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Abstract

STABILITY is fundamental to prognosis. Besides good performance, a prognostic

model needs to be interpretable and stable to warrant clinical adoption. This

translates to a small group of succinct predictors that are consistent in the face of data

re-sampling. Hence strong feature selection is key when deriving clinical models.

It has been found that when data is high dimensional and correlated, automated fea-

ture selection causes instability in clinical prediction models. But these aspects are

intrinsic to modern healthcare data. A typical patient database will contain details on

demographics, history of hospital visits, diagnosis, procedures, physiological measure-

ments, bio-markers and interventions that are recorded over time. Further, in such

high-dimensional data, medical conditions often co-occur, especially in aged cohorts.

Comorbidities or diseases that co-exist with the primary disease in a patient, cause mul-

tiple diagnoses that are strongly correlated to each other. Applying traditional methods

for sparse feature selection results in instability in feature subsets and feature weights.

In this thesis, we address the open problem of stable feature selection in clinical settings,

to ensure the stability of predictors in a linear prognostic model derived from patient

data in electronic medical records (EMRs). We begin by demonstrating the problem

of instability in clinical prediction for a patient flow problem. To date, there has been

limited work in predicting ward-level discharges. Our case study for model instability

investigates forecasting total next-day discharges from an open ward. We build seven

prediction models from administrative data stored in hospital records. On patient data

of four years, we find the performances of predictive models to be comparable. Yet, the

model estimations and predictors exhibit instability under data resampling. Including

clinical information could enhance predictive performance, but also aggravate instabil-

xviii



ity. We conclude our case study by proposing a stabilization framework for linear

models using lasso regularization.

In our first stabilization scheme, we propose a knowledge-based approach, by exploit-

ing inherent temporal and semantic relationships in medical data. To reduce variance

in the selected features that are predictive of prognosis, we introduce Laplacian based

regularization into a regression model. The Laplacian is derived on a feature graph that

captures (i) temporal relations in diagnosis, prognosis and intervening events, and (ii)

hierarchical structures of disease family through semantics in the diagnosis codes. Using

a large cohort of patients with myocardial infarction, we demonstrate better stability

through feature graph stabilization.

For our second stabilization scheme, we extend our feature graph regularization to dis-

cover underlying statistical relations in training data. We examine the effect of different

feature graphs constructed from common statistical similarity measures. An aggregate

graph that combines the semantic and statistical relations is also derived. All experi-

ments are performed on a Cox time-to-events model derived from two real-world data-

sets. We demonstrate that the feature graph regularization built from Jaccard scores

and aggregate scores improved stability without hurting predictive performance (meas-

ured as AUC). The Jaccard graph regularization proved to be the best for stabilizing

parameter weights, whereas aggregate Jaccard scores and semantic EMR graph was su-

perior in stabilizing feature subsets. Transferring Jaccard scores from a related cohort

also improved stability when compared with lasso and elastic net.

Our third and final stabilization scheme exploit higher order correlations in training

data. Using a linear model as basis for prediction, we achieve feature stability by regu-

larizing latent correlation in features. Latent higher order correlation among features

is modelled using an autoencoder network. Stability is enhanced by combining our

previous feature graphs and augmenting external unlabelled data during autoencoder

training. Our methods demonstrate significant improvement in feature stability and

model estimation stability when compared to baselines.
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"Non-reproducible single occurrences are of no significance to science."

The Logic of Scientific Discovery, Karl Popper

Chapter 1

Introduction

cience advances through corroboration. Repeatability and reproducibility

form cornerstones of scientific method. Karl Popper, one of the greatest sci-

ence philosophers of the 20th century, in his seminal work “The Logic of

Scientific Discovery” (Popper, 1959), writes:

“We do not take even our own observations quite seriously, or accept them as

scientific observations, until we have repeated and tested them. Only by such

repetitions can we convince ourselves that we are not dealing with a mere

isolated coincidence, but with events which, on account of their regularity and

reproducibility, are in principle inter-subjectively testable”. (p23)

More than 50 years later, a survey by Nature (Baker, 2016) asked 1,576 scientists in

fields ranging from physics to biomedicine: “How much published work in your field

is reproducible?” resulting in some shocking statistics (see Figure 1.1). Around 70%

of researchers failed to reproduce another experiment, while close to 50% failed to

reproduce their own experiment. More than half of the surveyed scientists agreed to a

significant crisis of reproducibility. This is especially a cause for concern in fields like

medicine, where pharmaceutical and biotechnology industries rely on scientific results

for new therapeutics and biomarkers. Repeatable results in research is imperative in

this era of evidence based medicine.

Steyerberg (2009) defines evidence based medicine as “the conscientious, explicit and

1
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Figure 1.1: Results of “Have you failed to reproduce an experiment?” surveyed from
1,576 scientists. Figure adapted from (Baker, 2016)

judicious use of current best evidence in making decisions about the care of individ-

ual patients.” In this regard, clinical prediction models play a vital role in providing

statistical evidence that helps determine whether a certain outcome is present in an

individual (diagnosis) or will occur (prognosis) . The conservative estimate of medi-

cal risk derived by such models can be used to identify high risk patients and can be

translated into treatment decisions by the clinicians (Moons et al., 2009; Harrell, 2015).

Recent advances in machine learning have resulted in increasing popularity of clinical

prediction models for statistical analysis of high dimensional patient data from hospi-

tal databases (Obermeyer and Emanuel, 2016; Thottakkara et al., 2016; Kourou et al.,

2015; Steyerberg, 2009). This shifts the burden of reproducibility to statisticians and

data scientists responsible for formulating the analysis. Yu (2013) articulated this con-

cern by characterizing reproducibility as statistical stability claiming: “At a minimum,
reproducibility manifests itself in the stability of statistical results relative to reasonable per-
turbations to data and to the method or model used.” Commonly, stability relates to

robust performance against reasonable perturbations in data, achieved through diverse

methods such as jackknife, bootstrap or cross-validation. The stability of selected fea-

tures is often overlooked in prediction models – particularly if consistent performance

alone is the goal.

But feature stability matters. Even when the prognosis performance is robust. When
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building models from high dimensional data, feature selection algorithms choose a

small subset of features that maximizes model performance. These features, predic-

tive of the prognosis, are important because they could be hypothesis generating thus

meriting further investigation (Saeys et al., 2008). In clinical situations, explaining the

prognosis is as important as the prognosis itself. Consequently, consistent predictors

in spite of data resampling, are critical for clinical adoption. Since clinicians rely on

the set of predictors chosen by the model to understand the prognosis, uncertainty in

predictors and estimates also need to be quantified for clinical adoption of the model.

Feature stability is crucial not only in clinical prognosis – as example, stable biomark-

ers aid model reproducibility in bioinformatics (Awada et al., 2012; Khoshgoftaar et al.,

2013).

