is favored for node N3. Constraint clusters in PF2 will be extracted for N3 and N4

and clusters in PF1 will be extracted for N6.

N1

N2 N3

N7 N8 N9N6

N4

N5 N10 N11

PF1

PF2

1 1 1
1

1
1

1

3 3 3

9

Requirement

Specification Tree

Figure 3.8: Multiple match for one node in a requirement specification tree

In the cross family semantic extraction, the majority of the constraints knowledge

can be extracted. However, the constraints extracted are usually not fully completed.

This requires knowledge engineers to make minor addition to the constraints

generated during product configuration. Manual fine-tuning is necessary.

3.5 Product Life Cycle Cost Model

Product data model provides a fundamental support for product configuration

task. However, the model with only design properties is not enough in current

manufacturing market as customers are also keen in knowing the estimated cost of the

product generated. Therefore, we propose to integrate product lifecycle cost model

into our PDM, so as to equip the configurator with cost estimation capability. We

adopt the activity-based costing approach [28] to develop a product lifecycle cost

model. The lifecycle cost model consists of a set of ABC cost elements, which has

40

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.5 Product Life Cycle Cost Model

its associated activities, cost drivers and resources used. There elements have been

systematically defined in [28]. Figure 3.9 shows a model that integrates the product

data elements with the lifecycle cost model. Figure 3.10 shows the XML document

of an ABC element in the model. Each element has its properties and link with the

activity which can be used to derive the cost through cost drivers and resources.

Figure 3.9: Product Data Model with Cost Information

Figure 3.10: XML Document of Cost Data

41

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.6 Summary

3.6 Summary

Product family concept has been proved to be an effective way of product organization

and product data management for mass customization. Product Family Architecture

(PFA) has been defined and the key features have been discussed. Product Data

Module (PDM) based on the PFA concept has been developed and shown in the ERD

diagram. The entities in the model are described in detail. Computational model is

constructed to model the product family module, which facilitates the requirement

and product features mapping in the configuration task. To address the limitation

of the traditional Product Family concept, cross-family model and its corresponding

algorithm have been proposed to enable the extraction of features from different

product families to meet the customers’ unique requirements. Cross-family product

data model can significantly increase the possibility of product features combination

and enhance the capability of the requirement satisfactions. In addition to the design

data, product lifecycle cost data which is critical in the industry design scenario,

especially in quotation, has been introduced to integrate into the PDM. This makes

the cost estimation of new product configuration possible.

42

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 4

CONSTRAINT MODELING AND ACQUISITION

4.1 Introduction

Product data model has been defined to capture the static information of product

for configuration task. In constraint-based product configuration, constraints are

the knowledge that drive the configuration process. It represents product data

relationships into computational form. Therefore, a constraint model based on the

elements of PDM is defined to capture the product design knowledge, as well as

the requirement specifications. A generic constraint solver can be used to generate

solutions that do not violate the constraints with the available product data. The

solutions generated are considered as product variants that meet the requirements.

They are configurated according to the design knowledge and industry standards.

Thus, in order to properly capture the requirements and design knowledge, the

constraint model has to be defined to capture the semantics to provide direct linkage

with the product data model and is defined according to the constraint solver syntax.

Moreover, as variable ordering and constraint ordering affects the solving efficiency in

CSP, the model has to be properly defined to maximize the solving efficiency. On the

43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

other hand, we also propose a constraint acquisition method based on the existing

product variants, which will be shown and discussed in this chapter.

4.2 Constraint Model

To formalize the product configuration problem as a Constraint-Satisfaction Problem,

constraint model is defined to capture the following semantic contents of constraints:

1. Problem variables: i.e., product modules, involved in the constraints, and

module parameters must be mapped to the nodes in the Product Data Model;

2. Variety of constraint types: they capture various types of configuration rules;

3. Organization of constraints: i.e., Constraint orderings [35], which is optimized

to enhance the CSP solving efficiency.

In product configuration, configuration rules usually need to be presented as N-

ary constraints, where more than two problem variables are involved. However, an

n-ary constraint can be transformed into several equivalent binary constraints [26].

Therefore, we define a graph-based constraint model using binary constraint as the

basic construct. A Constraint cluster is introduced to manage the constraints.

4.2.1 Basic Constraint Construct

Basic constraint construct is the primitive constraint elements. A constraint network

is composed of a number of basic constraint constructs. Figure 4.1 shows the

three basic constructs of the graph-based constraint diagram. Problem variables

are represented as vertices. The edge between the vertices indicates there is a direct

constraint relationship between the two connected variables. The weight of an edge

44

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

shows the number of constraints between the variables. We may interpret the diagram

in Figure 4.1 as logical representations:

(a){X |c1,...,cw
→ Y };

(b){X |c1,...,cw1
→ Y } & {Y |c1,...,cw2

→ X};

(c){(X, Y) |c1,...,cw
}

Note that the Ci (i ∈ {1, . . . , w}) in the representation captures the content of

the constraints between the connected variables. This representation also defines the

dependent and independent variables in a single constraint, thus, facilitating search

space searching in the constraint solving phase.

X Y
w

X Y

w1

w2

X Y
w

Figure 4.1: Basic Constructs of Constraint Diagram

4.2.2 Constraint Clusters

As configuration problem has strong hierarchical data structure, components in a

product structure is not equally important. There are independent and dependent

variables. There are critical elements that have strong relationship with other

elements. On the other hand, there are some elements that have less links with

neighboring elements. As the number of constraints in a product configuration

problem is usually very large, proper management of constraint in the constraint

graph is necessary to ensure the constraint solving efficiency. Observation shows

that constraints relationship among the elements within a product module is denser

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

than between different modules. Therefore, grouping of the elements and their inter-

relationship within a module would be an intuitive and efficient way of clustering

constraints. We introduce the constraint cluster and cluster core to organize and

represent constraints.

Definition 6. A constraint cluster A in a constraint graph embodies module A or

vertex a in the graph, its sub-modules, and the constraints among them; i.e., the

graph edges.

Definition 7. A cluster core a is the parent module of the vertices in the constraint

cluster A.

From the two definitions, cluster core ‘a’ together with other cluster cores in the

same level and their parent module form another constraint cluster. At a particular

cluster, there will be only one cluster core. The size of constraint cluster depends on

the complexity of a product. For example, a computer configuration can be considered

as a constraint cluster. Its entities in the cluster are monitor, CPU and accessearies.

These entities are the cluster cores of their corresponding cluster in their components’

assembly level. The forming process continues until there are no more elements for a

new cluster. Thus, a set of hierarchical constraint clusters is formed. Figure 4.2 shows

the constraint clusters for a constraint graph. Each cluster corresponds to a module

in the product family structure. In Figure 4.2(a), there are three constraint clusters

B, C, D, that are encapsulated by the dashed contour in the figure. Vertices b, c, d are

the cluster cores correspondingly. The constraints between modules are captured by

the edges between the cluster cores. Cluster cores b, c, d and vertex a forms cluster

A in Figure 4.2(b). Cluster A is defined as the parent cluster of clusters B, C, D.

Therefore, the constraint clusters form a tree with vertex a as the root node. The

constraint graph is logically represented as:

{cluster
−→
λ : Xλ |c→ Yλ},

−→
λ = [λ1, λ2, . . . , λn]

46

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

b

d

c

a

B

D

C

b

d

c

a

A

(a) (b)

Figure 4.2: Constraint Clusters

In the expression above, λi refers to each individual constraint cluster. The

significance of the constraint cluster model is two-fold. First, it provides a facility

for the exact mapping between the PFA model and the constraints. The cluster

cores correspond to the non-leaf nodes in the PFA model. Second, the constraints

are ordered with respect to the product family structure. The ordering reflects the

constraint distribution in a product family, where constraint clusters and constraint

hierarchy are formed. Therefore, it will significantly reduce the size of the search

space during the CSP solving and solving efficiency can be significantly enhanced.

