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Introduction.-e early detection and diagnosis of leukemia, i.e., the precise differentiation of malignant leukocytes with minimum
costs in the early stages of the disease, is a major problem in the domain of disease diagnosis. Despite the high prevalence of
leukemia, there is a shortage of flow cytometry equipment, and the methods available at laboratory diagnostic centers are time-
consuming. Motivated by the capabilities of machine learning (machine learning (ML)) in disease diagnosis, the present sys-
tematic review was conducted to review the studies aiming to discover and classify leukemia by using machine learning.Methods.
A systematic search in four databases (PubMed, Scopus, Web of Science, and ScienceDirect) and Google Scholar was performed
via a search strategy using Machine Learning (ML), leukemia, peripheral blood smear (PBS) image, detection, diagnosis, and
classification as the keywords. Initially, 116 articles were retrieved. After applying the inclusion and exclusion criteria, 16 articles
remained as the population of the study. Results. -is review study presents a comprehensive and systematic view of the status of
all published ML-based leukemia detection and classification models that process PBS images. -e average accuracy of the ML
methods applied in PBS image analysis to detect leukemia was >97%, indicating that the use of ML could lead to extraordinary
outcomes in leukemia detection from PBS images. Among all ML techniques, deep learning (DL) achieved higher precision and
sensitivity in detecting different cases of leukemia, compared to its precedents. ML has many applications in analyzing different
types of leukemia images, but the use of ML algorithms to detect acute lymphoblastic leukemia (ALL) has attracted the greatest
attention in the fields of hematology and artificial intelligence. Conclusion. Using the ML method to process leukemia smear
images can improve accuracy, reduce diagnosis time, and provide faster, cheaper, and safer diagnostic services. In addition to the
current diagnostic methods, clinical and laboratory experts can also adopt ML methods in laboratory applications and tools.

1. Introduction

Among all types of blood cancers, leukemia is the most
common form of malignancy in different age groups, es-
pecially in children. -is abnormal phenomenon is caused
by excessive proliferation and immature growth of blood

cells, which can damage red blood cells, bone marrow, and
the defense system. In the United States, more than 3.5% of
new cancer cases are leukemia, and in 2018 alone, this
country reported more than 60,000 new cases of this cancer.
Malignant white blood cells, or lymphoblast, in the blood
reach other organs, such as the spleen, brain, liver, and
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kidneys, and then metastasize to important tissues of the
body [1–3]. -ere are different types of leukemia that he-
matologists in cell transplant laboratories can differentiate/
diagnose based on microscopic images. If the slide is cor-
rectly stained, some types of leukemia can be more easily
identified and distinguished than others, but more equip-
ment is needed to determine underlying leukemia. Figure 1
shows the stained slides of the most common different types
of leukemia.

An early diagnosis of leukemia has always been a
challenge to researchers, doctors, and hematologists. En-
largement of lymph nodes, pallor, fever, and weight loss are
the symptoms of leukemia, but they can also be associated
with other diseases. Leukemia diagnosis is difficult in its
early stages due to the mild nature of the symptoms. -e
most common leukemia diagnosis method is the micro-
scopic evaluation of PBS, but the golden standard for leu-
kemia diagnosis only involves taking and analyzing bone
marrow samples [3–6].

In the last two decades, various studies have adopted
machine learning (ML) and computer-aided diagnostic
methods for laboratory image analysis, hoping to overcome
the limitations of a late leukemia diagnosis and determine its
subgroups.-ese studies have analyzed blood smears images
for diagnosing, differentiating, and counting the cells in
various types of leukemia [7, 8].

ML is a well-known branch of artificial intelligence,
comprising algorithms and mathematical relations, which
was quickly introduced to the domain of clinical research.
ML enables computers to be programmed without explicit
experience and learns from that experience. -e outcome of
using these methods in medical data processing has been
extraordinary, and they have made remarkable success in
disease diagnosis [9–11]. Research indicates that, in medical
image processing, ML methods greatly aid complex medical
decision-making processes by extracting and then analyzing
the features of these images [12–14]. As the number of
medical diagnosis tools increased and a large volume of
high-quality data was produced, there was an urgent need
for more advanced data analysis methods. Traditional
methods could not analyze such a large volume of data or
find data patterns.

