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Machine Learning in Fetal Cardiology: 
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Abstract

In fetal cardiology, imaging (especially echocardiography) 

has demonstrated to help in the diagnosis and monitoring 

of fetuses with a compromised cardiovascular system poten-

tially associated with several fetal conditions. Different ultra-

sound approaches are currently used to evaluate fetal car-

diac structure and function, including conventional 2-D im-

aging and M-mode and tissue Doppler imaging among 

others. However, assessment of the fetal heart is still chal-

lenging mainly due to involuntary movements of the fetus, 

the small size of the heart, and the lack of expertise in fetal 

echocardiography of some sonographers. Therefore, the use 

of new technologies to improve the primary acquired im-

ages, to help extract measurements, or to aid in the diagno-

sis of cardiac abnormalities is of great importance for opti-

mal assessment of the fetal heart. Machine leaning (ML) is a 

computer science discipline focused on teaching a comput-

er to perform tasks with specific goals without explicitly pro-

gramming the rules on how to perform this task. In this re-

view we provide a brief overview on the potential of ML tech-

niques to improve the evaluation of fetal cardiac function by 

optimizing image acquisition and quantification/segmenta-

tion, as well as aid in improving the prenatal diagnoses of 

fetal cardiac remodeling and abnormalities.

© 2020 S. Karger AG, Basel

Introduction

Fetal echocardiography was introduced to assess fetal 
cardiac function only 15 years ago (the first study was 
performed in 2004). It has evolved from the description 
of cardiac anatomical abnormalities toward quantitative 
assessment of cardiac dimensions, shape, and function 
and has been demonstrated to be useful in the diagnosis 
and monitoring of fetuses with a compromised cardio-
vascular system related to several fetal conditions, such as 
intrauterine growth restriction (IUGR), twin-to-twin 
transfusion syndrome, and congenital heart disease [1–
3]. Moreover, some cardiac parameters have already 
shown to be helpful in predicting perinatal problems and 
long-term cardiovascular outcomes [4].

Different ultrasound (US) approaches are currently 
used to evaluate fetal cardiac function, including conven-
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tional 2-D imaging, M-mode, blood-pool and tissue Dop-
pler imaging, 2-D speckle tracking, and 4-D spatiotempo-
ral imaging correlation [4, 5]. For any evaluation, an opti-
mal image of the fetal heart is crucial to adequately assess 
cardiac structure and function. However, assessing fetal 
cardiac function is still challenging due to involuntary 
movements of the fetus, the small size of the heart, the 
high heart rate, the limited access to the fetus, and the lack 
of expertise in fetal echocardiography of some sonogra-
phers. After having obtained an optimal image, measure-
ments have to be performed in order to extract relevant 
cardiac features that relate to remodeling and functional 
status. Currently, these are mainly carried out manually 
by the sonographer, either during the investigation or of-
fline using a dedicated workstation. Therefore, the use of 
new technologies to improve the primary acquired images 
or help extract and standardize measurements is of great 
importance for optimal assessment of the fetal heart.

Machine learning (ML) is a computer science disci-
pline focused on teaching a computer to perform tasks, 
with a specific goal in mind, without explicitly program-
ming the rules on how to perform this task. Mathemati-
cally speaking, learning occurs when a computer itera-
tively improves its performance on the given task (e.g., 
classification of a disease or estimation of clinical mea-
surements) with experience or, in other words, when it 
is exposed to data [6]. Usually, ML algorithms are clas-
sified into 2 approaches: supervised and unsupervised 
learning algorithms (Fig. 1). Deep learning (DL), a pop-
ular algorithm (and often thought of when the term ma-
chine learning is used) is just a subset of ML that uses a 
layered structure of calculations known as artificial neu-
ral networks (ANN) on unstructured data. Figure 2 il-
lustrates the typical pipeline for both supervised and un-
supervised learning algorithms. Supervised learning re-
quires explicit ground truth goals (diagnostic labels, 