4.2.3 Constraint Types

In our constraint model, constraints are divided into two types:

• One type of constraints is the Compatibility Constraint. It is also recognized

as implication relationship among components. One of the constraint example

can be: “IF component A1 is selected for module A and B1 is selected for module

B in the configuration, THEN C1 can be selected for module C and C2 can not

47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

be selected.” It is usually represented as IF-Then rules. It is represented as

follows:

IF A = A1 AND B = B1, THEN C = C1 AND C 6= C2

• Another type of constraints is the Equality Constraint or Inequality

Constraint. It is mainly to be used to represent the relationship among the

module parameters. It is represented in the form of mathematical formula.

Parameters are the variables in the formula. An example of equality constraint

can be seen in the Motor configuration, where motor power equals to the

torque it can provide times the speed. It is represented as Motor.Power =

Torque × Speed.

4.2.4 Example of a Configuration Constraint

We use a residential water-heater configuration problem as an example. The product

we used is as shown in Figure 4.3. The product structure of the water-heater is

presented as in Figure 4.4. It consists of five modules and each has its corresponding

attributes. There are three component variants for each module. The attribute

values for each component are recorded in Table 4.1. The requirements and design

specifications of this water-heater product are described as follow:

• The shell size must be at least two times as large as the capacity

of the tank;

• The electric circuit power rating must be equal to power unit output;

• The number of turning position of the switch must be equal to Levels

of heating rate of the circuit;

48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

Figure 4.3: A Typical Water Heater Configuration

• The shell shape must be oval.(The shell is the white plastic casing

as shown in Figure 4.4);

• Power unit power rating equals to 230V.

With the product information and the specification, we are able to model the

components and attributes into variables and domains, and model the requirements

and specifications into constraints. Note that a variable and its corresponding domain

will be represented as V ariable{Domain}.

Variables:

• Component level variables: Tank, PU, Casing, Circuit, Switch;

• Attribute level variables: Tcapacity, Tmaterial, PUpowerrating, PUoutput,

Ssize, Sshape, Cpowerrating, CLevelNo, Switchno, SwitchType;

Domain of variables:

49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.2 Constraint Model

• Tank {T1, T2, T3}, PU {PU1, PU2, PU3}, Shell {Sh1, Sh2, Sh3}, Circuit {C1,

C2, C3}, Switch {Sw1, Sw2, Sw3};

• Tcapacity {1L to 10L}, Tmaterial{Al, Cu, Fe}, PUpowerrating{220V, 230V},

PUoutput{5V,10V,15V, 20V, 30V, 60V},

Constraints:

• Ssize ≥ 2 x Tcapacity

• PUoutput = Cpowerrating

• CLevelNo = Switchno

• Sshape = Oval

• PUpowerrating = 230V

• SwitchType = disc’

Water
heater

Tank Power Unit Shell Circuit Switch

Capacity Material Power
rating

Output

Size Shape
Power
rating

No. of
positions

No. of
heating

level

Type (continuous
or discrete)

Figure 4.4: Water Heater Product Family Architecture

50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.3 Constraint Satisfaction Problem Solving

Table 4.1: Water Heater Data

Module Comp Parameter Module Comp Parameter
- - Capacity Material - - Power Output

Tank T1 6L Cu Power PU1 220 15V
T2 2L Al PU2 220 10V
T3 1L Cu PU3 230 10V

- - Input Level - - Size Shape
Circuit C1 15V 3 Shell SS1 10 Square

C2 10V 2 SS2 15 Round
C3 5V 3 SS3 5 Oval

Switch SW1 disc’ 2
SW2 cont’ -
SW3 disc’ 3

4.3 Constraint Satisfaction Problem Solving

By modeling the configuration problem as CSP, we can use the generic CSP solving

approach to generate solutions. CSP in AI is usually solved via search paradigm.

Particularly techniques such as backtracking and constraint propagation are usually

used [25]. Backtracking paradigm is an efficient method, where variables are

instantiated sequentially, and the validity of the constraint is checked once the

variables are instantiated. Backtracking is performed to the most recent instantiated

variable when some instantiation does not fit the constraints. Arc Consistency

checking as discussed in Section 2.3.2 is implemented to enhance the efficiency and

eliminated the thrashing caused by backtracking paradigm. In our configurator,

we deploy the open source CSP solver namely Choco [3]. With the configuration

constraints defined, the constraint solver is able to generate a list of product variants,

which does not violate the constraints. Experiment has been conducted on the water

data as shown in Section 4.2.4. The results are shown in Table 4.2. The result

shows that the constraint-based configurator is effective and accurate in solving the

simulated problem. However, the product data used here is relatively simple. As

the product data grows larger and more complex, the solving efficiency may reduce.

51

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

Thus, the computational complexity of the solving algorithm is to be investigated to

determine the upper bound of the capability of the configurator in future.

Table 4.2: Solutions generated from CSP solver for water heater data

Solution Tank Power Circuit Switch Shell
1 T1 PU3 C2 SW1 SS3

2 T2 PU3 C2 SW1 SS3

4.4 Constraint Acquisition

As discussed above, configuration knowledge refers to the constraints in the CSP

problem. In machine learning study, we are interested to discover patterns from a set

of data transactions. Similarly in configuration problem, configuration knowledge

is reflected in the product data. Therefore, we can apply appropriate machine

learning techniques to discover rules from a set of product data. From a number of

product configurations, we should be able to discover the possible relationships among

components and parameters by evaluating their probability of the co-existence in the

same configuration. The constraint discovery targets in mining the configuration

knowledge in a product family. As shown in Figure 4.5, the product variants are

instantiated from product family model, where the constraints are imposed. By

applying the following proposed approach, the constraints are expected to be partially

generated from the variants.

4.4.1 Constraint Acquisition Approach

Association rule mining [51] is a technique to discovery an implication expression of

the form X → Y , where X and Y are disjoint itemsets. It is useful for discovering

interesting relationships hidden in data set, which implies an ideal candidate for

mining constraint in our case. An association rule takes the following form: Given

52

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

Product
family

Constraints

Product
variants

instantiate

Impose

Generate

Figure 4.5: Constraint and PF relationships

itemsets: A{A1, A2, A3}, B{B1, B2, B3}, C{C1, C2, C3}, If A = A1, B = B1, then

C = C1 with probability p.

In association rule mining, support and confidence are commonly used as

indicators to assess the probabilities of rules. Support count (σ) is defined as the

number of datasets for which an association rule covers. For a rule as shown below

i1, i2, ..., in → j1, j2, ..., jn

Support count of the rule is the number of data sets that contain {i1, i2, ..., in, j1, j2, ..., jn}.

Support (s) is usually specified as a percentage of the total number of datasets (T).

It is mathematically expressed as

s =
σ(i1, i2, ..., in, j1, j2, ..., jn)

T

Confidence (c) is defined as the number of instances that the association rule predicts

correctly. It is expressed as a proportion of all instances to which it applies. It can

53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

be represented as

c =
σ(i1, i2, ..., j1, j2, ..., jn)

σ(i1, i2, ..., in)

In association rule mining, rules with sufficient level of support and confidence that

are higher than defined thresholds are considered interested rules.