2. Methodology

-e present systematic review aimed to identify the studies
on leukemia detection and diagnosis by using ML tech-
niques for peripheral blood smear (PBS) image analysis. -e
systematic search strategy was developed based on previous
studies and the criteria selected by the authors.

2.1. Search Criteria. -is study mainly aimed to answer the
following questions:

(1) To what extent has ML been efficient in leukemia
diagnosis and classification by using PBS images?

(2) Which ML algorithm has achieved high efficiency in
PBS analysis?

(3) For the diagnosis and classification of what types of
leukemia, has ML achieved better results?

(4) How can healthcare systems benefit from using ML
methods for leukemia detection and diagnosis?

By surveying electronic databases that provide scientific
articles on two domains of medicine and computer sciences,
the researcher concluded that PubMed, Web of Science,
Scopus, and ScienceDirect contain the highest number of
articles relevant to the title and objectives of this study. -e
search was performed by using leukemia, leukemia diag-
nosis, and detection and ML keywords, based on the in-
clusion and exclusion criteria, from 2015 to 10 November
2020, and relevant articles were extracted from the said
databases. EMBASE and IEEE databases were removed from
the domain of search due to the similarity in publications.
Table 1 lists the inclusion and exclusion criteria.

2.2. Data Extraction. By examining the previous articles,
details of their methods and results were extracted and
recorded in specially designed forms [15]. Two re-
searchers extracted the data, and the disagreements were
resolved upon discussions. -e extracted data elements
included the title of the article, country, year of publi-
cation, the studied population, ML technique, evaluation
method, and results.

2.3. Quality Assessment. -e quality of the eligible studies
was assessed by the criteria proposed by Qiao [15]. -e
assessment was performed based on five categories: unmet
need (limits in current non-ML approach), reproducibility
(feature engineering methods, platforms/packages, hyper-
parameters), robustness (valid methods to overcome overfit,
the stability of results), generalizability (external data vali-
dation), and clinical significance (predictors’ explanation
and suggested clinical use). A quality assessment table was
provided by listing “yes” or “no” for the corresponding items
in each category.

3. Results

A total of 116 articles were extracted from the four credible
databases based on the search strategy. After reading the
articles’ abstract and full text, applying the inclusion and
exclusion criteria, and selecting articles relevant to the title of
the present study, 17 full-text articles were finally deemed
eligible and were and selected. -is process was performed
based on the PRISMA flowchart (Figure 2). As ML methods
and their applications in blood smear image analysis have
newly emerged, this systematic search was conducted over
the past five years. A review of the articles showed that, over
time, the use of ML methods in PBS image analysis has
expanded; seven articles in 2020, five articles in 2019, and
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four articles in 2018 have focused on the diagnosis and
classification of leukemia PBS images.

3.1. Leukemia Image Datasets. Diagnosis of leukemia in
peripheral blood images is dependent on stained slide
quality. Hence, a large number of quality standard datasets
are not available. -e majority of studies have employed
published public datasets. To design and develop ML al-
gorithms, hematologists have made some of these datasets
(that include PBS images) available to researchers. ALL-IDB,
one of the most well-known datasets published in two
versions, has been utilized in many articles, most of which
have diagnosed and classified acute lymphoblastic leukemia
(ALL) via different ML techniques [16–21]. -ere is another
published leukemia dataset called Benchmark for the de-
velopment of ML algorithms, used by some studies. Most
researchers have tested their proposed model only on ho-
mogeneous databases or private databases. However, a
major challenge in a robust detection and classification
model is the ability to diagnose the disease in databases with
distinct characteristics [22]. Hence, to present a robust
model and achieve reliable and valid results, some studies

have employed a combination of these datasets as a cross-
dataset. Sharif has employed three datasets to achieve a
system with high precision and efficiency in diagnosing
various leukocytes [22]. Some researchers have also used
local datasets in their studies. Among all types of leukemia
diagnosed and classified by usingML, the most frequent type
was ALL [23–26]. Figure 3 displays the diagnostic goals of
various types of leukemia based on PBS image processing. In
some articles, image analysis has been performed to count
the leukocytes [19].

