
AN ABSTRACT OF THE THESIS OF

Giuseppe Cerbone for the degree of Doctor of Philosophy in Computer Science

presented on April 13, 1992.

Title: Machine Learning in Engineering: Techniques to Speed Up Numerical

Optimization

Redacted for Privacy
Abstract approved.

Thomas G. Dietterich

Redacted for Privacy

Paul Cull

Abstract

Many important application problems in engineering can be formalized as non-

linear optimization tasks. However, numerical methods for solving such problems

are brittle and do not scale well. For example, these methods depend critically

on choosing a good starting point from which to perform the optimization search.

In high-dimensional spaces, numerical methods have difficulty finding solutions

that are even locally optimal. The objective of this thesis is to demonstrate how

machine learning techniques can improve the performance of numerical optimizers

and facilitate optimization in engineering design.

The machine learning methods have been tested in the domain of 2-dimensional

structural design, where the goal is to find a truss of minimum weight that bears a

set of fixed loads. Trusses are constructed from pure tension and pure compression

members. The difference in the load-bearing properties of tension and compression

members causes the gradient of the objective function to be discontinuous, and this

prevents the application of powerful gradient-based optimization algorithms in this

domain.

In this thesis, the approach to numerical optimization is to find ways of trans-

forming the initial problem into a selected set of subproblems where efficient,

gradient-based algorithms can be applied. This is achieved by a three-step "com-

pilation" process.

The first step is to apply speedup learning techniques to partition the overall

optimization task into sub-problems for which the gradient is continuous. Then,

the second step is to further simplify each sub-problem by using inductive learn-

ing techniques to identify regularities and exploit them to reduce the number of

independent variables.

Unfortunately, these first two steps have the potential to produce an exponen-

tial number of sub-problems. Hence, in the third step, selection rules are derived

to identify those sub-problems that are most likely to contain the global opti-

mum. The numerical optimization procedures are only applied to these selected

sub-problems.

To identify good sub-problems, a novel ID3-like inductive learning algorithm

called UTILITYID3 is applied to a collection of training examples to discover

selection rules. These rules analyze the problem statement and identify a small

number of sub-problems (typically 3) that are likely to contain the global optimum.

In the domain of 2-dimensional structural design, the combination of these

three steps yields a 6-fold speedup in the time required to find an optimal solution.

Furthermore, it turns out that this method is less reliant on a good starting point

for optimization.

The methods developed in this problem show promise of being applied to a

wide range of numerical optimization problems in engineering design.

@Copyright by Giuseppe Cerbone

April 13, 1992

All Rights Reserved

Machine Learning in Engineering:

Techniques to Speed Up Numerical Optimization

by

Giuseppe Cerbone

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Completed April 13, 1992

Commencement June 14, 1992

APPROVED:

Redacted for Privacy

Professor of Computer Science in charge of major

Redacted for Privacy

Professor of Computer Science in charge of major

Redacted for Privacy
Head of Department of Computer Science

Redacted for Privacy

Dean aduate SchM

Date thesis presented April 13, 1992

Typed by Giuseppe Cerbone for Giuseppe Cerbone

ACKNOWLEDGEMENTS

Dedication

To my mother Anna,

to my father Roberto in memoriam,

and to Camila Terry.

Acknowledgements

Thomas G.Dietterich, my advisor, made this work possible. He constantly pushed

me to do my best, provided insightful advice and constant assistance, and taught

me the invaluable tool of a research methodology. I am in debt to him. Paul

Cull helped me to get to Oregon State University and, along with his wife Elaine,

provided valuable support at the beginning of this adventure. Moreover, Paul Cull

provided food for thought in the theoretical analysis of divide-and-conquer. I also

wish to thank the other members of my committee. Prasad Tadepalli provided

useful feedback on EBL related issues and proof-read most of my papers. Michael

Scanlan helped me get "logically" started on the 2-D design domain and kept asking

me when I would finish. Gordon Reistad was always available for suggestions as

the Graduate School Representative. David Ullman provided encouragement and

most of the engineering knowledge and references. John Peterson was available to

share his engineering expertise.

Thanks to Tom Dietterich, Peter Friedland, and Rich Keller, I spent the final

five months of this project at NASA Ames Research Center as a visiting researcher

with the Information Sciences Division.

It is also a pleasure to acknowledge people who made it possible for me to

come to the United States from chaotic but beloved Italy. Luigi Maria Ricciardi,

my advisor in Italy, put me in contact with Oregon State University. Roberto

Stroffolini encouraged me to go to the States. Both made great efforts in explaining

the "advantages" of a PhD. A great part of my accomplishment is due to them.

Many friends in the States helped me through the ordeal. Hussein Al-Muallim

provided friendly advice and technical competency. Vijay Srinivasan was very

precise in his comments on drafts of this thesis. Nick Flann was a great source of

information and provided invaluable feedback on learning issues. Terry Lutkavage

sorted through the English in my papers, was of great moral support, and made

possible our happy ending. My family provided a safety net. My mother Anna,

my sister Imma, and my uncle Giuseppe encouraged me throughout.

Finally, I am thankful to the agencies that funded my research. NASA Ames

Research Center provided funds under Grant Number NAG 2-630. The Italian

National Research Council (CNR) awarded me a fellowship for studies abroad.

The Department of Computer Science at Oregon State University awarded me

one-half of a Tektronix fellowship and, thanks to George Beekman and to Walter

Rudd, hired me as a teaching assistant and as a summer instructor.

Mathematica is a Trade Mark of Wolfram Research. SUN is a TradeMark of

Sun Microsystems.

Table of Contents

1 Introduction 1

1.1 Motivations 1

1.2 Optimal Design 3

1.3 Computers in Optimal Design 4

1.4 Machine Learning 7

1.5 Task Description 9

1.6 Overview of Solution 13

1.7 Summary of Contributions 24

1.8 Guide to the Thesis 26

2 Structural Design Task 28

2.1 Description 28

2.1.1 Skeletal Structures 31

2.1.2 Stress State 31

2.1.3 Analysis: Method of Joints 32

2.1.4 Objective Function 36

2.2 Previous Work in Structural Optimization 37

2.2.1 Theoretical Analysis 38

2.2.2 Linear and Dynamic Programming 38

2.2.3 Shape Design 40

2.3 Numerical Methods 41

3

2.4

3.1

3.2

Design Task as a Search Problem

Machine Learning Techniques

Search Control

Inductive Learning

44

47

47

49

3.2.1 Problem Definition 49

3.2.2 The ID3 Algorithm 51

3.2.3 Regression 54

3.2.4 Discovery 55

3.3 Explanation-Based Learning 56

3.4 Knowledge Compilation 58

3.4.1 Partial Evaluation 58

3.4.2 Loop Unrolling 59

3.5 Experimental Methodology 60

3.5.1 Speedup Curves 61

3.5.2 Learning Curves 62

3.5.3 Tradeoff Curves 64

4 Symbolic Methods 66

4.1 Introduction 66

4.2 Knowledge-Based Optimization 67

4.3 Compilation Stages 68

4.3.1 Topological Simplification 69

4.3.2 Instance Simplification 72

4.3.3 Case Analysis 73

4.3.4 Gradients 74

4.4 Experiments 75

4.4.1 Objective Function 75

4.4.2 Optimization

4.4.3 Reliability

76

78

4.5 Concluding Remarks 79

5 Eliminating Independent Variables 81

5.1 Introduction 81

5.2 A Design Example 83

5.3 Knowledge-Based Regularities 88

5.3.1 Geometric Knowledge Base 88

5.3.2 Search Control 91

5.3.3 Incorporation into the Objective Function 93

5.4 Numerical Discoveries 93

5.5 Experiments 95

5.6 Concluding Remarks 97

6 Learning Search Control 100

6.1 Introduction 101

6.2 Formal Definition of SETMAXUTIL 104

6.3 Complexity Analysis and Approximation 108

6.3.1 HITTING-SET 109

6.3.2 HP-completeness 110

6.3.3 Approximation Algorithm 111

6.4 Three Learning Algorithms 113

6.4.1 ID3 113

6.4.2 Minimum Cover 116

6.4.3 UTILITYID3 117

6.5 Experiments 118

6.6 Concluding remarks 120

7 Conclusions and Future Work 123

7.1 Solution Highlights 123

7.2 Engineering Perspective 126

7.3 Future Work 126

Bibliography 129

Appendices 136

A Simplifying Assumptions 136

B Objective Function 138

C Mathematica in the Design Domain 140

D Additional Experimental Results for UTILITYID3 142

E Design with Forbidden Regions 145

List of Figures

Figure Page

1. Bridge configurations, (a) Arc, (b) Cable-stayed 2

2. A 2-D structural design problem. 10

3. Search spaces for the skeletal design problem. 11

4. Traditional and new problem solving strategies. 14

5. Learning stages and methods. 16

6. Divide and Conquer applied to the skeletal design task 17

7. Weight of the structure in Figure 2 . 18

8. An example of a regularity. 21

9. Associating stress states to problem features 22

10. A guide to the thesis 26

11. A skeletal design problem and some solutions. 29

12. An instance of a skeletal design problem 33

13. Traditional optimization schema. 42

14. An ID3 example. Building a decision tree from 6 examples

and 4 features: al, ... , a4. 51

15. Sample speedup curve 62

16. Sample learning curve. 63

17. Sample tradeoff curve. 65

Figure Page

18. Optimization schema with compilation stage. 68

19. Average CPU time per function evaluation. 76

20. Average number of function calls 77

21. Average CPU time 78

22. Plot of the function f (x, y) = r21(y113)2 82

23. A point C in polar coordinates a and p 84

24. The bisector example. 84

25. Derivation tree to express the unknown point (C) in terms of

given geometrical entities. 86

26. Types of regularities: (a) complete, (b) incomplete. 89

27. CPU time of the optimization process before and after dimen-

sionality reduction. 96

28. Decrease in the number of independent variables after elimi-

nation procedure 96

29. A design problem and two stress states. Each stress state can

be an optimal solution 101

30. Features used in the skeletal design task. Forces fi and 12 are

obtained from the method of joints applied to a frame with

no connection points. The position f3 takes into account the

location of the load w.r.t the supports. 102

31. Output of the three learning algorithms on the training data

in Table 16. (a) ID3, (b) Min Cover, and (c) UTILITYID3. . . 115

32. Average CPU time as a function of search control knowledge 118

33. Average ratio qq(a(as(s'')') as a function of search control knowledge. 119
*(x)x)

34. Average utility as a function of search control knowledge. . . . 120

35. Average quality (Ratio = solution found) 142
optimal solution/

36. Average problem solving time 143

Figure Page

37. Ratio / Time tradeoff. 143

38. Skeletal design task with a forbidden region R 146

List of Tables

Table Page

1. Rows enumerate problems in optimal design. Columns list

Machine Learning paradigms. X's indicate the ML paradigm

used to solve the problem. 26

2. Numerical setup for the method of joints for the example in

Figure 12 35

3. Sketch of the ID3 algorithm 52

4. Procedure to generate learning curves. 63

5. Symbolic setup of the method of joints for the example in

Figure 2 70

6. Closed-form of the internal force for member El in Figure 2 . . 72

7. Internal force for member El in Figure 2 with givens. 73

8. Simplified objective function for the problem of Figure 2 . 74

9. Quadratic approximations of the gradient 74

10. Simplified objective function for the problem of Figure 2 . . 87

11. Objective function for the structure in Figure 2 with reduced

dimensionality. 87

12. Relations among geometrical objects 90

13. Relations between engineering terms and geometric entities. . 90

Table Page

14. Rules to derive geometric entities 91

15. A sample of training examples to learn optimal search control. 107

16. Training examples for UTILITYID3 in matrix format. 112

17. Greedy algorithm to compute the set of actions of maximum

utility. 113

18. The basic ID3 algorithm 114

19. Simplified objective function for the problem of Figure 38 . . . 147

20. Simplified objective function for the problem of Figure 38 with

only one remaining design variable. 147

Machine Learning in Engineering:

Techniques to Speed Up Numerical Optimization

Chapter 1

Introduction

The objective of this thesis is to demonstrate how machine learning techniques

can improve the performance of numerical optimizers and facilitate optimization

in engineering design.

1.1 Motivations

The search for optimality is innate for humans. In the age of space stations and of

ever increasing economical concerns, engineers must design efficient artifacts. For

example, building a space station will require the transportation of a very large

amount of structural material. This must be light enough to be lifted into orbit

without exceeding payload capacity, must be cost effective so that the transport is

completed in a few launches, and must be strong enough to withstand all stresses

in space.

Closer to earth, civil engineers often design bridges that can withstand the

weight of vehicles and support structures (trusses) like roofs that do not crash

2

.
" 24-741,4

(a) (b)

Figure 1. Bridge configurations, (a) Arc, (b) Cable-stayed.

under heavy loads, for instance a snowfall. In addition to these minimal stability

requirements, the engineers must take into consideration economic factors which

require that the artifact (bridge or truss) must be the lightest and cheapest possible.

The optimality requirements greatly increase the level of complexity in a de-

sign task. The constant evolution of shapes and the search for lighter and stronger

materials are evident in centuries of efforts by engineers and architects to design

optimal artifacts. In order to provide solutions to these problems, computer scien-

tists and engineers are faced with the challenge of automating the overall design

phase and incorporating the optimality requirements during the process and not

after the artifact has been designed. The goal is the construction of intelligent

Computer Aided Design (CAD) systems (Hagen and Tomiyama 1987) to help the

engineer build artifacts which are as close to the best as possible. However, to do

this efficiently, a number of problems with existing techniques must be overcome.

First, the knowledge acquisition bottleneck (Feigenbaum 1977) prevents the use of

traditional software engineering methodologies. Second, current numerical opti-

mization techniques are too brittle and slow to be applicable to many practical

tasks. For these reasons, the automation of design has recently been one of the

most active fields of research in the Artificial Intelligence (AI) community and

especially in the Machine Learning (ML) (Chien et al. 1991) circles. This thesis

combines novel ML strategies with traditional symbolic transformation techniques

3

to overcome some of the drawbacks of the software engineering approach and to

speed up and increase the reliability of traditional numerical optimizers. Therefore,

this work is a contribution to the research on intelligent automated design tools

and, to our knowledge, it is one of the first attempts to use ML techniques to aid

in optimal design. The thesis also constitutes a step towards our medium to long

term goal of constructing truly intelligent and automated CAD tools which output

a small set of alternative near-optimal designs from a provided specification. Such

tools relieve the human designers from the burden of generating alternative designs

from the same specifications. This, in turn, allows the engineers to focus on the

higher level intellectual activity of refining the array of options generated by the

CAD system.

1.2 Optimal Design

Engineering design is a complex activity that comprises two intertwined phases:

analysis and synthesis. Analysis is the study of the behaviour of the artifact and,

in most engineering tasks, it is a science founded on well-established mathematical

techniques. On the contrary, synthesis is the process of creating the artifact and it

is still largely considered an art. In a typical design episode, the engineer uses an

iterative design-redesign approach. After an initial study of the abstract require-

ments for the artifact, a conceptual design is proposed. This initiates an iterative

process during which this design is refined using feedback from the analysis until

a satisfactory answer is reached.

Optimality considerations influence all stages of the design process, because a

design can be improved in many different ways. For the sake of simplicity, let us

assume that our goal is to build a lightweight bridge. Once an initial stable design

(see Figure la) has been reached, a bridge can be made lighter simply by using a

material with the same resistance and lower density. On the other hand, engineers

have found that they can greatly decrease the weight of a bridge (and its cost) by

4

using a radically different design which resembles a child's swing and uses light

cables rather than heavy columns. Recent cable-stayed bridges (see Figure lb) are

examples of this latter approach. A simple change of materials would not have

induced a change in the shape of the bridge. Instead, to obtain the novel design,

engineers incorporated the optimality requirement during synthesis.

In this thesis, although we acknowledge the great importance of the science of

materials, we simply refer the reader to specialized references (Draffin and Collins

1950) for advances in this field. Instead, we are interested in automating the syn-

thesis of configurations that produce optimal artifacts subject to given evaluation

criteria. Further improvement on these configurations can then be obtained by

choosing the appropriate materials.

Before we proceed, it is important to point out that, in the opinion of most,

absolute optimality is utopian. This becomes especially true in engineering design

because of the lack of tools which ensure the global optimality of a solution. In

this regard, Vanderplaats (Vanderplaats 1984) states a motto similar to Murphy's

law:

... Expectations of achieving the absolute "best" design will invariably

lead to "maximum" disappointments. ...

With this in mind, in the remainder of this chapter we first consider the problems

to be overcome in automating optimal design and then briefly survey our solutions.

1.3 Computers in Optimal Design

In most cases, the analytical phase of engineering design is a well-defined (Mittal

and Araya 1986) task. On the other hand, the synthesis of the (optimal) artifact is

an ill-structured problem (Newell 1966) especially in the early conceptual stages.

The current computer technology to aid engineers in the design process re-

flects the dichotomy between analysis and synthesis. On the one side, there exist

5

widely used numerical packages that perform analysis using finite element tech-

niques. These analyses are often presented to the user in highly graphical format

by complex CAD tools which can visualize the artifact to be analyzed but are not

capable of making autonomous design decisions. On the other side, the research

to automate the synthesis of artifacts is still far from wide acceptance. This is

especially true when the design requirements include optimization. Early work in

expert systems for design show that many problems still exist. Furuta, Tu and

Yao (1985) review expert systems in design and conclude that:

... At present, the computer is a very common tool in structural engi-

neering, but it is mainly used for structural analyses [. .]. However,

an expert system can provide substantial assistance to more complicated

or creative works which are usually not completely or well defined ...

Later efforts by Duffey and Dixon (1988) with their DOMINIC expert system

and by Nevill, G.E. Jr., Garcelon, J.H. et al. (1989) with MOSAIC are a step

towards the mechanization of the design synthesis process but ignore optimality

requirements. In fact, Duffey and Dixon state that:

. .. The designs produced [by DOMINIC] are generally acceptable, but

not necessarily optimal ...

In building expert systems, optimality requirements add a layer of complexity to

the knowledge transfer process. Not only must the expert verbalize rules on how

to build an artifact, but the rules must ensure the best design. Therefore, one of

the main factors for the limited success of expert systems in optimal design is the

well-known knowledge acquisition (Feigenbaum 1977) bottleneck. In this regard,

Duffey and Dixon state:

... The human designer, especially in the preliminary or conceptual

stages of the design, tends to use knowledge in a way that is diffi-

cult to articulate and systematically define, let alone transform into a

computational model for automatic design . . .

6

At present, optimality is introduced in the design phase in a rather asyn-

chronous fashion and only recently (Papalambros and Chirehdast 1990) have re-

searchers built design systems that incorporate optimality requirements in the

design-redesign cycle. Typically, engineers cast the optimization problem into a

well-defined framework for one of the numerous existing numerical optimization

packages (Papalambros and Wilde 1988) and then analyze the results of the numer-

ical optimization either by hand or via CAD systems (Burns 1989). These results

are then utilized to modify the design which is then subject to subsequent itera-

tions. This procedure is extremely slow and is prone to errors. These problems

prevent the incorporation of optimization techniques into the real-time environ-

ment of intelligent CAD systems.

Even when numerical optimizers are used, they are limited by a series of draw-

backs (Vanderplaats 1984) which prevent their applicability in real domains. The

computational time of the optimization methods increases with the number of

independent variablesdimensionality. In addition, the increase in dimensionality

also triggers a decrease in the ability of the methods to locate global minima. This

is a serious flaw in practical applications, since they involve thousands of inde-

pendent variables. As an example, let us consider the design of a bridge in which

each connection point among structural members is a design variable and, conse-

quently, requires at least a pair (x and y coordinates) of independent variables for

the numerical optimization task. As we can all notice, there are thousands of such

connections in the smallest of bridges, whereas current numerical optimizers can

hardly (Pike 1986) handle 50 independent variables.

Furthermore, optimization algorithms have difficulties in dealing with highly

discountinuous functions which arise in mechanical engineering design. In these

situations, the methods might converge slowly or not converge at all. As shown for

instance in Figure 7, practical engineering functions are highly irregular. Robust-

ness is another problem. Seldom do the numerical methods ensure that a solution

is a global minimum and the user of the method must restart the program from

7

many different initial points to be confident that the solution is a global one. Obvi-

ously, in practical applications this requires an enormous amount of the engineers'

time which, we trust, they would rather spend on other tasks.

In conclusion, although there is a substantial need in the engineering commu-

nity to create systems that can produce optimal designs in real-time, the knowledge

acquisition bottleneck and the drawbacks of numerical optimizers prevent the con-

struction of intelligent CAD tools for optimal design. Therefore, researchers are

exploring new ways to let the computer acquire (learn) knowledge with minimum

human interaction and to improve the performance of numerical optimizers. A

promising approach to this problem is Machine Learning which is the main focus

of our work.

1.4 Machine Learning

A common definition of learning is: "the acquiring of knowledge or skill" and Si-

mon (Simon 1983) relates learning and, hence, the acquisition of knowledge to

"changes in a system that enable fit] to do the same task or tasks drawn from

the same population more efficiently and more effectively next time." But how do

these changes occur? How do engineers learn to build artifacts they have never

seen before? How do they improve their problem solving skills which allow them to

be more proficient over time? Answers to these questions may come from a variety

of research activities that explore the human mind both from a physiological and

psychological standpoint. However, some useful answers have been forthcoming.

Researchers in Artificial Intelligence are building software tools that emulate learn-

ing on traditional computers and, more recently, on neural networks (McClelland

and Rumelhart 1986).

To simplify the learning task, computer scientists have clearly separated the

acquisition of new knowledge from its application during problem solving. During

the acquisition phase, the system learns the knowledge it needs either to solve

8

problems or to increase the speed at which it derives solutions. The knowledge is

then given to the problem solver which, at run time, matches the given task to

the appropriate knowledge and applies it to derive a solution. This is the problem

solving model we adopt in this thesis. The division between learning and problem

solving has, among others, the effect that the knowledge acquisition process can

be performed off-line. The model we assume is not atypical. We can argue that

most of human learning happens in a similar fashion; for instance, we first go

to school and, we hope, later apply the notions and processes we have learned.

Amongst learning devices, neural networks are the best example; the weights in

the network must be computed (learned) from a set of user-supplied examples

before the network can be used to, for instance, classify hand-written characters.

Symbolic learning algorithms work in a similar fashion; knowledge is generated

(learned) via a "reasoning" mechanism separated from problem solving.

In the problem solving model we have assumed, learning is an off -line process.

One first learns and then applies the knowledge to solve problems. This is anal-

ogous to the compilation of, say, a C program. The obvious difference being that

the output of the compiler is, in most cases, machine readable code that will be

later used to solve a problem whereas the output of the learning program is knowl-

edge. In contrast, interpreters of computer programs give the opposite view in

which compilation and problem solving are intertwined. One of the main benefits

of separating learning and problem solving is that, within certain limits, the time

required to learn can be neglected; hence we assume that learning is free of cost.

The analogy between learning and compilation is much stronger. In fact, Mostow

(1989) defined the term knowledge compilation to reflect this similarity.

However, Mostow's definition of knowledge compilation as the transformation

of explicitly represented knowledge about a domain into an efficient algorithm for

performing some task in that domain does not include other learning strategies.

Shavlik and Dietterich (1990) fill the gap by suggesting that a system can learn

(change) by:

9

modifying itself to exploit its knowledge more effectively

acquiring new knowledge from external sources.

The first strategy is often known as speedup learning, skill acquisition, or knowledge

compilation. The second strategy is known as inductive or empirical learning. In

this thesis we show how both learning strategies can be effectively used in a uni-

form fashion to overcome some of the problems posed by the knowledge acquisition

bottleneck and some of the drawbacks of traditional (non-learning) numerical opti-

mizers. Ultimately, we shall see how machine learning techniques help in designing

optimal artifacts in the domain of structural design briefly described in the next

section.

1.5 Task Description

The task we are using to demonstrate our techniques can be summarized as follows:

Given: A 2-dimensional (2-D) region R

A set of stable points (supports)

A set of external loads with application points within R

Find: Number of connection points and members

Connectivity of members

Position of all connection points,

such that the structure has minimum weight and is stable.

Figure 2 shows an example problem in which L is the load and Si and S2

are two supports. The so-called topology is given as a graph structure containing

four edges (the members) and four vertices (the load, the two supports, and an

intermediate connection point C). The topology does not specify the lengths of the

10

members or the location of C, but it does indicate the number of connection points

and how the members are connected. The goal of the design process is to find the

best topology and location of the connection points. For this example, the optimal

solution is the one with a single connection point and four members connected

as shown in Figure 2. In this solution, members El and E3 are in tension (they

are being "stretched"), while members E2 and E4 are in compression. Tension

members will be referred to as "rods" and indicated by thin lines. Compression

members will be referred to as "columns" and indicated by thick lines.

S2

Figure 2. A 2-D structural design problem.

This task is actually only one step in the larger problem of designing good struc-

tures. As suggested by Palmer and Sheppard (1970) and Vanderplaats (1984), the

strategy is composed of three successive steps. From an AI standpoint, these can

be formulated as searches in separate search spaces corresponding to different lev-

els of abstraction of the problem. Two of these spaces are shown in Figure 3. The

search starts in the space of topologies to determine the number of connection

points and the connectivity of members disregarding the position of the connec-

tion points. The topological space is discrete but infinite because one can add

connection points ad infinitum. This search is purely qualitative and, currently, no

automated tools exist' to aid the engineer who can only use her/his expertise to

1We acknowledge later in this thesis a few efforts, besides ours, to automate the exploratory

stage in the skeletal design domain.