Unfortunately, the nature of clinical data introduces several challenges. Clinical predic-

tion models are built on data largely derived from medical records. The rising popu-

larity of Electronic Medical Records (EMRs) is good news for data mining researchers,

as these databases are a potential goldmine of medical knowledge. However, deriving a

prediction model from EMR is a challenging task, largely due to the nature of the data.

EMR data can be characterized as temporal, high dimensional and highly correlated

(He et al., 2013; Jensen et al., 2012). It contains thousands of diagnoses, procedures and

medications, many of which may be absent for some patients. Some features may have

different values over time (e.g. blood pressure, sodium level). As EMRs are collected

mainly for administrative and billing purposes, the recording of medical events and

measurements are episodic and irregular. Getting labelled quality data is difficult - gen-

erated samples are characterized by small size and high dimensionality - causing models

to overfit. Multiple recording schemes and possibility of duplicate clinical entries result

in noisy data with high correlation and redundancy. As example, Figure 1.2 illustrates

the interactions between diagnosis codes in a cohort diagnosed with heart failure. There

is significant correlation among various medical conditions (as represented by the edge

thickness in the graph).

Automatic feature selection from such data has been known to cause instability in linear

(Austin and Tu, 2004) and survival models (Lin and Lv, 2013). But these models are

most preferred among clinicians due to their ease of formulation and interpretation.

Hence there is an urgent need to look beyond traditional methods for feature selection.

In this thesis, we propose alternative regularization schemes to simultaneously prevent

overfitting and guarantee stable models.
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Figure 1.2: A part of comorbidity cluster: co-occurring diseases in a heart failure cohort
of over 1000 patients. Nodes represent disease codes – size proportional to prevalence.
Edges represent correlation strength.

1.1 Aim and Scope

Our central research question in this thesis can be stated as: “Can we ensure the stability
of predictors in a linear model for prognosis using EMR data?” To measure the perfor-

mance of this stability, we adopt variance in selected model parameters across data

resampling. Stabilizing sparse clinical prediction involves two steps: (1) Identifying the

inherent structure and correlations in data, and (2) employing the discovered data rela-

tionships to guide model selection (characterized by predictors and weights). We focus

on lasso based methods that favour simultaneous regularization and model selection.

We investigate three broad stabilization schemes:

• Stabilization using data correlations and structures from prior medical knowledge.
The patient medical records in EMR database employ different coding systems

to document patient condition and disease progression. These codes for diagno-

sis, procedures and medications are structured and possibly related in time. We

utilize such pre-defined relationships to regularize sparse feature selection.

• Stabilization using statistical relationships in medical data. We look beyond pre-

defined relationships to investigate statistical correlations in medical data. We
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employ popular data driven methods for statistical correlation to stabilize high-

dimensional learning. Open questions include: Does combining statistical rela-

tionships with prior knowledge lead to better stability? Can we transfer such

knowledge among cohorts for generalization ?

• Stabilization using higher-order correlations in medical data. Our final aim is to

include all orders of data correlation in guiding feature selection. To this end, we

factorize the learning parameters of the model and capture higher order data cor-

relations using a classical autoencoder. We address the following open questions:

Does incorporating higher-order correlations improve sparsity as well as stabil-

ity? Can we use principles of self-taught learning (Raina et al., 2007) to improve

and generalize high-dimensional clinical prediction?

To achieve these aims, we propose approaches grounded in machine learning theory

and healthcare analytics.

1.2 Significance and Contributions

Our novelty is to identify the importance of stable feature selection in a clinical setting

and to propose solutions based on additional regularization of a lasso model by exploit-

ing feature relationships discovered using knowledge driven and data driven methods.

Specifically, embedding these relations reduces the fragmentation of selection in the

lasso model, delivering our goal of feature stability. The significance of our contri-

bution is to reset the thinking of prognosis from “model performance only” to “model
performance and feature stable models”—without these two components, many of our

advanced models will be rendered futile in a clinical setting. The main contributions of

this thesis are as follows.

• Our methods were derived and validated on real-world patient data from Barwon

Health, a regional hospital in Victoria, Australia. Hence our proposed models

demonstrate potential to be included in clinical pathway.

• Our proposed approaches illustrate a nexus between modern healthcare and ma-

chine learning techniques. Specifically, it systematically examines the applica-

bility of recent advances in machine learning (such as structured regularization,
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autoencoders) to recent advances in healthcare (such as secondary use of patient

records).

• Our methods propose a structural representation of medical knowledge using

feature graphs, where nodes represents EMR features and edges represent feature

relationships. We look at knowledge driven and data driven relationships. Ini-

tially we use the hierarchical nature of diagnosis and procedure codes along with

the temporal nature of recording in building feature graphs. Next, we model

feature relationships using common statistical measures such as RBF similarity,

Euclidean, Cosine, and Jaccard similarities derived directly from the given patient

data. Finally, we construct an aggregated feature graph by combining statistical

and semantic relationships.

• We propose pairwise and groupwise regularizers for stabilizing lasso-based mod-

els using our constructed feature graphs. Using our statistical and semantic

graphs, we formulate (i) Lagrangian regularizer that focuses on pairwise simi-

larity, and (ii) random walk regularizer that encourages groupwise similarity, in

stabilizing high dimensional clinical prediction. On two of the most popular

clinical models: logistic regression and cox regression, our methods demonstrate

superior performance in improving feature subset stability and model estimation

stability using measures of Consistency index and signal-to-noise ratio (SNR),

when compared to the standard baselines. These results were verified for 1, 784

index admissions in heart failure patients and 2, 370 index admissions in diabetic

patients.

• We propose a stabilization scheme by detecting higher order feature correlations.

Using a linear model as basis for prediction, we achieve feature stability by regu-

larizing latent correlation in features. We factorize the model parameter into two:

(i) a lower dimensional vector, stable and easy to learn, and (ii) high dimensional

matrix, that captures all order of correlations in data. This high dimensional

component of the linear model is then jointly modelled as encoding weights in

an autoencoder network and is used to regularize the prediction model. This

approach can be combined with graph based regularization and demonstrates su-

perior stability properties while encouraging model sparsity.

• Finally, we demonstrate the efficacy of our proposed methods for transfer learn-

ing and self-taught learning. Collecting data is expensive. Since related cohorts
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may share many common predictors and comorbidities, transferring feature graphs

among such cohorts can improve stability. Also, a robust estimation of higher

order correlation can be performed by augmenting external training data dur-

ing autoencoder learning. We demonstrate through our experiments that when

getting high quality training data becomes difficult, transferring feature graphs

or augmenting autoencoder learning with external unlabelled data ensures stable

models without loss in prediction performance.

