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Abstract. The emerging field of Ecosystem Informatics applies meth-
ods from computer science and mathematics to address fundamental and
applied problems in the ecosystem sciences. The ecosystem sciences are
in the midst of a revolution driven by a combination of emerging tech-
nologies for improved sensing and the critical need for better science to
help manage global climate change. This paper describes several initia-
tives at Oregon State University in ecosystem informatics. At the level
of sensor technologies, this paper describes two projects: (a) wireless,
battery-free sensor networks for forests and (b) rapid throughput auto-
mated arthropod population counting. At the level of data preparation
and data cleaning, this paper describes the application of linear gaussian
dynamic Bayesian networks to automated anomaly detection in temper-
ature data streams. Finally, the paper describes two educational activ-
ities: (a) a summer institute in ecosystem informatics and (b) an inter-
disciplinary Ph.D. program in Ecosystem Informatics for mathematics,
computer science, and the ecosystem sciences.

1 Introduction

The late Jim Gray (Gray & Szalay, 2003) describes four general approaches to
scientific research:

– Observational science, in which scientists make direct observations,
– Analytical science, in which scientists develop analytical models capable of

making predictions,
– Computational science, in which scientists employ massive computing power

to study the behavior of analytical models and to make predictions at much
wider scales of time and space, and

– Data exploration science, in which massive amounts of data are automati-
cally collected from sensors, and scientists employ data mining and statistical
learning methods to build models and test hypotheses.

The ecosystem sciences currently employ analytical and computational meth-
ods as illustrated, for example, by the extensive work on coupled ocean-atmosphere
climate models. However, with the exception of data collected via remote sensing,
the ecosystem sciences do not yet have large networks of sensors that automat-
ically collect massive data sets.
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Three steps are required to enable ecological research to become a data explo-
ration science. First, sensors that can measure ecologically-important quantities
must be developed and deployed in sensor networks. Second, methods for auto-
matically managing and cleaning the resulting data must be developed. Third,
data mining and machine learning algorithms must be applied to generate, refine,
and test ecological hypotheses.

This paper briefly reviews work at Oregon State University on each of these
three steps. Oregon State University has a long history of excellence in the ecosys-
tem sciences. It includes world-leading research groups in forestry, oceanogra-
phy, and atmospheric sciences, as well as strong teams in machine learning,
data mining, and ecological engineering. The campus leadership has made a sig-
nificant investment in new faculty positions in mathematics, computer science,
and forestry with the goal of developing strong interdisciplinary education and
research programs in ecosystem informatics.

This paper is organized as follows. The paper begins with a discussion of two
sensor development projects, one in wireless sensor networks for plant physiology
and the other on computer vision for automated population counting. Then the
paper discusses work on automated data cleaning. Finally, the paper briefly
describes two educational initiatives aimed at preparing computer scientists,
mathematicians, and ecologists to work together in interdisciplinary teams to
address the important scientific problems confronting the ecosystem sciences.

2 New Sensor Technologies for Ecology

The study of complex ecosystems is limited by the kinds of data that can be reli-
ably and feasibly collected. Two recent US National Science Board studies (NSB,
2000; NSB, 2002) emphasize the importance of developing new instrumentation
technologies for ecological research. At Oregon State, we are pursuing several
projects include the following two: (a) wireless, battery-free temperature sensors
for forest physiology and (b) computer vision for rapid throughput arthropod
population counting.

2.1 Battery-Free Forest Sensors

Forests play an important role in absorbing carbon dioxide and producing oxy-
gen. A central challenge in the study of forest physiology is to understand the
exchange of these gasses between the forest and the atmosphere. Existing models
of this exchange only capture vertical interactions, under the simplifying assump-
tion that the forest can be modeled as a planar array of trees. But real forests
are often on mountain slopes where breezes tend to move up the slope during the
day and down the slope at night. Hence, to obtain a more realistic understanding
of forest-atmosphere gas exchange, we need to measure and model these lateral
winds as well.