Fig. 1. Classification of ML/DL algorithms. DL is a subset of ML based on ANN and can be applied in a supervised or unsupervised manner.
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outcomes, reference image measurements, etc.) from 
which the algorithm can optimize its performance dur-
ing training. Supervised learning algorithms can be fur-
ther classified into classification and regression (Fig. 1). 
Classification techniques evaluate the given input and 
come up with a category such as “red” or “blue” or “dis-
ease” or “nondisease,” while regression techniques re-
sult in a continuous output: the value of the predicted 
quantity (such as the probability of a diagnosis). Besides 
DL, the most common classification algorithms include 
decision trees, support vector machines (SVM), etc., 
while linear and logistic regressions are typical regres-
sion algorithms (Fig. 1). On the other hand, unsuper-
vised learning algorithms receive unlabeled examples 
and aim at discovering main patterns or similarities in 
the data, which would correspond to different disease 
manifestations or different phenotypes within a given 
disease, or different temporal evolution. Consequently, 
supervised learning is commonly used when the final 
goal is well known at the time of learning and unsuper-
vised learning is used as an exploratory tool and usually 
the final goal follows from the analysis of the obtained 

results. Unsupervised learning algorithms can be fur-
ther classified into clustering and dimensionality reduc-
tion as illustrated in Figure 1. Typical clustering algo-
rithms include K-means or Gaussian mixture models, 
while principal component analysis and linear discrimi-
nant analysis are classical dimensionality reduction 
techniques.

Once ML models are trained, their performance on 
unseen data (referred to as the test set) is known as the 
model’s generalizability (Fig.  2). Models that perform 
considerably better on the training set compared to the 
test set are overfitted, which means that they have a strong 
adherence to the training cases, but new patients are not 
correctly handled. Finding a good balance between train-
ing and testing performance is thus crucial for the appli-
cation of ML models in clinical settings. A related highly 
relevant risk when using ML for clinical decision making 
is how to deal with, and not miss, rare occurrences in the 
(testing) data that were underrepresented in the training 
dataset. To circumvent this risk, ML approaches (espe-
cially supervised ones) need to be trained with a dataset 
that sufficiently captures the phenomenon under study. 

Fig. 2. Pipeline of supervised (top) and unsupervised (bottom) learning applications. 
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For clinical decision making, an unsupervised approach 
that highlights these rare instances might therefore be 
better compared to a supervised one that forces decisions 
towards what was trained for. In order to learn more 
about ML concepts, we refer the reader to the review pa-
per by Deo [7].

ML techniques can help to optimize image acquisi-
tion protocols, thus reducing the acquisition time and 
ensuring optimal quality, and they can help to extract 
comprehensive and standardized information for a bet-
ter evaluation of cardiac function. In this review we pro-
vide a brief overview on ML/DL applications in obstet-
rics, with a particular focus on the evaluation of fetal 
cardiac function by optimization of image acquisition 
and quantification/segmentation, and aid in improving 
the prenatal diagnoses of fetal cardiac remodeling and 
abnormalities.

ML for Data Acquisition

Image acquisition is the first step towards building a 
system to optimize the characterization of fetal cardiac 
function. This step is of capital importance, as the extract-
ed information will be greatly conditioned by the intrinsic 

quality and amount of input data. Acquisition of the best 
standard fetal views is labor intensive and relies on the 
sonographer’s experience. The resulting interoperator 
variability in image acquisition hampers individual tem-
poral follow-up or the combination of different data 
sources for research purposes. In this sense, ML-powered 
acquisition methods to speed up the acquisition, decrease 
the learning curve, and standardize the resulting images 
seem highly desirable, as they promise to boost data qual-
ity and standardization with minimal human interven-
tion.

The improvement of image acquisition using ML is 
based on evaluation of the current (2-D/3-D) image on 
the screen by scoring how closely it resembles the type of 
view that was intended. This view was learned during a 
training phase (without explicitly defining the image ap-
pearance or content; this is learned by the algorithm). 
Many ML approaches can be used, but DL, using ANN, 
seems the most promising.