11

navigate in this search space. Once the topology has been chosen, the second step

is to determine the locations of the connection points in the 2-D region (and hence

the lengths, locations, internal forces, and cross-sectional areas of the members) so

as to minimize the weight of the structure disregarding the shape and composition

of members. Each point in 2-D is identified by its cartesian coordinates. Thus

the cardinality of the search space for the numerical optimizer is n = 2 p, where

p is the number of connection points. In theory, this task can be solved using nu-

merical non-linear optimization techniques. In practise, however, the limitations

of these techniques prevent their applicability. The focus of this thesis is a series

of machine learning methods to overcome some of these limitations. A third and

final step in the process optimizes the shapes of the individual members. This can

often be accomplished by linear programming and is not further discussed in this

thesis.

Topological

Search Space

(a)

n-dimensional

space

I Topological I
SearchSpace

Stress State

Search Space

(b)

Figure 3. Search spaces for the skeletal design problem.

To provide a tractable testbed for our techniques, we have introduced a series of

simplifying assumptions (see Appendix A) which allow us to compute the objective

12

function for the optimal design problem by a three-step process. The first step is

to apply the method of joints (see Section 2.1.3) to determine the forces operating

in each member. Once this is known, the second step is to classify each member

as compressive or tensile, which is important, because compressive and tensile

members have different densities. The third step is to determine the cross-sectional

area of each member. The load that a member can bear is assumed to be linearly

proportional to its cross-sectional area. Finally, the weight of each member can be

computed as the product of the density of the appropriate material, the length of

the member, and the cross-sectional area of the member.

The last two steps can be collapsed into a single parameter c: the ratio of

the density per-unit-of-force-borne for compressive members to density per-unit-

of-force-borne for tensile members. With this simplification, we can minimize the

function

Weight = E + c E (1.1)
tensile compressive

members members

where Fi is the force in member i, and 1= is the length of member i. This Weight

function is proportional (see Appendix B) to the actual weight of a structure and

represents the objective function that is used throughout this thesis.

There are several reasons why this task is particularly appealing to demonstrate

the suitability of machine learning techniques to optimal design. First, given our

assumptions, the task is simple enough that it does not require highly specialized

engineering knowledge; therefore, it is easily conveyed to most audiences. Second,

the algorithm used to analyze the structure (method of joints) is straighforward

and yet computationally expensive. Third, to our knowledge, an algorithmic so-

lution for the design of lightweight (optimal) structures does not exist. Fourth,

the optimization techniques required to minimize the objective function are non-

linear (Friedland 1971) and require a large number of evaluations of the objective

function. Fifth, the objective function is non-differentiable. Finally, with the help

13

of an abstraction called stress state2, it is possible to divide the optimization prob-

lem into independent subproblems.

Now that we have defined the design task, justified its choice, and formulated

the non-linear optimization problem, let us turn to an overview of the solution.

1.6 Overview of Solution

A typical sequence of steps adopted by a problem solver to optimize a design is

illustrated by the dashed lines in Figure 4 on the left. First, the engineer uses

her/his own knowledge and experience to formulate a numerical task. Second,

where possible, numerical optimization techniques are used to produce an optimal

solution. Numerical optimization is typically a slow and brittle process. This is

due to the fact that most numerical methods are hillclimbers. Thus, their speed

is greatly affected by the number of evaluations of the objective function and by

the time required for each evaluation. As stated at the beginning of this thesis,

one of our goals is to produce fast optimization tasks. In traditional optimization,

the engineer bears the burden of improving the performance of an established nu-

merical method. This requires that s/he spends valuable time in finding a suitable

starting point and in performing algebraic computations to reformulate the opti-

mization task in way that is suitable to a numerical method. An automated tool

must relieve this burden from the human. In our solution, this is accomplished

by letting the engineer specify the objective function in an abstract format. How-

ever, while the abstract formulation of the problem simplifies the engineer's task,

it can greatly slow down the numerical solution. This is because most optimizers

are general-purpose and have no knowledge of the problem domain. Therefore,

at run time they use the same objective function provided by the engineer for all

regions. In addition, it is more likely that abstract formulations are non differ-

entiable. This prevents the use of powerful gradient-based numerical techniques

2David G.Ullman is responsible for the name.

14

only slower function-based methods are applicable. This is especially true in

the design task we are tackling. As an example, the abstract formulation of the

weight in Equation 1.1 is non-differentiable, because (a) the expression for forces

and lengths are not known before the connection points are located, and (b) forces

are included as absolute values.

Engineer's

Expertise

..

Search

Control

Knowledge

[Pre-processed

subproblems

Compile

Time

V

Optimization 14
Numerical

.

i

Bun
Time

- - - Traditional - -

Our Solution

Figure 4. Traditional and new problem solving strategies.

This thesis augments the traditional problem solving schema with the off-line

knowledge compilation (or learning) stage (Cerbone 1992) illustrated by the solid

15

lines in Figure 4 on the right. The compiler uses a blend of novel and traditional

machine learning techniques to increase reliability and speed of the numerical op-

timization task. These results are accomplished by partitioning at compile time

the design problem into subproblems and by deriving:

Pre-processed objective functions for each subproblem

Search control knowledge that allows the problem solver to focus only on a

few subproblems.

The pre-processed functions contain fewer independent variables and have been

greatly simplified. Therefore, they are faster to evaluate. At run time, the problem

solver uses the search control knowledge derived during compilation to retrieve a

few candidate solutions. Each of these candidates is then given as input to a

numerical optimizer. However, in this case, the optimizer is given a simplified

objective function. The net result is a speedup of as much as 95% over the run

time of the traditional methods and a more reliable numerical optimization process.

Being an off -line computation, compilation does not introduce any overhead on the

run time operations. In the remainder of this section, we outline the compilation

steps.

Figure 5 outlines the compilation strategy. The figure also indicates the methods

used at the various stages, and the chapters in this thesis in which they are detailed.

Divide and Conquer. The design problem is partitioned into independent sub-

problems using a divide-and-conquer methodology. As the graph in Figure 6 il-

lustrates, once the number of loads and supports has been fixed, the design task

is partitioned according to topologies and stress states. These abstract configura-

tions are generated automatically by the compiler. No user interaction is needed.

A problem to be overcome with this strategy is that the number of subproblems

(stress states) can be exponential. In fact, while Friedland (1971) demonstrated

empirically that only a few topologies need be explored, the number of stress states

16

Compilation

Divide and Conquer

Specialize for

topology and

stress states

. Chapter 2

Symbolic Methods .Chapter 4

Specialized

Objective

Funtions

Perturbation

Chapter 5 .. Inductive Methods

4,

R egularities

Symbolic Methods

Pre-processed

Subproblems

with fewer

Independent

Variables

Solved

Example

Problems

Inductive Methods
Chapter 6

Figure 5. Learning stages and methods.

per topology can be exponential (although most stress states are either unfeasible

or need not be explored). Later in this section we shall see how to derive search

control knowledge to focus on a few stress states that will likely lead to an optimal

solution. Each subproblem generated by this procedure is independent from all

others and can be solved on a separate processor. Thus the global minumum is

obtained by taking the best solution among all subproblems.

The specialization to a topology and stress state also simplifies the numerical

17

Topology

".....1:...Topology
Loads, State

Stress

State

Supports

Stress
State

Figure 6. Divide and Conquer applied to the skeletal design task.

optimization task. We conjecture that this is true because the specialization in-

duces a convex region in the n-dimensional space. Figure 7 plots the weight of

the structure in Figure 2 as a function of the coordinates (x, y) of the connection

point C. As the plot indicates, there are at least three convex regions, one for each

stress state. For instance, region R1 in Figure 7 corresponds to a unique topology

and stress state. Moreover, all other unimodal regions in the figure correspond to

different stress states. Most numerical optimizers are unable to determine a global

maximum, because they cannot "jump" from one region to another. On the other

hand, when the optimization process is specialized to one stress state, the local

minimum will most likely be the global minimum in the region as well. The global

minimum for the function as a whole can then be computed as the mimum among

all regions. It is also important to notice each objective function restricted to a

stress state (or, equivalently, a region in the figure) is differentiable, because the

expressions of forces and lengths can be made explicit.

Altough our research was initiated and conducted independently, our divide-

and-conquer approach follows the current line of research in building automated

scientific assistants (Cook 1991), (Keller 1991). The goal of this research is to

relieve the user (practising engineer or scientist) from the low-level algebraic and

numerical manipulations to allow her/him to focus on conceptual tasks. In our

domain, this means that the engineer need only input the method of joints and the

abstractions (topology and stress state) needed to partition the task. In a similar

18

Figure 7. Weight of the structure in Figure 2.

fashion, the ALPAL (Cook 1991) system in use at Lawrence Livermore National

Laboratories allows a physicist to input an integro-differential equation and the

size of the solution grid abstraction and then it specializes the numerical problem

to each grid. The Sigma (Keller 1991) project at Nasa Ames Research Center is

another significant effort towards scientific modelling assistants.

Symbolic Methods. The second compilation stage in Figure 5 specializes the

objective functions from the previous divide and conquer step. During this step,

knowledge of the topology and stress state is incorporated into the method of joints

and into the objective function. The result is a set (one for each stress state) of

objective functions in closed form. Each function is faster to evaluate than the

original one and is differentiable; thereby permitting the use of gradient-based run

time optimization methods. (Gradient methods typically require fewer evaluations

of the objective function to produce a result.) This specialization is performed us-

19

ing traditional compiler optimization techniques such as partial evaluation and loop

unrolling (or loop unfolding). Moreover, algebraic simplification is performed by a

compiler we have written using the language provided by Mathematica (Wolfram

1988), the off -the-shelf symbolic manipulation package.

To visualize this compilation step, the following figure illustrates a design prob-

lem (a) and two stress states (b) and (c)

0 0
(a) _}

In this example, the topology (one connection point and the connectivity in-

dicated in the figure) is known and it is incorporated into the objective function.

With this knowledge and using loop unrolling, the compiler derives a system of

linear equations in symbolic form. The system of equations is the core of the

method of joints and the solution is necessary to compute the force in each mem-

ber. Symbolic algorithms are then used to solve the system of equations and to

obtain a closed form expression for the internal forces. Knowledge of the topol-

ogy also allows the compiler to derive the symbolic expression for the length of

each member. Forces and lengths are then substituted into the abstract objective

function

Weight = 2 ilFiliii+ c = 'will ri.
tensile compressive

members members

The resulting expression is still not differentiable because the signs of the forces

(stress state) are not known. Thus the compiler generates stress states and in-

corporates them into the function. At this point, another simplification is per-

formed by substituting the givens of the problem (loads and support positions)

20

into the symbolic expressions. Finally, the compiler further simplifies the objec-

tive function using partial evaluation techniques. The result is a differentiable

mixed symbolic/numeric expression such as

Weight = (1.14 1013x 5.66 109x2 -I- 8.16 105x3 + 3.28 1013y 3.26 109xy+

2.44 105x2y 6.70 109y2 + 8.16 105xy2 + 2.44 105y3 4.08 1016) /

(1.28 101xy 2.56 104x -I- 2.56 104y 6.40 y2 2.56 107).

This closed-form expression is faster to evaluate than the original objective

function and it is differentiable. This allows the problem solver to use powerful

gradient-based optimization techniques.

Generating example problems. Solved example problems (See Figure 5) are

generated automatically by the compiler. Given the specialized objective functions

derived at the previous step, the system randomly generates loads and support po-

sitions. Each of these problems is then solved off-line and the solution is recorded.

Eliminating independendent variables. The third step in Figure 5 produces

a further speedup and increases the reliability of numerical optimizers. This is

obtained using inductive methods to decrease the number of independent vari-

ables (dimensionality) in the numerical optimization problem. The reduction of

the number of independent variables is performed at compile time by discover-

ing regularities inductively. Regularities are relationships among variables and are

used (at compile time) to simplify the optimization problem. In fact, when the

optimizer searches within a region, it might turn out to be superfluous to search

along all dimensions because there might exist a regularity between, say, coordi-

nates and known quantities (e.g., location or magnitude of loads and location of

supports.) Once a regularity is determined, it is incorporated into the objective

function. This, in turn, has the effect of eliminating one or more independent

variables.

Figure 8 shows an example of a regularity. The angle C S1 S2 is one half the an-

21

S1 S2

Figure 8. An example of a regularity.

gle Li S1 S2. The latter is a known quantity because it involves load and support

positions. Hence, with a little algebra, we can compute one of the coordinates of C.

Using a polar coordinate system, the objective function can then be transformed

into an equation whose unknowns are an angle and a distance, instead of x and y

cartesian coordinates. Once the function is in polar coordinates, the regularities

among variables are used as constraints and are incorporated into the objective

function. The symbolic manipulation routines are then used again to perform

algebraic simplifications. The result is an objective function with fewer indepen-

dent variables. This, in turn, produces an even simpler and faster optimization

problem. For instance, the Weight shown in the previous expression induces a

2-dimensional optimization task in the variables x and y. After simplification, the

number of independent variables is reduced to 1 (e.g., the distance p of point C

from support Si.)

As reported in Chapter 5, regularities are discovered using a blend of Explanation-

Based Learning (EBL) (Ellman 1988) and statistical regression techniques to an-

alyze optimal solutions to design problems.

Learning Search Control Knowledge. Partitioning the optimization task ac-

cording to topologies and stress states greatly improves the running time of the

optimizers on each objective function. On the other hand, the specialization might

22

introduce a large number of candidate solutions; in principle, this number can be

exponential in the number of members in the structure. To overcome this problem,

we have devised a new inductive learning method (Cerbone and Dietterich 1992a)

to prune candidates that do not lead to optimal solutions. This method, along

with more traditional machine learning techniques, is fully explained in Chapter 6.

As shown in Figure 5, our method learns search control knowledge from solved ex-

amples. The learning algorithm outputs decision trees which can then be quickly

transformed into IF-THEN-ELSE rules. These rules (or, equivalently, decision trees)

map features of the problem to a set of stress states for a topology. The features

are characteristics of the design task and are computed by a set of procedures given

to the learning algorithm. (The automatic derivation of features is a problem for

future research.)

Instance Space Feature Space Actions

(Stress States)

Figure 9. Associating stress states to problem features

Ideally, the learning algorithm should associate a single stress state to each

problem description. However, the ability to associate features to a single stress

state requires that the features be chosen so that there is a one-to-one association

between problem description and solution. This in turn, implies that the stress

state selected by the learning algorithm is a solution for all problem instances with

the same feature values. This assumption (shown on the top part of Figure 9)

is too restrictive in many domains because these features either do not exist or

they are too expensive to determine. Instead, as it is shown on the bottom part

23

of Figure 9, in most cases it is possible to associate a set of candidate solutions

to feature values. The optimization problem in the skeletal design domain is an

example of such a task. In fact, even professional engineers are unable to map

problems into a single optimal stress state.

Existing learning algorithms are not designed to learn rules which map problem

descriptions into sets of actions. For instance, the ID3 algorithm (Quinlan 1987)

can map features into one stress state. In the design domain, the solution proposed

by ID3 does not always yield optimal solutions. In fact, as shown in Chapter 6,

it can produce solutions that are up to 4 times the global optimum. To overcome

this problem, we relax the requirement that the features identify a single stress

state and simply require that the learning algorithm chooses a set of stress states.

A trivial solution to this problem would output the set of all possible stress

states. This would lead to unacceptable performances at run time, of course. Thus,

we also require that the set of stress states minimizes (or maximizes) a given cri-

terion. Our approach is based on the consideration that in practical applications,

rather than absolute optimality it is often sufficient to derive a satisfactory solution

quickly. Time to obtain a solution and its quality3 are then combined to define

a utility function. This is the criterion that the learning algorithm will maximize

to select the set of stress states. Traditional learning algorithms ignore this qual-

ity/time tradeoff. In Chapter 6 we formalize this novel learning task and provide

UTILITYID3, a new learning algorithm. Estimates of the utility for each stress

state are based on the example problems generated by the compiler.

To provide this information, the training examples have a complex format such

as

N T L (57 5.61 4.0029) (66 9.0 1.0).

This example indicates that we extracted three features whose values are N, T,

31n our domain the quality is measured as the ratio between the solution attained by the

numerical optimizer and the optimal one.

24

and L, respectively, from the original design problem. Moreover, two stress states

57 and 66 were solved to determine the global maximum. It took 5.61 seconds

to solve the first stress state but the solution was about 400% of the optimal one.

Given training examples similar to the one shown above, UTILITYID3 outputs

a decision tree that maps features into a set of stress states (actions) that is

consistent with the given examples and that has maximum utility. Consistency

ensures that, for each training example, there is a stress state that can solve the

problem. Maximum utility introduces the desired time/quality tradeoff. These two

requirements make the learning problem NP complete (proof by reduction from

HITTING-SET.) To overcome this obstacle, we have used Chvatal's approximation

algorithm (Chvatal 1979) to determine a solution.

The improved performance of the numerical optimization task makes it much

easier to solve the geometrical optimization problem for the design task illustrated

in Section 1.5. This, in turn, allows us to propose a new strategy for solving the

topological design problem. As observed by Friedland (1971) among others, only a

few topologies must be evaluated to design a lightweight skeletal structure. This is

because once an initial topology has been chosen, the weight drops by adding a few

new connection points but it then stabilizes. With this in mind, we have proposed

a selection strategy that generates topologies and, for each of them, computes

the optimal geometrical solution. The topology is then chosen as the one that

minimizes the best geometries. This process is feasible only because we have been

able to drastically improve the performance of the geometrical optimization task.

This and other contributions are summarized in the next section.

1.7 Summary of Contributions

The goal of this thesis is to demonstrate how machine learning techniques can be

applied to optimal engineering design. This has been accomplished by tackling

problems in two different areas:

25

Bridging the gaps in the knowledge transfer mechanisms between engineers

and expert systems

Speeding up existing numerical methods.

Table 1.7 illustrates the correspondence between these problems and the machine

learning techniques used in their solution. The main contribution of this thesis is

to have shown that those ML techniques can be effectively used to overcome the

knowledge transfer gap and to increase the efficiency of numerical optimizers.

In our approach, these results required the use of a blend of novel and tradi-

tional optimization techniques. First, we have defined a new learning framework

which is more appropriate to optimization tasks. This framework involves (a) the

requirement that the output of the learning algorithm be a set of alternatives and

(b) measures of the cost of obtaining solutions. The learning methods produce

search control knowledge for the problem solver. This knowledge is optimal in

the sense that the set of proposed alternatives maximizes a given utility function.

Within this framework, we have developed and tested several learning algorithms

which generate search control knowledge for the problem solver. We found ex-

perimentally that one of the algorithms we devised, UTILITYID3, outperforms all

others in the skeletal design domain. This is a contribution to basic research in

machine learning. Second, we have used more traditional compiler optimization

techniques in the framework of knowledge compilation and merged them with in-

ductive methods. We have shown that the overall result is a drastic speedup of

the numerical optimization techniques.

Our approach opens new research directions into the so far unexplored area of

applications of machine learning to numerical optimization. It is our hope that, in

the medium-to long-term, our techniques will allow the use of specialized numerical

optimizers in real-time applications like intelligent CAD systems.

26

Table 1. Rows enumerate problems in optimal design. Columns list Machine Learning

paradigms. X's indicate the ML paradigm used to solve the problem.

Knowledge

Compilation

Inductive

Learning

Knowledge

Transfer X

Speedup of

Numerical

Optimizers

X X

1.8 Guide to the Thesis

The schema in Figure 10 illustrates the suggested sequence in which this thesis

should be read. Hopefully, by now, you would have read Chapter 1, the Intro-

Figure 10. A guide to the thesis

duction, which gives the motivation of this work, briefly surveys the application

of computers in a specific area of design, illustrates Machine Learning and some

of its techniques, introduces the task we have chosen as our testbed, outlines the

solution we have adopted, and lists our contributions to research in machine learn-

ing. Chapter 2 details the task used as a testbed for our methods, lists various

solutions proposed by engineers, surveys principal numerical optimization meth-

27

ods, and casts the problem into an artificial intelligence search framework. Some

of the machine learning techniques that are used in this thesis are presented in

Chapter 3 which, for the sake of completeness, also includes a brief digression on

why another outstanding technique (EBL) was not used. In Chapter 4 we start

presenting the solution we have adopted. In this chapter, we present the tech-

niques used to perform symbolic simplification and the results of our experiments.

Chapter 5 illustrates how inductive techniques are used to reduce the number of in-

dependent variables in an optimization problem and shows a further speedup over

the simplification techniques. Our new learning techniques that associate prob-

lems with optimal solutions are presented in Chapter 6 in which we define a new

learning framework, illustrate two algorithms to solve the problem, and show the

results of the experiments. Finally, the thesis is concluded with Chapter 7 in which

we first revisit the engineering task, show the proposed optimization strategy, and

speculate on natural extensions of this thesis.

28

Chapter 2

Structural Design Task

This chapter, along with Appendices A and B, gives the necessary engineering

and mathematical background to the problem that we have used as a testbed for

our machine learning techniques. Moreover, in observance of the best artificial

intelligence traditions, this chapter also shows how to cast the problem into a

search framework.

Section 2.1 describes the task and illustrates the associated non-linear optimiza-

tion problem. Section 2.2 presents some of the approaches taken by the engineering

community towards its solution. Section 2.3 presents the numerical techniques used

(sometimes) to solve the optimization task and outlines their drawbacks. Finally,

Section 2.4 illustrates how the structural design problem can be described as an

AI search problem.

2.1 Description

The design of lightweight 2-dimensional (2-D) structures plays a central role in

civil and mechanical engineering design, because most typical constructions can

be modeled as structural design problems. For example, roofs are made of a series

of 2-D panels covered with tiles. Similarly, bridges can be "sliced" and modeled

as 2-D panels subject to external forces. Given the importance of the task, much

research has been devoted to finding an algorithmic solution to produce (optimal)

29

Figure 11. A skeletal design problem and some solutions.

30

minimum weight structures. Despite the efforts of outstanding researchers since

Maxwell (Maxwell 1869), no definite solution is known. Therefore, designing op-

timal trusses is still very much an art, and the knowledge that leads to optimal

designs is often buried in rules of thumb or heuristics that engineers learn during

their studies and years of practice.

In its most general form, the task can be presented as the design of lightweight

structures, often called frames or trusses, to support given external loads using

designated stable points. A stable point (support) cannot move and ideally can

withstand any load. The ground is the most-used support. A load is an external

force and, in the case of bridges, is a combination of all forces acting on the bridge

components; e.g. the weights of the vehicles, the snow that might accumulate on

the construction elements, the winds, and so forth. Intuitively, a stable truss can

be defined as a structure that does not "crash" under the loads imposed on it.

Bridges are examples of stable structures.

The weight of an artifact can be decreased in at least two ways. First, the

engineer can use lighter material. Second, the shape of the structure can be de-

signed in such a way that the frame requires less material and, hence, is lighter. In

this thesis we do not consider the admittedly important advances in the science of

materials but, instead, we assume that the materials have been chosen and focus

on the synthesis of shapes.

As stated so far, the design task is very general and requires sophisticated anal-

ysis techniques to determine the characteristics of the structural elements which

are necessary to compute the weight of the structure. Our goal, instead, is to

tackle a problem that approximates reality as much as possible and yet provides a

manageable task for developing and testing our machine learning techniques. To

this end, we have introduced a series of simplifying assumptions (Appendix A)

which reduce the optimal design task to that of skeletal structures (Topping 1983).

While this simplifies the engineering aspects of the task, its main computational

charateristics are unaffected: no algorithmic solution is known and the analysis is

31

computationally expensive.

2.1.1 Skeletal Structures

Figure 11a illustrates an example of the simplified optimal design task in which

the goal is to build a frame made of members (structural elements) connected

through frictionless joints (connection points) to support an external load L (the

arrow), using the supports Si and S2 (the filled circles). A structural element can

be either in tension ("stretched") or in compression. Tension members, or rods,

are indicated by thin lines. Compression members, or columns, are indicated by

thick lines. In general, tensile members are lighter than compression members by

a factor of approximately 50.

Even with our simplifying assumptions, there is an infinite number of stable

frames to support L using Si and S2, and each of these solutions has a different

weight. For instance, as illustrated in Figures lib, we can use two members that

directly connect L to Si and S2. However, we can also add an arbitrary number

of connection points and use a larger number of members to connect the load

to the supports through these joints. Figures I lc and 1 le show solutions with

1 and 2 connection points, respectively. A second factor influencing the weight

is the connectivity of the structural members. Figures lle and 11f illustrate two

solutions which differ only in the way member E6 is connected to its attachment

points. In addition to these topological considerations, the weight of the structure

also depends on the location of the connection point(s). This leads us to define a

new abstraction which is described in the next section.

2.1.2 Stress State

The position of connection point(s) in the 2-D space is an important element

determining the overall weight of the structure, because it bears on the type (tensile

or compressive) of structural element (or, member) needed to connect two points

in the chosen configuration. For instance, the trusses in Figures 11c and 1 ld have

32

one connection point in different locations in the 2-D space. These two solutions

have the same connectivity and number of members but, as shown by the thin and

thick lines, the truss in 11c uses one column and three rods, while the solution

in 1 ld uses two columns and two rods.

Definition. Let m be the number of members in a topology. The stress state is

an array of m elements such that the i-th value is +1 if the i-th structural member

in the topology is tensile and 1 if it is compressive.

As an example, the stress state for the frame in Figure lid is (+1, 1, +1, 1).

The stress state plays a central role in our study, because, as we shall see in

Section 2.4, it allows us to decompose the problem space into "well-behaved"

regions.

The structural design task (Palmer and Sheppard 1970, Vanderplaats 1984)

proceeds in three steps. First, there is a qualitative topological optimization prob-

lem during which the engineer chooses the number of connection points and the

connectivity of the members. Then, during geometrical optimization, the location

of the connection points is chosen so as to minimize the weight of the structure.