Common strategy adopted by association rule mining algorithm is to decompose

the problem into two major tasks [51]: (i) Frequent Itemset Generation: to find

all itemsets with support higher than threshold; (ii) Rule Generation: to extract

rules with high confidence from frequent itemset. Algorithms such as Apriori have

been developed to solve the association analysis problem. The association rule is a

probabilistic implication. Therefore, the result obtained will be probabilistic, and

verification by the designers is needed after the discovery.

Method description In the product configuration, the compatibility and incom-

patibility constraints among components are caused by several factors, including the

functional compatibility, parameter value relationship, axiomatic design factor [46],

etc. The following example shows how parameters’ constraint induces components’

compatibility constraints.

• A product consists of A and B: A has parameter ‘Length’ and B has

parameter ‘Width’

• Variables and domains defined as: A {A1, A2}; B {B1, B2}

• A1.Length =10; A2.Length =5; B1.Width=10; B2.Width=5

• Constraints: A.Length + B.Width = 15

From the above problem, we can transverse the attribute constraint into

component constraint as:

54

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

• Constraints: A1 is compatible with B2, incompatible with B1

• A2 is compatible with B1, incompatible with B2

From the above example, we find that parameter constraints usually induce the

component constraints, and it is reflected in the final configuration. Moreover, due

to the standardization in manufacturing, discrete attribute value is of more interest

than continuous value. E.g. Manufacturers product CPU with speed at several

discrete values: 1.6GHz, 1.8GHz, 2.4GHz, instead of a range of continuous speed value

between 1.6GHz to 2.4GHz. Other products such as oil field equipments, people use

discrete temperature class (K, L, N, S, T, ...) instead of continuous temperature

values. Therefore, continuous attribute value is seldom used and automatically

acquiring constraints among attribute values will not be of interest in the constraint

discovery. This, on the other hand, greatly reduces the computational complexity

during rule mining.

Table 4.3: List of transactions for rule mining

Tran Tank Power Circuit Switch Shell
1 T2 PU1 C1 SW3 SS2

2 T1 PU2 C2 SW1 SS3

3 T2 PU3 C3 SW3 SS3

4 T1 PU2 C2 SW1 SS2

5 T3 PU1 C1 SW3 SS1

In our constraint mining, we consider mining only the compatible and incom-

patible constraints among components. A complete configuration which consists of a

list of composite components is treated as one transaction. Table 4.3 shows a list of

transactions for the water-heater configuration.

There are five configurations in Table 4.3. Each item has three possible variants.

From the example, we can find out that the item set T1, PU2, C2, SW1 is a

frequent item set, as it has support of 3/5 provided that the threshold is 50%.

From the frequent item set, implication rules are further generated. This shows

55

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

the standard association rule mining technique applied in a small set of configuration

data. Experiment will be carried out with larger number of data set to generate the

compatibility constraints, i.e. X → Y .

Moreover, we are also interested in the incompatibility constraint among

components, i.e. X →!Y . Same methodology will be used in generating frequent

item set. However, the rule generation step will be different from the above mentioned

method. In the compatibility constraint mining, we measure the probability of

p(X → Y), while in the incompatibility constraint mining, we are looking for

p(X →!Y), which is equal to 1 − p(X → Y). Figure 4.6 shows the mining process.

Frequent
item set

generation

Confidence
counting (p)

>= thresold

Inverse
confidence

counting
(1-p)

>= thresold

Not
considered

as
constraints

Compatible
constraints

Incompatible
constraints

Yes Yes

No

Figure 4.6: Compatibility and incompatibility constraint generation

56

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.4 Constraint Acquisition

4.4.2 Experimental Result

In order to test the accuracy of the rules generated, a set of synthetic transactions

which consists of 46 pieces of product configurations is generated from the configurator

with the following predefined constraints: By applying the method in Section 4.2 upon

the data generated and implementing it in the open source data mining software

Weka [2], with the following setting:

• Class used: weka.assocations.Apriori

• Minimum Confidence: 0.9

• LowerBoundMinSupport: 0.1 with 0.05 increments.

‘Class’ is the predefined association ruling mining library in Weka software.

‘Minium Confidence’ is to tell the system to generate only rules that has more than 0.9

accuracy on the data. ‘LowerBoundMinSupport’ with increments defines a range of

minimum supports. As we will not know the suitable support value for the given data.

By defining a set of supports, we can visually exam the accuracy of the rule generated.

In general, those rules with high ‘confident’ and ‘support’ values are considered to be

more accurate. Top 10 rules are generated in Table 4.4. From the result we see that

60% of the predefined constraints are discovered. It is promising as the experiment

only makes use of 46 sets of product configuration. The date size is considered

relatively small. In practical product configuration, the number of products under a

product family can be hundreds. Moreover, the knowledge generated will be checked

and validated by knowledge engineers after knowledge acquisition. Manual fine tuning

on the knowledge generated will ensure the accuracy.

57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.5 Summary

Table 4.4: Constraint generated from experiment

NO. Rule Confidence Support
1 Tank = T3 → Shell = SS3 90 % 0.457
2 Shell = SS3 → Tank = T3 90 % 0.457
3 Tank = T2 → Shell = SS1 90 % 0.457
4 Shell = SS1 → Tank = T2 90 % 0.457
5 Tank = T3 Cir = C3 → Shell = SS3 90 % 0.196
6 Shell = SS3 Cir = C3 → Tank = T3 80 % 0.196
7 Tank = T3 Cir = C1 → Shell = SS3 90 % 0.196
8 Tank = T3 Switch = SW2 → Shell = SS3 90 % 0.196
9 Shell = SS3 Cir = C1 → Tank = T3 90 % 0.196
10 Cir = C2 → Switch = SW2 70 % 0.196

4.5 Summary

In this chapter, we present two main modules in constructing constraint knowledge

base. One of the module is constraint model, which is developed to capture

configuration knowledge and requirement specifications. The constraint model is

presented in the graph format. Basic elements have been developed and shown. To

enhance the efficiency in constraint solving in the domain problem, the constraint

model is clustered into a hierarchical structure that corresponds to the product

structure. Unnecessary backtracking could be eliminated during the constraint

solving with the model. A water heater data from local manufacturer has been used

to demonstrate the effectiveness of the constraint model. Based on the constraint

model and variables from product data model, a generic constraint solver is deployed

to solve the configuration problem. Another module applies data mining technique

to generate constraints from a set of existing product data. With proper modeling of

the transactional data, experiment on Weka has shown that the proposed approach

is promising in enabling the automatic knowledge generation.

58

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Introduction

To implement the constraint-based configuration approach, a software system based

on our product and constraint model is developed. It is able to capture the

requirement inputs and product data. Product knowledge is captured in a knowledge

base that can be used by the system during the configuration process. Configuration

solving engine is presented to analyze the requirements and generate configurations to

meet the requirements. Task coordination system is developed to control the workflow

from customer input to the downstream design and manufacturing activities. To

enhance the value-add, cost assessment system can be integrated with the product

data management system to enable the cost estimation feature. In this chapter, the

system architecture of the system will be presented. It consists of the key modules

including product data management, constraint management, lifecycle costing, CSP

solver, as well as workflow system, each of which will be illustrated in detail.

59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.2 System Architecture

5.2 System Architecture

Figure 5.1 shows the system architecture that consists of three major system modules.