The acquisition of the fetal facial standard plane is a 
requisite for extracting biometric measurements and 
making a diagnosis during US examination. Lei et al. [8] 
automated this task with a SVM classifier. More recently, 
Yu et al. [9] leveraged the power of deep convolutional 
neural networks (CNN) to automatically recognize the 

Fig. 3. Overview of the application of ML/DL in fetal cardiology. 
In the short term, ML will help the sonographer to acquire a full 
set of optimal and standardized images in the shortest possible 
time. This can improve data quality and interpretability. Next, ML 
will be used for (semi-) automated extraction of features (measure-
ments) from the images, thus again improving the standardization 
and efficiency of the imaging department. This first component, 
essential for the use of images in fetal cardiology, will likely benefit 
greatly from the development in DL. The next step in clinical deci-

sion making is data interpretation for diagnosis and therapy plan-
ning. This component is much riskier so that interpretability and 
reliability of the ML decision support becomes a crucial factor. 
Therefore, in the foreseeable future, this will stay fully in the hands 
of the clinician but ML can provide helpful support by presenting 
the data in such a way that comparison of an individual patient 
with knowledge from pathophysiology and clinical trials/research 
becomes an easier task when a huge amount of complex data (from 
anamnesis to images over lab results) is available.
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fetal facial standard plane during routine US examina-
tion. Another standard plane is that of the fetal abdomi-
nal region, which allows measurement of the abdominal 
circumference (AC) and estimation of the fetal weight as 
a proxy for fetal health. CNN have already been trained 
to automatically find the abdominal region in a US image 
and then determine the image quality by assessing the 
goodness of depiction for key structures such as the stom-
ach bubble and the umbilical vein [10]. In a similar fash-
ion, Rahmutallah et al. [11, 12] trained an adaptive boost-
ing (AdaBoost) model to detect these 2 structures in 2-D 
US images for the purpose of scoring image quality. Oth-
er ensemble approaches have been proposed to categorize 
unlabeled fetal 2D US images. In particular, Yaqub et al. 
[13] used a random forest (RF) classifier to detect mean-
ingful structures from different regions inside the images. 
A more ambitious project using CNN targeted the clas-
sification of a broader collection of fetal images planes by 
automatic recognition of 14 different fetal structures in 
2-D US images [14]. Concerning 3-D fetal US, Raynaud 
et al. [15] proposed an ensemble of DL for feature extrac-
tion and RF for classification of organs with the purpose 
of automatically encoding anatomical variability while 
discarding the fetus pose. 

Detection of the standard scan plane in fetal brain US 
is an essential step in the assessment of fetal development. 
This task was achieved by Li et al. [16] using a CNN ap-
proach in 3-D fetal US. Concerning quality control, 
Yaqub et al. [17] proposed a DL solution that automati-
cally assessed whether transventricular 2-D US images of 
the fetal brain met clinical standards. Namely, they first 
localized the fetal brain, then detected the regions of in-
terest, and finally learned the US patterns that enable 
plane verification. ML techniques have also been used to 
automatically identify the transthalamic plane in 3-D US 
to then assess brain biometrics such as the fetal biparietal 
diameter and head circumference (HC) [18].

Specific studies involving ML techniques for imaging 
the fetal heart are still scarce. Among the few examples 
found, Bridge et al. [19] implemented a framework for 
tracking the key variables appearing in freehand 2-D US 
scanning videos of the healthy fetal heart through the use 
of regression forests. Concerning the electrical activity, 
Yu et al. [20] used independent component analysis and 
Muduli et al. [21] used DL to reconstruct the fetal electro-
cardiogram from abdominal ECG recordings. A next step 
towards automating the fetal US scanning consists of cou-
pling the image plane/volume recognition with a robot 
arm that performs the scanning, which was pioneered by 
Wang et al. [22].

ML approaches for improved fetal data acquisition are 
already a reality in research settings and they are expected 
to become clinically available in the short term (5 years). 
In the midterm, ML techniques may be combined with 
robotics to automatically extract standardized fetal imag-
ing views. 