The third and final step in the process optimizes the shapes of the individual

members. This latter step goes beyond the scope of this thesis and will not be

further discussed. After all these factors are established, it is possible to perform

the analysis of the structure to determine its weight.

2.1.3 Analysis: Method of Joints

The assumption (see Appendix A) that the skeletal structures we consider are

statically determinate greatly simplifies the analysis task. This is because for these

structures the topology and the geometry uniquely determine the characteristics of

structural members; that is, the internal forces that each member must withstand

for the structure to be stable. The computation of the internal forces is the core

analytical procedure and it is performed using the method of joints (Wang and

33

Salmon 1984) which is briefly described in the remainder of this section.

L.{2000,2000}
1000

El

Sl={0,0}

C={4000,1000}

E4

S2=(4000,0)

Figure 12. An instance of a skeletal design problem.

The method of joints allows us to write out a system of linear equations to

ensure the equilibrium of the structure. This is accomplished by writing as many

equations per node as there are degrees of freedom; that is, dimensions along which

the node can move. Each equation ensures equilibrium by equating the sum of all

internal forces along the degree of freedom to the sum of all external forces along

the same degree of freedom. Internal forces are exercised by structural members

and they can be tensile or compressive. Tensile forces pull on both extremities

of the member and tend to stretch it. Compressive forces, instead, push on the

extremities of members. External forces are applied to the points and are givens

of the problem. For example, in Figure 12 member El is subject to tensile forces

and member E2 is subject to compressive forces. Point L is subject to an external

force of magnitude 1000 units and angle 0. There is no external load applied to

the connection point C.

The unknowns in the system of linear equations are the internal forces in each

member. For instance, the system in Table 2 has been derived by applying the

method of joints to the structure in Figure 12. In this system, the Fi's are the un-

known internal forces in each member. The subscript corresponds to the member

Ei in the figure. Therefore, the method of joints allows us to compute the force that

each member must withstand for the structure to be in equilibrium (stable.) The

34

sign of each solution allows us to specify the characteristic (tensile or compressive)

of a member. Positive forces4 correspond to tensile members. Negative values

indicates the need for a compressive element. This distinction is crucial in com-

puting the weight of a structure because of the different densities of compressive

and tensile members.

Let us now use the method of joints to derive the system of equations. Given

the assumptions in Appendix A, only loads and connection points have freedom

of movement. Their degree of freedom is 2, because they can move along both

cartesian axes. Hence, for each structural problem one must write 2(I+c) equations

where 1 is the number of external loads and c the number of connection points. The

assumption that the structure is statically determinate, implies that the matrix of

coefficients corresponding to the system of equations, the statics or axial matrix,

is square with dimensions equal to the number of members. The left side of each

equation contains one term per structural member that is incident to the node.

Once a set of cartesian axes has been fixed, each term contains the unknown

component of the force along the degree of freedom. This component is obtained

by multiplying the unknown force by the cosine of the angle between the member

and the frame of reference if the degree of freedom is the x axis. Similarly, if the

the degree of freedom is the y axis, the term is obtained by multiplying the force

by the sine of the same angle. The right hand side of the equation is the x or y

component of the vector sum of all external components acting on the node. In

matrix form, the vector whose components are the projection of the external loads

is called the load vector. We notice that elements of the load vector corresponding

to connection points are always 0 because no external load is ever applied to these

points.

For instance, let us consider the statically determinate structure in Figure 12.

The coordinates of each point, and the magnitude and angle of the load are in-

4This is a widely accepted convention in engineering.

35

Table 2. Numerical setup for the method of joints for the example in Figure 12.

F1 cos(45) + F2 cos(-45) = 1000 cos(0)

F1 sin(45) + F2 sin(45) = 1000 sin(0)

F2 cos(-45) + F3 cos(22.5) + F4cos(90) = 0

F2 sin(45) + F3 sin(22.5) + F4sin(90) = 0

dicated in the figure. To apply the method of joints we consider one point at a

time and write one equation for each degree of freedom of the point. Therefore,

for our example, we need only consider points L and C. The first two rows are the

equilibrium equations for point L. They ensure stability along the x and y-axis,

respectively. The left hand side of the first equation contains one term per mem-

ber incident to the point. Each term is the component of the internal force of the

member along the x-axis. The first term, F1 cos(45), indicates the projection of

the force vector F1 correspponding to member El along the x-axis. The value 45

is the angle of the member with respect to the chosen system of coordinates. This

is such that the origin is located in Si and x-axis goes from the origin to the other

support Si; the y-axis is perpendicular to the x-axis and points upwards. The right

hand side of the first equation in the table is the component of the force vector

corresponding to the external load along the same axis. The second equation in

Table 2 ensures stability of the load point L along the y-axis. The remaining two

equations are the stability conditions for connection point C and are derived in a

similar fashion. It is important to notice that the right hand side in the equa-

tions for C is zero because, under our assumptions, no external load is applied to

connection points.

The solution to the above system is: Fi. = 500, F2 = 500, F3 = 707, and

F4 = 707. This indicates that members El and E3 are tensile because the sign of

the force is positive, while members E2 and E4 are compressive. In addition, the

solution also indicates that, for instance, member E2 must withstand a compressive

36

force of 500 units.

To summarize, in applying the method of joints, the position of each connection

point, support, and load must be known beforehand. This is necessary to compute

the elements of the axial matrix or, correspondingly, the coefficients of the linear

equations. Once the axial matrix and the load vector are specified, internal forces

can be computed by solving a system of linear equations. This can be easily

solved using well known Gaussian elimination algorithms. Having surveyed how

to compute the internal forces, let us turn to stating the objective function for the

optimization problem.

2.1.4 Objective Function

Under the assumptions given in Appendix A, the objective function used in this

study is proportional to the weight of a candidate solution and is usually calculated

by a three-step process. The first step is to analyze the structure using the method

of joints to compute the internal forces of each structural member. Once this is

known, the second step is to determine the characteristics (tensile or compressive)

for each member. The third step is to determine the cross-sectional area of each

member. The load that a member can bear is assumed to be linearly proportional

to its cross-sectional area. Finally, the weight of each member can be computed as

the product of the density of the appropriate material, the length of the member,

and the cross-sectional area of the member. In Appendix B we show the derivation

of the objective function that is used throughout this thesis:

Weight = > 11 F= II li + c E II Ff II li, (2.2)
tensile compressive

members members

where Fi is the force in member i, li is the length of member i, and c is the ratio of

the density per-unit-of-force-borne for compressive members to density per-unit-

of-force-borne for tensile members. This function is proportional to the real weight

of a structure.

37

Unless explicitely stated, throughout this thesis we use a cartesian coordinate

system. Reich and Fuchs (Reich and Fuchs 1989), studied the effect of the choice

of the coordinates system on the optimization methods. They determined that

the cartesian coordinate system offers the best tradeoffs in terms of speed and

reliabiltiy of the optimization task. The forces (Fi) are transcendental terms in

the coordinate system, since they are computed solving a system of linear equa-

tions containing trigonometric functions. The lengths (0 are algebraic terms, as

they represent Euclidean distances between points. The combination of forces and

lengths yields a non-linear objective function (see Figure 7.)

The objective function cannot be made explicit in closed form if the coordi-

nates of the connection points are unknown. This is because the internal forces

in each member cannot be computed. In turn, this implies that it is not possi-

ble to compute which terms in the objective function need to be multiplied by

c, the value that assigns different weights to the various members acccording to

their characteristics. This latter problem makes it impossible to differentiate the

objective function.

2.2 Previous Work in Structural Optimization

This section outlines the three main approaches to the design of lightweight skeletal

structures: theoretical, linear and dynamic programming, and shape optimization.

Because of its central role in this thesis, a fourth approach, numerical optimization,

is discussed in a separate section. The theoretical approaches are non-constructive,

because they suggest that a lightweight structure exists but they do not give any

algorithm. The linear and dynamic programming approaches have been applied

with little success both to the synthesis of topology and geometry and, to our

knowledge, they have been abandoned. Nevertheless, they are briefly surveyed,

because we strongly believe that they will be useful in the near future. Finally, the

shape optimization approaches are the most recent ones and attempt to intertwine

38

the numerical aspect during the synthesis of the structure.

2.2.1 Theoretical Analysis

In 1904, Michell (Michell 1904), primus inter pares, attempted to design minimum

weight frames. His goal was similar to ours: find the topological configuration of

the lightest structure that supports a given set of loads in 2-D. Using Maxwell's

result, he derived necessary and sufficient conditions for a structure to attain min-

imum weight in terms of the strains on each member and their directions. Michell

shows that structures made only of compressive or tensile members are optimal and

proves the optimality of (a) rods and columns subjected to a single pair of equal

and opposite forces, (b) triangular and tetrahedral frames under forces applied at

the angles of the geometric figure, and acting along lines which intersect within

the figure, and (c) catenaries in general. Michell's results are only of theoretical

interest, because they require an enormous number of uneven curved members and,

furthermore, there is no constructive algorithm to determine their exact configu-

ration.

2.2.2 Linear and Dynamic Programming

In the 1960's, after Dantzig's results on linear programming (LP) and Bellman's

work on dynamic programming (DP), there was a renewed interest in optimal

structural design. Researchers applied these techniques to solve the geometrical as

well as the topological optimization problems.

In geometric optimization (Hemp 1973) the unknowns of the primal LP prob-

lem are the cross-sectional areas, the weight is the objective function, the stress

constraints in each member are the local constraints, and the equilibrium equations

are the global constraint. The latter ensures stability of the structure.

LP is then applied to derive cross sectional areas for the individual members.

Some members might have a value "close" to zero indicating that they are re-

dundant. Consequently, the topology of the given structure can be modified by

39

excluding such members from the final configuration. The optimal structure will

then be a subset of the original one. It has been noticed experimentally that in

the single loading case (i.e., when only one set of forces is applied over time) the

resulting structure is most likely statically determinate.

LP has also been used to solve the topological optimization problem. The

basic idea (Hemp 1973) is to superimpose a grid on the region where the structure

can be located and consider all the intersections as potential connection points.

Loads and supports must be located at some connection points inside the grid. A

gigantic LP problem similar to the one described above is then set up. Many of

the members will be redundant (i.e., will have zero cross-sectional area) and can

be removed from the final configuration.

Although appealing, this approach has several limitations. First, the coarsness

of the grid and its shape greatly effect the optimal layout and its weight (Hemp

1973) with finer grids yielding better results. Second, the LP problem for fine

grids is extremely costly in terms of computational resources. In fact, if heuristics

specific to the problem and various pruning criteria are not used to eliminate

superflous members from the grid, the problem is exponential in the number of

points in the grid. For instance, for a square grid with n points per side, the

linear programming problem can have up to 2"2 variables. It is worth stressing

that the heuristics might eliminate important members and, hence, undermine the

optimality of the solution.

Dynamic programming was also applied to optimization problem. The space in

which the structure could be located, is "sliced" into regions and an optimal sub-

structure of a predetermined topology is identified by formulating a DP problem

whose unknowns are the connection points among the various stages of the de-

sign. Palmer and Sheppard used this method to design continuous beams (Palmer

1968), 2-D cantilevers (Palmer and Sheppard 1970), and 3-D transmission towers

(Sheppard and Palmer 1972).

This approach is very powerful whenever the original design task can be "nat-

40

urally" divided into designing sub-structures. However, the overall solution must

be obtained as sum of optimal solution to sub-problems. The three cases studied

by Palmer are of this nature. It is not clear, however, how this technique can used

for problems in which the partition is more complicated.

2.2.3 Shape Design

It has always been recognized that shape plays a fundamental role in optimization.

Since the early 60's attempts were made at studying the topological properties

of structures (Spillers 1963) and at generating topologies by adding and delet-

ing connection points. Although these algorithms could not generate all possible

structures, it was shown (Friedland 1971) that the change in topology obtained

by increasing the number of connection points and members yields lighter frames.

However, after an initial drop in weight with the first few iterations of the algo-

rithm, there is no further significant change (Spillers and Friedland 1972) when

additional connection points are introduced. This observation is a crucial one and

will be used in this thesis to suggest a strategy to reason at the topological level.

Despite the successes, to our knowledge, only recently Shah and Papalambros

have explored again this promising research avenue. Shah (Shah 1988) gives a

shape grammar capable of generating topologies but gives no insight on how to

solve the combinatorial explosion of the generation process. In addition, he does

not give any indication on how to improve the numerical optimization techniques

that are still needed to optimize the topologies generated by the grammar.

On the other hand, Papalambros and Chirehdast's approach (Papalambros

and Chirehdast 1990) seems extremely promising. They propose an Integrated

Structural Optimization System (ISOS) which is composed of three parts: ini-

tial topology optimization, image enhancement and interpretation, and detailed

design. The first phase uses homogenization to propose an initial topology. Ho-

mogenization starts with a defined region of the space in which the final structure

must be confined and a specification of the givens of the problem. As in our prob-

41

lem, these are loads and supports. ISOS then discretizes the region of space and

fills it with square cells of "porous" material. A non-linear optimization problem

is then set up to minimize an objective function. During optimization, cells are

removed or re-sized until a stable and optimal configuration is reached. It must

be noticed that this procedure is similar to the mentioned topological optimiza-

tion using linear programming. One difference being that in linear programming

members cannot be re-sized but only removed. The outcome of homogenization

is the rough shape of a structure in which the structural members must be rec-

ognized. This is accomplished by the second phase which employs machine vision

techniques to smooth the "blobs" produced by homogenization and to recognize

members. These are then refined and sized during the detailed design phase. One

of the results illustrated in the paper, is a solution to a cantilever problem. This

"seems" amazingly close to the theoretical lower bound proved by Michell.

However, Papalambros admits a few problems in ISOS. First, ISOS utilizes

sophisticated machine vision techniques which are not well-established. Second,

ISOS does not speed up the numerical optimization process. On the contrary,

it complicates it because of the large number of cells needed to fill fine-grained

regions. This is a drawback similar to the one described for the linear optimization

approach. Nevertheless, this approach is very promising, because it gives a method

to suggest optimal topologies.

We conjecture that the approach that we describe in this thesis is a natural

complement to Papalambros' method, because our goal is to speed up numerical

optimization via specialization. This is accomplished on a per-topology basis, and

each topology could be easily derived using ISOS or any other method.

2.3 Numerical Methods

Perhaps the biggest successes in geometrical optimization have been achieved using

non-linear numerical optimization methods. Once the topology (number of connec-

42

tion points and connectivity) is fixed, the geometrical design problem can be cast

as a non-linear optimization problem in n-dimensions. For statically determinate

structures, each connection point contributes 2 dimensions (its x and y coordinates)

to the optimization problem, and the objective function is shown in Section 2.1.

Friedland (Friedland 1971) in his PhD thesis gave a numerical optimization schema

capable of solving the non-linear problem. Vanderplaats (Vanderplaats 1984) and

Papalambros (Papalambros and Wilde 1988), among others, illustrated a series

of numerical techniques that have been used to solve the numerical non-linear

problem.

However, all researchers agree that numerical techniques are far from being

the panacea for the skeletal design problem and indicate a list of factors that

affect the practical applicability of numerical methods. First, non-linear methods

are not easily applied to highly non-linear functions. As shown in Section 2.1, the

objective functions that arise in the skeletal design domain have this characteristic.

Second, non-linear methods cannot handle a large number of independent variables

and typical structural problems involve hundreds of connection points. Third,

numerical methods are slow. Fourth, they are not very robust as they may not

converge at all and, when they converge, the solutions might depend on the starting

point they were given. Finally, numerical methods do not give any insights into

the topological optimization problem.

Choose

Initial

Point
)

Evaluate

Objective

Function

False

Compute

New

Direction

Figure 13. Traditional optimization schema.

43

Classical optimization textbooks (Vanderplaats 1984, Papalambros and Wilde

1988) present a comprehensive survey of optimization methods and of various tech-

niques for conducting the search for an optimal solution. As shown in Figure 13,

this process is iterative and is typical of many domain-independent non-linear

optimization methods. Starting at some initial point, the objective function is

evaluated and the termination criteria are tested. If the test fails, a new point is

generated by taking a step, of some chosen length in some chosen direction, away

from the current point. Each point defines a set of values for the independent

variables in the objective function. From an AI standpoint, numerical optimizers

can be viewed as "smart" hillclimbers. At each iteration they compute the value of

a (vector) function which indicates the direction (in n-dimensions) and magnitude

of the next step. Most optimization algorithms differ primarily in the criteria used

to choose the direction along which to optimize or the length of the steps along a

certain direction. For our purposes, we can divide numerical methods into direct

and gradient-based depending upon the type of information they use to navigate

through the search space.

Direct methods, Powell's (Pike 1986) being the foremost, choose the direction

and step size using only evaluations of the objective function. These methods are

usually applied when the function is non-differentiable and are very expensive in

terms of computational resources. Powell's method, for instance, requires a large

number of evaluations of the objective function. This latter observation is cru-

cial to our work, because the weight function in Section 2.1.4 is non-differentiable

and it is expensive to compute. Instead, gradient-based methods, like conjugate-

gradient descent (Pike 1986), use the partial derivatives of the objective function

to choose the new direction of optimization. These numerical methods greatly

reduce the number of function evaluations and are faster, because they take larger

steps towards the solution at the expense of evaluating the derivatives of the ob-

jective function. Usually, gradient-based methods greatly speedup the numerical

optimization process. However, for highly non-linear functions, it is possible that

44

the computation of the gradient is more expensive than the computation of the

objective function itself. As a result, the optimization process may not show any

speedup. One way to overcome this problem is to approximate the gradient with

the first few terms of its Taylor series expansion. This is a simple polynomial

and is fast to evaluate. As we show in Chapter 4, these approximations can be

computed at compile time and used at run time to effectively guide the search.

However, before we illustrate it, it is helpful to cast the design problem into the

search paradigm.

2.4 Design Task as a Search Problem

The skeletal design task can be cast in a search framework that facilitates (Mittal

and Araya 1986) the introduction of AI and ML techniques. To view a problem

as search, we must first define the search space; that is, the domain in which a

problem solver searches for solutions. For the skeletal design problem, two search

spaces can be identified: the space of all topologies and the space of all points in a

2-D region. The space of topologies is infinite but discrete, as it contains all possi-

ble structural configurations which can be generated by the following procedure:

procedure generateTopologicalSpace

repeat

Generate all possible combinations of connections among

loads, supports, and connection points

Add one connection point

which enumerates the topological space by generating all possible connections

among nodes in the structure and adds one extra connection point ad infinitum.

The diagrams in Figure 11 (except 11c) illustrate a small portion of the topological

search space for the 1-load-2-supports problem. Once a topology is fixed, the ge-

ometry must be specified. The search space for the geometrical design problem is

45

the continuous 2n-dimensional space, where n is the number of connection points.

This is because a connection point can, in principle, be placed anywhere in the 2-D

space. It is the task of the numerical optimizer to search the 2n dimensional space

to find locations for the connection points that minimize the objective function.

Without further refinements, the search problem is illustrated by the hierarchy

of the search spaces imposed by topology and stress state (see Figure 3a.) To

find an optimal design, the problem solver must first search through the space of

topologies and, then, determine the position of the connection points by searching

for a minimum in the 2n-dimensional space. Currently, these two searches are

conducted in an asynchronous fashion. The engineer uses his/her expertise to first

determine a topology and then, sometimes, a numerical optimizer is used to search

the continuous space.

The stress state partitions the 2n-dimensional space into smaller regions that

are semi-regular (uni-modal). Numerical optimizers perform much better in uni-

modal search spaces. Moreover, they are particularly efficient when gradient in-

formation and specialized functions are provided. Figure 7 shows the region (R1)

which corresponds to the structure in Figure 12 for which the stress state is: mem-

bers El and E3 in tension, and members E2 and E4 in compression. We have

no formal proof of the conjecture that the regions corresponding to stress states

are unimodal but, as we shall see, our experiments strongly support our hypoth-

esis. Therefore, the stress state superimposes an abstract search space on the

2n-dimensional space. The resulting hierarchy is illustrated in Figure 3b.

With this in mind, for illustrative purposes, we can restate the skeletal design

problem in a top-down fashion in which the search happens in three stages and in

different spaces. First, the topological space must be searched to determine the

number of connection points and the connectivity. Second, the space of stress states

is searched to identify the portion(s) of the 2n-dimensional region which contain

the globally optimal solution. Finally, the sub-regions of the 2n-dimensional space

are searched by the numerical optimizer to find the location of the connection

46

points. In practice, however, our solution follows a different order. The space of

topologies and stress states are searched first. Then the 2n-dimensional region is

searched to determine the exact configurations of the structures.

As we shall see in Chapters 4, 5, and 6, we have devised machine learning

techniques to efficiently search each of these spaces to quickly produce globally

optimal designs. However, before we illustrate our solutions, in the next chapter

we introduce a few machine learning techniques that have been used in this thesis.

47

Chapter 3

Machine Learning Techniques

This chapter outlines the traditional machine learning techniques and the experi-

mental methodology employed throughout this thesis.

Section 3.1 introduces the problem of learning search control knowledge. Sec-

tion 3.2 defines the inductive learning problem and illustrates methods used to

learn from examples. Section 3.3 outlines Explanation-Based Learning, one of the

most popular speedup learning techniques, and shows why it is not appropriate

for our task. Section 3.4 introduces the two knowledge compilation techniques

that are employed in this thesis. Finally, Section 3.5 explains the experimental

methodology used throughout our work.

3.1 Search Control

Most AI problems involve search control issues: decisions on what to do next in a

search space or what operator(s) to apply. Knowledge about search control is useful

to the problem solver (human or machine) to improve its run time performance

and to solve new problems.

As an example, the search problem for the skeletal design task shown in Sec-

tion 2.4 would be greatly simplified if we knew the optimal stress state associated

with each load and support configuration. In fact, as we demonstrate in the next

48

three chapters, this knowledge can improve the run time performance of the nu-

merical optimizers because it allows a more efficient search in a smaller region.

The ideal solution to the search problem is to provide the problem solver with

sufficient and useful (Minton 1990) search control knowledge' to navigate efficiently

through the search space and to make the correct decision at every step. But,

how does the problem solver acquire search control knowledge? People, so-called

experts, acquire it over time and after long periods of training. The result is

search control knowledge in specific fields that allows them to perform tasks they

have never encoutered before and improve their performance over time. Expert

systems, instead, are traditionally given search control knowledge in the form of

rules that knowledge engineers formulate after lengthy and costly interviews with

human experts.

However, as computers become more sophisticated and can potentially be made

to solve problems of increasing complexity, the task of the knowledge engineer be-

comes ever more difficult. In some cases, it is even practically impossible. For

instance, in optimal design it is extremely difficult for an engineer to spell out

rules to design optimal frames. In fact, for the skeletal design domain we have

interviewed two professional engineers' who were given a few optimal design prob-

lems. Both engineers derived optimal topological solutions (which our system

derives as well) but were unable to indicate general rules that would lead to opti-

mal solutions for similar problems. In addition, when faced with the localization of

the connection points to minimize the weight of the frame, the geometrical design

task, the engineers were unable to formulate any rule that could be transferred into

an expert system. They solved the problem by trying a few points and choosing

the minimum. This turned out to be far from the optimal derived by our system.

6Control knowledge is useful when the cost of retrieval is negligible with respect to the cost of

trying the solution.
6We wish to thank Dr.Dave Ullman and Dr.J.Peterson of the Mechanical and Civil Engineering

Departments, respectively, at Oregon State University for the time spent during the interviews.

49

To partially overcome this knowledge acquisition bottleneck (Feigenbaum 1977),

researchers are turning towards approaches which let computers automatically ac-

quire (learn) knowledge. Machine Learning is the branch of AI that studies, among

other things, automated methods to bridge the gap between experts and expert

systems. Thus far, two main avenues of research (Shavlik and Dietterich 1990)

have been identified: inductive learning and knowledge compilation. Some of the

tools used in ML are described in the remaining sections of this chapter.

3.2 Inductive Learning

"... The ability of generalizing from examples is one of the hallmarks of

intelligence. Our experience of the world is specific, yet we are able to

formulate general theories that account for the past and predict the fu-

ture. Such reasoning is commonly known as induction ..." (Genesereth

and Nilsson 1987)

Having defined (see Section 1.4) learning as the ability to solve tasks more effi-

ciently and more effectively next time, it becomes natural to refer to inductive

learning, also called learning from examples, as the ability to acquire skills from

examples. This can happen either in a controlled environment (supervised learn-

ing), in which a teacher classifies each example before it is given to the learning

algorithm, or in an uncontrolled environment (unsupervised learning), in which

examples are not classified and the learning algorithm uses its own strategies to

create clusters of examples that lead to concepts.

3.2.1 Problem Definition

Let us introduce a formal definition (Bakiri 1991) of the inductive learning task.

Assume that there are n features, {alai an), characterizing a given domain,

and let Di be the set of allowable values for feature a; (= 1, , n) . We then define

the event space X as:

X= D1 X D2 X . . . X Dn.

50

Let there be a mapping function g : X V = {vi, , vc}. Hence, V is the

set consisting of C elements comprising the output values that the function g is

allowed to take.

The inductive learning problem is to find a mapping f which is an approxima-

tion of g from a limited number of training examples. Each of these is of the form:

v) where

is an attribute (feature) vector:(xix2 xn) E X and,

v E V.

The learning algorithm takes as input a set of training examples and produces

a mapping function f in some representation language, e.g. a decision tree. In this

introduction we assume Boolean features; that is, each xi E {0, 1}(i E {0, 1}n).

Following the above notation, each Di is the set {0,1} and X is {0, 1}n. Hence,

the task can be re-stated as learning the function:

f : {0, 1}n V.