1.3 Outline of Thesis

This thesis contains 7 chapters with supplementary sections in the Appendix. The rest

of the thesis is organized as follows:

Chapter 2: presents literature and background relevant to the thesis. This chapter con-

sists of two major sections. The first section reviews popular approaches in healthcare

analytics including electronic medical records (EMRs) as data source, popular predic-

tion models, and evaluation measures. The second section focuses on the different

aspects of stability, with emphasis on feature selection stability, popular techniques for

stabilization and common metrics for evaluating stability.

Chapter 3: opens the Pandora’s box of sparsity and stability for a relatively simple but

important forecasting problem in hospitals. Specifically, we tackle the problem of pre-

dicting next day discharges from a ward using administrative data. To this purpose, we

derive 7 popular regression models. While the performance is comparable, we face in-

stability in model parameters. We conclude the chapter by introducing three strategies

for model stabilization.

Chapter 4: details the first strategy for stabilization using a knowledge driven approach.

For prognosis, we use a logistic regression model for 6 months readmission after heart

failure - a deadly and costly disease with a majority of patients returning within a year

after discharge. Automatic feature selection was achieved by the sparsity-promoting

shrinkage method of lasso. To stabilize this model, we hypothesize exploiting the in-

herent structures of EMR data to enforce statistical sharing. We consider temporal and

hierarchical structures. Since features are accumulated over multiple time granularities
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(1 month, 3 months, etc.), features that lie in consecutive time periods are considered to

be related. The hierarchies are exploited through the semantics in the ICD-10 tree and

the procedure cube (ACHI) - codes that share similar prefix are considered to be related.

We embed these relations in a feature graph and add the feature graph regularization

term into the lasso model to stabilize heart failure readmission in 6 months.

Chapter 5: extends our work in the previous chapter by using data driven methods to

construct feature graphs. These feature graphs are characterized using nodes as EMR

features and edges as relationship between features. To model feature relationships,

we use popular measures as RBF, Euclidean, Cosine and Jaccard similarity. A random

walk regularization of the proposed graphs is used to stabilize a sparse Cox model

that predicts time to readmission. Our experiments are conducted on two real world

hospital datasets: a heart failure cohort and a diabetes cohort. We measure feature

stability using the Consistency index and model estimation stability using signal-to-

noise ratio (SNR). Using the best performing Jaccard graph as basis we propose two

more graphs: (i) aggregate of Jaccard score and the semantic EMR link used in previous

chapter (ii) Jaccard scores between features transferred from a related cohort. Our

experiments demonstrate superior performance during graph aggregation and transfer

learning.

Chapter 6: proposes a novel methodology to stabilize a sparse high dimensional linear

model using recent advances in deep learning and self-taught learning. We propose

that the linear model parameter w is a combination of a lower dimensional vector u,

and a high dimensional matrix W , where W encapsulates the feature correlations. By

modelling W as the encoding weights of an autoencoder network, we capture higher

order feature correlations in data. We introduce three regularizers for our sparse linear

model: 1) autoencoder derived from training cohort, 2) combination of autoencoder

and feature graph derived from training cohort, 3) combination of feature graph derived

from training cohort and autoencoder derived from augmenting an external cohort to

training data. This process of augmenting external data to autoencoder training results

in more robust estimation of higher order correlation matrix W . We demonstrate the

efficacy of our proposed stabilization schemes on heart failure cohort from a regional

Australian hospital.

Chapter 7: presents the conclusion and future work for this thesis.



"If I have seen further, it is by standing on the shoulders of giants."

Sir Issac Newton

Chapter 2

Background

uestions addressed in this thesis are at the intersection of healthcare and ma-

chine learning. Our work uses machine learning techniques to stabilize high-

dimensional linear clinical prediction. The goal of this chapter is to introduce

different concepts used throughout our thesis, along with a review of current work and

background in healthcare analytics and stability.

We have divided this chapter into two main sections. The first section on healthcare

analytics reviews the type of clinical data used for our work. We then present popular

linear prediction models in medicine. The second section gives an overview of different

types of stability in prediction models. We focus on stability of selected feature subsets

and feature weights and review popular techniques and measures.

2.1 Healthcare Analytics

Healthcare analytics is a broad term used to describe the analysis of healthcare data

using machine learning techniques. Recently, electronic medical records (EMRs) have

become a popular data source for this process. We begin this section by providing an

overview of EMR structure to store patient data. We then list various secondary uses

of EMRs. We highlight two popular applications derived from EMR data: (i) Patient

flow analysis, and (ii) Risk prediction using clinical prediction models.

9
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Figure 2.1: Basic components of an EMR system

2.1.1 Electronic Medical Records

An Electronic Medical Record (EMR) is a digital version of a patient’s medical history.

The primary purposes of EMR are setting objectives, planning patient care, document-

ing the delivery of care and assessing the outcome of care (Häyrinen et al., 2008). Ide-

ally, EMR handles data over all aspects of care over time (Jensen et al., 2012), and the

data is recorded using controlled vocabularies (Section 2.1.1.1). Besides automating data

management, EMR systems also help to streamline the workflow in a medical setting.

A typical EMR contains unstructured narrative text, structured coded data, and time

stamped events. The basic components in an EMR system are shown in Figure 2.1.

The patient EMR is thus an aggregation of data generated by each component and can

be used for (1) administrative purposes, e.g: billing, reimbursement (2) diagnosis and

prognosis by physicians (3) data mining and knowledge discovery by researchers.

Administrative Data Much of the data in the EMR serves administrative purposes.

Administrative data is usually made up of socio-demographic information about the

patient, medical reports and summaries. Every patient is registered with a unique iden-

tifier that links all patient data generated from different EMR components.
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Clinical Data Clinical data could contain narrative text which includes treatment

plans and patient summaries, results of clinical tests, medical images from radiology,

medication and dosage instructions from pharmacy. The recording, storing and trans-

mitting of data from each EMR component (as in Figure 2.1) is governed by defined

standards. Some of the popular coding systems used to handle medical data are de-

scribed below.

2.1.1.1 Coding systems

One of the primary reasons in adopting EMR is to facilitate and promote exchange

of information among different healthcare settings. Seamless exchange of information

requires coding standards. An interoperable EMR requires standards in four major

areas (Reddy and Rahman, 2014): (1) Interaction with users (2) System communication

(3) Information processing and management (4) Consumer device integration. Some

popular coding standards implemented in most EMR are given below.

International Classification of Diseases The International Classification of Diseases1

(often referred as ICD) is the official coding standard introduced by WHO (World

Health Organization) to standardize disease and health related information exchange.

It is a system of codes that covers diseases and related problems, social circumstances

and external causes of injury or disease. The ICD system has gone through various revi-

sions since its introduction. ICD-9 (ninth revision) is the most popular version released

in 1978. The current revision is ICD-10, which was released by WHO in 1994. ICD-10

covers more diseases and diagnosis codes when compared to its predecessors and the

coding scheme is more efficient (Reddy and Rahman, 2014). Australia has its own ver-

sion of ICD-10 by adding country specific codes. The eleventh revision – ICD-11, is

planned for 2018 (WHO).