ML for Image Quantification and Feature Extraction

Fetal biometric parameters such as HC, biparietal di-
ameter, AC, femur length, and thickness of nuchal trans-
lucency are commonly used for estimation of fetal weight, 
gestational age (GA) and detection of fetal abnormalities 
during prenatal US examinations. An accurate estima-
tion of fetal weight and GA is essential to detect any ab-
normal fetal growth pattern, such as small or large for 
GA, IUGR, or cardiac abnormalities. Kim et al. [23] re-
cently published a DL model to automatically calculate 
the HC together with the biparietal diameter from 2-D 
US images. A different approach was used by Li et al. 
[24], who first used RF to localize the fetal head and then 
ellipse fitting to estimate the HC from 2-D US images. 
van Den Heuvel et al. [25] went a step further and imple-
mented a DL model that calculated HC from obstetric 
sweep protocol data. These data likely do not contain 
standard planes, and thus their method has great poten-
tial for application in resource-constrained countries, 
where there is a lack of skilled obstetricians. Lorenz et al. 
[26] recently published a pipeline combining RF, shape 
models, and CNN to automatically perform view recog-
nition and anatomical landmark location, with the objec-
tive of measuring the AC from 3-D US recordings. Simi-
larly, Kim et al. [27] used a CNN to estimate AC from 
2-D US data. For further information on biometric mea-
surements, we refer the reader to a recent review of au-
tomated techniques for the interpretation of fetal abnor-
malities [28]. 

ML methods have been proposed in the last decades to 
improve the estimation of GA in women with uncertain 
or unknown menstrual dates [29] and to improve the es-
timation of fetal weight during gestation. For example, 
Ashley et al. [30] explored whether data available at birth 
can be used to accurately predict the estimated fetal 
weight over the course of gestation using different ML 
methods such as RF or regression trees in a database of 
more than 10,000 normal and high-risk pregnancies. The 
authors found that ML algorithms estimate fetal weight 
better than other commonly used methods. Chuang et al. 
[31] developed an ANN to estimate fetal weight using 
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morphometric data from 991 fetuses, reporting a mean 
absolute error of 6.15%. 

Apart from measuring fetal biometrics and estimating 
fetal weight, recent ML approaches have been geared to-
wards segmentation to identify fetal structures and or-
gans to timely find fetal abnormalities so that necessary 
action can be taken. Namburete et al. [32] used an RF 
classifier to segment cranial pixels in 2-D US images. 
More recently, Li et al. [33] used a DL approach to auto-
matically segment the fetal body and amniotic fluid from 
2-D US data. Other examples of DL for segmentation 
have targeted the fetal brain and lungs [34, 35] and these 
2 organs plus the placenta and the maternal kidneys from 
magnetic resonance imaging [36]. Lastly, an ensemble of 
decision trees has been used to automatically segment fe-
tal brain structures in 3-D US images [37]. 

Concerning the fetal heart, the bulk of research focus-
es on automatically measuring the heartbeat. Some ex-
amples are the detection of cardiac activity from a pre-
defined free-hand US sweep of the maternal abdomen us-
ing a classification model [38], extraction of the fetal heart 
rate from cardiotocograms (CTG) using dimensionality 
reduction [39], or measuring fetal QRS complexes from 
maternal ECG recordings using ANN [40]. More recent-
ly, Sulas et al. [41] used ANN to detect heart beats from 
pulse-wave Doppler envelope signals extracted from B-
mode videos. For more on measuring cardiac activity 
from fetal US using ML techniques, the reader might be 
interested in the review paper by Alnuaimi et al. [42].

The application of ML algorithms to extract features 
from fetal echocardiographic data is already being used in 
some high-end scanners, in particular for the calculation 
of pulsatility indices from peripheral blood flow record-
ings. This is expected to be translated to cardiac flows 
soon. In the midterm, these scanners will also estimate 
GA and assess fetal growth based on automatic extraction 
of the different biometric measurements discussed above.

