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INTRODUCTION

In recent years, genome-wide association studies
(GWAS) have been proven to be successful in the
identification of new genetic variants that influence the
risk of a wide range of complex diseases, including
cardiovascular [Mohlke et al., 2008; Samani et al., 2007]
and autoimmune diseases [Lettre and Rioux, 2008] as well
as cancer [Easton and Eeles, 2008]. Most GWAS focus on
the detection of main effects by using an allele- or
genotype-based test for each single-nucleotide polymorph-
ism (SNP) separately. However, the identified genetic
effects tend to be moderate and explain only a small
fraction of the overall heritability [Frazer et al., 2009].
Because multiple interacting genetic loci in combination
with environmental risk factors are expected to contribute
to susceptibility to disease, multiple SNPs and interaction
effects should be analyzed simultaneously.

However, there are several challenges in studying the
joint effects of multiple genetic and environmental vari-
ables. First, in typical GWAS, genotypes of up to one
million SNPs are determined in several thousand subjects,
leading to the small n, large p problem (many more
variables (SNPs) than samples). Second, when a large
number of SNPs are genotyped on a genome-wide scale,
linkage disequilibrium (LD) between SNPs (resulting in
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correlated variables) needs to be taken into account. For
these reasons, standard multi-variable statistical ap-
proaches like multiple linear or logistic regression are
not well suited for genome-wide data. Machine learning
algorithms provide several alternatives for performing
multi-SNP analyses. For instance, penalized regression
methods extend standard regression techniques so that a
large number of possibly correlated variables may be
analyzed. Relevant SNPs are identified based on regres-
sion coefficient estimates, and interactions may be
modeled explicitly. In contrast, nonparametric approaches
like ensemble methods or neural networks can be used to
model complex relationships between variables without
the need to specify a particular model. Some of these
methods provide variable ranking methods to select the
most important SNPs for predicting the outcome variable.

The Genetic Analysis Workshop (GAW) 16 provided
three data sets that were used to analyze the applicability
of several machine learning methods for GWA data and to
identify context-specific solutions for method-inherent
problems (see Table I for an overview of group contribu-
tions). Genome-wide SNP data were made available as the
first data set by the North American Rheumatoid Arthritis
Consortium (NARAC), a case-control study of rheumatoid
arthritis (RA) [Amos et al., 2009]. The second GWA data
set and a series of cardiovascular- and diabetes-related
phenotypes were provided by Framingham Heart Study
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TABLE 1. Overview of group contributions (ordered by first author)

First author Data set Phenotype Method Question
Arshadi NARAC RA GBM Prediction
Croiseau NARAC RA Group LASSO Main effects
D’Angelo NARAC RA LASSO Gene-gene interactions
Gonzalez-Recio NARAC RA Bayesian LASSO Gene-gene interactions
Kim FHS (simulated) MI, CAC RF Main effects
Schwarz FHS - RF Genotype imputation
Stassen NARAC IeM ANN Main effects
Sun NARAC Anti-CCP RR Main effects
Tang NARAC RA RF Main effects, haplotypes,

gene-gene interactions
Wang NARAC RA RF Main effects
Woo NARAC RA ANN, SVM, kNN Prediction
Yang FHS (simulated) CAC RF Main effects

MI, CAC BNT Causal relationship

NARAC, North American Rheumatoid Arthritis Consortium; FHS, Framingham Heart Study; RA, rheumatoid arthritis (dichotomous); MI,
myocardial infarction (dichotomous); CAC, coronary artery calcification (continuous); IgM, immunoglobulin M (categorical); Anti-CCP,
anti-cyclic citrullinated peptide (continuous); GBM, gradient boosting machine; LASSO, least absolute shrinkage and selection operator; RF,
random forest; ANN, artificial neural network; RR, ridge regression; SVM, support vector machine; kNN, k-nearest neighbor; BNT,

Bayesian network analysis.