CPT (Current Procedural Terminology) is a similar coding systemmaintained by Amer-

ican Medical Association. When compared to ICD, CPT describes treatment, whereas

ICD is used to code diseases and symptoms.

1http://www.who.int/classifications/icd/en/
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SNOMED-CT SystematizedNomenclature of Medicine –Clinical terms (SNOMED-

CT2) was created by the College of American Pathologists (CAP) in 1965 (Cornet and

de Keizer, 2008). It is a terminology system used to encode medical concepts using

inbuilt definitions and formal logic and represent data for clinical purposes (Kostick,

2012).

LOINC Logical Observation Identifiers Names and Codes (LOINC) provides ter-

minology to identify clinical results, such as laboratory tests, clinical observations,

outcomes management and research. Each record represents a single test result and

consists of the following fields: (1) Component measured (2) Component characteris-

tics (3) Time of measurement (4) Specimen of the component (5) Measurement scale

(6) Measurement Method (Bui and Taira, 2009).

RxNorm RxNorm3 is a terminology standard developed by the United States Na-

tional Library of Medicine (NLM) for representing medications. It includes medica-

tion name, dosage, route of administration, ingredients, pharmacy prescriptions (Nel-

son et al., 2011). Typical use of RxNorm include (1) using the standard nomenclature

to capture/record drug information from EMRs (2) facilitating data exchange among

providers (3) facilitating medication related CDSS (Nelson et al., 2011; Bennett, 2012).

Diagnosis Related Group Diagnosis Related Groups (DRG) are used to classify pa-

tients into predefined groups based on treatment data, and relate them to the costs

incurred by the hospital (Averill et al., 1998). The groups were developed as a part of

hospital reimbursement system, where a binding price could be attached to each group.

It is used to define the reimbursement amount to the hospital from medical insurance

systems like Medicare.

DICOM Digital Imaging and Communications in Medicine (DICOM) is a standard

for handling and transmitting medical images. It defines the file format and network

communication protocol for biomedical images (Bidgood et al., 1997).

2http://www.ihtsdo.org/snomed-ct/snomed-ct0/
3http://www.nlm.nih.gov/research/umls/rxnorm/
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2.1.2 EMR data for Medical Informatics

As seen from the previous section, EMRs provide a high definition view of patient-

provider interactions. Though the primary objective of EMRs are to record patient

data, the granular detail of such recording can be leveraged for many secondary uses

such as reducing healthcare costs and generating clinical insights. As stated in their

whitepaper by American Medical Informatics Association (AMIA), such secondary

use of healthcare data can enhance individual’s health care experiences, expand knowl-

edge about diseases and treatments, strengthen understanding of health care system’s

effectiveness and efficiency, support public health and security goals, and aid businesses

in meeting customer’s needs (Safran et al., 2007). To this end, EMR data has been suc-

cessfully used to generate insights and predicting events in administrative, clinical and

industrial applications. We detail some of the most popular application areas below:

Understanding Diseases: EMR data can be used to investigate prevalence or inci-

dence of a disease. For example, Jensen et al. (2014) used EMR data to investigate dis-

ease progression pattern in Denmark. Patient medical trajectories, such as functional

impairments in terminal patients, can also be modelled using EMR data (Teno et al.,

2001; Murtagh et al., 2008). Such data can also be used in comorbidity analysis, which is

the process of understanding the relationship between frequently co-occurring diseases.

Researchers have used comorbidity analysis to study patients with personality disorders

(Roque et al., 2011), autism spectrum disorders (Doshi-Velez et al., 2014), hypertension

(Shin et al., 2010), and rare diseases (Holmes et al., 2011; Cao et al., 2005).

Cohort Identification: This involves identifying patient groups that satisfy a given

criteria. Identifying specific cohorts is an important process in clinical research studies

and various biomedical applications. The diagnosis codes and narrative text in EMR

database have been used to develop automated models to identify patients with cancer

(Xu et al., 2011; Whyte et al., 2015), rheumatoid arthritis (Liao et al., 2010), critical

care (Halpern et al., 2014) and asthma (Meystre et al., 2009).

Biomarker Discovery: A biomarker is a measurable indicator of presence or sever-

ity of a given disease state. The presence or value of biomarker can be observed to
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indicate disease or health state. For example, body measurements as weight, body

mass index (BMI), and waist-to-hip ratio are used to identify obesity or metabolic

disorders. Similarly, abnormal haemoglobin A1C is a biomarker for type-2 diabetes,

whereas hyperlipidemia is a biomarker for cardio-vascular diseases. Since these infor-

mation is recorded in patient records, statistical techniques can be used to identity the

few important indicators among thousands of EMR variables. For example, rule min-

ing techniques have been used in identifying biomarkers for diabetes (Schrom et al.,

2013; Simon et al., 2013). A recent study employed Bayesian Non-parametric factor

analysis identity biomarkers for autism spectrum disorder (Vellanki et al., 2014).

Predicting Future Complications: A challenging application of EMR data is pre-

dicting short term and long term complications in patients: for example onset of a re-

lated disease, re-hospitalization or exacerbation of a condition. EMR databases contain

large patient cohorts over longer observation periods, making it possible for clinical

prediction systems to study and model patient complications over time. Generalized

linear models and techniques such as Cox regression are popular choices for such ap-

plications. Recently, Yadav et al. (2015a) used Cox proportional hazards model to

estimate the risk of complications arising due to type-2 diabetes such as Peripheral Vas-

cular Disease (PVD), Cerebral Vascular Disease (CVD), Ischemic Heart Disease (IHD)

and Congestive Heart Failure (CHF). Another study used temporal feature extraction

from patient records and ordinal classifiers to classify mental health patients with high

risk of suicide (Tran et al., 2013), and demonstrated superior performance over tradi-

tional clinician based assessments. The availability of EMR data has made it possible to

predict future complications of many medical events such as predicting cancer (Algar

et al., 2003; Zhao and Weng, 2011; Gupta et al., 2014; Klastersky et al., 2006), patient

readmissions (Amarasingham et al., 2010; Krumholz et al., 1997; Kansagara et al., 2011;

Gopakumar et al., 2015b), surgery complications (Propst et al., 2000; SooHoo et al.,

2006; Ozkalkanli et al., 2009), to name a few.