The set V of allowable values for the function f is often called the set of output

classes and each v E V is the name of an output class. Hence, this inductive

learning task can also be referred to as the multiclass learning problem.

It is often convenient to give each output value (class name vi) a unique number

{1, , C} that we will refer to as the class number. Since there is a one-to-one

correspondence between {1, , C} and {vi, , vc}, we can learn the equivalent

mapping function

f : {0,1}" {1, , C}.

Hence, C is also referred to as the number of classes in the domain. Note that

C = 2 corresponds to the special case of boolean concept learning.

C
(1001, -)

\
(0101, +) Training
(1111, +) Exam) les

(1101, +) (features. dass)

(0100, -)
(0100, -)

(1010, -)

\... 1 (1010.1

\...

On. Step of 1D3 11.

/
One step of 1D3i

(0100, -)

(1010, -)

Final Classification Tree

(1001, -)

51

Figure 14. An ID3 example. Building a decision tree from 6 examples and 4 features: al, , mt

Thus far, ID3 (Quinlan 1986) is the most successful algorithm used to learn

from examples. This is briefly described in the next section.

3.2.2 The ID3 Algorithm

ID3 is a learning algorithm of the TDIDT (Top-Down Induction of Decision Trees)

family (Quinlan 1986). Given a subset of the learning examples (called the training

set), the algorithm constructs a decision tree that can then be employed to classify

all the examples of a particular concept. A learning example is a pair: (i, v) where

i is a vector of attributes: (x1, x2, . . . , xn) and v is the class associated with i.

In the general case, the features xi and the outcome v need not be Boolean. For

simplicity, in Table 3 we describe a version of the ID3-algorithm that applies only

to binary feature vectors and binary classes.

52

Table 3. Sketch of the ID3 algorithm

Function build-tree (training-set)

INPUT: A training-set of m training examples. Each example is a pair: (4, vi) where

4 is an n dimensional binary attribute (feature) vector: (x1, x2, ..., xn), xi E {0, 1) and

vi E {-F, } giving the binary class associated with Ei. An example is called positive if vi is

+, and negative otherwise.

OUTPUT: A (binary) decision tree.

The decision tree is formed recursively as follows:

begin {build-tree}

If the training-set consists only of positive examples then

output a leaf node marked -F.

else if the training-set consists only of negative examples then

output a leaf node marked .

else

Select one of the attributes al, a2, ..., an to be at the root of the tree.

(The criterion for the selection will be detailed later.)

Call that attribute best-a.

Divide the training-set to two sets:

The zero-set containing all examples that have a value of zero for attribute best-a.

The one-set containing all examples that have a value of one for attribute best-a.

Mark attribute best-a as already used.

Let:

zero-set-subtree := build-tree(zero-set)

one-set-subtree := build-tree(one-set)

(Note that above are two recursive calls to build-tree)

Output a binary tree with best-a as the root,

the zero-set-subtree as the left subtree, and

the one - set - subtree as the right subtree.

end. {build-tree}

53

Figure 14 shows how a decision tree is built from a simple training set consisting

of 6 examples and 4 attributes: al, , a4.

We will now turn our attention to the criterion for determining which attribute

should be tested at the root of a (sub)tree and hence serve as the basis for further

splitting the examples reaching that node. This criterion in ID3 is biased to select

attributes that will lead to a small decision tree. It is a heuristic, so ID3 is not

guaranteed to derive the smallest possible decision tree for a given set of training

examples.

To detail the attribute selection criterion, we will consider some node in the

tree with a set of p positive and n negative training examples reaching that node.

The uncertainty in the class value to be assigned for that node is measured by the

entropy function:

n , 12

P log2 Pentr(n, p) = tog2 n+p n+ p

The above formula is intuitively appealing, since it assigns a maximum value (1)

for class uncertainty when the sample is split evenly between negative and positive

examples (n = p), and a minimum value (0) for the uncertainty when the sample

consists of only one type of examples: either positive (n = 0) or negative (p = 0).

ID3 selects the feature that provides the most information about the class value,

i.e. the one that minimizes the uncertainty in the class after the splitcalculated

as the weighted average of the entropies of the zero-set and the one-set:

une(ai) =
no A- po

entr(no, +
n1 + p1

entr(ni,pi)
n + p n + p

where

n, p = number of negative, positive examples in the training set reaching the node

ai = attribute being considered as a basis for the split

no, po = number of negative, positive examples in the zero-set, and

ni, p1= number of negative, positive examples in the one-set.

54

The uncertainty is calculated for all the attributes (not yet tested on the path

from the root to the current node) and the one that minimizes the uncertainty is

selected as best-a.

3.2.3 Regression

Regression is the analysis of the functional relation f (model) between one depen-

dent variable y and a set of independent variables xi's:

= f(X1.1 X2, Xn)

The problem is a predictive one. Given a set of numerical values of the n variables

one wishes to determine the "best" model that predicts the values of y. Guessing f

(model) is a difficult problem unless a specific functional form is assumed. There-

fore, regression is divided into linear and non-linear. In linear regression with 2

variables the solution is the estimate of the parameters a, b, and c of the equation:

y = a -I- bxi cx2.

These parameters are computed by minimizing the sum of least-square errors esti-

mates; that is, the sum of the square of the differences between the actual values

of the observations and the values forecast by the linear model. This estimation

method is called the error sum of squares. The model that results from regression

is often tested for goodness of fit to the data. This is measured via the variance

of the estimated errors. Even when the functional form of the model is known

or assumed, it may not be known which independent variables are relevant to a

model. Determining the relevant variables is the model-selection problem.

A powerful off-the-shelf statistical system, SAS (SAS 1989), has been used in

our study because it implements some of the most accurate regression procedures

in two packages REG and NLIN. The first package performs linear regression and

solves the model selection problem using one of nine different procedures. Among

them, forward and backward selection are the foremost. The former starts with a

55

constant model and adds one variable at a time. The latter assumes that initially

the model contains all variables and deletes one at a time. In both cases, goodness

of fit measures are used to determine which variable should be added/deleted and

variables that enter/exit a model are never eliminated/added.

Linear regression is a well understood problem with satisfactory solutions. On

the contrary, non-linear regression is at least as difficult as non-linear optimization

and it is rarely used. The problem is that the error sum of squares becomes a non-

linear optimization problem with the drawbacks we are analyzing in this thesis.

The package NLIN in SAS requires that the functional form of the model be provided

and that the model selection problem be solved by the user. These requirements

are too restrictive for most real domains.

3.2.4 Discovery

Discovery is one of the most fascinating and yet controversial areas of artificial

intelligence. It is fascinating because, according to Simon (Simon 1983), it is

the "finding of new things" previously unknown to humans. This task closely

resembles human creativity and has long (and erroneously) been construed as one

of the goals of artificial intelligence. It is controversial because, to date, none of the

systems that have been built has fulfilled such a promise. Moreover, it has been

argued (Ritchie and Hanna 1984) that the "discoveries" made by existing programs

are the result of well-engineered search techniques and heuristics. Nevertheless, we

are interested in discovery techniques because they provide a solid background for

the heuristic search approaches we use in our reformulation.

Two computer systems among others have contributed to the successes in au-

tomatic discovery: AM and BACON. The AM program by Lenat (Lenat 1978) is

guided by "interestingness" heuristics in its search of a space of mathematical con-

cepts in number theory. As a result, it re-discovers the concepts of prime numbers

and maximally-divisible number numbers with many divisors. BACON (Langley,

Simon et al. 1987) performs a bottom-up search of a space. It starts with a collec-

56

tion of data and derives algebraic laws. One of most interesting parts of BACON

is that it is capable of deriving lemmas; that is, intermediate results upon which

subsequent discoveries are made. BACON has been successfully used to re-derive

Kepler's Third Law and Ohm's Law.

3.3 Explanation-Based Learning

Ellman (1989) presents a complete introduction to Explanation-Based Learning

(EBL.) This section briefly surveys the fundamental concepts and components

of EBL and argues that drawbacks of this technique affect its applicability to

mathematical domains.

EBL can be schematically (Mitchell, Keller and Kedar-Cabelli 1986) defined as

Given: Domain Theory (DT) that encodes knowledge about the domain

and all operators used during problem solving,

Target concept describing the concept to be learned,

Training example, an example of the target concept,

Operationality criterion, a criterion for the form of the output

Find: A generalization of the training example that is a sufficient con-

cept definition for the target concept and that satisfies the oper-

ationality criterion.

The key factor in EBL is that it generalizes from the single training example by

deriving a proof that the example is an instance of the target concept. Therefore,

for EBL to be successful, it must be able to derive a proof.

We argue that in real optimization domains it is rarely possible to derive a

complete proof that a solution is an optimum. In theory, one should be able

to prove optimality by applying the Karush-Kuhn-Tucker (Pike 1986) condition.

57

However, in practise these proofs are based on computing Lagrangian multipliers.

This is a difficult task for non-linear functions. Agogino and Almagren (1987) built

SYMFUN, a symbolic system to reason qualitatively about optimization problems.

However, as Agogino points out, the computations are feasible only for very simple

functions. In addition, in many cases, the computation of the Lagrangian is purely

numerical, and this hardly provides a trace usable by an EBL system. The trace of

a numerical optimizer gives little information on the structure of the problem. The

extraction of information from a numerical trace is a promising area of research

(see Section 7.3.)

Even assuming that it is possible to prove optimality, the proofs would be of

little interest. In a mathematical domain, the domain theory will include detailed

algebraic operators that allow the system to transform the functions. Thus the

proof would contain the concatenation of such rules. The resulting EBL-derived

rules would be too detailed to produce any appreciable speedup. An example

of this phenomenon is shown in Chapter 4. When the topology is incorporated

into the objective function, the speedup is negligeable (58/60 sec.) This is due to

the fact that in a complete trace the number of arithmetic operations is greatly

increased with respect to the original solution method.

Despite these drawbacks, we have used EBL (see Chapter 5) to eliminate inde-

pendent variables from an optimization problem. This task is substantially dif-

ferent from solving an optimization problem. The elimination of independent

variables required reasoning about geometric entities such as points, lines, and

segments. Obviously, such a geometric domain theory can be easily devised and

provided to an EBL system. In this task, EBL was employed to provide a general-

ization mechanism once a proof was generated. The proof was generated using the

geometric domain theory and regression techniques that filled gaps in the proofs.

These were caused by the inability of the geometric theory to either formulate or

to provide justifications for functional or numerical relationships.

58

3.4 Knowledge Compilation

The Workshop on Knowledge Compilation held in 1986 (Dietterich 1986) was the

first attempt to establish knowledge compilation as a methodology. More recently,

IEEE Expert (IEEE 1991) has published a special issue on knowledge compilation.

This is the first attempt from a magazine with a large circulation to explain this

methodology to the larger computer science community.

With a far less ambitious goal, using an approach similar to (Berliner 1989),

we have used partial evaluation (Futamura 1971) and unfolding (Burstall and Dar-

lington 1977), two automatic programming techniques, to perform knowledge com-

pilation. These techniques are outlined in the remaining of this section.

3.4.1 Partial Evaluation

Partial evaluation is a simple and yet very powerful concept which was pioneered

by Futamura (Futamura 1971) to derive compilers automatically from interpreters.

However, it has mostly been used by the compiler optimization researchers to

increase the efficiency of existing programs and to generate new programs. This

latter aspect is not investigated in this thesis.

In its most general formulation (Beckman et al. 1976), a partial evaluator is a

program which takes a procedure P (x1, x2 , 340 and m (< n) expressions

c/ , c2, , cm for the first m of the n variables and returns a specialized version

P' of the procedure such that for all x:

P (Xn1+1 XM+1 3 Xn) P (C1 s CM a XMA-1 3 $ Xn)

The simple substitution of expressions for variables does not speedup a program.

This is especially true in numerical programs. However, when further algebraic

simplifications are used to derive simpler expressions, the result can be a much

faster program. Consider, for instance, the following algebraic expression: 3 2' y.

When we substitute the values x = 5 and y = 2, it takes Mathematica 183.3

59

milliseconds to evaluate the expression 100 times. However, if the value of x was

known in advance, we can partially evaluate the expression w.r.t. x and obtain

3 25 + y which takes Mathematica 156.6 milliseconds to evaluate 100 times.

This computation can be made more efficient if we compute 3 25 and use 96 + y

instead. In fact, the evaluation of 100 of these expressions takes 1 millisecond

(the timing was done running Mathematica on a SUN Sparc 2 workstation.) In

conclusion, partial evaluation alone is not sufficient to speedup programs, but when

it is coupled with simplification techniques, it becomes a powerful tool to improve

the efficiency of programs.

General purpose partial evaluators are rather complicated to implement. How-

ever, the technique described above resembles constant propagation methods used

in most optimizing compilers (Aho, Sethi and Ullman 1986). These are much

simpler to implement especially with off-the-shelf symbolic manipulation tools like

Mathematica (Wolfram 1988). In our implementation we have used Mathematica

to perform constant propagation and simplification. A brief overview of Mathe-

matica is given in Appendix C.

The description of partial evaluation presented in this section is by no means

complete. In fact, this topic, also known as mixed or partial computation, has

been extensively studied from theoretical (Ershov 1982), practical (Beckman et

al. 1976), and artificial intelligence standpoints. This latter aspect is particularly

appealing to us because Van Harmelen and Bundy (1988) argue that one particular

EBL technique can be viewed as partial evaluation.

3.4.2 Loop Unrolling

Loop unrolling is another transformation technique used in optimizing compilers

and can be viewed as yet another application (Ershov 1982) of partial evaluation.

The idea is again very simple. If we a have a program with a loop like:

Do i = 1 to n; block(i) ; endDo

60

and at compile time it is known that n = 5, the program can be transformed into

a sequence of 5 blocks:

block(1); block(2); block(3); block(4); block(5);

in which i has been instantiated. In addition, if there is no data dependency among

the statements in the loop, all n = 5 statements can be executed in parallel. We

shall use this technique in the thesis to specialize the given solution method to

different topologies.

3.5 Experimental Methodology

All quantitative measurements in this thesis follow closely widely accepted method-

ologies taught by Dietterich (Dietterich 1987) and suggested by Kibler and Langley

(1988) in their paper Machine Learning as an Experimental Science.

In this thesis we make two types of claims. First, we claim that the mix of

symbolic and inductive methods we have employed produces a speedup in the

optimization process. Second, we claim that our novel inductive techniques reduce

the size of the search space. The experiments we performed are designed to support

these claims. From a methodological standpoint, for each experiment we specify:

The question to be answered by the experiment

How the experiment is run

Interpretation of the results.

However, before we describe our approach, it is important to stress a method-

ological issue that arises in experiments in inductive learning. As described in

Section 3.2, inductive learning algorithms are given a set of training examples

which they use to produce, say, a decision tree. To test the algorithm at run time,

it is common practice to use a test set which is separate from the training set. A

common procedure to generate the training and test sets is to randomly generate

61

a single set of experiments and then to extract the two disjoint sets using a pro-

cedure that performs the partitioning in a random fashion. In the remaining of

this section we use hypothetical situations related to our study to illustrate how

we have followed these three steps to substantiate the claims.

3.5.1 Speedup Curves

We wish to demonstrate that successive applications of different compilation meth-

ods produce a speedup in the optimization process at run time. Therefore, the

obvious question to be answered is: "Do the compilation stages produce a speedup

in the optimization process?" To answer this question, we compile the optimiza-

tion procedure with each method and, at each stage, we measure the CPU time it

takes to produce a solution. To produce more reliable results, instead of limiting

ourselves to one experiment, we perform a series of experiments with each com-

piled program and compute the average running time. This is taken as the time

it takes to produce a solution when the selected compilation stage is applied. The

results are then presented in a graphical form similar to the one in Figure 15. In

this figure, the compilation methods are reported on the x-axis. The CPU time

is reported on the y-axis as a function of the method used during compilation.

For instance, it takes 25 seconds when Method 1 is used. Instead, it takes 6 sec-

onds when Method 4 is applied. This curve shows an obvious speedup as different

and more powerful compilation methods are employed. Moreover, if the various

methods represent successive compilation stages, that is they must be applied in

sequence, the graph suggests a compile-time to run-time tradeoff. The more time

is spent during compilation, the faster the run time process will be. This latter

observation can be given during the interpretation of the results. Graphs similar

to the one shown in Figure 15 are used in Chapters 4 and 5 to demonstrate how

the symbolic and inductive techniques speedup numerical optimizers.

62

30

25

20

CPU
15

Time

10

5

0
Method 1 Method 2 Method 3 Method 4

Compilation Stages

Figure 15. Sample speedup curve.

3.5.2 Learning Curves

The performance of the inductive learning algorithms in producing search control

knowledge are shown using learning and tradeoff curves. Learning curves allow

us to analyze the performance of the algorithm as more training examples are

provided. This permits to answer two questions: (a) How many examples are

needed to reach a satisfactory performance? and (b) what is the peak performance

of the algorithm?

This latter question assumes that the algorithm is given all available training

examples. Having outlined the questions, Table 4 describes the procedure used

to produce learning curves. The compile/run time cycle is executed n times with

training sets of different sizes. For the sake of exposition, let us assume that the

outcome of the run time phase is a measure of correctness of the result; at this

point, we are not concerned on the semantics of this measure. In our experiments,

we have chosen to increment the size of a training set by a fixed step size until

a maximum is reached. Each decision tree produced at compile time by the in-

ductive algorithm is then tested against the test set and correctness of the results

63

Table 4. Procedure to generate learning curves.

procedure learningCurve

experiments = generateExperiments()

testSet = randomlyExtractTestSet(experiments)

trainingSet = randomlyExtractTrainingSet(experiments)

for size from min to maz by step

repeat n times

currentTrainingSet = randomly choose size elements from trainingSet

decisionTree = run inductive algorithm on current 71-ainingSet

run experiments using decisionTree on testSet

result = average of the results from previous n runs

output the pair (size, result)

100

90

80

70

%
Correct 60

50

40

30

"good-induction" -
"better-induction"

0 50 100 150 200 250 300 350 400 450
Number of Training Examples

Figure 16. Sample learning curve.

is measured. Again for simplicity, we have kept the test set constant throughout

the cycles, while the training set varies. This cycle is repeated n(= 5) times to

smooth out adverse effects that might arise from the random choice of the training

examples. The overall correctness is taken as the average of the individual results

over these n(= 5) runs. The average correctness and the number of training ex-

64

amples are then reported in a plot similar to the one in Figure 16. Let us first

consider the solid line in the figure. The number of training examples is shown

on the x-axis, while the correctness is reported on the y-axis. The interpretation

of the results is then obvious. The solid line curve indicates that 250 examples

are needed to achieve 95% correctness. Moreover, it also indicated that it is su-

perfluous to give more that 250 examples to the inductive algorithm because it

has achieved its peak performance. An additional piece of information that can

be extracted from the learning curve is a lower bound on the number of examples

needed to achieve a satisfactory performance. For instance, in Figure 16, one can

see that the algorithm performs poorly with less than 100 examples. It requires

150 examples to achieve 80% correctness. In addition to providing information on

a single algorithm, learning curves can be also used to compare the performance

of different algorithms. For instance, in Figure 16 we compare the performance

of good-induction and better-induction, two ideal inductive algorithms. The

interpretation of the results indicates that the algorithm good-induction per-

forms well with fewer examples but, when more than 150 examples are presented,

better-induction outperforms good-induction.

3.5.3 Tradeoff Curves

The last family of experiments we have performed involves tradeoffs between quan-

tities. Suppose that, for each solution, one computes a utility which depends on

the time it takes to achieve the solution and the quality of the solution which is

represented in terms of its error. A simple utility function can be defined as:

utility(time, error) = time + c x error

where c is a constant. The question is then: "What is the tradeoff between time

and error introduced by the learning algorithm?" To answer this question, one

can produce data that show how the two quantities vary as the constant c assumes

different values. However, as we have seen from the interpretation of the results

30

25

20

Time 15

10

1 2

Error
3

Figure 17. Sample tradeoff curve.

4 5

65

shown when learning curves are produced, the performance of inductive algorithms

depends on the number of training examples. Therefore, to produce tradeoff curves,

we have chosen to use inductive algorithms at their peak performance; that is, when

it is clear from the learning curve that the algorithm will not perform better. For

instance, if the learning curve in Figure 16 were to be used, we would choose a

training set of size 250. Once the size of the training set has been established,

we can start performing the experiments. These consist in running the inductive

algorithm with the chosen training set and measuring the resulting time and error

for various values of the constant c. These values can then be plotted in a graph

similar to the one shown in Figure 17. This graph indicates that as the weight c

of the error increases, it takes more time to produce more reliable results.

Having explained the methodology we used to produce our results, let us turn,

in the next three chapters, to illustrate the techniques we have devised and to

detail the results.

66

Chapter 4

Symbolic Methods

This Chapter describes symbolic knowledge compilation (Cerbone and Dietterich

1991) methods to speedup and increase the reliability of numerical optimizers.

Section 4.1 explains the importance of using symbolic methods and Section 4.2

illustrates how to use knowledge about the problem in the optimization process.

Section 4.3 outlines the compiler, while the results of the experiments in the skeletal

design task domain are reported in Section 4.4. Finally, Section 4.5 summarizes

the results in this chapter and the drawbacks of the symbolic approach.

4.1 Introduction

Many important application problems can be formalized as constrained non-linear

optimization tasks which, traditionally, are solved using general-purpose iterative

numerical methods that "know" nothing about the problem. These methods are

typically hillclimbers (see Figure 13) and are CPU intensive because of their pure

run-time nature. Therefore, in most cases, they cannot be used in real-time appli-

cations. Furthermore, numerical methods for solving such problems are brittle and

do not scale well because, for large classes of engineering problems, the objective

function cannot be converted into a differentiable closed form. This prevents the

application of efficient gradient optimization methods. Only slower, non-gradient

67

methods can be applied. To overcome these limitations, we have augmented nu-

merical optimization by first performing a symbolic compilation stage to produce

objective functions that are faster to evaluate and that depend less on the choice

of the starting point. These goals are accomplished by successive specializations

of the objective function that, in the end, reduce it to a collection of independent

functions that are fast to evaluate, that can be differentiated symbolically, and

that represent smaller regions of the overall search space. This allows us to replace

a single inefficient non-gradient-based optimization by a set of efficient numerical

gradient-directed optimizations that can be performed in parallel.

4.2 Knowledge-Based Optimization

In engineering design, the objective function is typically very expensive to evaluate,

since it reflects many of the speCifications for the design problem. Furthermore, it

is often the case that the objective function lacks a differentiable closed-form. For

example, in our objective function in Equation 2.2, the fact that the constant c is

applied only to compressive members makes it impossible to obtain a differentiable

closed-form. The signs of the internal forces must be computed before it is possible

to determine which members are compressive. Given that the speed of numerical

optimization is determined by the cost and frequency of evaluating the objective

function, there are two obvious ways to speed up the process: (a) reduce the

cost of each evaluation of the objective function and (b) reduce the number of

evaluations by finding a closed-form for the derivative of the objective function, so

that gradient descent methods can be applied.

We have developed an approach that pursues these directions. The basic idea

is to perform a compilation stage prior to run time numerical optimization. As

shown in Figure 18, the optimization strategy then becomes a mixture of compile

and run time operations. During compilation, a series of fast-to-evaluate special

cases of the original function are obtained. These functions are then used at run

68

Compile

Objective

Function

Optimize

Optimize

Optimize

Compute

Best

Solution

Figure 18. Optimization schema with compilation stage.

time as inputs to traditional gradient-based numerical optimizers to find the local

minimum for each special case. The global minimum is then computed by choosing

the best solution among all minima. The overall result is a faster and more reliable

optimization procedure that can be further sped up by solving each special case

in parallel on independent machines. Therefore, as a side effect, compilation also

produces a parallelization of the optimization process.

The compilation stage is the core of our approach, and the next section illus-

trates how it is accomplished.

4.3 Compilation Stages

Our compilation schema is based on the knowledge compilation techniques de-

scribed in Section 3.4. Unlike most current machine learning techniques, it relies

on the specialization of the problem via successive incorporation of constraints into

the objective function. Our method is analogous to previous attempts in machine

learning at specializing abstractions to obtain specific rules. Braudaway (Braud-

away 1988) designed a system along the same principle. However, to our knowledge,

very little work has been done in using knowledge compilation techniques to speed

up numerical tasks. In contrast, the current trend in the machine learning com-

munity focuses on methods, such as Explanation Based Learning (EBL) (Ellman

69

1989), capable of generating rules for guiding combinatorial search. Section 3.3

gives a brief description of EBL and its drawbacks in numerical tasks.

The inputs to the compilation stage are the objective function, a method to

compute terms of the objective function, and values for some of the non-design

variables in the function. As an example, for the skeletal design problem, the

compiler is given the formula

Weight = E 11Fill 4 + c E IlFill li,
tensile compressive

members members

(4.3)

a method to solve a system of equations, and values for loads and supports. The

goal of the optimization process is to derive the locations of the connection points.

Compilation is divided into four phases. The first three incorporate knowledge

about the problem into the objective function to obtain a large number of special

cases in closed-form. In principle, this number can be exponential and Chapter 6

describes how to circumvent this problem. During the last phase, the compiler

derives the gradient for each of these special cases and its Taylor series expansion.

To see how the compiler works, let us follow each compilation phase through an

example taken from the skeletal design domain.

4.3.1 Topological Simplification

During this phase, the compiler performs a case analysis of topologies at an ab-

stract level. It explores the topological search space to a certain depth and, for

each topological configuration, it specializes the method it was given to compute

the elements of the objective function. The result is a series of special cases of the

objective function in symbolic form. For the skeletal design domain this means

that, once the topology is fixed, it is possible to determine explicitly the number of

connection points, the number of members, and the connectivity of the members.