3.2. Overview of Machine Vision Techniques in PBS Image
Analysis. Examining the methods adopted by the reviewed
studies indicated that two categories of machine vision
techniques have been used in PBS image analysis; machine
learning and its important subclass, deep learning, are two
categories of learning algorithms. -e first strategy relies on
selective image feature extraction. -ese methods are
common in the extraction of a volume of image features via
mathematical and ML algorithms. In this view, the goal of
feature extraction is to obtain a set of image descriptors. By
finding the relationship between these descriptors, the

Table 1: Inclusion and exclusion criteria for review.

Inclusion criteria Exclusion criteria

(i) Machine learning (i) DNA
(ii) Deep learning (ii) RNA
(iii) Leukemia (iii) Microarray
(iv) Blood smear image (iv) Other diseases
(v) Microscopic WBC image (v) Non-English reference abstracts were excluded
(vi) Full-text article available (vi) Histology and molecular images
(vii) Written in English (vii) Models not based on ML algorithms
(viii) Published after 2015 (viii) Did not cover an original analysis (e.g., review, narrative)
(ix) Detection (ix) Did not cover full details on methods
(x) Classification

(a) (b)

(c) (d)

Figure 1: (a) AML (M1), (b) AML (M2), (c) B-ALL (pre-B), and (d) B-ALL (pro-B).

Scientific Programming 3



patterns determining the images can be discovered [17, 19].
Several classes of features have been considered by re-
searchers and analyzed via ML algorithms to select the most
valuable and most effective classification performance. -e
features extracted from the cytomorphological structure can
include cell form, nucleus structure, chromatin, etc. Many
articles consider other features as well. Table 2 summarizes
the most common features in the field of blast analysis.

Al-jaboriy et al. used the nuclear-to-cytoplasmic ratio,
nucleus compactness, nucleus form factors, nucleus ec-
centricity, nucleus elongation, and nucleus rigidity
[17, 23, 24, 27]. Among seven studies, which used traditional
ML algorithm, four used the SVM method alone and with
other algorithms [18–20, 24] and three utilized ANN and
other algorithms [17]. Note that these algorithms are among
the most popular algorithms in medical image processing.

-e second view comprises methods in which feature
extraction is performed automatically, and the researcher
plays no role in feature selection. In these methods, building
blocks of convolution neural network, including convolu-
tion and pooling layers, process the values corresponding to
the pixels; in this way, features are extracted automatically

[28, 29]. -en, the features are classified by feeding the
features to a layer containing one or more classifiers. -ese
methods extract important features and neglect less im-
portant ones. A review of the studies revealed that, to extract
and process the features of PBS images for leukemia de-
tection, many studies have employed the CNN algorithm
and its state-of-the-art models [30–33]. -e features of
leukocytes by Vogado [22] simultaneously achieved using
CaffeNet, AlexNet, and Vgg-f architectures, which, at that
time, were among the most efficient CNN [22]. Figure 4
illustrates the frequency of use of both methods, ML and DL.
-e frequency of using ML for medical data analysis is daily
increasing.

3.3. Segmentation inPBS Images. Segmentation is a common
task in natural and medical image analysis. -e researchers
to achieve better classification rates use different types of
segmentation. Segmentation is a method for image pre-
processing applied for feature extraction and selection and
could be considered as the first stage of feature extraction.
Segmentation with the goal of extracting a cell from context
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Figure 2: PRISMA flow diagram of the review process and exclusion of papers.
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or its nuclei from the cytoplasm provides an accurate view of
the structure and features of the blast, and the ML technique
by analysis the origin of the blast can identify leukemia or its

subtypes. Several studies have diagnosed leukemia by seg-
menting and then extracting the features of some of these
segments; other studies, however, have diagnosed leukemia
without segmentation and merely by extracting the features
from the entire image [12, 34–37].

3.3.1. Overview of Segmentation Techniques. Several studies
trying to detect and differentiate leukocytes used ML
techniques to segment and extract this cell and its nuclei
from other blood cells. -e main types of segmentation
techniques include thresholding methods, boundary-based
segmentation, region-based segmentation, and hybrid
technology combining boundary and region standards, and
most of the techniques combine boundary and region cri-
teria [38–40]. Two techniques of blood smear image seg-
mentation are more prominent and have received more
attention from researchers. In the first view, which is based
on the concept of thresholding and change color channels in
the scope of cell sets, only the extraction of blasts without
considering blasts feature is considered in research, and then
the model is trained on these blasts [41]. In this method, the
rest of the blood components like RBC are removed from the
context of the images and, therefore, from the machine
learning input. Al-jaboriy et al. using this type of segmen-
tation removed all other blood components such as RBC
cells and other erythrocyte lines and extracted only WBC
cells, which include lymphocytes and lymphoblast. Figure 5
shows a view of this type of segmentation.