ML for Fetal Diagnosis

Prenatal diagnosis of fetal abnormalities has greatly 
benefited from advances in US technology and, in the last 
years, also from the advances in ML. ML algorithms have 
been used in different applications within fetal US medi-
cine such as to predict preterm births [43, 44], the risk of 
euploidy, trisomy 21, and other chromosomal aneuploi-
dies [45] or prediction of perinatal outcomes on asymp-
tomatic short cervical length [46] among others. Regard-
ing fetal cardiology, one of the subfields in which ML has 

been extensively applied in the last decades is improve-
ment of the diagnosis of fetal hypoxia or acidemia based 
on the analysis of CTG. CTG is routinely used to record 
and monitor the fetal heart rate and uterine contractions 
during the antepartum and intrapartum periods in order 
to detect the symptoms of fetal distress as early as pos-
sible. In clinical practice, CTG traces are visually exam-
ined by clinicians and their interpretation is largely de-
pendent on the clinician’s expertise, leading to high in-
ter- and intraobserver variability. Therefore, despite the 
existence of standardized guidelines, the accuracy and 
robustness of CTG to improve prenatal outcomes re-
main controversial. The use of ML to improve the predic-
tive capacity of CTG recordings was first presented by 
Bassil et al. [47] in the late 1980s. Since then, several at-
tempts have been made to increase the effectiveness of 
the automatic evaluation of CTG traced using different 
ML and DL methods including ANN, SVM, and RF 
among others. Most of the publications have used 2 dif-
ferent open-access CTG databases to evaluate their pro-
posed ML algorithms, i.e., one from the University Hos-
pital in Brno (Czech Republic), including 552 CTG re-
cordings [48], and another from the University of Porto 
(Portugal), which includes 2,126 CTG recordings [49]. 
We have summarized the publications on the use of ML 
in the analysis of CTG for the last 10 years in online sup-
plementary Table S1 (for all online suppl. material see 
www.karger.com/doi/10.1159/000505021). For a review 
of older publications, we refer the reader to the review of 
Graham et al. [50]. The best results were obtained by Ir-
aji et al. [51] using the Portuguese database showing an 
accuracy of 99.5%. There have also been some attempts 
to translate this into clinical practice via the development 
of software such as Infant, PeriCALM [52, 53], and Foe-
tos [54] or the development of mobile/website applica-
tions [55, 56] to provide additional support in the inter-
pretation of CTG signals and therefore to improve the 
assessment of fetal status. However, there is no evidence 
on whether these systems really improve the prediction 
of fetal distress or acidemia compared to visual CTG in-
terpretation alone, and reports about their clinical per-
formance were not found. In a recent systematic review, 
the degree of interobserver reliability between human 
and ML interpretations of CTG signals was determined 
[57], and it was concluded that the use of ML for inter-
pretation of CTG during labor does not improve neona-
tal outcomes and has yet to prove its reliability relative to 
expert observers. The root of the problem may be that 
any supervised ML-based system needs to be trained 
with human annotations and, given that the benefit of 
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CTG themselves for labor monitoring has not been clear-
ly demonstrated, it is not surprising that adding an auto-
matic system to evaluate CTG signals with similar infor-
mation does not offer advantages in reducing adverse 
perinatal outcomes.

IUGR, which affects about 10% of pregnancies, has 
been associated with cardiac remodeling in utero that 
can persists postnatally [58–60]. Early detection of 
IUGR can improve the perinatal outcomes of these fe-
tuses and reduce the risk of cardiovascular mortality in 
adulthood. The first study proposing the use of ML for 
the detection of IUGR using biometric data was present-
ed by Gurgen et al. [61] in 1997. In that study an ANN 
was implemented to approximate the growth curves of 
fetuses showing an accuracy of 95% in the detection of 
IUGR. Later, Magenes et al. [62] proposed an SVM to 
detect IUGR using CTG data and showed good classifi-
cation results in a cohort of 70 fetuses. In 2014, Gadag-
kar et al. [63] developed an ANN system for the diagno-
sis of IUGR using only 2-D US morphometric measure-
ments from almost 300 fetuses, and they had results 
similar to those obtained clinically in the same study 
population. Similarly, Rawat et al. [64] implemented an 
ANN model using again 2-D US morphometric mea-
surements from a total of 120 fetuses. Recently, Kuhle et 
al. [65] compared different ML methods to predict fetal 
growth abnormalities in a cohort of more than 30,000 
patients. However, the authors reported that the ML 
methods used did not offer any advantage over logistic 
regression in the prediction of fetal growth abnormali-
ties. The main limitation of all of these studies is that the 
detection of IUGR was performed considering only 
morphometric data, which only provide information 
about the fetal weight, without considering any other 
data such as blood flow velocities or cardiac deforma-
tion measured by Doppler or B-mode US, respectively. 
It is known that IUGR fetuses show abnormal blood 
flow patterns in the fetal circulation detected by Doppler 
US [66, 67] and also signs of longitudinal systolic dys-
function [58]. It was recently demonstrated that unsu-
pervised ML algorithms using both echocardiographic 
(including myocardial strain traces) and clinical data 
can be used to find groups of similar patients within a 
heart failure cohort and identify individuals with a ben-
eficial response to cardiac resynchronization therapy 
[68]. A similar approach integrating clinical and hetero-
geneous echocardiographic data could be implemented 
to improve the detection of IUGR fetuses, identify those 
at high risk of adverse perinatal outcomes, and aid clini-
cians in finding optimal treatment strategies. However, 