Many research groups around the world have developed wireless sensor net-
works that rely on on-board batteries to provide electric power (Kahn et al.,
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1999; Elson & Estrin, 2004). Unfortunately, these batteries typically contain
toxic chemicals, which means that these sensors must be retrieved after the bat-
teries have run down. This can be impractical in ecologically-sensitive and inac-
cessible locations, and it also limits the period of time that the sensor network
can be collecting data.

This was the motivation for a team consisting of Barbara Bond (Forest Sci-
ence), and Terri Fiez, Karti Mayaram, Huaping Liu, and Thinh Nguyen (Electri-
cal Engineering), and Mike Unsworth (Atmospheric Sciences) to develop battery-
free sensors for use in the forests of the Pacific Northwest.

The basic design concept is to have a base station that is connected to stan-
dard electric power. This base station broadcasts radio frequency energy across
the RF spectrum. This energy is harvested by ultra-low power sensor units. They
store the energy in a capacitor and use it to make sensor readings and to re-
ceive data from and transmit data to other sensors. The data is relayed from the
peripheral sensors to the central base station in a series of hops (see Figure 1).

Fig. 1. Spatial layout of battery-free sensor network with powered base station at
center.

The development of such passively-powered sensor nodes requires that all
components of the sensor employ ultra-low power methods. The initial design
includes a temperature sensor, an RF energy harvesting circuit, a binary fre-
quency shift keying (BFSK) receiver, and a BFSK transmitter. The receiver and
transmitter share a single antenna. Figure 2 shows the layout of the current
prototype sensor.

Note that this prototype contains only a temperature sensor. While it will
be easy to add other sensors to the chip, it turns out that by measuring temper-
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Fig. 2. Layout of prototype battery-free temperature sensor chip

atures, it is possible to infer the lateral winds. So this initial sensor chip will be
sufficient to address the forest physiology question that motivated the project.

The ultra-low power temperature sensor measures the outside temperature
from −10 to 40 degrees Celsius with an accuracy of ±0.5 degrees. It is able to
achieve this accuracy while consuming only 1nJ per measurement, which is a
factor of 85 less energy than is required by state-of-the-art sensors.

The energy harvesting circuit employs a 36-stage “floating gate” design (Le
et al., 2006). It is able to harvest energy up to a distance of 15 meters, which is
substantially better than the best previously-reported method which only works
out to 4.5 meters. Hence, the maximum size of the sensor network region will be
approximately 30 meters in diameter.

The transceiver consumes the largest amount of power in the sensor. A low
power super-regenerative design based on binary frequency shift keying is em-
ployed in the prototype. Experiments in the Oregon coastal mountains with a
separate test platform show that even when the sensors are only 10cm above the
ground, this design should be able to transmit 10 meters with a raw bit error
rate of 10−4 (see Figure 3). By applying error-correcting coding, the effective bit
error rate will be much lower.

The first version of the chip will be fabricated in summer 2007, while will
make it possible to test the complete sensor network design, including energy
harvesting and communications protocols.

2.2 Rapid-Throughput Arthropod Population Counting

Two central questions in ecology are (a) to explain the observed distribution
of species around the world and (b) to understand the role of biodiversity in
maintaining the health and stability of ecosystems. The key data necessary to
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Fig. 3. Bit error rate experiments at two different transmission power levels.

study these questions consists of counting the number of individuals belonging
to each species at many different sites.

There are many thousands of species of arthropods. They populate many dif-
ferent habitats including freshwater streams, lakes, soils, and the oceans. They
are also generally easy to collect. Despite all of these advantages, the great draw-
back of using arthropod population data is the tedious and time-consuming pro-
cess of manually classifying each specimen to the genus and species level. At Ore-
gon State, a team consisting of Tom Dietterich, Eric Mortensen (Computer Sci-
ence), Robert Paasch (Mechanical Engineering), Andrew Moldenke (Botany and
Plant Pathology), David Lytle (Zoology) along with Linda Shapiro (Computer
Science) from the University of Washington is developing a rapid-throughput
system that combines robotic manipulation with computer vision to automati-
cally classify and count arthropod specimens.