Another class of segmentation is object detection, in
which segmentation is not performed from the edge of the
cell, and the crop is done around the ROI surrounding the
cell frame, accommodating other cellular components. In
this type of segmentation, this entire box is fed to the
model to learn its usage. -is segmentation model has
been used in many studies due to its high similarity be-
tween blood cells and their sensitivity to differentiation.
-is segmentation has been referred to as localization in
some studies. In this type of segmentation, the noise
components in the learning process are minimized. Fig-
ure 6 shows this type of segmentation. Other ML methods
of segmentation are clustering [42], Gram–Schmidt or-
thogonalization method [43], edge detection, region
growing [44], and optimization-based method [45]. In
blood cell segmentation, more traditional ML algorithms
have been used.

12.5%

62%

25%

Other leukemia

ALL

AML

Figure 3: -e aim of studies in processing different types of leukemia PBS using ML.

Table 2: -e most common features used in blast analysis using
ML.

Class of features Parameters

Color features

(i) Mean color intensity for red component
(ii) Mean color intensity for green
component
(iii) Mean color intensity for blue
component
(iv) Mean color intensity for hue
component
(v) Mean color intensity for saturation
component
(vi) Mean color intensity for value
component

Texture features

(i) Homogeneity
(ii) Contrast
(iii) Correlation
(iv) Energy

Statistical features
(i) Mean
(ii) Variance
(iii) Skewness

Wavelet features

(i) Mean of HARR A coefficient
(ii) Mean of HARR H coefficient
(iii) Mean of HARR V coefficient
(iv) Variance of HARR A coefficient
(v) Variance of HARR H coefficient
(vi) Variance of HARR V coefficient

Morphological
features

(i) Area, perimeter, roundness, elongation,
form factor, length-to-diameter ratio,

compactness, discrete Fourier transform

Deep learning

37%

19%44%

Machine learning Hybrid algorithm

Figure 4: Different machine learning views in PBS image analysis.
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3.3.2. Overview of the ML Algorithm in Blood Cell
Segmentation. Machine learning plays an important role
in blood image segmentation, and segmentation is one of
the first steps in identifying leukemia in blood smear
images. Different machine learning algorithms have been
used in most segmentation techniques. -e purpose of cell
segmentation is to identify the boundary between the
nucleus and the cytoplasm for further characterization,
such as the characterization of the nuclear properties, the
properties of the cytoplasm, and the nuclear-to-cyto-
plasmic ratio, which is useful for explosive identification
[39, 46, 47]. Many segmentation algorithms have been
presented in the literature and the traditional ML algo-
rithms based on selected features were the main and
popular algorithms. Machine learning algorithms are used
in the computational core of two categories of segmen-
tation types. -ey are pixel-based image segmentation and
region-based segmentation. Some other studies used
shaped-based segmentation (threshold-based, edge-
based, and region-based techniques) instead of region-
based segmentation. Among the different types of ma-
chine algorithms, clustering class algorithms had the most
acceptance and efficiency. Kim et al. used clustering al-
gorithms in the threshold, edge detection, pixel clustering,
and region growing segmentation [48]. Kekre et al. used
k-mean and fuzzy c-mean algorithm vector quantization
on the color pixel to segment the blood cells [44], and also
Viswanathan used morphological contours (edge detec-
tion, erosion, and dilation) as features in the fuzzy c-mean
algorithm to achieve a high-performance model in

leukemia segmentation [46]. -e other popular ML al-
gorithm is watershed algorithm, which separating com-
ponent-based morphological or other features presented
in Table 2 treats pixels values as a local topography. -e
application of watershed segmentation to a distance map
increases efficiency. Watershed segmentation is based on
the idea of a catchment basin of a contour map. In other
words, the water droplets follow the image gradient flow
along the path to reach a local minimum. Many studies
have used the watershed algorithm for segmentation.
Using this algorithm has been easier and more acceptable
than other algorithms [49–51]. Other ML algorithms such
as SVM, ANN, and decision tree have been used fre-
quently to segment blast in blood smear images. Table 3
lists the studies that have performed segmentation using
the ML algorithm to extract blasts or their features for
specific purposes, not just for leukemia detection or
classification. Several of this research uses segmentation
to extract nuclei of blast or other WBC cells.