They are Graphic User Interface (GUI) which handles the user-computer interaction,

Core Logic which is the core components and its interaction with the modeling and

reasoning of the system, and Workflow system which provides coordination of system

flow as well as user control. In the system Core Logic module, system starts with

the raw customer requirements. Customer requirement analysis module (CRA) is

used to interpret the customer requirements into technical requirement specification

with well-defined structure. As discussed in Section 2.6 for Figure 2.3, the CRA

module is not necessary for configuration system for OEM products as customers

usually state the requirements in technical terms. To create and maintain product

data in the system, a product data management system (PDM) is developed. As

shown in the architecture, the PDM starts with the PF Editor, which is the product

family editor. It is used by product engineers to generate product family architecture.

It provides a product template to PDM system. Based on the template, product

data can be generated by populating data into the template. Moreover, the product

family architecture is also the template for the product configuration that will be

generated in the later phase. As the product data model is defined to be generic

and extensible, lifecycle cost data can be integrated into the product data. The cost

data provides data support for the cost assessment module. On the other hand,

the system needs to provide features for knowledge engineer to input and fine tune

product design knowledge into the system. Therefore, a database is created for

storing the constraint-based design knowledge, which is defined and stored according

to our constraint model. A constraint editor is developed for knowledge engineers to

manually input the design knowledge. Constraint parser then encodes the input into

the defined constraint format. With product data, technical requirement specification

and the constraint database, a configuration engine is developed to take these data,

60

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

perform constraint satisfaction solving and generate a set of solutions that meets the

requirements. Iterations are performed through cost assessment module to select the

solutions with the optimal cost.

In the system core logic module, key components including PDM, Configuration

engine, constraint editor and lifecycle cost estimation has been developed and will

be presented in detail in the following sections. As the configuration system involves

different users and has to follow data flow sequence, a workflow system is defined

to coordinate the system flow and control user access. In our system, we develop a

generic workflow system which allows users to define their own activities, sequence

and user access. The system is presented in detail in the following section.

5.3 Product Data Management System

As discussed in 5.2, Product Data Management system allows users to create product

family architecture and populate product data based on the architecture. This section

will discuss in detail the components in the PDM. Screen shots will be shown to

demonstrate the GUI. UML representation of the programming classes will be shown

to reflect the internal programming structrue.

5.3.1 PDM System Architecture

Figure 5.2 shows the system architecture of the PDM application. Presentation layer

is the GUI that provides the interaction between users and the system. The core

module is the ‘business logic layer’. PDM core logic is the key component that

includes data management functions such as ‘file I/O’ and ‘configuration file parser’

which provides interface with the external documents. It also includes functions for

interaction with the database. PFA creator is used to interact with the database

controller to store the product family architecture input from the GUI. The data is

61

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

C
u
s
to

m
e
r

R
e
q
u
ir
e
m

e
n
t

A
n
a
ly

s
is

 (
C

R
A

)

T
e
c
h
n
ic

a
l

S
p
e
c
if
ic

a
ti
o
n
s

C
o
n
s
tr

a
in

t-
b
a
s
e
d

C
o
n
fi
g
u
ra

ti
o
n

E
n
g
in

e

C
o
n
s
tr

a
in

t

P
a
rs

e
r

C
o
s
n
tr

a
in

t

K
n
o
w

le
d
g
e
 b

a
s
e

C
o
n
s
tr

a
in

t
E

d
it
o
r

S
u
it
a
b
le

C
o
n
fi
g
u
ra

ti
o
n
s

F
in

a
l

C
o
n
fi
g
u
ra

ti
o
n

P
F

 E
d
it
o
r

P
ro

d
u
c
t
D

a
ta

M
a
n
a
g
e
m

e
n
t

s
y
s
te

m

P
ro

d
u
c
t
d
a
ta

P
ro

d
u
c
t
fa

m
ily

a
rc

h
it
e
c
tu

re

D
e
s
ig

n

k
n
o
w

le
d
g
e

C
u
s
to

m
e
r

re
q
u
ir
e
m

e
n
ts

L
if
e
c
y
c
le

c
o
s
t
d
a
ta

C
o
s
t

A
s
s
e
s
s
m

e
n
t

G
ra

p
h

ic
 U

s
e

r
In

te
rf

a
c
e

C
o

re
 L

o
g

ic

W
o

rk
 F

lo
w

 S
y
s
te

m

F
ig

u
re

5.
1:

P
ro

d
u
ct

C
on

fi
gu

ra
ti

on
S
y
st

em
A

rc
h
it

ec
tu

re

62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

hierarchical structure where lower level modules are encapsulated in the parent level

module. Data generator handles the product instance data with database controller.

It populates the product data based on the product family architecture and transfer

the formatted data to the database controller. ‘Query handler’ is developed to

handle the product or product family query from GUI. Product data is retrieved

from database through this handler. ‘Document organizer’ is used for associating the

product related documents including 3D drawing to the product data. Documents

can be uploaded and retrieved through this module. ‘Data access layer’ provides

interface for linking MS SQL Database and the ‘business logic layer’. In this layer,

MS SQL database controller is used to parse and transfer action commands from

‘business logic layer’ to the database API. Database wrapper API is used to interface

with the database, so that command input can be simplified and more robust.

5.3.2 Class Diagram of PDM System

The key component of the PDM system development is the application-database

communication. Figure 5.3 shows the UML diagram of the product data, which

is stored in the database as table format. All the classes as shown implement the

ICloneable interface to allow data duplication and reuse. The class diagram fully

implements the hierarchical structure of the product data model defined in Chapter 3.

In Data Access Layer, MS SQL database controller is used to provide an interface

to perform operation on each individual data table that is stored in MS SQL database.

This module contains the classes as shown in Figure 5.4, which has been implemented

in the system. The base class SqlWrapperBase implements the existing interface

ISqlWrapperBase, which is an interface in Database wrapper that interact with

MSSQL database. The child classes as shown contains methods for performing

database query, insertion and retrieval for each individual table.

63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

PDM Core Logic

Presentation Layer

PFA Creator Data Generator Query Handler
Document
Organizer

MSSQL Database Controller

Database Wrapper
API

MSSQLDatabase

File I/O
Configuration File

Parser

Data Access Layer

Business Logic Layer

Product Documents

XML Files

Figure 5.2: PDM System Architecture

5.3.3 PDM System Walk-through

Overview By implementing the system architecture and the class diagrams, a

software prototype has been developed. The system overview is shown in Figure 5.5.

User can start with either creating a new product family architecture or loading one

from existing product document or database. Once activated, a product family editor

window will show up. It allows user to edit product modules and module parameters,

and define parameter value range, etc. Product family architecture information can

be saved to a document or database when user finishes editing. Next step, in order

to create new product data, user can enter into ‘product editor’ window by selecting

the existing product family architecture as template. Alternatively, user is allowed

64

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

Product Family

mListOfCompoundMouldes
mListOfPrimitiveModules
mListOfProducts
mPFChanged
mPFCode
mPFDescription
mPFEditable
mPFName

+Clone
Set/Get Properties

ICloneable

Module

mListOfParams
mModuleCode
mModuleLevel
mModuleName
mModuleParentCode
mModuleType
mPFCode

+ Clone
Set/Get Properties

ICloneable

PrimitiveModule

mListOfComponentMo
dels

+ Clone

CompoundModule

mListOfModules

+ Clone

ModuleParam

Index
MaxValue
MinValue
ParamName
ParamRangeValues
ParamUnit
ParamValue =DEFAULT

+ Clone
Set/Get Properties

Product

mListOfComponents
mPFCode
mProductCode
mProductName
index

+Clone
Set/Get Properties

ICloneable

ComponentModel

mComponentCode
mComponentName
mCost
mListOfComponentFeatures
mModuleCode
mProductCode

+ set/get properties

ComponentFeature

mFeatureName
mFeatureRangeValue
s
mFeatureUnit
mFeatureValue

+ set/get properties.