ML methods require a large number of patients during 
training in order to be able to capture the range of pos-
sible abnormalities, which is a limitation in fetal medi-
cine as the number of patients is scarce. One possibility 
to overcome this limitation is to combine ML with “data 
augmentation” through physiological computational 
modelling as proposed by Hoodbhoy et al. [69]. Lumped 
models of the fetal circulation have demonstrated to be 
able to realistically simulate the hemodynamics of the 
fetus in many different conditions [66, 67, 70], thus pro-
viding virtual, but physiologically plausible, Doppler 
traces. Using these models, virtual patient populations 
can be created where the ratio of abnormal/normal cas-
es can be increased so that the learning of the ML algo-
rithms is less dependent on the data provided.

Finally, ML has been recently applied to improve the 
prenatal diagnosis of congenital heart diseases. Yeo et al. 
[71] presented an intelligent navigation method called 
FINE to automatically obtain different echocardiography 
anatomical views of the fetal heart and identify abnor-
malities within the cardiac anatomy. The tool was able to 
demonstrate evidence of abnormal fetal cardiac anatomy 
in 4 abnormal cases [71]. More recently, Arnaout et al. 
[72] proposed the use of a fully convolutional DL method 
in a supervised manner to: (1) identify the 5 most impor-
tant views of the fetal heart, (2) segment and measure the 
cardiac structures, and (3) distinguish between normal 
hearts and tetralogy of Fallot and hypoplastic left heart 
syndrome using 685 echocardiograms from fetuses from 
18 to 24 weeks of GA [72]. The best results were obtained 
in the diagnosis of hypoplastic left heart syndrome versus 
normality with a sensitivity and specificity of 100 and 
90%, respectively. Although the results look promising, 
one of the main limitations of this study is that only 2 
congenital heart diseases were evaluated and the DL sys-
tem was only trained with images from 1 US machine 
without considering the variability in echocardiographs. 
Therefore, further studies with bigger datasets from dif-
ferent US machines need to be performed.

Conclusions

Given that ML approaches have become ubiquitous in 
our daily lives, they will become more and more integrat-
ed in clinical practice and in the assessment of the fetal 
heart. It is important to distinguish the different tasks in-
volved in clinical decision making to understand how, 
and which type of, ML can be optimally employed.  
To obtain the best image quality in the shortest possible  
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time and with the smallest learning curve, as well as for 
standardized extraction of specific measurements from 
the images, ML approaches based on DL have shown 
great promise and are currently being implemented in 
high-end clinical scanners. However, when the diagnost- 
ic interpretation is performed, and especially when a 
treatment decision needs to be made, the “black-box”  
approach inherent to, for example, DL becomes problem-
atic given its dependence on a large and very inclusive 
dataset with correct clinical labels and the inherent diffi-
culty of providing an intuitive clinical explanation for the 
proposed decision. Here, other ML approaches, based on 
for example the identification of individuals with similar 
(complex and multimodal) clinical data and imaging fea-
tures, seem more promising and are explored in different 
centers.

Therefore, when carefully used and validated, and tak-
ing into account all privacy, security, and auditing mea-
sures relevant for the use of clinical data, ML can play an 
important role in standardization of fetal cardiac data and 
provide support in the clinical interpretation and sugges-
tion of the best preventive and interventional approach to 
optimize perinatal as well as long-term cardiovascular 
health (Fig. 3). 
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