Segmentation for leukemia detection or diagnosis is
particularly much crucial. -e accurate feature extrac-
tion and leukemia classification are proportionately
dependent on the correct segmentation of the maximized
and cropped lymphocytes. Table 4 presents the studies
which have analyzed PBS images to diagnose (detect) or
classify different kinds of leukemia based on the indi-
cators considered in the present study. Some studies have
merely diagnosed leukemia and aimed for its primary
detection based on cell morphological changes
[19, 21, 22, 25, 26, 75, 76].

Figure 5: Localization, preprocessing, and thresholding segmentation [23].

100 pixel

Figure 6: Blast segmentation-based object detection.
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Table 3: Studies that used ML algorithms for blast segmentation.

Author Type of feature extracted ML segmentation technique
No. of data
and details

Performance
(accuracy %)

Begum and Razak
[52]

Morphological operations
erosion, dilation, opening, and

closing of nuclei
SVM

Not
mentioned

83%

Jothi et al. [53]
Morphological, wavelet, color,
texture, and statistical features,

and other features

Naıve Bayes, linear discriminant analysis, K-
nearest neighbor, support vector machine,
decision tree, and ensemble random under

sampling boost

300 (60%–100%)

Gajul and Shelke
[54]

Not mentioned K-mean clustering andmorphological operations 40 —

Vogado et al. [22] Not identified Automatic feature extraction -ree datasets 99%

Agaian et al. [55]
Color, texture, shape, and

Hausdorff dimension feature
Using k-means clustering 80 98%

Negm et al. [51]
Geometric, color, texture, and

size feature of blast
Using k-means clustering 75 99.5%

Su et al. [39] Color and morphology features
k-means cluster and constructing a cell image by

hidden Markov random field
61 96%

Goutam and
Sailaja [56]

LDP feature Using k-means clustering 90 98%

Shankar et al. [57] Color, shape, and texture -reshold by using the Zack algorithm 33 96%

Viswanathan [46]
Morphological contour (edge

detection, erosion, and dilation)
Fuzzy c-means — 98%

Patel and Mishra
[58]

Geometric, color, texture, and
size feature of cell

K-mean clustering and the Zack algorithm 7 93%

Zhao et al. [12]
Morphological operation and
granularity feature are selected

automatically
CNN and SVM 9 94%

Karthikeyan and
Poornima [59]

Geometrical, texture, and color Fuzzy c-means 19 90%

MoradiAmin et al.
[37]

Geometrical and statistical
feature

Fuzzy c-means 21 98%

Rawat et al. [60] Morphological operation Global thresholding and morphological opining 260 (79%–95.4%)

Mishra et al. [61] Texture and color Marker-controlled watershed segmentation 190 96%

Bhattacharjee and
Saini [36]

Morphological operation
Morphological operations erosion, dilation,

opening, and closing
120 96%

Khobragade et al.
[62]

Geometrical and statistical Otsus’s thresholding and Sobel operator
Not

mentioned
90%

Patil and Raskar
[41]

Color, shape, and texture -resholding by using Otsu’s method
Not

mentioned
Not

mentioned

Rawat et al. [34] Shape features Global thresholding and morphological opining 420 96.75%

Neelam et al. Texture features
K-mean clustering followed by expectation

maximization algorithm
Not

mentioned
80%

Singh et al. [63] Shape and texture features ANN
ALL-IDB (no:

108)
97.2%

Singhal and Singh
[64]

Texture features SVM
ALL-IDB (no:

260)
93.8%

Zhang et al. [65] Shape features Fuzzy system
Local (not
mentioned)

Not
mentioned

Neoh et al. [66] Shape, texture, and color features Dempster–Shafer
ALL-IDB (no:

180)
96.7%

Amin et al. [67] Shape and texture features SVM Local (no: 21) 97%

Viswanathan [46] Shape, color, and texture features Fuzzy c-means classifier
ALL-IDB (no:

108)
98.0%
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Table 3: Continued.