Quantifying effect of Interventions: Interventions are undertaken to treat or cure a

medical condition. The most common example of medical intervention is prescription

of medications. The ability to quantify the effect of an intervention builds the plat-

form for sophisticated and personalised treatment strategies. The longitudinal nature

of EMR data provides an excellent opportunity to investigate the effect of interventions
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in patients. As example, the effect of medications such as the statin inhibitor drug has

been studied for mitigating diabetes (Schrom et al., 2013) and incidence of ischemic

heart disease (IHD) events and stroke (Law et al., 2003). Life style modifications such

as smoking cessations and low-calorie diet can also become interventions. Prochaska

et al. (2008) studied 8000 participants in four multi-behavioral interventions: smoking,

alcohol abuse, physical inactivity, and poor diet and analysed their effect on human

health using five methods.

Detecting Adverse Events: Adverse events could arise due to drug reactions, incor-

rect practices or use of outdated guidelines. Yadav et al. (2015b) categorize such re-

search into pharmacovigilance and patient monitoring. Pharmacovigilance is related to

monitoring adverse effects of medications and drugs. A combination of data from pa-

tient records and supervised learning techniques have been used to detect adverse drug

reactions and allergies (Vilar et al., 2012; Harpaz et al., 2013; Epstein et al., 2013).

Patient monitoring using diverse information helps clinicians understand the causal fac-

tors for adverse events. Such monitoring uses a variety of real-time data stored into the

EMR such as biomarkers, physiological variables and behavioural data. For example,

Rose et al. (2005) developed a dynamic Bayesian network to monitor the dry weight

of patients suffering from renal failure and treated by hemodialysis. Bayesian networks

were also used to identify fluctuating levels of serum glucose in critically ill patients

(Nachimuthu et al., 2010).

Predicting Risk: In clinical setting, risk can be defined as adverse outcome of a diag-

nostic/therapeutic procedure or worsening of the patient’s current medical state. Risk

assessment in patients helps to classify patients into care groups and design treatment

plans (Ng et al., 2014; Tran et al., 2015b). Besides modelling disease exacerbation, risk

assessment can also be used to identify the underlying contributing factors. Study of

these risk factors is important to clinicians, as such factors are subjected to further

analysis to understand prognosis (Gopakumar et al., 2015b).

Machine learning models as logistic regression, Poisson regression and survival mod-

elling as Cox proportional hazards regression are quite popular for predicting patient

risk such as disease exacerbation, mortality and re-hospitalization.
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In this thesis, we focus on modelling patient readmission. One of the early works of

using medical records to predict re-hospitalization due to heart failure was done by

Chin and Goldman (Chin et al., 1997). A total of 257 patient medical records from a

hospital in Boston, Massachusetts was used to develop 11 point scoring system using

Cox proportional hazards regression modelling, from 25 candidate variables to derive a

risk score for death or all cause readmission to any hospital within 60 days. Though the

model identified several independent risk factors, the work did not report any AUC.

A more extensive study was conducted by Philbin and DiSalvo (Philbin and DiSalvo,

1999) using administrative data from Statewide Planning and Research Cooperative Sys-

tem (SPARCS) consisting of 42,731 patients from 236 hospitals. Multivariate logistic

regression analysis was performed to derive a 15-point scoring system from 60 candidate

variables to predict HF specific re-hospitalization within one year. The model reported

an AUC of 0.60. A similar work was performed by Krumholz et al. (2000) that used

2,176 patient medical records from 18 hospitals to derive a 32-variable model to predict

HF specific re-hospitalization within 6 months. From the given data, the model iden-

tified four independent predictors for re-hospitalization, but did not report any AUC.

Felker et al. (2004) examined 41 candidate variables from 949 patient medical records

in 78 hospitals to come up with a statistical model predicting death or all-cause read-

mission within 60 days. The AUC was reported as 0.69. Yamokoski et al. (2007) came

up with a model to predict all-cause readmission to any hospital within 6 months and

compared the performance with clinical judgements from nurses and physicians. The

model was developed using 18 candidate variables from 373 patient records in 26 hos-

pitals and reported an AUC of 0.60. Recently, Amarasingham et al. (2010) combined

non clinical data along with clinical data from 1,372 patient records to predict death or

all-cause readmission to any hospital within 30 days.

Detailed comparison studies among the existing models for predicting HF specific re-

hospitalization confirm that there were no consistent predictors (Ross et al., 2008; Beti-

havas et al., 2012). The predictors that were common to more than one model were:

history of diabetes mellitus, elevated blood urea and nitrogen, history of prior admis-

sion to hospital within one year, single marital status and race.
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2.1.3 EMR Modelling

The first step in building learning models from EMR data is to derive a good feature

set that reflects the temporal nature of patient data. Patient records in EMR database

has a longitudinal structure which contains various information such as patient demo-

graphics, administrative details, clinical observations and results that are recorded over

time (Wang et al., 2012a). Figure 2.2 gives an example for one such record for a diabetic

patient. Wang et al. (2012a) and Tran et al. (2013) identified several challenges when

modelling the temporal data such as:

1. Shift-invariance: The absolute time-points in the records become irrelevant since

all patients are not temporally aligned. Also due to comorbidities, different pa-

tients follow different trajectories over longer time periods.

2. Heterogeneity: The data recorded consists of mixed types. For example, blood

pressure is continuous whereas age is discrete. Events like birth are recorded

once, but some events as heartbeats are recorded continuously. Also different

events progress at different rates.

3. Sparsity and Irregularity: Not all events need to be recorded for all patients.

Newer and healthier patients will contain lesser data than others. Medical events

occur sporadically and the data recording reflects this irregularity.

4. Quantitative Nature: Data extraction process must be able to identify the im-

portance of order of occurrence of clinical events and identify measures such as

event duration and interval between events.

5. Scalability: Data extraction process must be able to handle large cohort of pa-

tients with potentially long records (for e.g: 5 years, 10 years) with different types

of features.

6. Distribution drifts: The introduction of new procedures, policies and treat-

ment guidelines will introduce drifts in event distribution. The data modelling

algorithms should be able to accommodate these changes.

Existing research tackles feature extraction from EMR in different ways. A popular

method is temporal abstraction of clinical data, where a set of time-stamped parame-

ters (measurements, events, goals) are converted into higher level abstractions relevant
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Figure 2.2: An example of time-indexed EMR record of a diabetic patient for one year
adapted from (Wang et al., 2012a). The X-axis represents day 1 to day 365. The Y-
axis represents clinical events categorized into 4 groups: procedures (CPTs), lab results
(LABs), visits to primary care physician (PCP) and visits to specialists (SPEC). Dots in
the graph represent presence of the corresponding event.

for clinical decision making (Shahar and Musen, 1996). An early work built a sys-

tem named RESUME that used ontologies from medical domain along with temporal

events from patient database to create abstractions based on inference and interpola-

tion (Shahar and Musen, 1992, 1996). Sacchi et al. (2007) proposed a knowledge driven

approach using variations of temporal association rule and an Apriori-like technique

that extracts frequent occurrences of precedence between episodes. The approach was

testing on two different biomedical datasets. Batal et al. (2013) proposed a Minimal

Predictive Temporal Patterns framework to extract predictive features from patients

with blood disorder. Schmidt and Gierl (2005) added case based reasoning to temporal

abstraction for prognosis of kidney function and spread of influenza.