This, in turn, allows the compiler to determine symbolically the expressions for

the length of each member. Moreover, knowledge of the topology implies that the

70

compiler can use the method of joints (see Section 2.1.3) to compute symbolically

the elements of the axial matrix and of the load vector. For the problem in Fig-

ure 11a, the compiler first searches the space of topologies and for each topology

it creates an optimization task. Let us assume that it has reached the topology

Table 5. Symbolic setup of the method of joints for the example in Figure 2.

I
where:

cos(a1) cos(a2)cos xa2) 0 0 F1 / Lcos(7)

sin(a1) sin(a2) 0 0 F2 Lsin(7)
=

0 cos(a2 + 180) cos(a3) cos(a4) F3 0

0 sin(a2 + 180) sin(a3) sin(a4) F4 k 0

cos(a1) = (xi xi) /11i cos(a2)

cos(a3) = (x1 x)113, cos(a4)

817(a1) = (Y1 Yi)Ili, sin(a2)

sin(a3) = (Y1 Y) I 13, sin(a4)

= (x x1)112

= (x2 x)/14

= (Y 1/1)112

= (Y2 0/14
and li's are Euclidean distances:

11 = /(x1 X1)2 + (Y1 M)2

12 = AAX Z1)2 + (Y Mr

13 = /(x x1)2 + (Y Y1)2

14 = V(x x2)2 + (Y Y2)2.

shown in Figure 11c (and 11d). The abstract objective function for the skeletal

design problem is:

Weight= 2 11F1 11 1i+ c = 'will 4.
tensile compressive

members members

(4.4)

Using the fact that the topology has 4 members and by unrolling the loop imple-

menting the summations, the compiler produces the objective function:

Weight = cillFill 11 + c2IIF2II 12 + c311F3Il 13 + c4IIF4II 14 (4.5)

where the ci's depend on the unknown stress state of the solution; that is, their

value is:

1 1 if Fi > 0
ci =

50 otherwise.

71

Besides specifying the number of members, the topology also gives the connectivity

among members. This allows the compiler to symbolically compute all quantities

in the method of joints. For the example in question, these are illustrated in

Table 5. The system of equations must still be solved to obtain a closed form

solution for the objective function in Equation 4.5.

The novel symbolic techniques initiated by Macsyma and nowadays available

in powerful off-the-shelf packages like Maple and Mathematica (Wolfram 1988)

make this latter task much easier. In fact, we have used a compiler written in

the programming language of Mathematica (Maeder 1989) to solve and simplify

such systems of equations symbolically. We have written a procedure that solves

the linear system of equations using Cramer's rule and the simplification routines

available in Mathematica. Cramer's rule gives a solution as the ratio of two deter-

minants computed from the matrix of coefficients. It turns out that numerator and

denominator of this ratio are much easier to simplify individually, because they

are only polynomials. Therefore, our compiler first uses Cramer's rule to solve the

linear system, then simplifies the two polynomials separately. Finally, the compiler

combines all terms by factoring out and deleting common factors between numera-

tor and denominator. The simplified output is then combined and simplified again

to produce the symbolic solution to the system of equations. Table 6 shows the

expression of the force in the member El that joins the load L and the support 51

in Figure 2. This expression has been obtained using our compiler and it is the

solution for the force F1 computed from the system of equations in Table 5. Similar

expressions have been derived by our compiler for the remaining forces but, for the

sake of brevity, are not shown. It must be noticed that the symbolic expression

in Table 6 explicitly contains the unknown coordinates x and y of the connection

point C in addition to all givens of the problem. These solutions are then plugged

into Equation 4.5. The resulting expression, which is omitted for brevity, is not

yet in closed form, because the ci's depend on the sign of each solution and this

cannot be computed symbolically.

72

It is important to stress that all the operations described above were performed

on symbolic expressions, a task that is traditionally difficult to automate. However,

symbolic manipulation packages like Mathematica make these operations easier to

perform and the corresponding compilers relatively easy to write.

Table 6. Closed-form of the internal force for member El in Figure 2.

Internal Force in member El

P [((xi xt)2 (Yi Y1)2)

((x2 x)(Yi y)(y Yi) (x1 x)(y2 Y)(Y Y1))c-49.9(7)+

((xi x)(x xi)(Y Yi) (x2 x)(x xi)(Yi y))sin('y)] I

[((x2 x)(Yi y) x)(Y2 Y))((x st)(Yi YI) (xi xl)(Y

4.3.2 Instance Simplification

The second specialization step is to plug the givens of the problem into each of

the expressions obtained during topological simplification and to partially evaluate

the resulting mixed symbolic/numeric expression. For the skeletal design domain,

the givens of the problems are the loads and supports; however, one may wish to

analyze a structure subject to different inputs such as various loading conditions or

support locations. In such cases it is possible to leave those values in symbolicform

and substitute their numerical values at run time. For the example in Figure 2,

we choose loads and supports as givens. The expression of the internal force in El

is shown in Table 7. This indicates that the force is now reduced to a closed-form

expression of the coordinates x and y of the (unknown) connection point C.

From a formal standpoint, instance simplification is partial evaluation. The

compiler is given a symbolic expression representing the objective function and a

set of assignments for some of the variables. It then uses Mathematica to plug

these givens into the objective function and to simplify the resulting expression.

The result is a specialized objective function in symbolic form in which the values

73

have been substituted for the variables. Moreover, the resulting expression might

be faster to evaluate than the original objective function. Again, the power of

symbolic packages comes into play by making the substitution and simplification

steps easier to implement.

Table 7. Internal force for member El in Figure 2 with givens.

Internal Force in member El = 2236(y 6000)/(y 2x 2000)

4.3.3 Case Analysis

The third compilation step is to split the objective function obtained from instance

simplification into even smaller cases. For the function in Equation 4.5, this cor-

responds to combinatorially exploring all values of the signs for the forces and

substituting the related values of ci into the equation. From a physical standpoint,

each combination corresponds to a stress state. Therefore, at compile time, it is

possible to tell which terms should be multiplied by 1 and which ones have a co-

efficient of 50. Hence, Equation 4.5 can be expressed in a closed form. This also

implies that each function becomes differentiable. A differentiable objective func-

tion enables the problem solver to employ, at run time, gradient-based optimization

techniques which are typically faster than methods based only on evaluations of

the objective function alone.

For illustrative purposes, let us refer to Figure 7 in which we have plotted the

weight of the structure for the topology in Figure 2 as a function of the coordinates

x and y of the connection point C. Each unimodal region in the figure corresponds

to one or more stress states; for instance, (+1, 1, +1, 1) corresponds to region

Ri. This correspondence between stress states and unimodal regions is exploited

by the case analysis, which partitions the whole region and produces one objective

function per stress state. Each function is then obtained by abductively assuming

that the stress state is known and substituting this knowledge into the objective

74

function. In the skeletal design domain, once the stress state is known, it is pos-

sible to determine if a member is tensile or compressive. For instance, having

assumed the stress state (+1, -1, +1, -1), the specialized objective function for

Equation 4.5 is shown in Table 8. This expression is a closed form expression

which is in contrast with the original, more general, formulation of the weight

function.

Table 8. Simplified objective function for the problem of Figure 2.

Weight =

(1.14

3.28

6.70

1013x

1013y

109y2

5.66 109x2 + 8.16 105x3+

- 3.26 109xy + 2.44 105x2y

I.8.16 105xy2 + 2.44 105y3 4.08 1018)

(1.28 101xy 2.56 104x + 2.56 104y - 6.40 y2 - 2.56 107)

Table 9. Quadratic approximations of the gradient

Quadratic Approximation of the gradient =

-1060187.5 -1-159.4 x + 0.05x2 68.7 y + 0.2 x y-

0.00005 x2 y + 0.03 y2 - 0.00003 x y2 + 5.9 10-9 x2 y2,

-2909656.25 + 1860.4375 x 0.3 x2 + 1207.6 y - 0.8 x y+

0.0001 x2 y - 0.14 y2 + 0.00009 x y2 - 1.5 10-8 x2 y2

4.3.4 Gradients

The closed form expressions obtained at the previous step are differentiable and

allow the use of gradient-based numerical optimizers. An advantage of gradient

descent methods is that they need to evaluate the objective function less often

because they are able to take larger, and more effective steps. Of course, they incur

the additional cost of repeatedly evaluating the partial derivatives of the objective

75

function. Hence, they produce substantial savings only when the reduction in the

number of function evaluations offsets the cost of evaluating the derivatives.

For highly non-linear functions like the one in Table 8, the resulting gradient

is at least as expensive to compute as the original function. Therefore, as we will

show, overall we do not obtain a speed up for the optimization process. This

obstacle can be circumvented at compile time by approximating the gradient via

Taylor series expansion to produce a further speedup in the optimization process.

The quadratic approximations obtained at compile time of the gradient of the

weight function in Table 8 is shown in Table 9. The polynomial is fast to evaluate

and allows another significant speed up in the optimization process as shown in

the next section.

4.4 Experiments

To test the efficacy of this approach, we have solved a series of design problems,

and we have measured the impact of the compilation stages on the evaluation of

the objective function, on the optimization task, and on the reliability of the op-

timization method. The measurements presented are averages over five randomly

generated design problems and, for each design, over 25 randomly generated start-

ing points.

4.4.1 Objective Function

The objective function of each design problem was evaluated in four different ways

and, for each of them, we averaged the CPU' time over the different designs and

starting points. The weight was first computed using the traditional, naive, nu-

merical procedure with the method of joints. We then compiled the designs in-

corporating, in three successive stages, topological information, the givens of the

problems, and the stress state. Figure 19 shows the time (summed over 100 runs)

7The examples were run on a NeXT Cube with a Motorola 68030 chip.

76

to evaluate the objective function at the various compilation stages. The biggest

speedup was obtained with the numerical substitution of values into the symbolic

closed form expression and with the specialization to stress states. This suggests

that the gain is related to the elimination of arithmetic operations from the original

numerical problem.

CPU sec.

Naive Topology Instance Stress
COMPILATION STAGE

Figure 19. Average CPU time per function evaluation.

4.4.2 Optimization

As indicated in Section 4.2, the running time of the optimizers is influenced by the

number of function calls and by the time for each function evaluation. To present

the benefits of our approach on the optimization task, we have experimented with

two optimization algorithms (a) an optimizer based on Powell's method that does

not require gradient information and (b) the version of conjugate gradient de-

scent (Press et al. 1988) provided by Mathematica. The graphs in Figures 20 and 21

report, respectively, the number of objective-function calls and the overall CPU

time for each optimizer. The values connected by solid lines correspond to cases

where the optimizer had no gradient information, while the values connected by

77

dashed lines indicate averages utilizing the conjugate gradient descent method with

alternative approximations for the gradient vector.

As expected, the number of evaluations remains constant throughout the com-

pilation stages when the non-gradient method is used, while it decreases dras-

tically when we switch to the gradient-based optimization method. The overall

Function
calls.

2e

083
8

Naive Topology Instance Stress Gradient Quadratic Linear
COMPILATION STAGE

Figure 20. Average number of function calls.

CPU time (Figure 21) steadily decreases as well. For the non-gradient method,

the decrease is due to the progressive simplification of the objective function it-

self, so that it is cheaper to evaluate. When we switch to the gradient method,

there is initially no speedup at all, because the cost of evaluating the full gradient

offsets the decrease in the number of times the objective function must be evalu-

ated. However, additional speedups are obtained by approximating the objective

function as a quadratic and as a linear function (by truncating its Taylor series).

We have found experimentally that there is no appreciable difference between

the minima reached using the full gradient vector and the minima computed using

quadratic approximations of the partial derivatives. However, the precision of the

results obtained with the linear approximation is significantly reduced. Depending

CPU sec.

78

15 .8

1 7.8

32.2

1
1V11 545

1 I I

Naive Topology Instance Stress Gradient Quadratic Linear
COMPILATION STAGE

Figure 21. Average CPU time.

on the application, this trade of accuracy for speed may be acceptable. If not, the

quadratic approximation should be employed.

Another possibility is to employ the linear approximation for the first half of

the optimization search, and then switch to the quadratic approximation once the

minimum is approached. In other words, the linear approximation can be applied

to find a good starting point for performing a more exact search.

4.4.3 Reliability

An optimization method is reliable if it always finds the global minimum regardless

of the starting point of the search. Unfortunately, as shown in Figure 7, the

objective function in this task is not unimodal, which means that simple gradient-

descent methods will be unreliable unless they are started in the right "basin." It is

the user's responsibility to provide such a starting point, and this makes numerical

optimization methods difficult to use in practice.

From inspecting graphs like Figure 7, it appears that, over each region corre-

sponding to a single stress state, the objective function is unimodal. We conjecture

79

that this is true for most of 2-D structural design problems. If true, this could im-

ply that optimization can be started from any point within a stress state, and

it would always find the same minimum. If this is true, then our "divide-and-

conquer" approach of searching each stress state in parallel will be guaranteed to

produce the global optimum.

We have tested these hypothesis by performing 20 trials of the following pro-

cedure. First, a random starting location was chosen from one of the basins of the

objective function that did not contain the global minimum. Next, two optimiza-

tion methods were applied: the non-gradient method and the conjugate gradient

method. Finally, our divide-and-conquer method was applied using, for each of

the specialized objective functions, a random starting location that exhibited the

corresponding stress state. In all cases, our method found the global minimum

while the other two methods converged to some other, local minimum.

4.5 Concluding Remarks

Our overall strategy for speeding up numerical optimization methods relies on suc-

cessive specializations and simplifications of the objective function by: (a) special-

izing the objective function by incorporating the invariant aspects of the particular

problem and (b) splitting the objective function into special cases based on stress

states. This produces an optimization problem expressed in terms of the coor-

dinates of the connection points. This approach is in absolute concordance with

research in engineering in the context of non-statically-determinate structures. For

instance, Reich and Fuchs (1989) show the superiority over other problem formula-

tions of the Explicit Design Method in which the objective function is represented

in terms of the coordinates of the connection points. This suggests that our meth-

ods have a strong practical basis, because throughout our solution we have used

the coordinates of the connection points as unknowns.

From a numerical optimization standpoint, the benefits of the specializations

80

we have introduced are great. First, the cost of evaluating the objective function

is reduced. Second, the specializations make it possible to obtain differentiable

closed forms for the objective function. This allows us to apply gradient-directed

optimization methods. Third, the specializations create opportunities for parallel

execution of the optimization calculations.

Our symbolic approach is complementary to the traditionally difficult task

of writing compilers (Berliner 1989) for numerical programs. In this chapter we

have shown how to use powerful high-level symbolic packages like Mathematica as

basic tools to write specialized compilers. Admittedly, however, these compilers

are slower than ones written for production. Nevertheless, we can argue that high

level symbolic manipulation packages can be used by compiler writers to prototype

production compilers and by users, like engineers, who are not required to be

experts in compiler technology and, yet, they can still write their own compilers.

While the approach shown in this chapter is extremely useful to speedup a sin-

gle numerical optimization problem, it does not suffice to solve the entire design

problem. This is because the double specialization in the spaces of topologies and

stress states introduces a combinatorial explosion. Nevertheless, not all of the 2m

stress states make physical sense or produce an optimal solution. In Chapter 6

we show how our system learns search control rules to prune candidate solutions

that are useless or that do not lead to optimal solutions. In the meantime, in the

next chapter, we illustrate how to use inductive knowledge compilation techniques

to produce another source of constraining knowledge. This can also be incorpo-

rated into the objective function producing a further speedup of the individual

optimization tasks.

81

Chapter 5

Eliminating Independent Variables

5.1 Introduction

The number of independent variables (dimensionality) in an optimization problem

plays an important role in the reliability and speed of numerical optimizers. In

fact, Pike (Pike 1986) shows that the larger the dimensionality, the less reliable

and the slower the numerical optimization methods are. One way to circumvent

this drawback is to decrease the number of independent variables. This can be

accomplished by incorporating problem-specific knowledge into the optimization

process. As an illustrative example, let us suppose that we wish to minimize the

seemingly simple function:
y3

f(x,y) =
2

(y 1)2

whose plot is shown in Figure 22. Depending on the starting point, a conjugate

gradient optimizer may or may not find a minimum. For instance, when the

FindMinimum package in Mathematica8 is started at the point of coordinates

(x = 2, y = 5) it fails to determine any minimum. On the other hand, when the

starting point is (x = 2, y = 5), the numerical package determines a local minimum

at (x = 0, y = 4.8) in 9.5 seconds for 20 iterations on a SUN Sparc 2. Now, let

8We wish to thank Igor Rivin of Wolfram Research for providing useful details on the

Findliinimum 0 package in Mathematica.

82

Figure 22. Plot of the function f(x, y) = (;1132.

us suppose that, using domain knowledge, we are able to determine that, at the

optimum, the relation y = 2 holds for all x. Using this relation, the objective

function can be simplified to f(x) = 8x2 and the optimization problem becomes

trivial. Find Minimum always finds a solution quickly regardless of the initial

point, and it takes 0.9 seconds (10-fold speedup) to solve 20 problems.

There should be little doubt that, under most circumstances, the decreased

dimensionality of the problem greatly simplifies the numerical optimization task.

The goal then is to identify regularities; that is, constraining relations among inde-

pendent variables. The relation y = 2 is an example of a regularity. These relations

can then be included in the partial evaluation process illustrated in Chapter 4 to

reduce the dimensionality of the optimization task thereby obtaining a much sim-

pler problem for the run time optimization. Our approach mimics strategies that

are commonly used in solving (Polya 1973) mathematical problems. In fact, of-

83

ten mathematicians use algebra to transform a problem into an equivalent one for

which known relationships can be applied to simplify the search for a solution. In

many cases, a simple change of the coordinate system greatly simplifies the formu-

lation of a task. For instance, the equation of a circle whose center is the origin of

the axes is simpler than the equation of the same circle in a different coordinate

system.

To find regularities, we have employed two inductive techniques that rely on

training examples of the optimal solutions. The first, Explanation-Based Regular-

ities, uses domain knowledge to hypothesize regularities and training examples to

focus the search for the "appropriate" formulation of the algebraic problem. The

second, regression, determines regularities by using statistical (SAS 1989) linear

regression techniques.

Ideally, given either sufficient domain knowledge or powerful regression tech-

niques, one should be able to determine regularities among all variables. This

would completely circumvent numerical optimization. Realistically, instead, some

regularities are difficult to find. The goal is then to determine as many of them

as possible, without striving for completeness. For instance, let us consider Fig-

ure 23 which shows a polar representation of a point C. One might be able to

determine a regularity involving the angle of the vector a but might fail to de-

termine the distance p of the point from the origin of the vector. This regularity

is incomplete because only one of the components needed to locate the point has

been determined. Nevertheless, as we demonstrate in the next section, this infor-

mation is extremely useful, because the regularity can still be used to reduce the

dimensionality of the optimization problem.

5.2 A Design Example

To see how the dimensionality can be decreased in the optimization task described

in Chapter 2, let us consider again the problem in Figure 24, which we shall refer

84

Figure 23. A point C in polar coordinates a and p.

to as the "bisector" example. In this example, the coordinates x and y of the

connection point C are the unknowns. The givens are the load L and the supports

S1 and S2. Moreover, let us assume that a set of training examples of the optimal

solution has been either provided or derived by the system itself. The goal of

this simplification phase is to find constraining relations (regularities) between

the coordinates of C and the givens of the problem. Regularities are detected by

inductively analyzing the training examples.

L

S1

a

S2

Figure 24. The bisector example.

The first step transforms the engineering problem into a geometric one. This

is necessary in order to use the geometric knowledge-base that was given to the

system. This process can be considered as a translation and it is accomplished

by parsing each training example and "recognizing" geometric objects. The trans-

lation is possible because the knowledge-base includes rules that bridge the gap

between geometry and the domain task. For the bisector example, the system

85

identifies, among others, the following geometric objects:

point (Si) , point (S2) , point (C) , point (L) ,

angle(8, L, Si, S2), angle(a, C, Si, S2),

segment(Sgl, Si, S2), ...

where each point is identified by a point (P) predicate, an angle (see Figure 23) be-

tween three points is recognized by anglea P1, P2, P3), and a segment with

Pi and P2 as endpoints is described by the predicate segment(Sg, P1, P2). In

the bisector example, point (C) and all predicates that involve it in their derivation

(e.g. angle(a, C, Si, S2)) are unknowns, all others are givens.

With this knowledge, the system then tries to relate the unknown geometric

entity point(C) to as many other entities as possible with the ultimate goal of

expressing it using only given geometric entities. This is accomplished by using a

blend of EBL and discovery techniques. To visualize this process, let us refer to

the derivation tree in Figure 25. During the first step, a domain rule is used to

transform the point from cartesian to polar coordinates. As shown in Figure 23,

the domain rule states that a point can be identified by its distance p from Si

and by the angle a between points C, S1, and S2. With this in mind, the system

recursively tries to determine angle(a, C, Si, S2) and distance (p , C, Si).

After having explored all proofs, the system concludes that it is not possible to

re-express the angle and the distance in terms of known entities. If we were

to follow EBL strictly, we should conclude that the domain theory is incomplete;

that is, it is not powerful enough to bridge the gap between unknowns and givens.

This, in turn, implies that the search would terminate concluding that point (C)

cannot be re-expressed in terms of known geometric objects.

To overcome this problem we have used a discovery approach that fills these

knowledge gaps. The training examples of the optimal solutions are used to dis-

cover relations among variables. For the problem in Figure 24, we analyze the

P.[X,1] point(C)

angle(a, C, S1, S2)

1

I
1

i
..1

..
' 1/2 13

1

1
1

1

1

angle(fi, L, S1, S2)

proof tree

Legend

connectionPoint(C)

distance(p, C, S1)

. .

13 =scirt(P1 P2)

Representation/
Reformulation

Derivation step

al a.

}
Inductive steps

86

Figure 25. Derivation tree to express the unknown point(C) in terms of given geometrical

entities.

training examples and determine that the angle a between points C, Si, and S2 is

one-half the angle # between points L, Si, and S2. This relation is assumed as a

transformation of the unknown angle a. This process is shown by the nodes in

Figure 25 connected by the dashed lines. The system then recurs on the points

L, Si, and S2. These represent the geometric entities that were used to recognize

87

the angle /3. Simple lookup reveals that these entities are givens of the problem,

because they were derived from the position of the load and supports; thus, the

search terminates. For the time being, let us disregard the branch in the figure

indicated by the dotted lines; it will be explained in Section 5.4.

Table 10. Simplified objective function for the problem of Figure 2.

Weight =

(1.14

3.28

6.70

1013x

1013y

109y2

5.66 109x2 -I- 8.16 105x3+

3.26 109xy + 2.44 105x2y-

+ 8.16 105xy2 + 2.44 105y3 4.08 1011 /
(1.28 101xy 2.56 104x + 2.56 104y 6.40 y2 2.56 107).

Table 11. Objective function for the structure in Figure 2 with reduced dimensionality.

Weight simplif ied

(1.16 1013p 5.19 109p2 + 8.19 105p3 4.08 1013) /(3.95p2)

To summarize the derivation process in Figure 25, the x and y coordinates of

unknown connection point C can be expressed in terms of the angle a and the

distance p. In turn, the angle a is substituted by § which can be computed from

the given position of the load and supports. These transformations represent an

incomplete regularity, because we have related one of the independent variables

needed to identify C to given quantities. This regularity can then be incorporated

into the objective function of the optimization problem shown in Table 10. For

the bisector example, using the symbolic techniques described in Chapter 4 we

obtain the resulting objective function shown in Table 11. This expression shows a

reduction of the dimensionality of the problem from two to one. To see this, let us

compare the expression in Table 10 with the one in Table 11. The former depends

on the two independent variables x and y which represent the cartesian coordinates

of the connection point. The latter expression of the objective function, instead,

88

only depends on the distance (p) of the point C from support S 1. This distance

is the only unknown. Therefore, the optimization problem is one-dimensional and

can be solved quite efficiently at run time by a numerical optimizer. Having seen

how independent variables can be eliminated from the optimization process, let us

now turn to illustrate the method in greater detail.

5.3 Knowledge-Based Regularities

To determine regularities in the skeletal design problem we must be able to relate

unknown connection points to givens of the problems such as loads and supports.

The approach we have used is based on a mix of EBL (Ellman 1989) and dis-

covery techniques. The domain theory for EBL includes domain and geometric

knowledge, and it is described in Section 5.3.1. However, this domain theory is

incomplete (Tadepalli 1989), (Ellman 1989). In our framework, an incomplete do-

main theory does not allows the EBL-system to derive unknowns from givens. This

implies that independent variables cannot be eliminated. To fill the gaps in the

proofs derived by EBL, we have used a slightly modified version of the discovery

techniques discussed in Section 3.2.4. During discovery, the training examples of

the optimal solutions are analyzed to determine relations among geometric entities

inductively. These relations are then substituted into the proof derived by EBL

and the system recurs on the geometric entities in the new relation. However, the

discovery phase might fail to determine relations among geometric entities. These

failures lead to incomplete (see Figure 26) regularities. The remainder of this sec-

tion introduces first the geometric domain theory and then gives the sequence of

steps which lead to the regularities.

5.3.1 Geometric Knowledge Base

There are three parts to the knowledge base: (a) primitive geometric entities,

(b) relationships between engineering components and geometrical entities, (c)

89

Unknowns Set of Proofs

.... It. .

**. °I

I

Complete Incomplete
I

t

41
(Unknowns ,)

Figure 26. Types of regularities: (a) complete, (b) incomplete.

relationships among geometric entities. These parts are illustrated below in a

Prolog-like notation.