Author Type of feature extracted ML segmentation technique
No. of data
and details

Performance
(accuracy %)

Bhattacharjee and
Saini [36]

Shape features ANN
ALL-IDB (no:

120)
95.2%

ElDahshan et al.
[68]

Not mentioned Field
ALL-IDB (no:

300)
Not

mentioned

Rawat et al. [60] Shape and texture features SVM
ALL-IDB (no:

196)
89.8%

Putzu et al. [35] Shape, color, and texture features SVM
ALL-IDB (no:

267)
92.0%

Mohapatra et al.
[70]

Shape and texture features Ensemble classifier
Local dataset
(no: 104)

94.7%

Nasir et al. [71] Shape and color features MLP_BR
Local dataset
(no: 230)

95.7%

Mohapatra et al.
[72]

Shape and texture features ANN
Local dataset
(no: 100)

Not
mentioned

Madhloom et al.
[73]

Shape and texture features kNN clustering
Local dataset
(no: 260)

92.5%

Pedreira et al. [74]
Multiple clinical and laboratorial

features
ANN

Local dataset
(no: 189)

98.2%

Table 4: Characteristics of studies that used machine learning algorithms in the detection and classification of blood smears.

First author,
year of
publication,
and country

Aim of the study Data ML method Validation results More information

Al-jaboriy
et al., 2019,
Malaysia [17]

ALL
segmentation

Blood smear
images (ALL-IDB)

ANN Accuracy� 97%
-e proposed model
detected 625 cells out

of 540 WBC

Al-Tahhan
et al., 2020,
Egypt [19]

Automatic
detection ALL

Blood smear
images (ALL-

IDB2)

KNN
SVM
ANN

Accuracy of testing� 100%
F1-score� 100%

Quadratic SVM has
the best performance
in detecting ALL
among ALL-IDB2

dataset

Bodzas et al.,
2020, Czech
[24]

Automated
detection of ALL

Blood smear
images (local)

SVM
ANN

Sensitivity� 100%
Specificity� 95.31%

Artificial neural
network has the best

performance in
detecting ALL

Boldú et al.,
2019, Spain
[23]

Automatic
recognition of

different types of
blast

Peripheral blood
images (local)

LDA

Six groups of cell
accuracy� 85% and for
some class, accuracy was

97%

Classification
accuracy for the six
groups of cell types

was 85.8

Dasariraju
et al., 2020,
USA [27]

Detection and
classification of

immature
leukocytes for
diagnosis of

AML

Single-cell
morphological

dataset of
leukocytes from
AML patients and
nonmalignant

(public)

RF

Accuracy of detection of
immature� 92.99%

Accuracy for classification
of immature leukocytes for

types� 93.45%

Segmentation,
feature extraction,
detection and

classification, and
calculation modules

were applied

Fathi et al.,
2018, Egypt
[16]

Classification of
ALL from

normal cases

Blood smear
dataset (ALL-IDB)

SVM with a Gaussian radial
basis kernel

Accuracy� 96.2%
Sensitivity� 97.3%
Specificity� 95.3%

Goal of this research
was to design a
framework for
classification of
cancer based on
medical images
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Table 4: Continued.

First author,
year of
publication,
and country

Aim of the study Data ML method Validation results More information

Fan et al.,
2019, China
[77]

Localization and
segmentation

Four commonly
used blood smear
dataset (BCISC,
LISC, and 2 other
released datasets)

DNN

Dataset 1:
precision� 0.995%

Dataset 2:
precision� 0.994%

Dataset 3:
precision� 0.989%

Dataset 4:
precision� 0.984%

Proposed Leukocyte
Mask architecture to
gain best precision

result with all
datasets

Khilji et al.,
2020,
Bangladesh
[75]

Detection of ALL
ALL dataset
(C_NMC)

CNN-based different models
(encrypted)

Accuracy� 77.934%

Proposed model
compared with other

state-of-the-art
model and gain
better accuracy

Nagiub
Abdelsalam
et al., 2018,
Egypt [26]