(FHS), a community-based longitudinal study of three
generations [Cupples et al., 2009]. In the third data set,
several gene-gene and gene-environment interactions
were simulated based on genotypic data from FHS [Kraja
et al., 2009].

Because ensemble methods, and especially random
forests (RF), were discussed in detail in a GAWI15
summary paper [Ziegler et al., 2007] on data mining
techniques, this contribution focuses mainly on penalized
regression methods. New developments and applications
of ensemble and network methods are then briefly
summarized. The remainder of this article is organized
as follows: After an introductory section about the utilized
methods, we present the main results of our group’s
contributions followed by a discussion of method-specific
problems and possible solutions.

PENALIZED REGRESSION

In classical linear regression, the quantitative response
variable Y is modeled as a linear combination of the
predictor variables Xj, ..., X):

|4
Y =B+ BX
j=1

where By and B = (B4, .., BP)T denote intercept and regres-
sion coefficients. This model is fitted using a training data
set consisting of the observations (x1,y1),...,(x,,y,) of n
samples. Each x; = (xj1,xp,. .. ,x[p)T denotes a vector of p
observations for the predictor variables of sample i. The
values of the unknown parameter B; may be estimated by
minimizing the residual sum of squares

B =arg min g(Bo, B)

i
n P
=arg min > vi—Bo=D By
i=1 =1
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The predictor variables may be SNPs (e.g., coded as 0, 1,
or 2 according to the number of risk alleles), environ-
mental risk factors, or a combination of both. Gene-gene or
gene-environment interactions may be modeled by adding
interaction terms to the regression equation.

Because classical regression approaches require the
number of samples to exceed the number of variables,
they are not applicable in case of GWA data. Additionally,
least-squares estimates of regression coefficients may be
highly unstable, especially in cases of correlated predictor
variables, which lead to low prediction accuracy.

To overcome these challenges, penalized regression
approaches, also called shrinkage methods, were pro-
posed. Although shrinking (e.g., setting some of the
regression coefficients to zero) may result in biased
estimates, these estimates often have a smaller variance.
As a consequence, the prediction accuracy is improved
due to a smaller mean square error [Hastie et al., 2001].
Additionally, these approaches facilitate variable selection
because only important predictor variables remain in the
model. Regression coefficients are shrunk by imposing a
penalty on their size. Specifically, these methods minimize
an expanded function

f(Bo. B) = 8(Bo- B) + h(3, B),

with h(5, B) denoting a penalty function with the tuning
parameter 3.

For application in case-control data with a binary
outcome variable, penalized regression approaches can
be modified by replacing the residual sum of squares by
the negative log-likelihood function in the logistic regres-
sion framework. In the following, approaches using
different penalty functions will be presented focusing on
methods that were applied by contributors in our group.

RIDGE REGRESSION

In ridge regression [Hoerl and Kennard, 2000], the size
of the coefficients is constrained by the L, penalty
le Bf <s. Equivalently, the corresponding estimates
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minimize the penalized residual sum of squares

2
AL n P P
pr98° — argmin ) _ (yi ~Bo—> Bjx,-j> +3) B
B i=1 j=1 j=1

The tuning parameter § controls the amount of shrinkage. If
it is set to zero, the estimated ridge regression coefficients
are equivalent to the classical coefficient estimates. Other-
wise, a larger value of § corresponds to a larger amount
of shrinkage. This minimization problem can be solved
analytically. In an application of differentiating the potential
causal from noncausal SNPs, ridge regression showed an
advantage over the regular multiple regression method
and single-locus analysis in genetic regions with strongly
correlated SNPs [Malo et al., 2008].

LASSO

In contrast to ridge regression, least absolute shrinkage
and selection operator (LASSO) [Tibshirani, 1996] uses the
L, penalty Zle 1Bl < t.