Primitive geometric entities. This component of the domain theory estab-

lishes the language in which geometric entities are expressed. Table 12 enumerates

seven primitive geometric entities: points, angles, distances, lines, line segments,

semiplanes, and regions. Each entity has a standard form. For example, points

are represented as (x, y) coordinate pairs. Lines are represented by the three coef-

ficients in the equation ax + by + c = 0. Semiplanes are represented by a line and

a comparison symbol (either > or <). By substituting the comparison symbol for

the = sign in the linear equation, one obtains the appropriate semiplane. Line

segments are represented by a distinguished endpoint and a direction vector that

when added to the distinguished endpoint produces the other endpoint.

90

Table 12. Relations among eometrical objects.

Relation Explanation

point (P) P is a point.

angle(a,P1,P2, P3) a is the angle between points P1, P2, and P3

(See Figure 23 with P3 = C.)

distance (p, P1 ,P2) p is the cartesian distance between points P1 and P2

(See Figure 23.)

line(Ln,P1,P2) Ln is the line that passes through points P1 and P2.

segment (Sg,P1,P2) Sg is the segment with endpoints P1 and P2.

Pi is the designated endpoint.

semiplane(Sp,FR) Sp is a semiplane defining region FR.

region (FR) FR is a collection of semiplanes.

Table 13. Relations between engineering terms and geometric entities.

point (P) : -support (P) .

:-load(P).

:-connectionPoint(P).

segment(E, P1, P2) edge(E, P1, P2).

Relations between problem and geometry. The engineering components

of the problem (loads, supports, connection points, and edges) are connected to

the geometric entities by the rules in Table 13. These rules indicate that supports,

loads, and connections are also points and that edges are line segments. In addition,

it is known to the system that loads and supports are givens of the problem and

that connection points are unknowns.

Relations among geometric entities. There are many relationships that can

be defined among geometric primitives. The full domain theory provides rules for

defining each relationship and a sample is given in Table 14. It must be noticed

that the rules shown in the table are recursive and, hence, so is the whole domain

91

Table 14. Rules to derive geometric entities.

line(L, P1, P2) :- /* line L passes through points P1 and P2 */

point (P1) , point (P2) , Pl= [X1 ,Y1] , P2= [X2 ,Y2] ,

B=X1 - X2,

(isZero(B) THEN A=1, C=-Y2 ELSE A=Y1-Y2, C=X1 Y2-Y1 X2)

L = [A, B, C].

point(P):- /* point P is the intersection of lines Ll and L2 */

line(L1), Ll = [Al, Bl, C1], line(L2), L2 = [A2, B2, C2],

notParallel(L1, L2), D = (A2 B1 Al B2),

X = (C1 Y2 C2 Y1) / D, Y = (C2 X1 - Cl X2) / D,

P = [X, Y] .

theory. For instance, a line is defined in terms of points, and a point is defined

as the intersection of two lines. Recursive rules represent a problem during search

because they can lead to infinite loops.

5.3.2 Search Control

Unlike most EBL systems which reason backward from the goal, our search strategy

mixes backward and forward chaining. This is necessary because of the recursive

nature of the domain theory. For expository purposes, we divide this search into

phases which are interleaved in the implementation:

Identify geometric objects (parsing),

Use the geometric knowledge to construct proofs for unknowns, and

Discover relations that relate given and unknown geometric objects.

The three phases are described in the remainder of this section.

Phase 1: Parsing. Reasoning begins with the engineering entities: loads, sup-

ports, connection points, and edges. It then progresses by identifying geometric

92

objects listed in Table 12 using the domain theory in Tables 13 and 14. Each geo-

metric object extracted by this process is labelled either as given or as unknown.

An object is a given if it is derived using a geometric rule from other given ob-

jects; it is an unknown otherwise. At the outset, connection points and edges with

connection points as endpoints are unknown.

Phase 2: Proof of unknown entities. This is the EBL phase. For each un-

known, the system uses the rules in the given domain theory to transform unknowns

into givens. All rules used in the process are chained and proofs are collected. If

there is a proof that contains only given entities then the process stops and outputs

the proof. Otherwise, it uses with the next step to discover regularities to fill gaps

in the proof.

Phase 3: Discovery. This is the inductive stage of the search. When this

phase is reached, it means that the system was unable to complete the proof with

given entities. Therefore, it tries to fill the gaps in the proofs inductively. The

system analyzes the proof and, starting from the most abstract level, it extracts all

unknown geometric entities. For instance, in the bisector example, it determines

that in order to compute the point, it must determine an angle and a distance (see

Figure 25.) All new unknowns are set as subgoals, and the domain rules are used

to determine if the unknowns can be derived from known geometric entities. In

the bisector example, the unknown angle a is one half of #, a known angle. Once

the relation is discovered in the example at hand, the system tests the hypothesis

for consistency against all training examples. For each one of them, the system

determines if the relation is true or false. A threshold is then used to determine if

the relation is to be considered true. If it is assumed true, the relation is substituted

into the proof for the unknown entity so that it can be later incorporated into the

objective function. In the end, when all proofs are analyzed, the system chooses

the first one with the least number of unknowns in the proof tree. In other words,

93

it chooses the proof which inductively determines the largest number of unknowns.

5.3.3 Incorporation into the Objective Function

Ths chosen proof is the regularity to be incorporated in the objective function

to decrease the dimensionality. This is accomplished by analyzing the proof tree

and collecting the algebraic relationships among variables. The objective function

and these relations are then used as input to the partial evaluator implemented in

Mathematica and discussed in Chapter 4. For instance, for the bisector example,

the system analyzes the tree in Figure 25 and determines the following relations:

x = p cos(a)

y = psin(a)

a =)6/2

= 63°.

These are substituted in the expression in Table 10 to yield the simplified expression

in Table 11. After all these steps are taken, the objective function may contain

fewer independent variables. As demonstrated by the experiments in Section 5.5,

the simplification of the optimization task triggers a reduction in the time it takes

the numerical optimizer to produce a minimum.

5.4 Numerical Discoveries

In section 5.3.2, we used domain rules to discover relations among geometric entities

and to fill gaps in the explanations constructed by EBL. The power of this approach

is determined by the rules provided to the system. These rules may involve relations

that are not always obvious to experts. For instance, in the bisector example, the

rules are unable to determine a relation to compute the distance from the givens

of the problem. This is shown in Figure 25 by the dotted lines. Therefore, a

94

different technique is needed to determine relations which are difficult to capture

and formalize.

Linear regression is a techniques for which explicit rules are not needed. Nev-

ertheless, this technique can be used to infer constraining relationships among

unknown variables. We have experimented with the regression package REG in

SAS. As an example, in the bisector problem in Figure 24, the relation between

angles a and /3 can also be discovered by linear regression. We computed the

values of the angles a and /9 for all training examples and fed them to REG. The

result was the linear expression a = 0.5#. In addition, for the bisector example,

once we assume the bisector relation between a and /3, it is possible to determine

analytically9 that there is a functional relationship among the distances. In fact,

it is possible to determine that:

distance(p, Si, c)

= distance(pi, S1, L) distance(p2, Si, S2)

_ 1,A(S1, Lx)2 + (Sly Ly)2)((S1x S2z)2 + (Sly S202),

where the distance is expressed in terms of the cartesian coordinates of the given

load L and supports Si and S2. Once again, the linear regression package REG was

used to derive the expression

distance(p, S1, c) = 0.428467th 0.564770p2 (5.6)

which is a linear approximation of the analytical relation above.

For the bisector example, knowledge of the relations among angles and distances

completely circumvents the need for numerical optimization at run time. In fact,

the functional form in Equation 5.6 can be substituted for p in the expression in

Table 11 to obtain an objective function which is a function of the given positions

of the load and supports. The position of the connection point is then obtained at

9The proof is carried out by applying the law of sines to the triangles Si - Li - C and

C - S1 - S2.

95

compile time by collecting all nodes in the proof. This is illustrated by the dotted

line in Figure 25. At run time, it is only necessary to substitute the given quantities

for the loads and supports and compute the coodinates of the connection point.

No run time search is necessary.

Although regression is a powerful technique that can be used to decrease the

dimensionality of an optimization problem, it is not the panacea. This is because

efficient regression techniques only produce a linear model of the unknown rela-

tionships and this may not be sufficient. On the other hand, as illustrated in

Section 3.2.3, non-linear methods require that the functional form and the model-

selection problems be solved a priori and this is too restrictive. In our experiments,

we used only linear regression. Model selection was performed automatically by

REG. In the bisector example, the system tried all possible combinations of depen-

dent and independent variables. For each of these, it computed the values of the

unknown distance p and the values of all other known distances for all training

examples. These values were given to REG, which was then asked to determine

the linear model using forward and backward model selection techniques (see Sec-

tion 3.2.3). As illustrated by the functional form in Equation 5.6, both methods

indicate that only pl and p2 are significant in the functional form. This approach,

however, is very much prone to errors and, ideally, one should indicate to the

regression package the variables to be included in the relation.

5.5 Experiments

To demonstrate the efficacy of the approach illustrated in this chapter we have

produced two plots. The first indicates that when a reduction in dimensionality

is possible, there is a drastic reduction of the run time numerical optimization

process. This is shown in Figure 27 which reports the average time it takes to

optimize 300 randomly generated design problems with different numbers of con-

nection points. We recall that each connection point corresponds to 2 independent

700

600

500

4
CPU

400

Time
300

200

100

"compiled" --
"non- compiled"

0 1 2 3 4 5
Initial Dimensionality

6 7 8

96

Figure 27. CPU time of the optimization process before and after dimensionality reduction.

variables (coordinates) in the optimization problem. The z axis in the figure indi-

cates the number of independent variables given to the numerical optimizer. The

time it takes to optimize is reported on the y axis. The thin line indicates the time

before the compilation that yields a reduction in dimensionality. The thick line

8

7

6

5

After
compilation

3

2

1

0

0 1 2 3 4 5 6

Dimensionality before compilation
7 8

Figure 28. Decrease in the number of independent variables after elimination procedure.

97

shows the values after the compilation. As expected, there is a drastic reduction

in the raw CPU time.

In addition to demonstrating the efficacy of the method when applicable, we

have also proved that the method is, indeed, widely applicable. This is necessary,

because for the method presented in this chapter to apply, one must consider the

following factors:

Presence of regularities in the domain

Completeness of the domain theory.

The first suggests that solutions to the optimization problem in the chosen domain

must present regularities that can be captured during the search. The second

indicates that the domain theory is powerful enough to detect such regularities.

For instance, in the bisector example, the solution presents regularities, and the

domain theory is complete in the sense that there is a transformation that allows

the detection of the regularity. Figure 28 indicates on the x axis the number

of independent variables in the initial optimization problem. On the y axis we

report the number of independent variables after the compilation stage that reduces

the dimensionality. The thin 45° line indicates the worst case performance in

which the compilation would not have produced any reduction in the number of

independent variables. The thick line indicates the average number of variables

after the incoporation of the regularities. The results show that there is a reduction

in the dimensionality of the problem demonstrating the efficacy of the approach.

5.6 Concluding Remarks

The techniques illustrated in this chapter are used to derive relations among vari-

ables in an optimization problem. Combined with the symbolic methods in Chap-

ter 4, these techniques produce a simpler objective function with fewer variables.

98

The elimination of variables is accomplished by discovering regularites; that is,

relating unknown variables to given ones whose values are known. This transfor-

mation process applies a mix of EBL and discovery techniques to a set of training

examples of the optimal solution. EBL is given a geometrical domain theory and

derives proofs of the unknowns in terms of the givens. However, it is almost al-

ways the case that these proofs cannot be completed. Under these circumstances,

the discovery mechanism bridges the gap between the unknown quantities and the

given ones. This is done by analyzing inductively a set of examples of the opti-

mal solutions and deriving simple relations. These are then used to complete the

proofs derived by the EBL engine. The trasformations of the variables are derived

from the first proof with the fewest number of unknowns. These are incorporated

into the objective function which is partially evaluated and simplified using the

techniques in Chapter 4. The overall result is the elimination of the transformed

variables from the optimization task and, hence, a reduced dimensionality.

We have illustrated two antithetic approaches to discovery which are used in the

procedure. The first approach is knowledge-based and uses given relations among

geometrical objects. For instance, an angle is one-half of another. The second

approach is knowledge-free. It uses linear regression and a set of training examples

of the optimal solution to derive relations among variables. The knowledge-based

approach provides a higher level of abstraction and the derivations can be used as

explanations for a human. However, the rules that they use may not be always

obvious. This limits the effectiveness of the approach. On the other hand, the

regression technique is certainly more general, because it requires far less knowledge

transfer from the expert to the system. However, linear regression only provides

linear approximations of the true relations and this might not always be sufficient.

Non-linear approximation was discarded, because it requires that the model of

the relation be given to the regression package. This is a difficult problem. In

our study, we found that regression methods are useful for problems in which it is

possible to circumscribe the number of combinations among independent variables.

99

This is because for these problems all combinations of variables can be tried and

the best approximations can then be chosen.

However, certain relations among variables are obvious to humans and cumber-

some to express as functions. For these relations, the knowledge-based approach

is superior to the knowledge-free one. As an example, in Appendix E we have con-

sidered the identification of a point as the intersection of two lines. In conclusion,

in large scale mathematical applications we conjecture that to capture relations

among variables it is necessary to use a blend of knowledge-free and knowledge-

based heuristics.

The experimental results in this chapter are encouraging. The reduced dimen-

sionality of the optimization problem triggers a reduction in the raw CPU time of

the run time optimization.

100

Chapter 6

Learning Search Control

The specialization techniques in Chapter 4 and the simplifications in Chapter 5

have shown how we can quickly find the optimal locations for connection points

for a given stress state. Unfortunately, there are exponentially many stress states

for a given topology, so even with the speedups obtained from these techniques,

we cannot afford to search every possible stress state to find the globally optimal

solution. In this chapter, we address the task of learning rules that analyze a given

problem and topology and select a small number of stress states to be searched.

The goal is to learn rules that are correctthat is, the stress state containing the

optimal solution is always selectedand efficientthat is, only a few stress states

(preferably only one) are selected. The selection rules (Cerbone and Dietterich

1992b) form a kind of control knowledge: we are deciding which parts of the large

space (of possible stress states) are worth searching.

Section 6.1 poses the problem of learning optimal search control and stresses

the need of a new learning framework. Section 6.2 introduces a formal definition

of SETMAXUTIL, the task of learning optimal search control for the problem

solver. Section 6.3 contains the proof of HP-completeness of SETMAXUTIL and

gives an approximation algorithm. Section 6.4 describes three learning algorithms

to learn optimal search control. Section 6.5 demonstrates the effectiveness of the

traditional and novel learning algorithms in acquiring optimal control knowledge

0 0
S1 S2

(a) (b) (c)

101

Figure 29. A design problem and two stress states. Each stress state can be an optimal solution.

for the skeletal design domain. Finally, Section 6.6 summarizes the results in this

chapter and outlines future research.

6.1 Introduction

In a parallel environment with a sufficient number of independent processing units,

we could solve all subproblems derived during the specialization and return the best

solution. However, this becomes impractical as the number of stress states grows.

To overcome this problem, in this chapter we define a new learning framework

to acquire search heuristics to map a description of a truss design problem to

a small set of stress states to be explored with traditional numerical optimizers.

Each stress state suggested by the heuristic is one of the simplified versions of the

original optimization task and is obtained by applying the techniques illustrated

in the previous two chapters. Hence, it is fast to evaluate.

Ideally, the selected stress state should be a singleton so that only one stress

state needs to be examined. Let us consider the design problem in Figure 29a, and

let us assume that the topology in Figure 29b (and 29c) was selected. The task

is to determine the optimal location for the connection point C so that the weight

is minimized. As shown in the figures, the stress state depends on the location of

the connection point. Figure 29b indicates a stress state with two tensile and two

compressive members. Moving the connection point below the supports changes

102

Figure 30. Features used in the skeletal design task. Forces fl and f2 are obtained from the

method of joints applied to a frame with no connection points. The position f3 takes into account

the location of the load w.r.t the supports.

the stress state to three tensile members and one compressive. This is shown in

Figure 29c. These are not the only two feasible stress states. In fact, although not

shown in the figure, there are 7 realizable stress states that can be obtained by

placing the connection point in various positions in the 2-D space. In this chapter,

we detail the method used to derive rules that, starting with the information from

Figure 29a, allow the problem solver to select one or more stress states such as

those in Figures 29b and 29c. These stress states reduce the space to be searched

by the numerical optimizer to determine the location of the connection point that

yields the structure of minimum weight.

Ideally, we would be able to analyze Figure 29a and choose only one stress

state to be examined. However, we believe this is not a realistic goal. When we

presented Figure 29a to our expert engineers, they were able to indicate that one

of the two stress states shown in Figure 29b and 29c would contain the optimal

solution. However, they were unable to formulate rules to choose between the

two stress states. Similarly, in our experiments with learning algorithms, we have

been unable to learn a good rule that can select only one stress state for a given

problem. Hence, we have adopted the more modest goal of selecting a small set of

103

stress states.

To apply inductive learning to this problem, we must first develop a set of

features that describe the design task. In consultation with our experts, we selected

features that engineers use to prospect optimal solutions. For each load and pair

of supports, we have defined four features. As it is shown in Figure 30, the first

two features (fl and f2) take into account the direction of the load w.r.t. the

supports. These features are computed by applying the method of joints to the

structure composed of only two members that connect the load to each of the two

support points. The result of the method of joints is the internal force in each

member (tensile or compressive.) The stress state of this 2-member structure is an

array composed of two elements. These constitute the first two features. For the

sake of comprehensibility, the values of these features are C (compressive) and T

(tensile.) It must be noticed that the stress state of the simplified structure does

not depend on the solution, of course. Instead, it is a function of the givens of

the problem. Thus, it can be computed a priori. Moreover, the stress state of a

2-member structure is very fast to compute since it only requires the solution of a

2 x 2 system of linear equations. The third feature, indicated by f3 in Figure 30,

gives information on the position of the load w.r.t. the supports. Its values are

left, middle, and right; these are encoded as L, M, and R, respectively. The fourth

feature (not illustrated in the figure), measures the perpendicular distance from

the load point to the line passing through the two supports.

Given these features, and a collection of example design problems and solu-

tions, the goal of learning is to find a rule that balances the tradeoff between the

optimality of the final structure and the efficiency of the optimization process.

This tradeoff can be expressed as a utility function, and the goal of learning is to

find a stress-state selection rule of maximal utility. This kind of learning task has

not been studied previously in machine learning, so we formalize it in the next

section.

104

6.2 Formal Definition of SETMAXUTIL

The problem-solving task is to perform gradient descent search on one or more

stress states to find a good solution. This can be formalized as a problem space in

which X is the set of all problem instances and A = { al, a2, ... , ak} is the set of

actions available to the problem solver. Each individual action ai, when applied to

a problem instance x E X, either produces a complete solution or fails to produce

a solution. Hence, the solution depth is 1; actions are not chained together to

construct a solution. A problem solver can be described by a function h. : X 1-4 2A

that examines the problem instance x and selects a set S of actions to apply.

Let us first consider how we can evaluate a problem solver h. Then, we will

formalize the problem of finding a good It by learning from examples.

Informally, a good problem solver is one that usually finds a near-optimal so-

lution without searching too many stress states. To formalize this, consider the

two important outcomes of an action: the cost of performing the action, c(ai, x),

and the quality of the resulting solution, q(ai, x). (We will assume small values

of q(ai, x) are desired and, if ai fails to produce any solution when applied to x,

q(ai, x) is infinite.) In our domainand many otherswe are willing to trade some

quality to reduce the cost of finding the solution. To formalize this tradeoff, we

define a utility function. Let S be a set of actions chosen for instance x. Then the

cost of executing S is simply the sum of the cost of each action: EaES c(a, x). The

quality of the solution produced by a set of actions is expressed by a loss function

/(S, x). Let

a' (S, x) = argmin q(a, x) and
aES

a* (x) = argmin q(a, x).
aEA

a' (S, x) is the best action among the selected actions S, but a* (x) is the best of

all possible actions A. The loss taken by selecting S rather than performing all

105

possible actions A is defined as

0 If q, (1=1) 1.1
/(S, x) =

<

q(as(s'')') 1.1 Otherwise.
q(014x)

This says that there is no loss for solutions within 10% of the optimum, but beyond

that point, the loss increases linearly.

Given these definitions, the utility U(S, x) of a set of actions is defined as

U(S, x) = LE c(a, x) k l(S, x)1 . (6.7)
ES

where k is a parameter expressing how much additional cost we are willing to pay

to reduce the loss by one unit (or equivalently, improve the quality q(a' (S, x), x)

by an amount q(a*(x), x)).

With the above definitions, we can evaluate the performance of a problem solver

h when it selects the set S of actions for a particular problem x. More generally,

let D(x) be the probability that the problem solver will need to solve problem

instance x. Then we will measure the performance of h by the expected utility

over D(X):

E U (h(x), x) D(x)
xEX

This completes our discussion of how to evaluate a heuristic function h.

Now let us consider how we will learn h from examples. Suppose we draw a

sample W C X according to distribution D, and, for each instance x E W, we

perform all possible actions in A and measure the cost of each action and the

quality of the result. Then, for each x E W, we would obtain a "training example"

of the following form:

(x, (al, c(ai, x), q(al, x)),

(a2, c(a2, x), q(a2, x)),

(ak, c(a k, x), q(ak, x))).

From this training example, we can determine a* (x), and hence, for any subset

S of the actions, we can compute a' (S, x), 1 (S , x), and U(S, x). If we have an

106

hypothesis, it, we could estimate its expected utility by taking the average utility

over the sample W:

EU(it, W) = Iwl U(it(x),x).

As an example, let us consider the training data in Table 15. This is a small

subset of the data used in the design domain. The first column in the table is

simply a unique identifier of the examples. The second column lists (a subset

of) the features. The third and last column indicates the actions taken by the

numerical optimizer. For instance, the training example Exl indicates that the

numerical optimizer explored stress states 57 and 66. Using stress state 57, it

took the optimizer 5.61 seconds to complete, and the resulting solution was about

400% the globally optimal one. The global optimum was instead obtained running

the numerical optimizer on stress state 66 for which it took 9.00 seconds to com-

plete the optimization. In addition to showing a sample of the complex format

of the training examples, the table also shows an effect of the many-to-one repre-

sentational mapping r. Training examples Exl and Ex2 have the same values for

the features but different actions. This is due to a loss in information when the

the features are computed from the original training examples. Shapiro (Shapiro

1987) considers these occurrences noise and calls them clashes. For exisiting ID3-

like algorithms, considering clashes as errors in the data is necessary because of

the implicit assumption that the features provided to the learning algorithm will

allow it to associate a conjunction of feature values to an individual action. To

overcome clashes, Shapiro proposes to advise the user that the data is incorrect

and that the training examples need to be modified. This solution is unacceptable

in the design domain because of the assumption of a weaker representation of the

problem. The fact that the representation r is many-to-one, implies that clashes

can be an integral part of the data. Thus, our learning framework allows for a

weaker representation of the knowledge and permits clashes.

The goal of a learning program, therefore, is to search the space H of hypotheses

107

Table 15. A sample of training examples to learn optimal search control.

Example

Id

Features

11 12 13

Actions

Exl N T L (57 5.61 4.0029) (66 9.0 1.0)

Ex2 N T L (57 15.61 5.0) (30 5.24 1.0) (68 9.13 1.3518)

Ex3 N C L (1 2.90 1.0) (60 8.67 2.3)

Ex4 C C L (2 7.59 1.21) (60 6.9 3.1)

Ex5 N C R (60 4.59 1.0021) (42 10.6 1.0156) (69 8.07 1.0)

Ex6 N C R (60 2.59 1.0) (43 11.7 1.0) (69 28.70 1.5)

Ex7 N T L (57 14.73 52.329) (33 5.6 6.5954) (66 9.04 1.3518)

for an hypothesis it that maximizes the average utility over the training set W.

There is one further elaboration that we must make to this definition. In

our case, each x E X is a description of a truss graph along with the location,

magnitude and direction of each load, and the location of each stable attachment

point. Because this description can vary in size and structure from one instance to

another, we have found it convenient to construct a fixed-length vector of features

to represent each problem instance. The learning algorithm must work with these

feature vectors rather than with the original structural descriptions. Formally, we

let Y = fl 1 yi be a space of representations of problem instances in terms of n

individual features (i = 1, . . . , n). We will assume there is a function r : X I-, Y

that maps from problem instances to their representations, and we will denote the

feature vector representing x as r(x) (ri(x), , ra(x)). In our framework, we

will assume that r is many-to-one, because it is often difficult to come up with a

completely adequate set of features. Hence, the same feature vector y E Y may

represent more than one problem instance in X.

Consequently, training examples will have r(x) in place of x, and each hypoth-

esis h can be written as g o r (i.e., h(x) = g(r(x))), where g :Y 1-4 2A. The goal of

finding a good it can be restated as the problem of finding a good g that maximizes

108

utility on the training set W.

We shall call this learning problem SETMAXUTIL. Two differences set apart

SETMAXUTIL from the usual inductive learning frameworks. First, the training

examples have complex structure. This is a consequence of the goal of finding

optimal solutions in the original problem space. This complex structure means

that the usual notion of an hypothesis being "consistent" with a sample must be

revised. We will say that an hypothesis h is "consistent" with a sample W if, on

each example x E W, the hypothesis selects at least one action ai such that g(ai,x)

is finite (i.e., ai can be legally applied to x and returns a solution). In Section 6.3,

we prove that the problem of finding a consistent and optimal hypothesis in this

sense is NP-complete (by reduction from HITTING-SET (Garey and Johnson

1979)).

The second difference is that each hypothesis recommends a set of actions.