Detection of all
types of leukemia

Leukemia
microscopic

CNN Accuracy� 99.98%

Different types of
pretrained (CNN)

models were applied
and Inception-v3
model had the
highest accuracy

Nagiub
Abdelsalam
et al., 2019,
Egypt [25]

AML detection
AML microscopic
images (local)

CNN (ResNet-101)
Accuracy� 100%
Sensitivity� 100%

Even deep neural
networks: AlexNet,
GoogLeNet, VGG16,
VGG19, Inception-
v3, ResNet50, and

ResNet10

Praveena and
Singh, 2020,
India [78]

Segmentation
and classification

of ALL
ALL-IDB2

Sparse-FCM and deep
convolutional neural

network

Accuracy� 93.5%
Sensitivity� 95.28%
Specificity� 93.89%

Grey Wolf-based
Jaya optimization
algorithm was

applied for training
CNN

Sharif et al.,
2020, Pakistan
and Qatar
[76]

Recognition of
different types of

leukocytes

LISC, ALL-IDB1,
and ALL-IDB2

malignant (public)

Localization using YOLOv2.
Classification using PSO

Accuracy for ALL-
IDB1� 97.2%

Accuracy for ALL-
IDB2�100%

Accuracy for LISC> 99%

Näıve Bayes and
discriminant analysis
and particle swarm
optimization was

used

Vogado et al.,
2018, Brazil
[22]

Diagnosis of ALL

ALL-IDB1
ALL-IDB2
Leukocytes
CellaVision

CNN
(AlexNet +CaffeNet +Vgg-

f) and SVM

Accuracy� 100%
Precision� 100%

Goal of this research
was to design a
framework for
classification of
cancer based on
medical images (3
architectures were
used in feature

extraction, SVM for
classification)

Shafique and
Tehsin, 2020
Pakistan [79]

Detection and
classification of

ALL

ALL-IDB1 and
ALL-IDB2

CNN (AlexNet)

ALL detection
accuracy� 99.50%, ALL

subtype
classification� 96.06%,

dataset precision� 0.984%

After detection, ALL
subtype was

classified based FAB
classification system.

Datasets

Hegde et al.,
2018, India
[18]

Detection of
nuclei and

classification of
WBC

Leishman SVM
Accuracy of detection of

lymphocyte� 100%

After segmentation,
the nucleus of WBC
cells different kinds
of themwas classified
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4. Discussion

Microscopic evaluation of PBS images is the most common
primary method of leukemia diagnosis in its early stages.
Still, a manual examination of these smears can cause errors
in determining the type of the disease and lead to non-
standard reports. Moreover, the examination of these smears
is tiresome and time-consuming, thus influencing the di-
agnostic precision. Accordingly, there is a need for an au-
tomatic method to provide a precise diagnosis, without
being affected by the technicians’ experience or the opera-
tor’s fatigue and job pressures [49, 80].

Upon a search in scientific databases, it was found that
no comprehensive systematic review had been conducted on
PBS image analysis via ML methods. -erefore, the authors
conducted a review study on the applications of ML in the
diagnosis and classification of different types of leukemia
based on PBS images. By comparing the previous studies, the
present research answered the questions posed by the re-
searcher at the outset.

In terms of smear preparation, several factors (e.g., il-
lumination condition, staining time, blood film thickness,
and a defect in the film) lead to undesirable visual artifacts or
different color distributions in the laboratory images. -ese
issues complicate the precise detection and monitoring of
blood smears. As processing these smear images by ML is
problematic, preprocessing is necessary [81]. As for leuke-
mia detection using ML algorithms, data preprocessing (e.g.,
preparation, normalization, and segmentation) can promote
the precision of leukemia detection. For precise leukemia
detection with minimum error via ML methods, it is sug-
gested that a set of preprocessing techniques be adopted for
dataset preparation.