The first application project has been to classify stonefly larvae that live
in the substrate of freshwater streams. Stoneflies are an excellent indicator of
stream health. They are highly sensitive to pollution, and, because they live in
the stream, they provide a more reliable measurement than a single-point-in-time
chemical assay. Figure 4 shows the mechanical apparatus that we have developed.
In the left image, each individual stonefly specimen is dropped into the plastic
reservoir in the lower right part of the image. This reservoir (and the rest of the
apparatus) contains alcohol, and the specimen is manipulated via pumps and
alcohol jets. The blue part of the apparatus contains a diamond-shaped channel
that is covered with transparent plastic. The specimen is pumped into this tube.
Infrared detectors (not shown, but located at the two vertical posts and the
circular mirror) detect the specimen, cut off the main pump, and turn on a side
jet (see the small metal tube emerging from the left side of the blue base). This
side jet “captures” the specimen within the field of the microscope (see image
(b)). When the side jet is turned off, the specimen falls to the bottom of the
channel and a photo is taken. Then the side jet is turned on, which causes the
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specimen to rotate rapidly. The jet is again turned off, and another picture taken.
This continues until a good image of the back (dorsal) side of the specimen is
obtained. The pictures are taken through a mirror apparatus (upper right of
(a)), which allows us to capture two views of the specimen with each photo of
the camera. This increases the likelihood of capturing a good dorsal view.

(a) (b)

Fig. 4. (a) Prototype mirror and transportation apparatus. (b) Entire stonefly trans-
portation and imaging setup (with microscope and attached digital camera, light boxes,
and computer controlled pumps for transporting and rotating the specimen.

Figure 5 shows example images captured by the apparatus for four different
taxa. Notice the large variation in size, pose, and coloration.

The next step in the process is to apply a learned visual classifier to classify
the dorsal views into the class. To do this, we employ a variation on the bag-of-
interest-points approach to generic object recognition. This approach consists of
the following steps:

1. Apply region detectors to the image to find “interesting” regions. We ap-
ply three different detectors: The Hessian Affine detector (Mikolajczyk &
Schmid, 2004), the Kadir Entropy detector (Kadir & Brady, 2001), and our
own PCBR detector (Deng et al., 2007). Figure 6 shows examples of the
detected regions.

2. Represent each detected region as a 128-element SIFT vector (Lowe, 2004).
The SIFT descriptor vector is a set of histograms of the local intensity gra-
dient direction. Although SIFT was originally developed for object tracking,
it has been found to work well for object recognition.

3. Compute a feature vector from the set of detected SIFT vectors. Let D :
R128 7→ {1, . . . , ND} be a visual dictionary that maps each SIFT vector into
an integer between 1 and ND (ND varied from 65 to 90 in our experiments).
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(a) (b) (c) (d)

Fig. 5. Example images of different stonefly larvae species. (a) Calineuria, (b)
Doroneuria, (c) Hesperoperla and (d) Yoraperla.

The visual dictionary is constructed by fitting a gaussian mixture model with
ND components to the SIFT vectors observed on a separate “clustering” data
set. The function D takes a SIFT vector and maps it to the gaussian mixture
component most likely to have generated that vector.
Given the visual dictionary, the set of SIFT vectors computed from the
image is converted into a feature vector x such that x[i] is the number of
SIFT vectors v in the image such that D(v) = i. In effect, x is a histogram
where the ith element counts the number of SIFT vectors that matched the
ith dictionary entry.

4. Apply a learned classifier to map x to one of the K possible taxa.

(a) (b) (c)

Fig. 6. Visual Comparison of the regions output by the three detectors on three Ca-

lineuria specimens. (a) Hessian-affine, (b) Kadir Entropy, (c) PCBR
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In our work, we learn a separate dictionary Ds,d for each species s and each
detector d. Consequently, we compute a separate histogram vector xs,d for each
dictionary. In our case, we have 3 detectors and 4 species, so we compute 12
dictionaries and 12 histograms. We then concatenate all of these feature vectors
to obtain one very long feature vector which is processed by the learned classifier.