.

Figure 5.3: Class Diagram of Product Data Model

to load existing product data to view or edit. In the ‘product editor’, user can edit

module information, populate data for module and module parameters. Moreover,

user can upload product drawings, documents to associate with the product data.

This is usually for product designer where 3D product drawing is necessary. A 3D

viewer is developed and integrated into the system to allow users to view common

3D drawing, including SolidWorks, AutoCad, ProE, etc. All the product data can

be saved into product documents or database. The GUI for the software components

will be shown in the following section.

PF Editor Figure 5.6 shows the GUI of product family editor. A tree structure

that displays the product family skeleton is shown in the left panel. User can

perform regular module operation by right clicking to activate the context panel.

Product family’s detail module and parameter information is shown in the right panel.

From the right panel, modules and parameters are represented in a table structure.

Attributes such as module type, module code and so on can be manually keyed in and

65

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

SqlWrapperBase

m_autoCloseConnection
m_connection
m_transaction

set/get properties

ISqlWrapperBase

Component_feature
_table (abstract)

CountFeatures
InsertUpdate
GetData
RetrieveCompFeatures
DeleteCompFeatures

Component
_model (abstract)

CountComponents
InsertUpdate
GetData
RetrieveComponents
RetrieveComponent
DeleteComponent
DeleteComponents

File_table
(abstract)

InsertUpdate
RetrieveFile

Module_Param
_table (abstract)

CountParams
InsertUpdate
GetData
RetrieveParam
DeleteParam
RetrieveParams

Product_table
(abstract)

CountProducts
InsertUpdate
GetData
RetrieveProducts
RetrieveProduct
DeleteProducts
DeleteProduct
AddProduct

Module_table
(abstract)

CountTables
InsertUpdate
GetData
RetrieveModules
RetrieveModule(ModuleCode)
RetrieveModule(ModuleCode,
PFCode, ModuleParentCode)
RetrieveModule(PFCode)
RetrieveModuleCode

Product_family
_table (abstract)

CountPF
InsertUpdate
GetData
RetrievePF
DeletePF

-

.

Figure 5.4: MSSQL Controller Class Diagram

save. In the menu bar, shortcuts for the operations is created. User can open or load

product family from database by using the combo box as shown. ‘PF editor’ allows

user to view and upload product related documents to the system. Figure 5.7 shows

the 3D drawing display for the modules. The 3D viewer provides simple manipulation

tool for user to rotate and slide the drawings to enhance visibility.

Product Data Editor Figure 5.8 shows the starting dialog while creating a

new product. User is prompted to select a product family architecture as product

template. Product Data Editor is shown in Figure 5.9. It is similar to product

66

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

C
re

a
t
P

F

L
o
a
d
 P

F
 f
ro

m
 f
ile

o
r

d
a
ta

b
a
s
e

P
F

 E
d
it
o
r

P
ro

d
u
c
t

D
a
ta

b
a
s
e

S
e
le

c
t
P

F

C
re

a
te

 P
ro

d
u
c
t

A
d
d
/e

d
it
 m

o
d
u
le

s
,

p
a
ra

m
e
te

r,
 p

a
ra

m
e
te

r

v
a
lu

e
 r

a
n
g
e

P
F
A

P
ro

d
u
c
t
D

a
ta

L
o
a
d
 P

ro
d
u
c
t

D
a
ta

P
ro

d
u
c
t
E

d
it
o
r

S
e
le

c
t
m

o
d
u
le

s
,

p
o
p
u
la

te
 m

o
d
u
le

d
a
ta

,
p
a
ra

m
e
te

r
v
a
lu

e
s
,

u
p
lo

a
d
 p

ro
u
d
c
t
d
o
c
u
m

e
n
ts

P
ro

d
u
c
t
d
a
ta

d
o
c
u
m

e
n
t

3
D

 v
ie

w
e
r

F
ig

u
re

5.
5:

P
ro

d
u
ct

C
on

fi
gu

ra
ti

on
S
y
st

em
A

rc
h
it

ec
tu

re

67

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.3 Product Data Management System

Figure 5.6: Product Family Editor GUI

68

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.4 Constraint Manager

Figure 5.7: 3D CAD Drawing Display

family editor. Product hierarchy is presented in the left panel. Detail component

information can be viewed or edited in the right panel.

5.4 Constraint Manager

Another key component in product configuration system is the constraint manage-

ment module. It consists of the constraint editor and constraint database. With

the theoretical support discussed in Chapter 4, constraint model can be developed

into the ERD diagram as shown in Figure 5.10. In the figure, constraint consists of

rule and equation. Both of the two types of constraints contain elements called

expression. The expression is a general entity which covers various kinds of

69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.4 Constraint Manager

Figure 5.8: Starting Dialog for Open a Product Configuration

constraint representation. For example, “Power = Torque × Speed” is a binary

expression, which consists of expression “Power” and expression “Torque × Speed”,

with an operator“=”. With the constraint model properly defined with the database,

a constraint editor GUI has been developed and the GUI is shown in Figure 5.11.

In the top portion of the dialog, buttons are used for the operations for rules and

operators of equations are also listed in the interface. User can select the existing

modules to add to the constraint by selecting the combo box. Constraints are updated

and shown in the text box in the lower portion. They can be saved to database and

XML documents, which will be used for configuration in the later phase.

70

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.4 Constraint Manager

Figure 5.9: Product Data Editor GUI

71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.4 Constraint Manager

Figure 5.10: Constraint Data Model

72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 Product Configuration Engine

Figure 5.11: Constraint Editor GUI

5.5 Product Configuration Engine

PDM system and constraint manager is defined to interface with configuration engine

as shown in the system architecture in Figure 5.1. As discussed, configuration engine

is based on the CSP problem solving approach. Thus, to interface with PDM and

constraint manager, variables and constraints are defined according to the CSP

syntax. Figure 5.12 shows the steps in programming the configuration engine. A

configuration problem is defined in the programming environment. Variables are

defined and included in the problem. Different types of variables including integer,

continuous value, set and enumeration can be defined. Next, variable domain has to

be defined based on the type of variable. Constraint is then defined. It will also need

73

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 Product Configuration Engine

to be included into the problem. Function post is used to post a defined constraint

into the problem. With all necessary constraints and variables defined, function

Problem.SolveAll() in CSP solver can be called to generate possible solutions.

Define a problem:

private static Problem ConfProb;

Define variables:
IntDomainVar Var_A;

RealVar Var_B;
BoundIntVar Var_C;

SetVar Var_D;

Define Variable Domain:
Var_A = ConfProb.MakeIntDomainVar(int domain);

Var_B = ConfProb.MakeRealVar(min,max);
Var_C = ConfProb.MakeBoundIntVar(int min, int max);

Var_D = ConfProb.MakeSetVar(Var_X, Var_Y);

Define Constraints:
ConfProb.post(Rules/eEquations);

e.g. ConfProb.post(ConfProb.eq(ConfProb.plus(Var_A, Var_C), 10));
ConfProb.post(ConfProb.ifthen(Var_A=1, Var_C=10),);

Choco CSP Solver
ConfProb.SolveAll();

ArrayList Solutions= ConfProb.getSolver().getSearchSolver().solutions;

Figure 5.12: Configuration Engine Programming Flowchart

Configuration Engine UML In this implementation, we focus on modeling

the configuration problem into CSP solving paradigm. Conventional CSP solving

approaches including backtracking and consistency check are adopted in the system.