The resulting regression problem

2
R n P P
pLASSO _ arg;nin Z (]/z‘ —Bo— Z BjX,‘]‘) +9 Z IB;1
i =1 =1

i=1

is nonlinear in the y;, and a quadratic programming
algorithm is used to estimate the regression coefficients. If
d is small, some of the coefficients will be exactly zero so
that only relevant variables remain in the model. Wu et al.
[2009] applied LASSO to genome-wide SNP data for both
marginal and interaction predictors. Features of tuning
parameter selection, predictor selection, and false-discov-
ery rate for global significance were incorporated within a
fast computing implementation.

GROUP LASSO

For the group LASSO [Yuan and Lin, 2006], predictor
variables are divided into G groups. A group-wise penalty
is applied, leading to the following regression problem:

2
n P
pEroup LASSO = argmin ) (yf —Bo—, B]-xif)
B i j=1

i=1

G
+8) 0 B
8

=1 jeg

which is solved with an iterative algorithm. This penalty is
an intermediate between the penalties used in ridge
regression and LASSO. Moreover, group LASSO corre-
sponds to LASSO if each group consists of a single
variable. Group LASSO has the advantage that variables in
a group can only be selected together. This property can be
used in genetic association studies, for instance, to model
interactions only when main effects are present or to
group SNPs in the same gene or pathway.

MAIN RESULTS

Several penalized regression approaches were applied to
identify genetic variants and gene-gene interactions that
are associated with RA or an intermediate phenotype. Sun
et al. [2009] used ridge regression to detect SNPs associated

with variations of anti-cyclic citrullinated peptide levels, a
clinical predictor of RA development. Incorporating in-
formation about multiple correlated genetic variants led to
the identification of an SNP near the HLA-B gene that was
not significant in single-SNP analyses. In contrast, Croiseau
and Cordell [2009] observed no advantage of group LASSO
over the standard trend test for the detection and
localization of SNPs associated with RA.

However, D’Angelo et al. [2009] found that the identi-
fication of gene-gene interactions was more successful. By
combining LASSO in a logistic regression framework with
principal-component analysis for dimension reduction,
they identified two significant gene-gene interactions
within the major histocompatibility complex on chromo-
some 6p that were also found using alternative approaches.
Gonzélez-Recio et al. [2009] searched for gene-gene
interactions among SNPs in the HLA region and between
an HLA SNP and an SNP elsewhere in the genome using a
Bayesian threshold LASSO [Park and Casella, 2008]. Many
of the SNPs with identified main and interaction effects
were in genes known to be associated with RA.

SPECIFIC PROBLEMS AND SOLUTIONS

It was computationally infeasible to apply penalized
regression methods on genome-wide data. For this reason,
sets of possibly interesting SNPs were selected based on
previous findings or by statistical methods. Sun et al. [2009]
and Croiseau and Cordell [2009] restricted their analyses to
SNPs in regions on chromosomes 1, 6, and 9 with known
susceptibility loci for RA [Plenge et al., 2007]. Similarly,
D’Angelo et al. [2009] focused on SNPs in RA candidate
genes on chromosome 6. In contrast, Gonzalez-Recio et al.
[2009] applied an information-gain criterion and a wrapper
procedure to select SNPs for further analysis.

Instead of P-values for each SNP, penalized regression
approaches give an estimated regression coefficient for
each variable. To select relevant SNPs, Croiseau and
Cordell [2009] estimated standard errors and correspond-
ing confidence intervals using a bootstrap method with a
normality assumption. The covariance matrix can be
calculated numerically if ridge regression is applied.
Additionally, Sun et al. [2009] corrected for the bias of
the estimated coefficients by restandardizing the Z-scores
using the slope in a quantile-quantile plot of the observed
Z-scores and the standard normal quantiles.

The variable selection procedure strongly depends on
the tuning parameter A for the amount of shrinkage. This
parameter is often chosen based on computationally
intensive cross-validation techniques. However, less
time-consuming approaches were preferred for the analy-
sis of SNP data. Sun et al. [2009] used several possible
values and ranked the SNPs based on the maximal Z-score
of all considered models. Croiseau and Cordell [2009] set A
to the logarithm of the group size as proposed by Meier
et al. [2008]. The Bayesian approach used by Gonzalez-
Recio et al. [2009] considers posterior distributions to
provide probabilities of coefficient estimates being differ-
ent from zero. Furthermore, it allows setting the parameter
A as unknown in the sampling process.