Table 1. Specimens and images employed in the study

Taxon Specimens Images

Calineuria 85 400
Doroneuria 91 463
Hesperoperla 58 253
Yoraperla 29 124

To train the system, our entomology collaborators (Lytle and Moldenke)
collected and independently classified 263 stonefly specimens. These were then
photographed resulting in the data summarized in Table 1. These data were then
randomly partitioned into 3 folds (stratifying by specimen and by class), and a
3-fold cross-validation was performed. In each iteration, one fold of the data was
employed to learn the visual dictionaries, one fold to train the classifier, and one
fold to evaluate the results.

We employed bagged logistic model trees as implemented in the WEKA
system (Landwehr et al., 2005) as the classifier (with 20 iterations of bagging).
Table 2 shows the results. Overall, the classifier correctly classifies 82.4% of
the images (with a 95% confidence interval of ±2.1%). The distinction between
Calineuria and Doroneuria is the most challenging. Separate experiments have
shown that our accuracy on this 2-class problem is statistically indistinguishable
from human performance, when humans are given the same whole-specimen
images that our program observes.

We have recently extended this work to apply to 9 stonefly taxa, with an
overall accuracy of 85%. This level of accuracy is more than sufficient for use in
routine biomonitoring tasks. Consequently, we are planning a trial with standard
field samples later this year. More details on this work can be found in Larios et
al. (Larios et al., In Press).

Table 2. Confusion matrix of the combined Kadir, Hessian-affine and PCBR detectors

predicted as ⇒ Cal. Dor. Hes. Yor.

Calineuria 315 79 6 0

Doroneuria 80 381 2 0

Hesperoperla 24 22 203 4

Yoraperla 1 0 0 123
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We have now begun working on a new apparatus and algorithms for recog-
nizing and classifying soil mesofauna and freshwater zooplankton. We anticipate
that this apparatus will have a broader range of applications in ecological studies
of biodiversity.

3 Automated Data Cleaning for Sensor Networks

As sensors collect data, various things can go wrong. First, the sensors can fail.
Second, the data recording process (e.g., the network connection) can fail. Third,
the semantic connection between the sensor and the environment can be broken.
For example, a thermometer measuring stream water temperature will change
to measuring air temperature if the water level falls too low.

To catch these errors, we need methods for automated data cleaning. These
methods can be applied to automatically flag data values so that scientists using
this data can take appropriate steps to avoid propagating errors into their model
building and testing.

Ethan Dereszynski, a doctoral student at Oregon State, has developed an
automated data cleaning system for identifying anomalies in temperature data
collected at the H. J. Andrews Experimental Forest, which is one of the NSF-
funded Long Term Ecological Research (LTER) sites. In this forest, there are
three major meteorological stations at three different altitudes. At each station,
there is a tower with four temperature sensors which measure and report tem-
perature every 15 minutes. Hence, for this simple sensor network, there are 12
parallel data streams, one for each thermometer.

This data is collected and posted on a web site in raw form. At regular
intervals, the LTER staff manually inspect the data to find and remove errors.
They then post a clean version of the data, which is the version intended for use
by scientists around the world. Our goal is to replace this human data cleaning
with an automated process. But a nice side effect of the existing practice is that
we have several years of supervised training data for constructing and testing
data cleaning methods.

We have adopted a density estimation approach to anomaly detection. Our
goal is to develop a model that can evaluate the probability of a new sensor
reading given past sensor readings. If the new reading is highly unlikely, it is
marked as an anomaly, and it is not used in making subsequent probability
estimates. In our work to date, we have focused only on anomaly detection for a
single sensor data stream. In future work, we will study simultaneous anomaly
detection over the 12 parallel data streams.