Thus, we deploy the Java-based CSP solving library choco to be the fundamental

74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 Product Configuration Engine

solver. The class diagram in Figure 5.13 shows the major classes in modeling the

configuration problem with the library. ConfigEng is our application class that

consists of the main function. In this class, the four-step modeling as discussed earlier

is coded. To define a configuration problem, the problem class is instantiated. This

class has the fields including variables and constraints within this problem. Methods

are called out to include variables into the problem. Different types of variables are

separated by using three different methods. They are makeIntVar(), which adds

integer domain variables; makeRealVar(), which adds continuous domain variables;

makeSetVar(), which add variables, of which value is a set. Similarly, for function

post(), which add constraints to the problem, similar steps are taken. Interfaces for

Constraint and Var are defined to enable the tracking among problem, constraint

and variable.

Problem

var
constraint

makeIntVar();
makeRealVar();
makeSetVar();
post(constraints)
solve();
solveAll();
getSolver();
set/get Properties

Solution

intVarValue
realVarValue
setVarValue
problem

getIntVarValue()
getRealVarValue()
getSetVarValue()
getProblem()

Solver

solution
firstSolution

generateSearchSolver()
lauch()
getSearchSolver()

ConfigEng

ConfigProb
mVariables[]
mConstraints

+ Main()

AbstractSolver

nbSolution
nextMove
currentTraceIndex

newTreeNode()
newTreeSearch()
endTreeNode()
endTreeSearch()
nextSolution()
recordSolution()
run()
propogate()

<<Constraint>>

clone()
setVar()
getVar()
isSatisfied()

<<Var>>

clone()
setConstraint()
getConstraint()
isInstantiated()
getVarIndex()

<<uses>>

.

Figure 5.13: UML Diagram of Configuration Solver

75

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.6 Life cycle Cost Estimation

In the problem class, function solveAll() and solve() are used to activate the

solver and launch the CSP solving process with all or single solution respectively.

Once solving process finished, function getSolver() can be called to trigger the

solutions obtained. Class solver is instantiated in the main class. It has fields

solution that record the solutions of the problem. The variable solution is

instantiated from the solution class. It has fields for capturing the values for different

types of variables. GenerateSearchSolver() is defined to set the search parameters

before solving starts. Solving process kicks off when Launch() is called. It also

inherit from the AbstractSolver class. This class is used to define detail parameters

for the tree search process. It has functions that define the starting and finishing tree

search nodes and paths. Function propagate() is called to trigger the Constraint

Propagation functions in the library, where different consistency check approaches

have been implemented.

5.6 Life cycle Cost Estimation

To implement cost estimation for the product configuration, cost data structure needs

to be defined to capture the cost incurred in different activities within the product

life cycle. In our work, we have defined cost data model similar to the product data

structure. As shown in Figure 5.14, cost estimation module is conducted concurrently

with the PDM system. Life cycle cost is modeled into a two layer hierarchy including

the cost template and cost data. Cost template is associated with product family

architecture, which provides general cost drivers and cost elements without exact

data. Product cost data can be populated into the template according to the product

configuration selected. For example, two products under the same product family

shares the same cost template during the estimation phase, while the output cost

data are different.

76

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.6 Life cycle Cost Estimation

PF Editor

Product Editor

Product Family
Architecture

Product Design
data

Cost Template
Editor

Cost Data
Generator

PF cost
template

Product Cost
Data

Apply to product

Figure 5.14: Implementation of Lifecycle Cost Assessment with PDM

Figure 5.15 shows the abstract model of product life cycle cost. The cost model

consists of four major elements that represents the hierarchy of the life cycle, i.e., a

lifecycle can be broken down into different stages, including design, manufacturing,

recycle, etc. Each stage consists of different processes, such as machining process and

assembly process in manufacturing stage. Each stage contains several activities, such

as milling or turning in machining process. Each activity has one or more cost drivers.

For example, in milling activity, cost driver is the milling hour and the resource used is

labour, machine and raw material. Each of the resource has its quantity measurement

for cost. The cost model is designed to adhere to the practical life cycle break down

structure. It is proven to be equipped with better cost accuracy.

77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.7 Workflow System

ProductFamily

LCC_Entity

Cost
StartDate
EndDate

getCostSum()

CostDriver

mID
mName
mActivity
mResource

getCostSum()

Resource

mID
mName
mQuantity
mUnitCost

Activity

mID
mName
mListOfProcess

Process

mID
mName
mListOfActivity

LCCTemplate

mID
mName
mListOfStage

Stage

mID
mName
mListOfProcess

-

.

Figure 5.15: UML Diagram of Abstract Lifecycle Cost Model

5.7 Workflow System

To coordinate the whole configuration process, a workflow system is developed to

define task sequence and assign users. In order to enhance the adaptability of the

system for future development and application, the system is defined as a generic

stand-alone application. It allows users to create activities with properties and logic

sequence. The output is an XML file that can be used by web-based as well as

windows-based configuration application. Figure 5.16 shows the basic GUI of the

workflow system. Left panel is the toolbox that contains the elements such as activity

entity, logic sequence control element, etc. User is allowed to drag and drop the items

from toolbox to the main design panel. In the figure, starting and ending nodes are

defined. Activities and linkages are shown in-between. Entity properties can be input

from the properties panel on the right. It enables user to assign a personnel to be

responsible for each activity. The workflow system is useful for large manufacturing

system where tasks are divided into fine details and the number of personnel involved

78

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.8 Summary

is large. At the initial development of the configuration system, the workflow system

has basic main functions, which can be further enriched in the customization for

application in client system.

Figure 5.16: Workflow Editor GUI

5.8 Summary

A constraint-based product configuration system has been developed and presented

in this chapter. A system architecture is shown, which consists of main modules

including product data management system (PDM), Constraint Manager, lifecycle

cost estimator and configuration engine. PDM is developed based on the product

data model defined in Chapter 3. Two layers including product family architecture

and product data structure has been well developed into the system. Constraint

79

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.8 Summary

manager is developed to provide interface for user to input design knowledge and

store them according to our defined syntax. Configuration solving engine deploys

choco CSP solver library using the product data and design knowledge to generate

feasible solutions. Abstract product lifecycle cost model is presented to model cost

based on breakdown activities. Moreover, a generic workflow system is shown

to demonstrate the basic feature of the task management and user control for

configuration application in large and complicated organization. To summarize, a

configuration system has been developed based on the CSP paradigm. Enhancements

have been incorporated to increase the value-add of the system.

80

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions

Mass customization has been recognized as the trend in the manufacturing sector

today. Effective and efficient product configuration tool is the key enabler as it

enables companies to generate product variants that meet customer requirements

rapidly and provide more product information at the early stages.

In this work, we have given an intensive review on the state-of-the-art config-

uration methodologies. Constraint-based product configuration approach has been

considered to be one of the successful way of modeling configuration problem. We

focus on researching into the issues in constraint-based product configuration. A

overall framework of the configuration system has been proposed. The software

prototype for the product data management has been developed. Our research

scope covers the different stages in the configuration, including problem modeling

and solving phases.

Product data model that is based on the product family concept has been

developed for our application and the product lifecycle cost estimation was brought

81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.1 Conclusions

out to be integrated with the design data model. An enhancement on the traditional

product family based data model has been proposed [21] and related configuration

algorithm is presented. With the product data model as support, constraint model

was constructed to model the design knowledge and the requirement specifications.