Strictly speaking, this should not be necessary, because it should be possible to

learn a function f : X H A such that f(x) = a*(x) (the best action to apply to

instance x). This is a simple classification learning problem. However, because of

the many-to-one representational shift y = r(x), there may not exist a function

g :Y 1--) A such that g(r(x)) = a*(x). One might argue that, in such cases, a better

representation r should be found. However, an important consideration is the cost

of run-time calculation of the heuristic function h (the so-called "utility problem,"

(Minton 1988)). We have therefore chosen to employ a few easy-to-extract features

and learn a weaker mapping.

6.3 Complexity Analysis and Approximation

Learning the set of actions that (a) is consistent with the training examples, and (b)

has maximum utility is NP-complete. To prove this assertion, we shall first intro-

duce the HITTING-SET, a known (Garey and Johnson 1979) NP- complete prob-

lem, and then show the equivalence between HITTING-SET and SETMAXUTIL.

109

HP-completeness leaves no hope (unless P = Arp) for a polynomial time algo-

rithm for the learning task. To overcome this problem, in Section 6.3.3 we introduce

an approximation algorithm due to Chvatal (Chvatal 1979) and that, however, we

derived independently.

6.3.1 HITTING-SET

Proofs of HP-completeness are typically carried out by reducing a known AIP-

complete problem to the problem at hand. In principle, one should be able to

perform the reduction step from any known problem; however, in practice, the

choice of the NP-complete problem is crucial in simplifying the proof. This is

the reason behind the choice of HITTING-SET (Garey and Johnson 1979). This

problem can be posed as a yes-no task as follows:

Given: A finite set S, a collection C of subsets of S, and a positive integer K

Is there: A subset S' C S of size Will < K such that S' contains at least

one element from each subset in C?

The proof of equivalence between this formulation and the classical (Garey and

Johnson 1979) HITTING-SET is trivial. The HP-completeness of HITTING-

SET can be proved by reduction from VERTEX-COVER, another well-known

HP-complete problem. To illustrate the HITTING-SET problem, let us suppose

that S = {1, 2, 3, 4, 5} and let C = {X, Y, W, Z} be a collection of sets. The

following matrix M indicates the characteristic function of the sets (columns) w.r.t.

elements (rows):

X YW Z

1 1 0 0 1

2 1 1 0 0

3 0 0 1 1

4 1 0 1 0

5 0 0 0 1

110

A value of 1 in Mfr, j} indicates that the i-th element belongs to the j-th set.

The set S' = {2, 3} is a solution to the HITTING-SET problem described by the

matrix above. In fact, S' is smallest subset of S such that the intersection of S'

with any element of the original collection C is non-empty. The reader can readly

convince her/himself by taking the OR of the second and third row and noticing

that the result is a vector of l's. This indicates that each set in the collection

C is "hit", that is, each set in S' contains at least one element of each set in the

collection C. The minimality of S' can be proved by noticing that no row contains

all l's, therefore at least two sets are necessary in the solution.

Finally, it is important to notice that the chosen matrix representation high-

lights the similarities between HITTING-SET and MINIMUM-SET-COVER, a

more common NP-complete problem. In fact, for the example in the matrix above,

the MINIMUM-SET-COVER is X U Z. This assertion can be verified by OR-ing the

corresponding columns rather the rows as in the HITTING-SET problem.

We shall see now show that SETMAXUTIL is equivalent to HITTING-SET.

6.3.2 NP-completeness

Let us first illustrate a matrix formulation of the learning problem that is equiv-

alent to the one shown for HITTING-SET. For each of the n training examples

presented to the learning algorithm, let us build a set of pairs Ai = {(a,u)} where

a is one of the actions associated with the example and u its utility. With the

exception of the utility, the collection of sets Ai is equivalent to the collection of

sets C in the HITTING-SET problem. As an example, Table 15 indicates the ma-

trix representation of the training examples in Table 16. Each row in the matrix

indicates an action. Columns represent training examples. The values in the ma-

trix are oo if the action is not applicable to the example. Otherwise, the value

in the matrix is the real number (uij) which represents the utility of an action.

This matrix can be trasformed to resemble the characteristic function shown for

the HITTING-SET problem in the previous section by setting all real values (ui

111

to 1 and by changing the symbol oo to 0.

To prove NP-completeness, we observe that the requirement that the output of

SETMAXUTIL must be consistent with the training examples is equivalent to the

requirement that the solution contains at least one action applicable to an example.

This, in turn, can be expressed as the requirement that the solution contains

at least one element from each set A. Moreover, the optimality requirement of

SETMAXUTIL can be formulated as a yes-no problem. In fact, to determine that

a solution is optimal (w.r.t. the utility) is equivalent to determine that there is no

solution of a lesser utility. With these observations in mind and assuming unitary

cost for each applicable action, SETMAXUTIL can be re-stated as follows:

Given: A finite set of actions A, a collection C of subsets of Ai C A, and

a positive integer K

Is there: A subset A' C A of size Hill < K such that A' contains at least

one element from each subset in C.

A glance at the formulations of SETMAXUTIL and HITTING-SET indicates

the obvious equivalence between the two problems. This completes the NP-

completeness proof.

6.3.3 Approximation Algorithm

NP-completeness results are usually bad news for the computer scientists that wish

to find exact solutions. On the other hand, they are good news for AI researchers

and for people interested in approximation. In fact, for many NP-complete prob-

lems there are approximation algorithms which give results that can be proven

to be within a small factor from the optimal solution. To compute approximate

solutions we derived an algorithm (MinCover) for SETMAXUTIL that, however,

had already been derived by Chvatal (Chvatal 1979) for MINIMUM-SET-COVER.

In addition to giving the algorithms, Chvatal also proved that the algorithm pro-

duces results that are within a logarithmic factor from the (unknown) optimal

112

Table 16. Training examples for UTILITYID3 in matrix format.

Exl Ex2 Ex3 Ex4 Ex5 Ex6 Ex7

1 00 00 U1,3 00 00 00 00

2 00 00 00 u2,4 00 00 00

30 co u3,2 00 oo oo 00 00

33 00 oo oo oo 00 oo U4,7

42 oo oo oo 00 us,5 00 00

43 00 00 00 00 00 u6,5 00

57 U7,1 U7,2 00 00 00 00 U7,7

60 00 00 U8,3 U8,4 U8,5 U8,6 00

66 U9,1 00 00 00 00 00 U9,7

68 00 U10,2 00 00 00 00 00

69 00 00 00 00 U11,5 U11,6 00

minimum. Given the similarities among MINIMUM-SET-COVER, HITTING-

SET, and SETMAXUTIL, the same theoretical results apply sic et simpliciter to

all three problems. The greedy algorithm given by Chvatal (and us) is shown in

Table 17 and generalizes to arbitrary costs a previous algorithm of Johnson (John-

son 1974) which only handled unitary costs. The optimal set of actions is built

incrementally by choosing the action a that maximizes the metric (Pa)/ U.7).

This balances the number of occurrences of each action (Pad) with its expected

utility(Ua,). The expected utility EU(ha.,, Wa,) of an action a3 is only computed

with respect to those training examples Way where the action produced a solution

(i.e., where q(aj, xi) was not infinite). If an action is good and appears frequently

in W, then the denominator will be small and the numerator will be large. Once

the action is chosen, all examples that contain it are removed from consideration.

The actions are accumulated until no more examples are left in W.

With the assurance that our approximation algorithms finds satisfactory so-

113

lutions for SETMAXUTIL, we can introduce the learning algorithms to acquire

optimal search control knowledge.

Table 17. Greedy algorithm to compute the set of actions of maximum utility.

Function MinCover(W)

W = set of training examples (r(xi), vai (xi), . , va. (xi))

where vai(xi)= (c(ai,xi),q(ai,xi))

1. Let OptimalSet := 0

2. While W 4 0 do

3. For each action ai

4. Let Way = {(r(xi),..., (c(cti, xi), q(ai, xi))...) E Wlq(ai, xi) < oo}

5. Let Pa) be 'Wail

6. Let haj(x)=ai be the heuristic of choosing action ai

7. Let Uai = EU(ha,,Wa)

8. endFor

9. Let a= argmax(Pai/ Uai)
aj

10. Set OptimalSet := OptimalSet U {a}

11. Set W:= W Wit

12. endWhile

13. Return OptimalSet

6.4 Three Learning Algorithms

In this section, we present three algorithms for learning control knowledge for the

skeletal design domain.

6.4.1 ID3

The first algorithm is a simple version of ID3 (Quinlan 1986) that attempts to

predict a*(x), the optimal action, given non-unique feature vector r(x). It is

114

Table 18. The basic ID3 algorithm.

Function ID3(W, F)

W= a set of training examples (r(x), a *(x)).

F = a set of features .

1.1f Ra V(r(x), a*(x)) E W, a*(x) = a Then

Return leaf node recommending action a.

2.If 3y V(y, a*(y)) E Wy = y or F = 0 Then

Compute the action a that appears most frequently in W

Return leaf node recommending action a.

3.Let r, be the feature in F of highest mutual information

4.Split W into sets Wi = {(r(x),a*(x)) E Wirc(x) = j}

where j = 1,...,nval(rc) are the values of feature rc.

5 . Return DecisionTreeNodeaD3(Wi, F {r, }), ,

ID3 Wnval(re) F Ira))

straightforward, of course, to convert the complex training examples described

in the previous section into examples of the form (r(x), a(x)). We then apply the

familiar top-down separate-and-conquer algorithm for constructing a decision tree

(see Table 18).

The algorithm works by recursively splitting the training set W into subsets

determined by the values of the selected features rc. The features are selected using

the mutual information heuristic (also known as information gain). The mutual

information between two random variables A (with values al, , an) and B (with

values b1, , bm) is

where

MI(A; B) = I(A) Pr(A = ai)I(BIA = ai),

1(A) = E Pr(A = ai) log2 Pr(A = a.).
i=1

115

In the algorithm, the probabilities in these formulas are estimated from the fre-

quencies observed in the set W.

The splitting process terminates when either (a) all examples in W agree on the

desired action a*(x), (b) all examples in W have the same representation y = r(x),

or (c) there are no more features left to split on (F = 0).

{1, 2, 30, 42, 43, 66}

{30,66} {1,2}

(a)

(b)

(c)

Figure 31. Output of the three learning algorithms on the training data in Table 16. (a) ID3,

(b) Min Cover, and (c) UTILITYID3.

To compute the action to be associated to a leaf node, ID3 uses a majority rule.

At the bottom of the recursion, it outputs the action with the highest frequency

in the training dataStep 2 in Table 18. As an example, Figure 31a indicates

the decision tree output by C4 . 5 (a widely used implementation of multi-class

ID3) on the training examples in Table 15. ID3 completely neglects the cost and

quality associated with each example. The decision tree reflects this approach. In

fact, it suggests action 57 for f2 =T. However, as we can see from the training

data in the table, this action can yield the worst results. Nevertheless, it is the

116

majority class for the feature selected. In the design domain this leads to poor

performance of the algorithm when the correctness of the solution is taken into

consideration. The reason for this behaviour of the algorithm is that the features

do not allow ID3 to partition the examples so that at each leaf the class that

yields the minimum is always chosen. Intuitively, this is due to the many-to-one

nature of the representational mapping r. That is, training examples with the

same features may have different optimal stress states. Moreover, different stress

states can produce vastly different local optima. On the positive side, ID3 always

suggests a single action. As we shall see in Section 6.5, this implies that ID3

performs better than other learning algorithms in terms of CPU time. This is

because only one stress state is explored. However, the necessity of exploiting the

time-quality tradeoff leads us to the two algorithms described in the next sections.

6.4.2 Minimum Cover

The second algorithm we have studied takes a set of training examples W and tries

to find a set S of actions that has the maximum expected utility over W. In other

words, it develops a function h(x) = S, which returns S regardless of the value

of x. This problem is equivalent to MINIMUM-COVER and we have applied the

Min Cover algorithm in Table 17. When used as a learning algorithm, Min Cover

disregards any domain knowledge and produces a set of actions that is consistent

with the training data. However, as the experimental results demonstrate, the

algorithm produces a set of actions which contains a large number of elements.

To see this, let us consider the training data in Table 15. Chvatal's algorithm

applied to this data produces the set shown in Figure 31b. This means that at

run time the problem solver will always try 6 stress states. The large number of

stress states is due to the requirement that the set of actions be consistent with

the training examples. It turns out that this solution is very expensive in terms of

computational resources. To overcome this problem, we have devised an inductive

learning algorithm that uses features to map design problems to sets of actions.

117

This is described in the next section.

6.4.3 UTILITYID3

The final algorithm (UTILITYID3) that we have explored combines aspects of

both ID3 and Min Cover. Like ID3, it uses features of the domain to construct

a decision tree. However, the training examples have the complex structure that

includes the cost and quality of each action. The differences between UTILITYID3

and ID3 are described below.

Feature Selection. The algorithm for selecting the splitting feature 2-, (Step 3

of Table 18) is changed as follows:

3. Let Wid = {(r(x),...) E Wiri(x) = j}

Let Si,; = MinCover(Wid)

Let Gu,u be the event that g(au, x0) < oo.

Let P(GulWi = the probability of Gum for x. in Wid.

Compute /(Glri(x) = j) = Eau Esij iWid) log2 P(GuIWia)

Compute gain(ri) = I(a*) E7111(n1) VI(Giri(x) = j)

Choose the feature r, = argma.xgain(ri).
ri

This is a modified calculation for the mutual information between features ri

and actions au. We restrict attention only to those actions returned by MinCover(Wij).

Note, however, that we calculate the probability of each action by considering all

training examples in which that action returns a solution (i.e., g(au, x) < oo),

even if the solution is not optimal. The intuition is that we want to find a feature

that will grow the decision tree so that the new nodes have small sets of actions

(as computed by MinCover).

Construction of Leaf Nodes. In addition to changing the feature-selection

procedure, UTILITYID3 also changes how leaf nodes are created in the tree.

118

CPU sec.

111

13 7

Exhaustive Min Cover UTILITYID3 Random ID3 Ideal

Figure 32. Average CPU time as a function of search control knowledge.

Whenever ID3 would terminate and create a leaf node, UTILITYID3 first invokes

Min Cover to compute an Optimal Set of actions. These are then placed in the leaf

node instead of choosing a single best action.

Figure 31c illustrates the output of UTILITYID3 on the training data in Ta-

ble 15. UTILITYID3 produces small sets of alternatives to be explored by the

problem solver. In fact, for h = L and 12 = T, only stress states 30 and 66 are

suggested. Therefore, UTILITYID3 is capable to prune stress states that will not

lead to optimal solutions.

6.5 Experiments

To compare these algorithms, we generated training and test data sets as follows.

We chose three classes of truss design problems: one having 2 support points,

one load, and 4 members, and two each having 3 support points, 2 loads, and 6

members. For each problem class, we generated 700 problem instances by randomly

varying the location, magnitude, and direction of the loads and the locations of

the supports. We randomly divided these 700 instances into 500 training cases and

200 test cases (for a total of 1500 training and 600 test cases).

For each of the three algorithms, we trained and tested it three times, once on

each of the three data sets, and measured the CPU time required to evaluate the

119

Ratio

143

Ideal Min Cover UTILITYID3 ID3 Random

Figure 33. Average ratio VM11 as a function of search control knowledge.g a' s ,s

test data the ratio q(ai(sr4x) between the best solution found and the best possible
q(a* (x),x)

solution, and the utility of the problem-solving process. A value of k = 20 was

used in equation 6.7. It is important to note that in all cases, the algorithm is

tested on data drawn from the same problem class as the training data. We have

not tested the ability of these algorithms to generalize across problem classes.

In addition to running the three algorithms, we also computed the CPU time,

solution-quality ratio, and utility of three other strategies: (a) exhaustive search,

in which all stress states are evaluated on each test instance, (b) random search,

in which a stress state is chosen at random, and (c) perfect search, in which only

the stress state containing the optimal solution is evaluated on each test instance.

Exhaustive and perfect search find the optimal solution, of course. For ID3 and

random search, if an infeasible action was chosen, it was replaced with the worst

feasible action.

Figures 32, 33, and 34 show the CPU time, ratio, and utility figures for these

6 strategies. The results reveal the tradeoff between efficiency (where ID3 and

random are better than UTILITYID3 and MinCover) and quality of the solution

as measured by the ratio (where MinCover and UTILITYID3 are better than

ID3). Figure 34 shows that, according to our utility function, UTILITYID3 is

clearly superior to all of the other strategies (except Ideal, of course).

Utility

-5 64
-488

1.:.

44111111111111

-633
-103 -61

Exhaustive Min Cover Random ID3 UTILITY= Ideal

Figure 34. Average utility as a function of search control knowledge.

120

Compared to exhaustive search, UTILITYID3 gives a speedup of 4.4. From Fig-

ure 33 we can see that the average quality of the solutions found by UTILITYID3

is within 5% of optimal. By comparison, ID3's solutions are, on the average, more

than double the ideal values (i.e., the trusses weigh 2.25 times more than optimal).

The speed of ID3 and Random results from the fact that they always eval-

uate exactly one stress state. By comparison, we can infer from Figure 32 that

UTILITYID3 is evaluating two or three stress states in each problem. Because

the number of possible stress states is exponential in the number of members in

the truss, this is very encouraging. UTILITYID3 has managed to prune away all

but a fixed number of stress states in each problem instance. Additional results of

UTILITYID3 are reported in Appendix D.

6.6 Concluding remarks

Speedup learning in numerical optimization tasks requires new methods and poses

new learning tasks. In this chapter we have defined SETMAXUTIL, a novel frame-

work to learn optimal search control knowledge. The problem is to determine a

decision tree that maps features of the problem into a small set of alternatives to

be exploited by the problem solver. In the truss design problem, partitioning the

search space for the non-linear optimization problem might produce an exponential

121

number of regions. The learning task is then to decide which regions are likely to

contain the optimum, and perform gradient-descent searches in those regions only.

To generate training data, we performed exhaustive search and determined

which region contains the optimum. We developed an algorithm, UTILITYID3,

that analyzes these training examples and constructs a function f : X i--, 2A that

selects a set of regions (actions) to be searched. The performance of UTILITYID3

was measured in three problem classes and found to give near-optimal solutions

while yielding a speedup of more than a factor of 4.

Future work in the truss-design domain must develop techniques that can gen-

eralize from examples of one problem class (e.g., 4-member trusses with two loads)

to examples in another problem class (e.g., 6-member trusses with 3 loads). We

believe the UTILITYID3 algorithm will be able to solve these problems without

modification.

Another avenue for future work is to test other ways of deploying standard

ID3 to solve this problem. One approach would be to try to learn a function

f : X x A 1 {good, bad} that, given an instance and an action tries to predict

whether the action will lead to a solution within, say, 10% of optimum. Another

approach would be to employ a regression algorithm (such as regression trees,

(Breiman, Friedman et al. 1984) to learn q(a, x) and c(a, x). These would serve

as evaluation functions and would allow the problem solver to compute (a guess

concerning) a* (x). However, the run-time cost of such an approach could be large.

Finally, we believe that UTILITYID3 can also be applied to learn control knowl-

edge in problem spaces where the solution lies at depths greater than 1. To con-

struct training examples, it would be necessary to estimate the expected quality

and cost of solving the problem x' = a i(x) that remains after applying each op-

erator ai to x. This information is closely related to the values computed by

reinforcement learning algorithms such as Q-learning (Barto et al. 1991). Hence,

UTILITYID3 provides a way to convert the evaluation-function representation for

search-control knowledge (which can be highly inefficient to apply at run time) into

122

the operator-selection form of search-control knowledge (which can be evaluated

very quickly if inexpensive features are employed).

123

Chapter 7

Conclusions and Future Work

Speedup learning in numerical optimization tasks requires new methods and poses

new learning tasks. In this thesis we have demonstrated how machine learning

(ML) techniques can be applied to optimization tasks in engineering design. This

has been accomplished by using existing methods and devising new techniques in

the inductive and symbolic machine learning paradigms. These techniques have

been used to

Speed up existing numerical optimization methods, and

Bridge gaps in the knowledge transfer between engineers and computer sys-

tems.

Our approach opens new research directions into the so far unexplored area of

applications of machine learning to numerical optimization. It is our hope that, in

the medium-to-long-term, our techniques will allow the use of specialized numerical

optimizers in real-time applications like intelligent CAD systems.

In the remainder of this chapter we highlight the techniques used, discuss some

benefits from an engineering standpoint, and outline future work.

7.1 Solution Highlights

The strategy used in this thesis to speed up numerical optimization tasks relies

on (a) successive specializations and simplifications of the objective function and

124

(b) identification of a few specialized sub-problems that are fast to optimize and

that can be solved independently. Our techniques have been applied to the design

of lightweight 2-dimensional structures made of rods and columns (members). In

this task the problem is twofold. First one must identify the topology. That is,

the number of extra connection points, members, and their connectivity. Second,

the geometry must be fixed; that is, the length of each member must be derived.

This is equivalent to locating the connection points in the 2-dimensional plane.

Topology and geometry must be chosen so that the overall weight is a minimum.

To partition the original optimization task, we enumerate a few topologies and

use a novel abstraction (stress state) that considers the type of member (rod or

column) in a structural configuration. These are invariant aspects of a particu-

lar problem and are incorporated into the objective function. This specialization

produces an optimization problem expressed in terms of the coordinates of the

connection points. From a numerical optimization standpoint, the benefits of the

specializations are great. First, the cost of each evaluation of an objective func-

tion is greatly reduced. Second, the specializations make it possible to obtain

differentiable closed forms for the objective function. This allows us to apply

gradient-directed optimization methods. Third, the specializations create oppor-

tunities for parallel execution of the optimization calculations. Fourth and last,

each of the specialized functions can be further simplified by reducing the number

of independent variables.

The elimination of variables is accomplished by discovering regularities; that

is, relating unknown variables to given ones. This transformation process uses a

mix of Explanation-Based Learning (EBL), inductive, and regression techniques.

EBL is given a geometrical domain theory and derives proofs of the unknowns in

terms of the givens. However, most often these proofs cannot be completed. Un-

der these circumstances, the inductive and regression mechanisms bridge the gap

between unknown and given quantities. In the case of inductive techniques, the

relations among variables are derived using given knowledge of geometry and rela-

125

tions among geometric entities. When regression is used, the relations are derived

in functional form using the off-the-shelf SAS statistical package. The regularities

are then used to complete the proofs derived by the EBL engine. The first of such

proofs with the fewest number of unknowns is then analyzed to derive algebraic

relations among givens and unknowns. These relations are incorporated into the

objective function which is simplified using symbolic methods. The overall result

is the elimination of the transformed (unknown) variables from the optimization

task. This means that at run time the numerical optimizer will be given an opti-

mization task with fewer independent variables. This simplification, in turn, yields

optimization tasks that are faster and simpler.

While the specialization of the objective function is extremely useful to speedup

a single numerical optimization problem, it does not suffice to solve the entire de-

sign task. This is because the double specialization in the spaces of topologies and

stress states introduces a combinatorial explosion. Nevertheless, not all of the 2'

stress states make physical sense or produce an optimal solution. To overcome the

combinatorial explosion, we have defined a new learning framework which is more

appropriate to optimization tasks. This learning framework requires (a) that the

output of the learning algorithm be a set of alternatives and (b) that the algorithm

attempts to maximize the utility of these sets. The utility is a function of the time

it takes to obtain a solution and of its quality (ratio w.r.t. the global minimum.)

Within this framework, we have developed and tested several learning algorithms

which generate search control knowledge for the problem solver. We found ex-

perimentally that one of the algorithms we devised, UTILITYID3, outperforms all

others in the skeletal design domain. This is a contribution to basic research in

machine learning.

126

7.2 Engineering Perspective

The approach presented in this thesis simplifies the task of the engineer when

s/he is faced with an optimization problem. In the 2-D optimal design task, our

methods speed up numerical optimization and help bridge the knowledge gap be-

tween the engineer and the computer system. The speedup allows the user a

quicker interaction with the computer system. This increases the human through-

put without affecting the quality of the solutions. The knowledge gap is reduced

because methods like UTILITYID3 only require a weak featural representation of

the problem. Therefore, UTILITYID3 trades computer time with human time. In

fact, UTILITYID3 presents the problem solver with an array of alternatives while

requiring only a very weak featural representation. Thus, UTILITYID3 requires

the computer to solve a few more problems while saving time and effort to the en-

gineer who is required to derive the features only. On the other hand, traditional

learning algorithms, like ID3, propose only one possible solution but require that

the features are strong enough to allow the learning algorithm to select the correct

action. As we have seen in this thesis, strong features are not always available.

With the ever increasing computing power available in modern computers, our

approach helps engineers focus on high-level activities and let computers (a) prune

out infeasible alternatives and (b) explore a few meaningful solutions.

7.3 Future Work

This thesis is one of the first attempts at using machine learning techniques in

numerical optimization. Thus much work remains to be done.

In the task of designing lightweight 2-D structures, we identify four open top-

ics. First, the test cases should include "real" life size optimization tasks. Second,

techniques that can generalize from examples of one problem class (e.g., 4-member

trusses with two loads) to examples in another problem class (e.g., 6-member

127

trusses with 3 loads) must be developed. Third, we hope to prove our unimodality

conjecture. This would provide a proof of correctness for our divide-and-conquer

schema. Fourth and last, the system should be able to autonomously derive ab-

stractions, such as stress state, that partition the search space.

The symbolic techniques illustrated in Chapter 4 pave the way for machine

learning techniques to speed up the simplification process. In fact, one avenue of

research is to analyze the traces of the partial evaluation and to learn algebraic

simplifications. This is necessary to drastically reduce compilation time. These

methods would find large applications in modern symbolic manipulation packages

like Mathematica.