Variations of deep learning techniques have been proposed for modelling irregularity in

event times and interventions. Lasko et al. (2013) pioneered a deep learning approach

for clinical phenotype discovery from irregular and sparse EMR data. This data driven

method resulted in discovering phenotypes that were accurate as those engineered by a

domain expert. Pham et al. (2016) demonstrated superior performance of a Long short-

term memory (LSTM) network using time parametrizations over standard classifiers

that use non-temporal features.

Following the success of data representation in text and multimedia learning (Bengio
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et al., 2013), deep learning approaches have also been applied for feature extraction and

representation of patient data from EMRs. A prominent work introduced “Deep Pa-

tient”, a model to capture patterns in patient data using stacked autoencoders (Miotto

et al., 2016). The study utilized 700,000 patients and demonstrated superior predic-

tion performance on 78 diseases including cancer, diabetes and schizophrenia. Choi

et al. (2016) introduced Med2Vec based on the popular Skipgram model (Mikolov

et al., 2013) to learn distributed representations from 3 million patient visits to provide

clinically meaningful interpretations. Another recent work used restricted Boltzmann

machine (RBM) to embed patient features from EMR into a vector space and demon-

strated superior performance when compared to clinicians for predicting suicide risk

(Tran et al., 2015a). Variations of RBM have also been used for patient profiling with

applications in studying disease correlation and risk prediction (Nguyen et al., 2013).

Along the similar lines, a deep learning architecture for clinical prediction - Deepr, uses

convolutional neural nets (CNN) to detect motifs from words and phrases in medical

records and is used to predict future risk in patients (Nguyen et al., 2016).

In our work we use feature engineering from EMR data along lines of recent work

in Tran et al. (2014). Here, patient records are considered as a sparse temporal image

and are subjected to a one-sided filter bank resulting in aggregations over multiple time

periods and granularities. Apart from the applications listed in Section 2.1.2, one of

the most popular uses of EMR data is in modelling patient flow.

2.1.4 Patient Flow Analysis

Patient length of stay directly contributes to hospital costs and resource allocation.

Long-term forecasting in health care aims to model bed and staffing needs over a period

of months to years. Such forecasts are typically made with the help of administrative

and clinical data in EMRs. Cote and Tucker categorized the commonmethods in health

care demand forecasting as percent adjustment, 12-month moving average, trend line,

and seasonalized forecast (Cote and Tucker, 2001). Although each of these methods

is built from historical demand, seasonalized forecasting provides more realistic results

as it takes into account the seasonal variations and trends in the data. Mackay and

Lee (2005) advise modelling the patient flow in health care institutions for tactical and

strategic forecasting. To this end, compartmental modelling (McClean and Millard,
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1995, 1998), queuing models (El-Darzi et al., 1998; Mills, 2004) and simulation models

(Mills, 2004; Costa et al., 2003; El-Darzi et al., 1998; Hoot et al., 2008) have been applied

to analyse patient flow. To understand long-term patient flow, studies analyse metrics

such as bed occupancy (Mackay and Lee, 2005; Harper and Shahani, 2002; McClean

and Millard, 1995; El-Darzi et al., 1998; Mackay, 2001; Gorunescu et al., 2002), patient

arrivals (Peck et al., 2012), and individual patient length of stay (El-Darzi et al., 1998;

Barnes et al., 2016; Levin et al., 2012; Clark and Ryan, 2002; Marshall et al., 2005). The

most popular unit of interest is the emergency or acute care department because this is

often a key performance indicator metric in assessing quality of care (Kulinskaya et al.,

2005; Lindsay et al., 2002). The available techniques for patient flow forecasting can be

broadly categorized into time series and smoothing methods, simulation methods and

regression methods.

2.1.4.1 Time Series and Smoothing Methods

When looking at discharges as time series, autoregressive moving average models are

the most popular (Jones et al., 2002; Littig and Isken, 2007; Lin et al., 2011). Expo-

nential smoothing techniques have also been used to forecast monthly (Lin, 1989) and

daily patient flow (Jones et al., 2008). Jones et al. (2002) used the classical ARIMA to

forecast daily bed occupancy in emergency department of a European hospital . The

model which included seasonality terms demonstrated reasonable performance to pre-

dict bed occupancy. The authors speculated whether non-linear forecasting techniques

could improve over ARIMA. A recent study confirmed the effectiveness of this fore-

casting technique in a US hospital setting (Schweigler et al., 2009). ARIMA models

were also successfully used to forecast the number of occupied beds during a severe

acute respiratory syndrome (SARS) outbreak in a Singapore hospital (Earnest et al.,

2005). A recent study used patient attendances in a paediatric emergency department

to model daily demand using ARIMA (Kadri et al., 2014). Jones et al. (2008) com-

pared the ARIMA mode with exponential smoothing and artificial neural networks to

forecast daily patient volumes in emergency department. The study revealed no single

model to be superior and concluded that seasonal patterns play a major role in daily

demand.
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2.1.4.2 Simulation Methods

Modelling using simulation is typically used to study the behaviour of complex sys-

tems. An early work investigated the effects of emergency admissions on daily bed re-

quirements in acute care, using discrete-event stochastic simulation modelling (Bagust

et al., 1999). Sinreich and Marmor (2005) proposed a guide for building a simulation

tool based on data from emergency departments of 5 Israeli hospitals. Their method

analysed the flow of patients clustered into 8 types along with time elements. The

simulation demonstrated that patient processes are better characterized by type of the

patients, rather than specific hospitals visited. Yeh and Lin (2007) used a simulation

model to characterize patient flow through a hospital emergency department and re-

duced waiting times using a genetic algorithm . A similar experiment was carried out

in a geriatric department using a combination of discrete event simulation and queuing

model to analyse bed occupancy (El-Darzi et al., 1998).