Figure 7 shows typical temperature readings as a function of time for the
2.5m sensor at the Central Meteorological station. Observe that there are sea-
sonal effects (it is colder in the winter and warmer in the summer), diurnal
(daily) effects (colder at night; warmer in the day), and weather system effects.
The weather system effects are the hardest to model. They generally cause the
temperature to be systematically warmer or colder than normal over a period of
3-10 consecutive days.
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Fig. 7. Seasonal, Diurnal, and Weather effects

Anomalies can be divided into easy, medium, and hard cases. The easy cases
are things such as the failure of the connection between the sensor and the data
logger. If the data logger loses contact with the sensor, it records a fixed value
of −53.3. Similarly, if the data logger receives an input voltage outside the legal
bounds, it records a fixed value of −6999. Obviously, these anomalous values are
easy to detect.

Medium anomalies can be detected from a single sensor, but they require
more subtle analysis. Figure 8 (top) shows a case in which the heat shield on
a sensor has been damaged. This causes the sensor to warm up too quickly,
measure incorrectly high readings in the hottest part of the day, and then cool
down too quickly in the evening. Figure 8(bottom) shows what happens when
snow buries the 1.5m and 2.5m sensors. The 1.5m sensor records a steady value
of zero (the freezing point), while the 2.5m sensor’s readings are damped toward
zero. As the snow melts, first the 2.5m sensor recovers and then the 1.5m sensor
recovers.

Hard anomalies require the analysis of multiple data streams. One of the
most interesting anomalies arose when the cables for two of the sensors were
interchanged during maintenance. Normally, the 1.5m, 2.5m, 3.5m, and 4.5m
sensors exhibit a monotonic temperature ordering. At night, the 1.5m sensor is
warmest, because it is closest to the warm soil. In the day time, the 4.5m sensor
is warmest and the 1.5m sensor is coldest. To detect the cable-swap anomaly,
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we need to model the joint distribution of the four sensors and detect that this
monotonic relationship is violated. As indicated above, this will be a topic of
our future work.

t

QH Day

BT

1t

tS1tS

O

…

…

Fig. 9. Dynamic Bayesian network for anomaly detection. Square nodes denote dis-
crete variables; circular nodes denote normally-distributed variables. Grey nodes are
observed in the data.

Figure 9 shows our dynamic Bayesian network for anomaly detection. The
heart of the model consists of three variables O (the observed temperature),
T (the predicted temperature), and St (the state of the sensor). The state of
the sensor is quantized into four levels (“very good”, “good”, “bad”, and “very
bad”). If the sensor is “very good”, then O should be equal to T with some slight
variation. This is captured by asserting that

P (O|T ) = Norm(T, 1.0).

That is, the mean value of O is T with a standard deviation of 1.0. If St is
“good”, then the standard deviation is 5.0. If St is “bad”, the standard deviation
is 10.0, and if St is “very bad”, the standard deviation is 100,000 (i.e., effectively
infinite).

In practice, we observe O and, based on previously-observed values, compute
the probability distribution of T . Then the most likely value of St is determined
by how different O and T are.

The key to good anomaly detection in this model is therefore to make good
predictions for T . To do this, we need to capture the seasonal, diurnal, and
weather system variation in temperature. We capture the first two via a “base-
line” temperature B. The weather system variation is captured by a first-order
Markov variable ∆.

Conceptually, B is the average temperature reading that would be expected
for this particular quarter hour and day of the year ignoring short-term changes
due to weather systems. However, we have only four years of training data, so if
we average only the four readings for the specific time of day and day of year, we
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will get a very poor estimate for B. To overcome this problem, we combine the
observed values from the 5 temperature readings before and after the particular
quarter hour and the 3 days before and after the target day. The local trend
within each day and across the 7 days is computed and removed and then the
de-trended temperature values are averaged across the years in the training data.