-e selection of effective features is the bedrock of
preliminary processing of blood smears via ML methods. In
cases where the researcher could control the selection and
analysis of blood cell features, the main problem was
selecting these features to determine leukemia. Some studies
have used color and shape, while others have utilized texture
and different texture metrics as the features of blast cells.-e
manual selection of the most important features is always
associated with some degree of error, and this process is
always viewed as a major challenge. Medical texts have not
mentioned any of these features selected by manual methods

as a definitive method for leukemia differential diagnosis
[1, 24, 82]. -us, the selection of several important features
from among a large number of features is a completely
algorithmic process, and promoting the efficiency of feature
selection depends on the algorithm’s method. -e studies
demonstrated that methods extracting fewer cell features
have attained a lower precision in leukemia diagnosis. It
seems that, to achieve better results in leukemia detection
and diagnosis, one can adopt feature extraction methods
based on hybrid algorithms or swarm intelligence and pay
attention to further coverage of the feature space. It is also
recommended that a set of various features, including
geometrical, statistical, and morphological ones, be used for
leukemia detection. ML methods require manual feature
extraction and selection; if the number of images is ac-
ceptable for DL, instead of ML, it is better to use the DL
method owing to its mechanism.

A major problem associated with leukemia diagnosis via
ML algorithms in different studies is the lack of compre-
hensive datasets of leukemia smear images, an issue which
causes problems for the ML methods, e.g., overfitting. Based
on the studies, and with respect to the data-driven nature of
these methods, one can show that diagnostic errors are
higher in the case of smaller datasets. -is is why the results
of many studies cannot be confirmed because small/local
datasets have been used. -us, to have a robust ML method
for leukemia diagnosis/classification, a comprehensive
dataset with sufficient data is required, yet the datasets
existing in the reviewed studies did not satisfy this basic
need. Of course, there are techniques for increasing the data,
which, by processing the main images, create new images
that maintain the features of the main images. To overcome
this problem in DL, numerous studies have reported that
augmentation techniques can lead to better results in terms
of pattern recognition [47–49]. It seems that image aug-
mentation can lead to better coverage of data space and
markedly improve the results of leukemia detection by using
these methods. Based on the review of previous studies and
the results of smear processing, it can be concluded that ML
methods and techniques have received more attention for
the diagnosis and classification of acute leukemia, whether
AML or ALL, compared to other types. No comprehensive
study has examined the performance of traditional and
visual leukemia diagnosis by using smear images. However,

Table 4: Continued.

First author,
year of
publication,
and country

Aim of the study Data ML method Validation results More information

Jha and Dutta,
2019, India
[21]

Detection of ALL ALL-IDB2
Proposed hybrid

segmentation +Chrono-
SCA-ACNN

Accuracy� 99%
Sensitivity� 100%

Nucleus and
cytoplasm

segmentation using
Chrono-SCA-ACNN
(chronological sine
cosine algorithm-
based actor-critic
neural network)
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studies that have diagnosed leukemia via ML techniques
have achieved extraordinary results, with a disease detection
mean accuracy of >96%. Although the applications of
machine learning in disease diagnosis and blood cell imaging
are still evolving, the use of these algorithms in cell counting
and blood cell type differentiation is expanding in the
healthcare industry. Nowadays, the use of cell counter de-
vices to determine and count blood components based on
ML is becoming more common. It is thought that, in the
near future, bone marrow transplant laboratories could
replace traditional devices with applications and software
based on ML, especially DL, to offer a timely method and
assist a diagnosis with high certainty and low detection error
in the early stages.

5. Conclusion

Blood smear image analysis is a vital role in the diagnosis of
many blood-related diseases.-e diagnosis of leukemia in its
early stages and the first smears can lead to immediate
diagnosis and the quick initiation of the treatment. Blood
smear image analysis by ML methods can aid the diagnosis
of early-onset leukemia and the determination of subtypes
with a minimum error at the shortest time, so that the
process of treatment can be immediately started. A prom-
ising future direction for research can be the application of
novel ML algorithms, in particular, DL, in computer-aided
detection (CAD) systems, whole-slide imaging (WSI), and
even apps and software at hematology laboratories, to help
the pathologists and oncologists in better detecting leuke-
mia. In the 2018 meeting of the American Society of He-
matology, Höllein et al. investigated 43 roles of AI in MFC
for B cell lymphoma and leukemia diagnosis. By using the
data of 38416 patients and control groups, a model was
developed by using neural networks. -is system achieved
97% precision in determining normal and abnormal cells.
Still, the precision of B cell lymphoma and leukemia clas-
sification was 74%.-us, it is recommended that, in the near
future, the use of ML algorithms for the analysis of blood
smear images progresses from the phase of modeling to the
phase of implementation.
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