2.1.4.3 Regression for Forecasting

Regression models analyse the relationship between the forecasted variable and fea-

tures in the data. Linear regression that encoded monthly variations was used to fore-

cast patient admissions over a 6-month horizon and outperformed quadratic and au-

toregressive models (Boyle et al., 2008). Another study used clustering and Principle

Component Analysis (PCA) to find significant predictors from patient data to model

emergency length of stay using linear regression (Combes et al., 2014). A non-linear

approach using regression trees was proposed in forecasting patient admissions which

demonstrated superior performance over a neural net framework (Garcia and Chan,

2012). Barnes et al. (2016) used 10 predictors to model real-time inpatient length of

stay in a 36-bed unit using a random forest (RF) model. Non-linear regression is better

suited to model the changing dynamics of patient flow. In the area of pattern recog-

nition, k-nearest neighbours (kNN) (Cover and Hart, 1967) are the most effective

method that exploits repeated patterns. The non-parametric regression using kNN has

been successfully applied in many forecasting applications, for example forecasting time

series in financial data (Arroyo and Maté, 2009), short-term traffic forecasting (Davis

and Nihan, 1991; Zhang et al., 2013) and electricity load forecasting (Al-Qahtani and

Crone, 2013; Tsakoumis et al., 2002). However, kNN regression has not been studied
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for patient flow. Another powerful and popular regression technique, support vec-

tor regression (SVR), uses kernel functions to map features into a higher dimensional

space to perform linear regression. Though this technique has not seen much applica-

tion in medical forecasting, support vector machines have been successful in financial

market prediction, electricity forecasting, business forecasting, and reliability forecast-

ing (Sapankevych and Sankar, 2009). RF and SVR regression are powerful modelling

techniques requiring minimum tuning to effectively handle non-linearity in the hospi-

tal processes. Recently, RF forecasting was used to predict total patient discharges from

a 36 bed unit in an urban hospital (Barnes et al., 2016). Apart from 4 demographic

and 2 timing predictors, this study used 3 clinical predictors for patients: (1) reason

for visit: identified by a physician and recorded using International Classification of

Diseases: version 9 (ICD-9) diagnosis codes4, (2) observation status: assigned to pa-

tients for monitoring purpose, and (3) pending discharge location. Total number of

discharges was estimated from aggregate of individual patient length of stay. The ab-

sence of real-time clinical information in our data makes calculating patient length of

stay impossible.

2.1.5 Clinical Prediction Models

With the emergence and wide adoption of Electronic Medical Records, it has become

possible to bridge the inferential gap between cohort characteristics and individual pa-

tient detail. The EMRs have become a potential gold mine for data mining researchers.

Clinical prediction models provide evidence based input that facilitate shared decision

making involving both doctors and patients (Steyerberg, 2009). Clinical prediction

models can be used to identify strong predictors from large and noisy databanks, for

example: investigating the effect of C-reactive protein on acute coronary syndrome

(Van de Werf et al., 2008). They can also be used to provide absolute risk estimates

for individual patients (Harrell et al., 1996; Altman et al., 2009). The model gives an

estimate of risk as a function of different variables which may involve patient character-

istics, disease characteristics and treatment characteristics. Here, risk refers to unwanted

outcome (mortality, readmission, exacerbation). Table 2.1 lists the different categories

of outcome encountered in clinical prediction.

4http://www.cdc.gov/nchs/icd/icd9cm.htm
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Outcome Prediction Model Examples

Continuous Linear Regression,
Generalized Additive
Models

medical costs prediction

Binary Logistic Regression,
Binary classification
trees, Bayesian models

disease diagnosis,
mortality prediction,
medical image
segmentation

Categorical Ensemble approaches:
Multiclass prediction,
Multinomial logistic
regression, Maximum
Entropy

Classification of cancer,
tumour

Ordinal Ordinal Regression Grading severity of
illness

Time-to-event Survival analysis, Cox
Model

Time to death or
re-hospitalization

Table 2.1: Outcomes in clinical prediction

Statistical models for prediction can be broadly categorized into regression models,

classification models and neural networks (Hastie et al., 2001b). We briefly describe

the popular models in clinical prediction below. But first we begin by introducing the

notations for prediction models used in this thesis.

Notations Unless otherwise specified, throughout this thesis, we will use M to repre-

sent the number of data points (instances or observations) and N to denote the number

of features in the data. Vectors are denoted in bold lower case and the ith component

of vector x is denoted as: xi. The parameter of the learning model is denoted as w. We

use X ∈ R
M×N to denote the input data containing M examples with N features. The

target vector of labels is denoted as y ∈ R
M .
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2.1.5.1 Linear Regression

Regression analysis involves predicting the value of a continuous target variable for a

given value of input. Given M training examples as X = x1, x2, · · · , xM , a simple

linear regression models the target vector y as:

y(X, w) = wo + w1x1 + w2x2 + · · · + wMxM (2.1)

=
M∑

i=0

wixi

where the coefficient of w0 (intercept or bias term) becomes xo = 1. At its heart, a

two dimensional regression problem becomes the task of fitting a single line through a

scatter plot of target variables. The best line is characterized by the optimum value of w

that reduces the error in prediction. The most popular method to estimate coefficient

w is using residual sum of squares (RSS) estimate as:

RSS(w) =
M∑

i=1

(yi − wixi)
2 (2.2)

An intuitive representation of (2.2) is illustrated in Figure 2.3. Since RSS(w) is a

quadratic function, the minimum exists, though not necessarily unique. In general,

when we have M data points with N features, we can rewrite (2.2) in matrix notation

as:

RSS(w) = (y − Xw)T (y − Xw)

Assuming X is a full rank matrix, the unique solution becomes:

w = (XT X)−1XT y

We can extend the class of models in (2.1) by modelling the target vector y as a linear

combination of non-linear functions φ(xi), i ∈ (1, M). By using such functions as

polynomial, sigmoid and tanh functions, we can capture non-linearity in data (Bishop,

2006).
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Figure 2.3: Geometric interpretation of least squares regression in two dimensions.

2.1.5.2 Logistic Regression

Logistic regression is a type of regression analysis used for predicting the outcome of a

categorical dependent variable based on one or more predictor values (Peng et al., 2002).

When compared to linear regression, logistic regression uses our input variables X =

x1, x2, · · · , xM and parameter w to predict a binary valued output y ∈ {0, 1}. Hence

we require the hypothesis function for logistic regression, hw(X), to be between 0 and

1. Formulating hw(X) as a sigmoid function ensures that 0 ≤ hw(X) ≤ 1. A sigmoid

function has the form as shown in Figure 2.4.