ENSEMBLE METHODS

Ensemble methods use a set of classifiers or regression
functions. Predictions of these so-called base learners are

Genet. Epidemiol.
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combined by weighted voting to generate the overall
prediction of the ensemble. It has been shown that these
ensembles perform better than their individual compo-
nents under certain conditions [Dietterich, 2000]. First, the
components have to be weak learners, i.e., they are better
than random guessing. Often, nonparametric classification
and regression trees (CART) [Breiman et al., 1984] are used
as base learners. These trees do not require the specifica-
tion of a particular linear or nonlinear relationship
between predictor and response variables. Second, the
predictions of the base learners have to be different. In
principle, different learning algorithms, such as decision
trees, support vector machines, and discriminant analysis,
may be used to construct distinct base learners. However,
we will focus on approaches that use base learners of the
same type that are trained on slightly different data sets.
One popular and very general method is bagging (short
for bootstrap aggregating) [Breiman, 1996] that draws
bootstrap samples out of the original data. A special
version is RF [Breiman, 2001], for which a CART is grown
on each bootstrap sample. RF includes an additional
random component in the learning process, namely, that
the variables are randomly selected to determine the
optimal split at each node of the tree. RF has been utilized
in various studies to predict disease status using SNPs
[Sun et al.,, 2007], to rank SNP predictors [Schwarz et al.,
2007; Sun et al., 2008], and to identify the epistatic effects
related to human diseases [Garcia-Magarifios et al., 2009].

Another method to generate an ensemble is boosting,
which was first used in a version of the well known
AdaBoost algorithm [Freund and Schapire, 1997]. Here,
each base learner is constructed using a reweighted data set,
with the weights depending on the results of the previous
base learner. Boosting can also be interpreted as the steepest
descent algorithm in a function space [Friedman et al.,
2000]. The gradient boosting machine (GBM) [Friedman,
2001] minimizes a context-dependent loss function using
gradient descent and trees as base learners. Recently, Wan
et al. [2009] used boosting of CARTs combined with a
hierarchical learning approach to identify multi-SNP inter-
actions in GWA data.

The RF and GBM approaches provide variable impor-
tance measures that can be used to select the most relevant
predictors. As an advantage over P-values of single-SNP
tests, these measures implicitly incorporate interaction
effects. Two different methods are commonly used to
define importance measures in RFE. The first one deter-
mines the trees” improvement in the Gini splitting criterion
for each variable and is therefore denoted as Gini
importance (GI) in this paper. The permutation importance
(PI) is based on the difference in prediction accuracy
before and after permuting all values of the variable so
that any association with the response variable is
destroyed.

MAIN RESULTS

Kim et al. [2009] and Yang and Gu [2009] applied RF to
the simulated data set. Kim et al. [2009] were able to
identify the environmental risk factors for the binary
phenotype myocardial infarction (MI) as well as for the
quantitative variable coronary artery calcification (CAC)
but only one SNP that interacts with smoking for the risk
of MI seemed to be relevant in their RF analysis. Similar
results were observed by Yang and Gu [2009], who mainly

Genet. Epidemiol.

detected the environmental risk factors and only one SNP
that influences CAC.

In contrast, Tang et al. [2009] and Wang et al. [2009]
identified many known and several new SNPs that appear
to contribute to RA risk. Using a new permutation
approach, Tang et al. [2009] also searched for gene-gene
interactions but they were not able to find strong evidence
for these kinds of effects.

Schwarz et al. [2009] used genotype data of FHS in
combination with HapMap CEU samples to evaluate the
internal method of RF for imputing missing genotypes.
They concluded that alternative approaches like IMPUTE
[Marchini et al., 2007] are more accurate for imputing
untyped SNPs.