The ∆ variable attempts to capture the local departure from the baseline
caused by weather systems. It is modeled as a first-order Markov process:

P (∆t|QH, D, ∆t−1) = Norm(µQH,D + ∆t−1, σ
2

QH,D).

QH denotes the quarter hour of each measurement (1, . . . , 96); Day (or D)
denotes the day of the year (1, . . . , 365). The main idea is that ∆t is approxi-
mately equal to ∆t−1 but with a slight offset µQH,D that depends on the time of
day and the day of the year and a variance that similarly depends on the time
of day and the day of the year. A warm spell is represented by ∆t > 0, and a
cold period by ∆t < 0. If ∆t > 0, then it will tend to stay > 0 for a while, and
similarly if ∆t < 0, it will tend to stay < 0 for a while.

Fig. 10. Relationship between the baseline, ∆, and the observed and predicted tem-
peratures. Note that the baseline curve captures the diurnal variation. It is also slowly
dropping, which captures the gradual seasonal change. The ∆ curve starts out negative
and then gradually increases so that the sum of the baseline plus ∆, which gives the
predicted temperature T almost exactly matches the observed temperature O. Where
these two curves differ, the model will declare anomalies.

Figure 10 illustrates the relationship between the baseline B, the ∆ process,
and the observed and predicted temperatures. The fact that ∆ varies somewhat
erratically reveals that the model still has room for improvement, since ideally,
it would be a fairly smooth curve.
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The model is applied one temperature reading at a time. First the observed
temperature O, and the QH and D are asserted as evidence. Then probabilistic
reasoning is performed to compute updated probability distributions for ∆t and
T and the most likely value of St. The data point is tagged with this most likely
value. If the most likely value is “very bad”, then the observed temperature
is removed as evidence, and the value of ∆t is recomputed. Also, the variance
σ2

QH,D is set to a small value, so that the distribution of ∆t remains concentrated
near the value of ∆t−1. Then the next data point is processed and tagged.

The model was trained using four years of data and then evaluated on the
remaining three years. The model correctly detects all of the easy anomalies.
Quantitative evaluation of the medium anomalies is more difficult, because the
domain expert tended to mark long contiguous intervals of time as anomalous
when there was a problem, whereas the model is more selective. For example,
when a sun shield was missing, the expert would label whole days as incorrect,
whereas the model only marks the afternoon temperatures as bad, because the
sensor is still measuring the correct temperature at night. Figure 11 shows the
performance of the model in this case. Notice that it not only detects that the
peak temperatures are too high but also that the temperature rises and falls too
quickly.
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Fig. 11. Top: Lost sun shield in 1.5m sensor. Bottom: Data cleaning applied to 1.5m
sensor. Triangles and circles are plotted at points declared to be anomalous. They mark
the mean of the predicted temperature distribution.
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Our overall assessment is that we are achieving near-100% recall for anomalies
but with a false positive rate of roughly 5.3%. This means that we are reducing
by over 94% the amount of data that the domain expert must review manually
without missing any anomalies. More details are available in Dereszynski and
Dietterich (Dereszynski & Dietterich, 2007).

This work shows that carefully-designed dynamic Bayesian networks can do
an excellent job of anomaly detection for challenging single-sensor data streams.
As more sensor networks are deployed, the need for data cleaning will become
much greater, because it will be impossible for human experts to manually in-
spect and clean the data. We hope that the methods described here will be able
to help address this challenge.

4 Education and Training

Ecosystem informatics is inherently an interdisciplinary research area that ad-
dresses the scientific problems that arise in various ecological sciences (botany,
zoology, population genetics, forest science, natural resource management, earth
sciences, etc.) with the modeling and computational methods of mathematics,
computer science, and statistics. At Oregon State University, we have developed
two educational programs to prepare students for research careers in ecosystem
informatics.