To ensure consistency between the product data model and constraint model, a

direct mapping relationship was defined. We have systematically defined the syntax

and semantics of the constraints. A generic CSP solver was deployed to generate

solutions based on the defined constraints and product data. By populating data

into the product data model and constraint model in the application, the CSP solver

acting as basic configuration engine have been developed which is able to generate

the solutions that meets the requirements without violating the design constraints.

In addition to the proposed approach and system development, we also researched

into the factors that affects the constraint solving efficiency. From the literature,

one of the factors that affect the efficiency is the variable and constraint ordering in

the problem. As configuration problem has strong variable structures, we propose

a variable and constraint ordering heuristics to increase the CSP solving efficiency

particularly for configuration problem.

On the other aspect of product configuration research, knowledge acquisition is

one of the factor that affects a knowledge-based system’s performance and acceptance.

Manual input of the design knowledge is time consuming and error-prone. We propose

an automatic constraint acquisition approach [20] based on existing configuration

data. Association rule mining technique is deployed. Experiment has shown that the

approach is promising and is able to assist knowledge engineer during the knowledge

input process. To realize the constraint-based product configuration capability, a

software system consisting of PDM, Constraint Manager, life cycle cost estimator

and configuration engine is developed. A basic generic workflow system is developed

82

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.1 Conclusions

to control the task sequence and user access for large configuration system. To

summarized, the thesis has made the contributions includes:

• A comprehensive study and summary on the existing research work in product

configuration.

• Cross-family product data model, a novel product data model, is proposed

to enhance the capability in capturing the variety of product data. Product

life cycle cost model is proposed to integrate with product data to allow cost

estimation.

• Constraint model that is able to enhance the CSP solving efficiency for

configuration problem is developed to capture the design knowledge and

requirement specifications.

• A novel constraint acquisition approach is proposed and experiment is con-

ducted to demonstrate its effectiveness.

• A software system for constraint-based product configuration is developed.

Water heater data from local manufacturer has been successfully tested on the

system.

• Other system add-ons including Workflow system and 3D product visualization

are implemented to the system.

Although the current system is a success, there are several issues can be looked into

in the future work.

83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 Future Work

6.2 Future Work

• In this configuration system, we focus on the application for OEM manufacturer,

where requirements are stated in technical terms. However, for consumer prod-

uct configuration, requirements are usually given by customers, which is always

stated in subjective terms, such as ”good quality”, ”light weight”. Therefore,

a customer requirements analyzer (CRA) that interprets the requirements into

technical terms is necessary to integrate with the configuration system. The

challenge is in capturing the variety and ambiguity of customer requirements.

Knowledge base is needed for static mapping between requirements and

technical terms. For dynamic mapping, machine learning approach may be

deployed to discover mapping from existing transactions.

• Although knowledge acquisition has been proposed and experimented to show

its significance, it is still in the conceptual stage. Moreover, as product design

involves different factors, full automation of the knowledge acquisition is not

feasible. Therefore, automation knowledge acquisition can be applied in the

process of knowledge input, i.e., it can be used as an assistance to the constraint

editor. This in turn helps in the area of human-computer interaction. The

challenge is in the system user interface design. Proper integration between

knowledge acquisition module and user input needs to be developed. User

study has to be conducted to ensure the user-friendliness of the system. On the

other hand, data mining techniques can be further researched to enhance the

accuracy of the rule generated.

• The current system is a generic configuration system. It can be customized

to enhance the feature for specification domain application. The research

in this thesis is focusing on the product life cycle based configuration. The

configuration activity is within an enterprise. Supply chain management

84

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 Future Work

techniques and systems can be researched and integrated with the current

system to bring in more user entities. It is to realize the network configuration,

which allows more seamless inter-enterprise collaboration and enhances resource

sharing. When more people and processes become involved in the configuration

process, more sophisticated workflow feature has to be developed. Security of

the data of the system will also be a major concern in the practical application.

To maximize the system functional sharing and module reuse, the system can

be further developed into Web Services for next generation application.

85

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

AUTHOR’S PUBLICATIONS

Journal Paper

1. Y. L. Huang, H. Liu, W. K. Ng, W. F. Lu, B. Song, X. Li, “Toward

Automatically Generating Constraint-based Configuration Knowledge”, to

appear in International Journal of Manufacturing Technology

Conference Papers

1. Y. L. Huang, H. Liu, W. K. Ng, W. F. Lu, B. Song, X. Li, “Toward Automat-

ically Generating Constraint-based Configuration Knowledge”, International

Conference on Manufacturing Automation (ICMA07), May 2007, [Highly

Recommended Papers Award]

2. Y. L. Huang, W. K. Ng, H. Liu, W. F. Lu, B. Song, X. Lin, “Semantic Mod-

eling and Extraction for Cross Family Product Configuration”, International

Conference on Service Systems and Service Management (ICSSSM), Jun 2007

3. H. Liu, Y. L. Huang, W. K. Ng, B. Song, X. Li and W. F. Lu, “Deriving

Configuration Knowledge and Evaluating Product Variants through Intelligent

Techniques”, Sixth International Conference on Information, Communications

and Signal Processing (ICICS 2007), Singapore, December 2007

86

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[1] Jess rule language and rule engine. http://herzberg.ca.sandia.gov, Accessed in

Feb 2007.

[2] Weka, data mining toolkit. http://www.cs.waikato.ac.nz/ml/weka, Accessed in

Feb 2007.

[3] Choco constraint satisfaction toolkit. http://choco.sourceforge.net, Accessed in

Jan 2007.

[4] Drool rule language. http://labs.jboss.com/drools, Accessed in Jan 2007.

[5] M. Aldanondo, K. H. Hamou, G. Moynard, and J. Lamothe. Mass customization

and configuration: Requirement analysis and constraint based modeling

propositions. Integrated Computer-Aided Engineering, 10(2):177 – 189, 2003.

[6] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, R. Schalfer, and M. Zanker.

Intelligent interfaces for distributed web-based product and service configuration.

Web Intelligence, pages 184–188, 2001.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Schneider. The

Description Logic Handbook: Theory, Implementation and Applications. 2003.

87

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[8] F. Bacchus and P. V. Run. Dynamic variable ordering in csps. In Principles and

Practice of Constraint Programming - CP ’95, pages 258 – 75, Cassis, France,

1995.

[9] V. E. Barker, D. E. O’Connor, J. Bachant, and E. Soloway. Expert systems

for configuration at digital: Xcon and beyond. Communications of the ACM,

32(3):298 – 317, 1989.

[10] C. Bessiere, E. C. Freuder, and J. C. Regin. Using constraint metaknowledge

to reduce arc consistency computation. Artificial Intelligence, 107(1):128 – 148,

1999.

[11] R. W. Bourke. Product configurators: Key enablers for mass customization.

Configuration, A Special Report, 2000.

[12] Y. Chen. Improving han and lee’s path consistency algorithm. In Tools for

Artificial Intelligence (TAI), pages 346 – 350, San Jose, CA, USA, 1992.

[13] K. L. Choy, W. B. Lee, C. W. Lau, D. Lu, and V. Lo. Design of

an intelligent supplier relationship management system for new product

development. International Journal of Computer Integrated Manufacturing,

17(8):692 – 715, 2004.

[14] X. Du, J. Jiao, and M. M. Tseng. Product family modeling and design

support: An approach based on graph rewriting systems. (AI EDAM) Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 16(2):103 –

120, 2002.