In contrast to the aforementioned applications of RF,
Arshadi et al. [2009] used a GBM to analyze the effect of
population stratification on prediction accuracy. Their
proposed approach clustered probands on the axes of
genetic variation and subsequently developed a GBM for
each cluster separately. The resulting model had a higher
prediction performance in comparison with a model
confounded by ethnicity.

SPECIFIC PROBLEMS AND SOLUTIONS

Several aspects of variable importance measures were
analyzed by contributors to Group 8b. Kim et al. [2009]
showed that causal SNPs and important covariates were
more frequently included in the list of top-ranking
variables when GI was used instead of PI for evaluating
the variable importance. Tang et al. [2009] proposed
new gene-level importance measures based on scaled PI.
A gene importance measure was defined as the maximum
or mean importance of all SNPs in the corresponding
gene. Haplotype importance measures were calculated
in a similar way based on forests that were built on
random samples of haplotypes. To identify interactions
between two genes a and b, they examined changes in
variable importance for gene 2 when genotypes of SNPs
in gene b were permuted and vice versa. Arshadi et al.
[2009] used the relative influence measure of GBM to
compare high ranked SNPs in their GBMs that incorporate
ethnicity in different ways. Similar to the importance
scores of RF, SNPs with large influence scores do not
necessarily have to be selected based on P-values of single-
SNP analyses.

One major challenge of the importance measures is that
calculation of P-values is not straightforward. For exam-
ple, the significance test for PI as proposed by Breiman
and Cutler [2009] has several undesired statistical proper-
ties [Strobl and Zeileis, 2008]. In contrast, Wang et al.
[2009] generated permuted data with no association
between predictor variables and RA and recalculated the
variable importance on the permuted data, resulting in
empirical P-values. To avoid fitting to noisy predictor
variables, Yang and Gu [2009] used an iterative variable
selection procedure, resulting in an RF that is built on a
small set of highly important variables. This approach
selected the true causal SNPs and covariates more often
than a standard RF analysis using all predictor variables.

RF analyses using the default value of mtry for
classification performed better in the selection of true
predictor variables [Kim et al., 2009] than very small mtry
values. In contrast, Diaz-Uriarte and Alvarez de Andrés
[2006] observed that different values of mtry led to similar
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results. However, in situations with very few relevant
predictor variables among many potential predictors, they
observed that small mtry values will select only unin-
formative variables for incorporation in many trees,
resulting in an increased error rate.

Arshadi et al. [2009] showed that the GBM model is not
strongly influenced by the number of irrelevant SNPs
included in the model. In contrast, Yang and Gu [2009]
observed that true risk SNPs were less often in the top-
ranked variables when the number of noise SNPs was
increased.

NETWORKS

The concept of a network is used in completely different
ways by the two approaches that will be described in this
subsection. On the one hand, an artificial neural network
(ANN) is a black box method that can be used for
classification and regression problems (see [Ripley, 1996]
for an introduction). On the other hand, Bayesian network
analysis (BNT) is used to model complex relationships
between variables from empirical data.

ARTIFICIAL NEURAL NETWORKS

ANN can be used to model complex nonlinear relation-
ships between predictor and response variables. These
methods are well suited for problems with a large signal-
to-noise ratio when the primary objective is prediction
rather than selection of relevant predictor variables. They
try to emulate the biological network of neurons in the
brain by connecting the predictor and the response
variables using layers of intermediate (hidden) nodes,
possibly with feedback connections. In each of these nodes
a weighted sum of the corresponding input nodes is
calculated and after a transformation, forwarded to the
nodes in the next layer. Training of an ANN involves
modifying the weights according to a learning algorithm
using a training data set. Feed-forward neural networks
have a rather simple topology with one or more layers of
hidden nodes but without any feedback loops. A popular
learning strategy for this kind of network is the back-
propagation algorithm [Rumelhart et al.,, 1986] that uses
the method of gradient descent to determine optimal
weights. An ANN was used in a candidate gene study to
identify SNPs with major effects as well as two- and three-
way interactions [Tomita et al., 2004].