4.1 Summer Institute in Ecoinformatics

Under funding from the US National Science Foundation, Professor Desiree Tul-
los leads a 10-week summer institute in ecosystem informatics for advanced
undergraduate and first-year graduate students. Students spend the summer in
residence at the Andrews Experimental forest. For the first 3 weeks, they at-
tend an intensive course in ecosystem informatics that introduces them to the
scientific problems, research methods, and the terminology of ecosystem infor-
matics. The next 6 weeks involves working on a research project supervised by
faculty and doctoral students. This typically involves a mix of field work, data
analysis, and mathematical modeling. The final week consists of a series of oral
presentations of the results of their research projects.

4.2 Graduate Program in Ecosystem Informatics

The second educational program is a Ph.D. minor in Ecosystem Informatics.
This was initiated by a five-year IGERT grant (Julia Jones, Principal Investiga-
tor) from the US National Science Foundation that provides graduate fellowship
support for students in the program. This was complemented by the hiring of
four new faculty members to teach and lead research in this program.

One of the challenges of interdisciplinary education is to prepare people to
work together across disciplinary lines without requiring them to become experts
in multiple fields. To address this challenge, we decided to structure the program
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so that students must have a “home” Ph.D. department, and they receive a
doctoral degree in their home department. In addition, they receive a Ph.D.
minor in Ecosystem Informatics. The minor involves the following:

– Participation in the Ecosystem Informatics “Boot Camp”, which is a one
week residential course held at the Andrews Experimental Forest prior to
the start of classes in the fall.

– Participation in a year-long Introduction to Ecosystem Informatics class.
In this class, students are introduced to the problems and terminology of
ecosystem informatics, and they work in cross-disciplinary student teams to
study emerging problems in ecosystem informatics.

– Participation in a 6-month internship, preferrably at an institution outside
the US. The goal of this is to expose students to research questions moti-
vated by ecological problems outside the US and to give them a more global
perspective. Often, this results in a published paper or an idea that can form
the basis of their doctoral research.

– Inclusion of an ecosystem informatics chapter in the doctoral dissertation.
This chapter is devoted to interdisciplinary work, sometimes with another
student in the program. The research topic for this chapter sometimes grows
out of the year-long class or the internship. In addition, to help students
develop these topics, we organize cross-disciplinary brainstorming sessions
for each student. The student presents a proposed problem, and faculty
members and other students brainstorm ideas for how to formulate and
study the problem.

We are now entering the fourth year of this graduate program. One of the
biggest benefits so far has been the development of interesting mathematical
models for analyzing disturbance in forests and habitats in streams. In addition,
the program has served as a nexus for fostering new interdisciplinary projects
including the battery-free sensor network program described in this paper.

5 Concluding Remarks

Many of the most important scientific and policy questions facing humanity
require major advances in the ecological sciences. Ecology has traditionally been
a difficult area to study because of the difficulty of measuring the primary data:
the fluxes of chemicals and nutrients and the distribution and interaction of living
organisms. Fortunately, we are in the midst of a revolution in sensor technology
that is going to make it possible to measure this primary data continuously with
dense networks of sensors. This will enable the ecosystem sciences to apply the
methods of data exploration science including data mining, machine learning,
and statistical model building to make rapid progress.

This paper has briefly described some of the activities in sensors and ecosys-
tem informatics at Oregon State University. At the level of sensor development,
we have discussed the development of ultra-low power temperature sensor nodes
that can operate by harvesting power from spread-spectrum RF broadcast from
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a central powered base station. We have also described our work on applying
computer vision and robotics to automatically manipulate and classify arthropod
specimens. At the level of data analysis, we have described work on automated
data cleaning for temperature data streams collected over a 7-year period at the
Andrews Experimental Forest. Finally, we have discussed two new educational
programs that seek to train researchers to work in interdisciplinary teams.

Much more research is required in all of these areas. Furthermore, there
is a great need for new kinds of data analysis and data management tools.
In particular, machine learning and data mining methods must be developed
that can deal with spatially explicit models and that can model interactions
among hundreds or thousands of species in time and space. I hope this paper
will motivate the reader to consider contributing new ideas to this exciting and
important research area.
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