[15] R. Duray, P. T. Ward, G. W. Milligan, and W. L. Berry. Approaches to mass

customization: configurations and empirical validation. Journal of Operations

Management, 18(6):605–625, 2000.

88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[16] N. Franke and F. T. Piller. Configuration toolkits for mass customization:

Setting a research agenda. International Journal of Entrepreneurship and

Innovation Management, 2003.

[17] M. Golden, W. R. Siemens, and J. C. Ferguson. What’s wrong with rules?

In Proceeding of WESTEX, IEEE Computer Society Press, pages 162 – 165,

Anaheim, CA, USA, 1986.

[18] M. Heinrich and E. W. Jungst. A resource-based paradigm for the configuring

of technical systems from modular components. In Proceedings. Seventh IEEE

Conference on Artificial Intelligence Applications, pages 257 – 64, Miami Beach,

FL, USA, 1991.

[19] A. Heylighen and H. Neuckermans. A case base of case-based design tools for

architecture. CAD Computer Aided Design, 33(14):1111 – 1122, 2001.

[20] Y. L. Huang, H. Liu, W. K. Ng, W. F. Lu, B. Song, and X. Li.

Towards automatically generating constraint-based configuration knowledge.

International Conference on Manufacturing Automation (ICMA), Singapore,

2007.

[21] Y. L. Huang, W. K. Ng, H. Liu, W. F. Lu, B. Song, and X. Li. Semantic

modeling and extraction for cross-family product configuration. In International

Conference on Service Systems and Service Management, 2007.

[22] R. Hull. Mass customization: the new frontier in business competition. Research

and Development Management, 25(2), 1995.

[23] L. Hvam. A multi-perspective approach for the design of product configuration

systems. http://www.productmodels.org.

89

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[24] A. Kumar. Mass customization: metrics and modularity. International Journal

of Flexible Manufacturing Systems, 16(4):287 – 311, 2004.

[25] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI

Magazine, 13(1):32 – 44, Spring 1992.

[26] J. Li. A novel approach to computer-aided configuration design based on

constraint satisfaction paradigm. Master Thesis, Mechanical Engineering,

University of Saskatchewan, 2005.

[27] T. W. Liao, Z. M. Zhang, and C. R. Mount. A case-based reasoning

system for identifying failure mechanisms. Engineering Applications of Artificial

Intelligence, 13(2):199 – 213, 2000.

[28] H. Liu, V. Gopalkrishnan, W. K. Ng, B. Song, and X. Li. Estimating product

lifecycle cost using a hybrid approach. The Second International Conference on

Digital Information Management, 2007.

[29] J. McDermott. R1: a rule-based configurer of computer systems. Artificial

Intelligence, 19(1):39 – 88, 1982.

[30] D. L. McGuinness and A. T. Borgida. Explaining subsumption in description

logics. In Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence(IJCAI), volume vol.1, pages 816 – 21, 1995.

[31] J. W. Meredith and B. M. Kleiner. Empirical design of computer support

and staffing in concurrent engineering. Human Factors and Ergonomics in

Manufacturing, 16(2):177 – 193, 2006.

[32] S. Mittal and F. Frayman. Towards a generic model of configuration tasks.

In Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence (IJCAI), pages 1395 – 1401, Detroit, MI, USA, 1989.

90

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[33] J. Nanda, H. J. Thevenot, and T. W. Simpson. Product family design knowledge

representation, integration, and reuse. In IEEE International Conference on

Information Reuse and Integration, pages 32–37, 2005.

[34] J. Nanda, H. J. Thevenot, and T. W. Simpson. Product family design knowledge

representation, integration, and reuse. Proceedings of the IEEE International

Conference on Information Reuse and Integration, pages 32 – 37, 2005.

[35] N. Narodytska and T. Walsh. Constraint and variable-ordering heuristics for

compiling configuration problems. IEEE Intelligent Systems, 22(1):78 – 81, 2007.

[36] H. Nunez, M. Marre, U. Cortes, J. Comas, M. Martinez, I. Roda, and M. Poch.

A comparative study on the use of similarity measures in case-based reasoning

to improve the classification of environmental system situations. Environmental

Modelling and Software, 2003.

[37] H. R. Osborne and D. G. Bridge. A case base similarity framework. In Advances

in Case-Based Reasoning. Third European Workshop, EWCBR-96. Proceedings,

pages 309 – 23, Lausanne, Switzerland, 1996.

[38] D. Sabin and E. C. Freuder. Configuration as composite constraint satisfaction.

In Proceedings. Artificial Intelligence and Manufacturing Research Planning

Workshop, pages 153 – 61, Albuquerque, NM, USA, 1996.

[39] D. Sabin and R. Weigel. Product configuration frameworks-a survey. IEEE

Intelligent Systems, pages 42 – 49, 1998.

[40] K. Saenchai, L. Benedicenti, and R. Paranjape. Solving dynamic distributed

constraint satisfaction problems with a modified weak-commitment search

algorithm. In Lecture Notes in Artificial Intelligence, Utrecht, Netherlands, 2005.

91

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[41] T. Sato. Algorithm for intelligent backtracking. In Proceedings of RIMS

Symposium on Software Science and Engineering, pages 88 – 98, 1983.

[42] E. Shehab and H. Abdalla. An intelligent knowledge-based system for product

cost modelling. International Journal of Advanced Manufacturing Technology,

19(1), 2002.

[43] G. D. Silveiraand, D. Borenstein, and F. S. Fogliatto. Mass customization:

Literature review and research directions. International Journal of Production

Economics, 72(1):1 – 13, 2001.

[44] B. Squirel, S. Brown, J. Readman, and J. Bessant. The impact of mass

customisation on manufacturing trade-offs. International Journal of Production

and Operations Management, 15(1):10–21, 2006.

[45] M. Stumptner and A. Haselbock. A generative constraint formalism for

configuration problems. In Third Congress of the Italian Association for Artificial

Intelligence, AI*IA, pages 302 – 13, Torino, Italy, 1993.

[46] N. P. Suh. Design axioms and quality control. Robotics and Computer-Integrated

Manufacturing, 9(4-5):367–376, 1992.

[47] M. M. Tseng and J. Jiao. Concurrent engineering for mass customization.

Business Process Management Journal, 4(1):10–24, 1998.

[48] M. M. Tseng and J. Jiao. Mass customization. Handbook of Industrial

Engineering, Technology and Operation Management, 2001.

[49] C. M. Vong, T. P. Leung, and P. K. Wong. Case-based reasoning and adaptation

in hydraulic production machine design. Engineering Applications of Artificial

Intelligence, 15(6):567 – 85, 2002.

92

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[50] I. F. Weustink, E. Brinke, A. H. Streppel, and H. J. Kals. Generic framework

for cost estimation and cost control in product design. Journal of Materials

Processing Technology, 103(1):141 – 148, 2000.

[51] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. 1999.

[52] K. Wolter, L. Hotz, and T. Krebs. Model-based configuration support for

software product families. Mass Customization: Challenges and Solutions, 2006.

[53] H. Xie, P. Henderson, and M. Kernahan. Modelling and solving engineering

product configuration problems by constraint satisfaction. International Journal

of Production Research, 43(20):4455 – 4469, 2005.

[54] X. Xu, J. L. Chen, and S. Q. Xie. Framework of a product lifecycle costing

system. Journal of Computing and Information Science in Engineering, 6(1):69

– 77, 2006.

[55] W. Zhang and R. E. Korf. Depth-first vs. best-first search: new results. In

Proceedings of the Eleventh National Conference on Artificial Intelligence, pages

769 – 775, 1993.

93

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