BAYESIAN NETWORK ANALYSIS

A BNT describes the joint distribution of predictor and
response variables graphically, with nodes representing
the variables and edges denoting dependencies and
conditional independencies [Pearl, 1988]. This representa-
tion captures multiple associations and interactions
between SNPs and the phenotype as well as between
SNPs due to LD simultaneously. A Bayesian approach is
applied to select the most probable network given the
empirical data (for a tutorial on BNT see Heckerman
[1999]). Directions of edges in the resulting network are
supported by the data but they do not need to indicate
causality. In a candidate gene study, complex gene-gene
interactions were identified by a BNT that was subse-
quently used for prognosis [Sebastiani et al., 2005].

MAIN RESULTS

Stassen et al. [2009] analyzed the reproducibility of ANN
predictors across populations and across SNP sets. An
ANN classifier using 15 genomic loci was built with
GAW15 data [Amos et al, 2007] as a training sample.
Results of a similar analysis of the GAW16 RA data as a test
set in combination with a “competitive SNP set” approach
overlapped only in part with these loci. Woo et al
[unpublished] used ANN in addition to two other popular
supervised learning algorithms, support vector machines
[Vapnik, 1996] and k-nearest neighbor [Dasarathy, 1991], to
study the effect of differential SNP encoding on the
classification accuracy. Coding each SNP according to its
mode of inheritance resulted in increased prediction
performance independent of the selected algorithm.

Yang and Gu [2009] used the simulated data set to
analyze the ability of BNT to detect relationships between
known predictor variables and the binary MI event and its
intermediate phenotype CAC. Only some of the true
relationships could be recovered in the BNT analysis,
especially if a large number of noise SNPs were also
included in the model process.

SPECIFIC PROBLEMS AND SOLUTIONS

Both Stassen et al. [2009] and Woo et al. [unpublished]
selected a simple feed-forward neural network with a single
hidden layer consisting of a small number of nodes and a
single output variable. However, the number of nodes of
the hidden layer varied relative to the number of predictors.
Stassen et al. [2009] used the same number, whereas Woo
et al. [unpublished] reduced the number of nodes of the
hidden layer to about 1/20 of the predictors. In addition, to
get an approximately unbiased estimate of the prediction
error, 10-fold cross validation was used by both groups

DISCUSSION AND CONCLUSION

Table I shows that contributions of our GAW16 Group 8b
applied a wide range of different machine learning methods
to model the effect of many SNPs on the susceptibility to
complex diseases simultaneously. Several qualitative and
quantitative phenotypes were used to detect main effects
and gene-gene interactions. Additionally, contributors fo-
cused on evaluations of prediction accuracies, genotype
imputation, and models of causal relationships.

Penalized regression and ensemble methods as well as
network analysis were able to detect many known genetic
risk variants for RA. In addition, several new SNPs
associated with RA were identified that were not detected
with standard single-SNP analyses. Finding true relation-
ships in the simulated data set turned out to be difficult
because many main effects were very small so that even
standard trend tests or simple linear regression do not
result in genome-wide significance [Kim et al., 2009].

However, existing implementations of machine learning
methods pose several limitations for application to genome-
wide data. Penalized regression methods are not able to deal
with all SNPs of a GWA simultaneously, underlining the
need for improved implementations. In contrast, RFs and
other ensemble methods provide variable importance
measures that can be directly applied to genome-wide data
and combined with standard single-SNP tests for screening
purposes. However, further research is needed to identify

Genet. Epidemiol.
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and evaluate variable selection procedures that are espe-
cially suited for genetic data.

In conclusion, despite current limitations, machine
learning methods are sensible complements to standard
single-SNP tests for unraveling the genetic basis of
complex diseases.
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