Scale-up is one of the foremost issues to be overcome for the procedures shown

in Chapter 5 to eliminate independent variables. We foresee that, as the number

of variables grows, the search control methods we have adopted will not suffice.

Therefore, it will be necessary to add (or learn) search control heuristics. Moreover,

the regression techniques we have adopted in our approach should be employed

to derive the starting point for the numerical optimization process. This would

completely relieve the engineer of the burden of choosing a correct starting point.

The work in Chapter 6 should be extended to test other ways of deploying

standard ID3 to learn optimal search control knowledge. One approach would be

to try to learn a function f : X x A 1-+ {good, bad) that, given an instance and

an action, predicts whether the action will lead to a solution within, say, 10% of

optimum. Another approach would be to employ a regression algorithm (such as

regression trees, (Breiman et al. 1984)) to learn q(a, x) and c(a, x). These would

serve as evaluation functions and would allow the problem solver to compute (a

guess concerning) a* (x). However, the run-time cost of such an approach could

be large. In addition, we believe that UTILITYID3 can also be applied to learn

control knowledge in problem spaces where the solution lies at depths greater than

1. To construct training examples, it would be necessary to estimate the expected

quality and cost of solving the problem x' = aj(x) that remains after applying each

128

operator ai to x. This information is closely related to the values computed by

reinforcement learning algorithms such as Q-learning (Barto et al. 1991). Hence,

UTILITYID3 provides a way to convert the evaluation-function representation for

search-control knowledge (which can be highly inefficient to apply at run time) into

the operator-selection form of search-control knowledge (which can be evaluated

very quickly if inexpensive features are employed).

In addition to the extensions to the work we have presented in this thesis, we are

planning to tackle the improvement of performance of numerical optimizers from

a different perspective. In this thesis we have treated the numerical optimizers

as black boxes and tried to predict their outcomes from past input-output pairs.

Another approach is to open-up the numerical optimizers. We believe that domain

knowledge and traces of the solution paths taken by the optimizers can be used to

make optimization algorithms adaptive. Moreover, another important drawback

of numerical optimizers is that they cannot explain their solutions in a language

that is comprehensible to, say, an engineer. Again, traces and domain knowledge

can be used to produce such explanations.

Finally, a longer term goal is to incorporate efficient optimization procedures

into intelligent CAD systems.

129

Bibliography

Agogino, A. and Almagren, A.: 1987, Symbolic computation in Computer Aided

Design, in J. Gero (ed.), Expert-Systems in CAD.

Aho, A. V., Sethi, R. and Ullman, J. D.: 1986, Compilers Principles, Techniques,

and Tools, Addison-Wesley.

Bakiri, G.: 1991, Converting English Text to Speech: A Machine Learning Ap-

proach, PhD thesis, Oregon State University, Computer Science Dept.,

Corvallis, OR.

Barto, A. G. et al.: 1991, Real-time learning and control using asynchronous dy-

namic programming, Tech.Rep. 91-57, Department of Computer Science

University of Massachusetts, Amherst MA.

Beckman, L. et al.: 1976, A partial evaluator, and its use as a programming tool,

Artificial Intelligence Journal 7,319-357.

Berliner, A. A.: 1989, A compilation strategy for numerical programs based on

partial evaluation, Tech.Rep. AI-TR 1144, MIT AI Lab.

Braudaway, W.: 1988, Constraint incorporation using constrained reformulation,

Tech.Rep. LCSR-TR-100 Computer Science Dept., Rutgers University.

Breiman, L., Friedman, J. et al.: 1984, Classification and Regression Trees,

Wadsworth.

Burns, S.: 1989, Graphical representation of design optimization processes, Com-

puter Aided Design 21(1), 21-24.

130

Burstall, R. and Darlington, J.: 1977, A transformation system for developing

recursive programs, Journal of the ACM 24(1), 44-67.

Cerbone, G. and Dietterich, T. G.: 1991, Knowledge compilation to speed up

numerical optimization, Proceedings of the Machine Learning Workshop,

pp. 600-604.

Cerbone, G. and Dietterich, T. G.: 1992a, Inductive learning in engineering: A

case study, Proceedings of the Adaptive and Learning Systems Conference

of the IEEE Society for Optical Engineers, to appear.

Cerbone, G. and Dietterich, T. G.: 1992b, Learning optimal search control knowl-

edge for engineering optimization, Tech.Rep. CS-90-30-1, Oregon State

University, Dept. of Computer Science.

Cerbone, G.: 1992, Machine learning techniques in optimal design, Proceedings of

the Second International Conference on Artificial Intelligence and Design,

Carnegie-Mellon Univerisity, PA, to appear.

Chien, S. et al.: 1991, Machine learning group in engineering automation, Proceed-

ings of the Eighth International Machine Learning Workshop, pp. 577-580.

Chvatal, V.: 1979, A greedy heuristic for the set covering problem, Math.Oper.Res

4(3), 233-235.

Cook, G.: 1991, ALPAL, a program to generate physics simulation codes from

natural description, Journal of Computational Physics 2, 387-410.

Dietterich, T. G. (ed.): 1986, Proceedings of the Workshop on Knowledge Compi-

lation.

Dietterich, T. G.: 1987, Research methodologies in AI, Class Notes.

Draffin, J. and Collins, W.: 1950, Statics and Strength of Materials, Ronald Press,

New York.

Duffey, M. and Dixon, J.: 1988, Automating extrusion design: a case study in

131

geometric and topological reasoning in mechanical design, Computer Aided

Design 20(10), 589-596.

El lman, T.: 1988, Approximate theory formation: An Explanation-Based ap-

proach, Proceedings AAAI, pp.570-574.

Ellman, T.: 1989, Explanation-Based Learning: A survey of programs and per-

spectives, Computing Surveys 21(2), 163-222.

Ershov, A.: 1982, Mixed computation: Potential applications and problems for

study, Theoretical Computer Science 18, 41-67.

Feigenbaum, E.: 1977, The art of artificial intelligence 1: themes and case studies of

knowledge engineering, Tech.Rep. STAN-CS-77-621, Stanford University,

Dept. of Computer Science.

Friedland, L.: 1971, Geometric Structural Behavior, PhD thesis, Columbia Uni-

versity at New York, N.Y.

Furuta, H., Tu, K.-S. and Yao, J.: 1985, Structural engineering applications of

expert systems, Computer Aided Design 17(9), 410 420.

Futamura, Y.: 1971, Partial evaluation of a computation process an approach to

a compiler-compiler, Systems, Computers, and Controls 2(5), 45-50.

Garey, M. J. and Johnson, D. S.: 1979, Computers and Intractability, A Guide to

NP-completeness, Freeman.

Genesereth, M. and Nilsson, N.: 1987, Logical Foundations of Artificial Intelli-

gence, Morgan Kaufman, Los Altos, CA.

Hagen, P. and Tomiyama, T.: 1987, Intelligent CAD Systems, Springer Verlag,

Berlin.

Hemp, W.: 1973, Optimum Structures, Clarendon Press, Oxford.

IEEE Expert: 1991, intelligent systems and their applications, 6 (2).

132

Johnson, D. S.: 1974, Approximation algorithms for combinatorial problems, Jour-

nal of Computer Systems 9, 256-278.

Keller, R. M.: 1991, Building the scientific modeling assistant: An interactive

environment for specialized software design, Tech.Rep. FIA-91-13, NASA

Ames Research Center.

Kibler, D. and Langley, P.: 1988, Machine learning as an experimental science,

Proceedings of the Third European Working Session on Learning.

Langley, P., Simon, H. et al.: 1987, Scientific Discoveries: Computational Explo-

rations of the Creative, MIT Press.

Lenat, D. B.: 1978, The ubiquity of discovery, Artificial Intelligence Journal

9, 257-285.

Maeder, R.: 1989, Programming in Mathematica, Redwood City, Calif. : Addison-

Wesley, Advanced Book Program.

Maxwell, C.: 1869, Reciprocal figures, frames, Scientific Papers ii, 175-177.

McClelland, J. and Rumelhart, D.: 1986, Parallel Distributed Processing, MIT

Press.

Michell, A.: 1904, The limits of economy of material in frame structures, Philo-

sophical Magazine 8(47), 589-597.

Minton, S.: 1988, Empirical results concerning the utility of Explanation-Based

Learning, Proceedings AAAI, pp. 564-569.

Minton, S.: 1990, Quantitative results concerning the utility of Explanation-Based

Learning, Artificial Intelligence Journal 42, 363-392.

Mitchell, T., Keller, R. and Kedar-Cabelli, S.: 1986, Explanation-Based General-

ization: A unifying view, Machine Learning Journal 1, 47-80.

Mittal, S. and Araya, A.: 1986, A knowledge-based framework for design, Proceed-

ings AAAI, pp.856-865.

133

Mostow, J.: 1989, Research directions for AI in design, Proceedings of the 1989

Workshop on Research Directions for AI in Design, pp. unavailable.

Nevill, G.E. Jr., Garcelon, J.H. et al.: 1989, Automating preliminary mechanical

configuration design: The MOSAIC perspective, NSF Engineering Design

Research Conference.

Newell, A.: 1966, Heuristic programming: Ill-structured problems, Operation Re-

search pp. 362-413.

Palmer, A. and Sheppard, D.: 1970, Optimizing the shape of pin-jointed structures,

Proc. of the Institution of Civil Engineers, pp. 363-376.

Palmer, A.: 1968, Optimal structure design by dynamic programming, Amer-

ican Society of Civil Engineers, Journal of Structural Engineering

94(ST8), 1887-1906.

Papalambros, P. Y. and Chirehdast, M.: 1990, An integrated environment for

structural configuration design, Journal of Engineering Design 1(1), 73-

96.

Papalambros, P. Y. and Wilde, D. J.: 1988, Principles of optimal design: modeling

and computation., Cambridge University Press, Cambridge.

Paul, G. and Nevill, G.E. Jr.: 1987, Knowledge based spatial reasoning for design-

ing structural configurations, Computers in Engineering, pp. 155-160.

Pike, R. W.: 1986, Optimization for Engineering Systems, Van Nostrand.

Polya, G.: 1973, How To Solve It, Princeton University Press, Princeton.

Press, W. H. et al.: 1988, Numerical Recipes in C: the art of scientific computing,

Cambridge University Press, Cambridge.

Quinlan, R. J.: 1986, Induction of decision trees, Machine Learning 1(1), 81-106.

Quinlan, R. J.: 1987, Simplifying decision trees, International Journal of Man-

Machine Studies 27, 221-234.

134

Reich, Y. and Fuchs, M. B.: 1989, A comparision of explicit optimal design meth-

ods, Computers and Structures 32(1), 175-184.

Ritchie, G. and Hanna, F.: 1984, AM: A case study in AI methodology, Artificial

Intelligence 23, 249-268.

SAS, Institute Inc.: 1989, SAS/STAT User's Guide, Version 6, Fourth Edition,

Vols.1 and 2.

Shah, J.: 1988, Synthesis of initial form for structural shape optimization, ASME

Transactions. Journal of Vibration, Acoustics, Stress, and Reliability in

Design 110, 564-570.

Shapiro, A. D.: 1987, Structured Induction in Expert System, Turing Institute

Press and Addison-Wesley.

Shavlik, J. W. and Dietterich, T. G.: 1990, Readings in Machine Learning, Morgan

Kaufmann, Los Altos, CA.

Sheppard, D. and Palmer, A.: 1972, Optimal design of transmission towers by

dynamic programming, Computers and Structures 2, 455-468.

Simon, H. A.: 1983, Why should machines learn?, in Michalski et al.(ed.), Machine

Learning: An Artificial Intelligence Approach.

Spillers, W. and Friedland, L.: 1972, On adaptive structural design, American

Society of Civil Engineers, Journal of Structural Design 98(ST10), 2155-

2163.

Spillers, W.: 1963, Applications of topology in structural analysis, American So-

ciety of Civil Engineers, Journal of Structural Design 89(ST4), 301-313.

Tadepalli, P.: 1989, Lazy Explanation-Based Learning: A solution to the in-

tractable theory problem, Proceedings of the International Internation

Joint Conference on Artificial Intelligence, pp. 694-700.

Topping, B.: 1983, Shape optimization of skeletal structures, American Society of

Civil Engineers, Journal of Structural Engineering 109(8), 1933-1951.

135

Van Harmelen, F. and Bundy, A.: 1988, Explanation-Based Generalisation = par-

tial evaluation, Artificial Intelligence Journal 36(3), 401-412.

Vanderplaats, G. N.: 1984, Numerical Optimization Techniques for engineering

design with applications, McGraw Hill, New York.

Wang, C.-K. and Salmon, C. G.: 1984, Introductory Structural Analysis, Prentice

Hall, New Jersey.

Wolfram, S.: 1988, Mathematica, Addison-Wesley.

Appendices

a

136

Appendix A

Simplifying Assumptions

We make a number of simplifying assumptions from an engineering perspective that

greatly reduce the complexity (from an engineering standpoint) of the analysis task

in the skeletal design domain:

1. Strucural members are joined by frictionless pins

2. Only a single loading case is allowed

3. Only statically determinate structures are considered

4. Only two-force members are used

5. Columns are short and stocky

6. The cross section of a column is square

7. Manufacturing problems are not taken into account

8. Columns and rods of any length and cross sectional area are available

9. Supports have no freedom of movement along either axis

A frame is subjected to a single loading condition when the forces applied do

not change over time and the structure must only support one given set of loads.

137

A roof is an example of a structure that must support multiple sets of loading

conditions because it must withstand its own weight, rain, wind, snow, and so on.

A structure is said to be statically determinate if the external reactions and

the internal member forces can be determined using only the equations of static

equilibrium. A necessary condition for a structure to be statically determinate

is (Wang and Salmon 1984):

Number of Possible Forces = Number of Internal Forces.

The number of possible forces is computed by counting for each joint the degrees

of freedom along the cartesian axis. The number of internal forces is equivalent to

the number of members.

We point out (see Section 2.2) that the requirement of statical determinacy, the

strongest of the above assumptions, stems from the ample experimental evidence

that optimal structures subject to a single loading condition are almost always

statically determinate.

138

Appendix B

Objective Function

In this appendix we illustrate the derivation of the weight function. Let n and m be

the number of compression and tension members in a given structure, respectively.

We define the weight of a structure as the sum of the weights of the compressive

and tensile elements:

Weight = Weight(c) Weight(t) (B.8)

and

Weight(c) = E Weighe (B.9)
i=1

Weight(t) = E Weight('

where Weight?) and Weight?) are the weights of the i-th compressive and tension

member, respectively.

In practical applications the weight of each member is a function of force,

length, shape, and material; however, given our assumptions, we can simplify the

expression for the weight.

Since columns are short and stocky there is a direct stress relationship between

the axial (internal) force and the cross sectional area. As an example, for yellow

pine the relation (Draffin and Collins 1950) is:

F(0

A
= 4600 (B.10)

139

where F(c) is the magnitude of the force and A is the cross sectional area, both

measured in SI units. Furthermore, having assumed the cross section of a column

is square and only one material is used, the weight of each column can be expressed

as

Weight`) = k(c)Ai/i (B.11)

where k(c) is a constant dependent on the material, Ai and i are cross sectional

area and length of each compressive member, respectively.

From (B.10) we can derive that Ai = Fi(c)/4600 which substituted into (B.11)

gives:

Weight`) = k(c) Fi(c)
4600

(B.12)

Substituting (B.12) into (B.9) we have:

n

Weight(`) =
k(c)

F01. (B.13)
4600 i=i

Similarly, assuming that for rods there exists a linear relationship between force

and cross sectional area, we obtain:

Weight(t) = E (B.14)

where k(i) is a constant that depends on the material, Fitt) and li are the tensile

force and length of each member, respectively.

Hence, substituting (B.13) and (B.14) into (B.8) we obtain:

k(c) n
Weight =

4600 4- k(t) FP)li (B.15)
i=i

To simplify notation, the superscripts c and t will be omitted, whenever no

confusion results. By using appropriate scaling, we can always transform (B.15)

into:

W eight W eightapprox = E + c E (B.16)
i=i i=i

which will be considered as the objective function to be optimized. With a

slight abuse of notation, we shall use Weight instead of W eight approx

140

Appendix C

Mathematica in the Design Domain

Mathematica (Wolfram 1988) is an-off-the-shelf ". . . System for Doing Mathematics

with Computers . . ." It includes numerical routines that range from the solution

of simple equations to systems of partial differential equations. Mathematica also

provides powerful 2-D and 3-D color plotting functions, symbolic manipulation of

expressions, and a Turing-equivalentl° programming language. In this thesis, we

have used Mathematica extensively to perform most of the symbolic manipulation

of algebraic expressions.

As an example, here is a program written in the Mathematica language to

compute a symbolic solution for a system of two equations in the unknowns x and

y:

Simplify(Solve[a x + b y == c, x y == d, {x, y }]].

Solve [] and Simplify0 are two built-in Mathematica functions. The former,

among other things, produces a symbolic solution of the system of equations. The

latter simplifies any given expression by trying to minimize the number of terms.

In theory, using these built-in symbolic packages, a symbolic solution is very easy

to obtain. In practise, however, the built-in routines soon become inadequate as

the number of equations grows. In fact, in the skeletal design domain, Solve []

"The programming language provides constructs for composition, iteration, and conditionals.

141

produces expressions that are so lengthy and complex that Simplify 0 does not

produce any simplification. As an example, the system of equations in Table 5

could not be solved by the combination of Solve 0 and Simplify0 . We speculate

that the heuristics used in Simplify 0 are not powerful enough to handle a ratio

of polynomials. The simplification step is necessary because Solve 0 can produce

very lengthy expressions. The length of the expression affects the evaluation time.

Thus, it might happen that the time it takes to evaluate the compiled expressions

is greater than running a numerical method thereby offsetting the advantages of

the compilation stage.

To circumvent these problems we have written a procedure using the program-

ming language in Mathematica that solves the linear system of equations using

Cramer's rule instead of the built-in Solve0 routine. Cramer's rule gives a so-

lution of a system of equations as the ratio of two determinants computed from

the matrix of coefficients. It turns out that numerator and denominator of this

ratio are polynomials which are easy to simplify. Therefore, our compiler first

uses Cramer's rule to solve the linear system, then simplifies the two polynomials

separately, and, finally, it combines them by factoring out and deleting common

factors between numerator and denominator.

142

Appendix D

Additional Experimental Results for
UTILITYID 3

This appendix complements the experimental results reported in Section 6.5 pro-

viding learning and tradeoff curves. These have been obtained using the experi-

mental approach outlined in Section 3.5.2.

The curve in Figure 35 shows the average quality of a solution (ratio of the

solution found to the optimal one) as a function of the number of examples. As

the figure shows, the quality of the solution improves (slightly, after an initial drop)

as more examples are given. This improvement in quality corresponds to longer

1.3

1.25

1.2

Ratio 1.15

1.1

1.05

1

0 200 400 600 800
Number of Training Examples

1000

Figure 35. Average quality (Ratio = solution found)
optimal solution

1200

processing time to obtain a solution. This can be seen from the curve in Figure 36

143

which shows the average serial CPU time (time, for short) as a function of the

number of examples. The time increases until a sufficient number of examples

is presented to the learning algorithm. As the program learns more from the

examples, the problem solver must run the numerical optimizer on more stress

states. This justifies the increase in time. Time required to obtain a solution and

Serial
CPU
Time

30

28

26

24

22

20

18

16

14

1.4

1.35

1.3

1.25

Ratio 1.2

1.15

1.1

1.05

1

20

0 200 400 600 800
Number of Training Examples

1000

Figure 36. Average problem solving time.

1200

21 22 23 24
Time

25 26

Figure 37. Ratio / Time tradeoff.

27 28

its quality induce a tradeoff that is illustrated in Figure 37. This plot indicates

that a better ratio is obtained by spending more time to derive the solution. The

plot also suggests that UTILITYID3 can also provide search control knowledge

to derive solutions quickly. However, in this case, the solutions will be of poor

quality. The time/quality tradeoff is typical in engineering endeavors and it is

144

usually resolved by considerations like the engineers' intuition and experience. An

analysis of these factors goes beyond the scope and nature of this thesis.

145

Appendix E

Design with Forbidden Regions

In this appendix we present a variation on the design task in Chapter 2 to demon-

strate how the techniques introduced in this thesis can be applied to solve this

problem as well.

As shown in Figure 38, we include forbidden regions (e.g., R) in the 2-D plane

and assume that structural members cannot enter these regions. For instance, in

the figure a solution with a member connecting directly load L and support S1

must be discarded because the member would cross the forbidden region R. The

design task with forbidden regions is similar to the one used by Paul and Nevill,

G.E. Jr. (1987) in their MOSAIC system. The remainder of this appendix shows

the results of the application of the techniques we have developed to the design

problem in Figure 38.

Symbolic Methods. The symbolic methods in Chapter 4 are used to unfold

the system of equations derived applying the method of joints to the truss in

Figure 38. Once the closed form expression of the objective function has been

determined, the givens of the problem are incorporated into the function and the

resulting expression is partially evaluated. Table 19 shows the final expression

derived by our system for the stress state in the figure. The coordinates of the

connection points Cl and C2 in Figure 38 are (x1, yl) and (x2, y2), respectively.

C2

Si
Figure 38. Skeletal design task with a forbidden region R.

146

The compiled expression in the table is much faster to evaluate than the original

one. In fact, it takes 9.083 seconds to perform 100 evaluations of the compiled

function in Table 19. In contrast, for the same values of the unknown variables, it

takes 19.6 seconds to evaluate 100 times the non-compiled function.

Regularities. The optimization problem associated to the design task in the

figure is 4-dimensional. This is because both coordinates of the extra connec-

tion points Cl and C2 must be determined. However, the regularity detection

mechanisms in Chapter 5 allow us to decrease to one the dimensionality of the

optimization problem. To see how this is accomplished, let us first consider the

connection point Cl. The EBL system is asked to prove that the unknown connec-

tion point Cl can be expressed in terms of known quantities. The system is able

to derive a complete proof for the point. This is because Cl can be computed as

the intersection of the boundary lines of the forbidden region and these are known

entities. Therefore, at run-time, to compute the coordinates of Cl, the problem

solver tries all coordinates of the forbidden region. Once C1 has been identified,

the system tries to prove that connection point C2 can be expressed in terms of

given entities. This proof is similar to the one in Figure 25. In fact, C2 is first

transformed in polar coordinates. Then, the system tries to determine the angle

and the distance from Cl which, at this stage, is a known quantity. Angle and dis-

147

Table 19. Simplified objective function for the problem of Figure 38.

Weight =

(2.55 1025x1 5.1 1021x12 - 2.55 1025x2 5.1 1021x1x2 + 2.04 1018x12x2+

2.53 1019x22y1 - 4.49 1014x22n2 + 5.3 1017x12y2 + 3.46 1018x2y1y2+

1.02 1022x22 1.02 1019x1x22 2.04 1014x12x22 1.02 1019x23+

2.04 1014x1x23 + 2.55 1025y1 + 2.45 1021x1n 192.xi2Y1-

1.52 1022x2y1 4.9 1017x1x2y1 0.03x12x2Y1 0.06x1x22Y1-

1.02 1014x23y1 1.24 1022y12 + 4.73 1019x2y12 19413-

0.03x2y13 - 2.55 1025y2 + 7.75 1021x02 0.03x13Y2+

5. 1021x2y2 2.02 1019x1x2y2 + 2.04 1014x12x2y2 + 1.02 1014x1x22Y2+

1.72 1022y02 2.69 1019xiyiy2 - 0.015x12y1y2 4.9 1014xix2m2+

1.02 1014x1y23 + 1.02 1018x2Y22 + 2.04 1014x2Y12Y2 5.1
1017y23-

5.1 1013x22y1y2 1.02 1019y12y2 0.03x012Y2 0.01y13y2 4.8 1021y22+

2.44 1019x022 2.96 1014x12y22 2.04 1014x1x2y22 + 5.1 1017Y022-

1.02 1014x2y1y22 5.1 1013y12y22 + 5.1 1017x22y2 5.1 1013m23)

(4. 1013x1y1 4. 1013x2yi 8. 109x1x2Y1 + 8. 109x22y1 - 1.2 1014n2+

4.4 1010x2y12 4. 106x22y12 4. 1013x02 + 8. 109x12Y2 + 4. 1013x2Y2-

8. 109x1x2Y2 + 2.4 1014y1y2 4.4 1ex1nY2 4.4 1010x2y1y2 + 8. 106xix2M2-

1.2 1014y22 + 4.4 1019x1y22 4. 106x12Y22)

Table 20. Simplified objective function for the problem of Figure 38 with only one remaining

design variable.

,4 4.78 109 + 3.06 107p + 4.53 104p2 4.56p3
Weightsimplified = 1U

1.49 105 + 1.75 103p + 3.28p2

148

tance cannot be directly related to givens. Therefore, as in Section 5.2, the EBL

system uses geometric knowledge and discovers that the angle Li Cl C2 is one

half of the angle Ll Cl Si. Since C1 is marked as a given, this latter angle is

also a given. Thus, the system is inductively able to determine the angle of C2 in

polar coordinates. On the contrary, EBL cannot relate the distance from C1 to

givens; hence, it is left as an independent variable (p) to be determined at run time.

The regularities decrease the number of independent variables (dimensionality) in

the optimization problem from the original four cartesian coordinates to the one

polar coordinate (p) needed to locate C2. The simplified expression for this one-

dimensional optimization problem is reported in Table 20. The FindMinimum

package in Mathematica determines the correct minimum (p = 1143) in 0.15 sec-

onds. The same package took 24.82 seconds to determine the minimum of the

4-dimensional objective function before compilation.