Figure 2.4: Sigmoid function. The X-axis
represents z and Y-axis corresponds to g(z)

The sigmoid function is also known as

the logistic or logit function and has the

form: g(z) = 1
1+e−z = ez

ez+1
. The func-

tion asymptotes at 1 when z approaches

infinity and asymptotes at 0 when z ap-

proaches negative infinity. If we take z =

wT X , we have:

g(z) = g(wT X) =
1

1 + e−wT X
(2.3)

Hence our hypothesis function becomes:

hw(X) =
1

1 + e−wT X
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For y ∈ {0, 1} and a given X , let us assume the following

P (y = 1| X; w) = hw(X)

P (y = 0| X; w) = 1 − hw(X)

The conditional probability P (y|X; w) is thus a Bernoulli variable, which can be writ-

ten as:

P (y|X; w) = (hw(X))y (1 − hw(X))1−y

Now if we consider that M training examples were generated independently, the likeli-

hood of the parameters become:

L(w) =
M∏

i=1

p(y(i)| x(i), w)

=
M∏

i=1

(
1

1 + e−wT X

)y(i) (
1 −

1

1 + e−wT X

)1−y(i)

(2.4)

Here, (2.4) represents a likelihood. The cost function or the risk function that we need

to optimize is obtained by taking the negative logarithm of this likelihood. The cost

function for logistic regression: J(w) becomes:

J(w) = −log
M∏

i=1



(

1

1 + e−wT X

)y(i) (
1 −

1

1 + e−wT X

)1−y(i)



=
M∑

i=1

− y(i)loghw(x(i)) − (1 − y(i)) log (1 − hw(x(i))) (2.5)

Further, (2.5) represents J(w) in terms of entropy between yi and hw(xi), and hence

is also called cross-entropy. Model learning intuitively implies to minimize the cost

function and minimize the cross entropy. Parameter estimation is detailed in Appendix

section A.1.

2.1.5.3 Survival Analysis and Cox Regression

Survival analysis is a collection of statistical procedures dealing with analysis of time

until one or more events occur. The outcome variable of interest is time until an event
occurs (Kleinbaum and Klein, 2006) and is often referred to as failure time, survival

time or event time. Common examples are: time until tumour recurrence, time until
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next heart attack after some treatment intervention, time until chronic obstructive

pulmonary disease (COPD) exacerbation.

Modelling time to event data for a cohort introduces the following challenges. First,

event time will be different for different patients. At the end of study, chances are

that the event might not have occurred for some patients. Hence time interval is not

normally distributed. Second, some patients may drop out of the study due to various

reasons. Such patients are marked as censored observations. The patients in whom the

event has not yet occurred by the end of the study are also treated as censored. Finally,

the explanatory variables in some cases can also be time-varying. Hence, conventional

statistical methods like linear or logistic regression cannot be applied to such data.

The following assumptions are made in all survival studies. Patients are recruited over a

period and followed up to a fixed date. Survival prospects stay the same throughout the

study. Censored patients have the same prognosis as the others. Finally, the probability

of an individual patient to be censored is unrelated to the probability of suffering the

endpoint event.

Survival Time: Survival time data measures time to a certain event (death, response,

relapse, development of a disease). Survival time is a random variable and its distri-

bution is characterised by a survivorship function (Survival function), a probability

density function and a hazard function.

Survival Function If T denotes the survival time, the survival function S(t) can be

defined as: S(t) = P(an individual survives longer than t). Mathematically, we can

express this as: S(t) = P (T > t). In other words: S(t) = 1 - P(an individual fails

before t). Hence S(t) = 1 − F (t), where F (t) is the cumulative distribution function.

A typical survival function looks like in Figure 2.5. Survival function will have the

following properties:

1. It is non increasing

2. At t = 0, S(t) = 1. Probability of surviving past time 0 is 1

3. At t = ∞, S(t) = S(∞) = 0. Probability of surviving past infinite time is 0.
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Figure 2.5: Survival curve: graph of S(t) with t

If there are no censored observations, the estimate of survivor function Ŝ(t), is calcu-

lated as:

Ŝ(t) =
no of patients surviving longer than t

total no of patients

This estimate does not hold true when censored observations are present and we resort

to non-parametric methods.

Probability Density Function (Density function) The probability density function

of survival time T can be expressed as:

f(t) = lim
△t→0

P (an induvidual dying in the interval (t + △t) )

△t

If there are no censored observations, the estimate of the density function f̂(t), is cal-

culated as:

f̂(t) =
(no of patients dying in interval begining at t)

(total no of patients) × (interval width)

This estimate does not hold true when censored observations are present.

Hazard Function In simple words, the hazard function h(t) gives the probability of

succumbing to the event at a particular instant (t + △t), given that you have survived

up to the instant t. Mathematically, we can express this as:

h(t) = lim
△t→0

P (an induvidual fails in the interval (t + △t) | induvidual survived to t)

△t
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When there are no censored observations, hazard function estimate can be calculated

as:

ĥ(t) =
no of patients dying in interval begining at t

(no of patients surviving at t) × (interval width)

=
no of patients dying in interval begining at t

(no of patients surviving at t)−(no of deaths at t)
2

× (interval width)

Cox Regression Survival models can be viewed as consisting of two parts: an un-

derlying hazard function h0(t) and the effect of predictor variables (covariates). The

underlying hazard function h0(t) models the risk with time at baseline levels of the

predictor variables. When the exact form of the underlying survival function is un-

known (as in many real-life scenarios), we resort to non-parametric methods such as

the Cox proportional hazards model (Lee and Wang, 2013).

Cox proportional hazards model has the property that hazard ratio of any two indi-

viduals is a constant. In other words, the ratio of hazard functions for two individuals
h(t|x1)
h(t|x2)

does not vary with time t. If the effect of covariates is characterised by the func-

tion g(x), we can write the hazard ratio as:

h(t|x1)

h(t|x2)
=

h0(t) × g(x1)

h0(t) × g(x2)
=

g(x1)

g(x2)
(2.6)

which is a constant, independent of time.

We now deviate from our standard notations to express the Cox model mathematically.

The Cox proportional hazards model can be written as:

h(t|x) = h0(t|x) exp(βT x) (2.7)

where x represents a p × 1 vector of covariates (predictors) such as treatment indicators

and prognostic factors, while β represents a p×1 vector of regression coefficients. There

is no intercept β0 for the model in (2.7). In the absence of predictor variables, we have:

h(t|x = 0) = h0(t)

Here h0(t) is called the baseline hazard function. It can be interpreted as the hazard
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function for the population in the absence of predictor variables (x = 0). This baseline

hazard function can take any shape as a function of time. The only requirement is

h0(t) > 0. Hence, h0(t) is non-parametric while exp(βT x) is parametric, making the

cox model, characterised by (2.7), a semi-parametric model.

Interpretation of a proportional hazards model We use a simple example to illus-

trate the principles of Cox regression. Consider we are modelling the diagnosis of lung

cancer in a cohort of smokers and non-smokers. To isolate the effect of smoking on

lung cancer, we model the hazard function – probability that a patient is diagnosed with

lung cancer at time t, denoted as h(t), using a single predictor xsmoke, where xsmoke=1 in-

dicates patient is a smoker. Using Cox regression with parameter β, the hazard function

for lung cancer in an individual with a single predictor xsmoke can be written as:

h(t|xsmoke=1) = h0(t|x) exp(βT xsmoke=1)

Here, the baseline or underlying hazard function h0(t|x) corresponds to probability

of having lung cancer when all explanatory variables are zero. Hence, h0(t|x) =

h(t|xsmoke=0). The hazard ratio of smoker to non smoker (xsmoke=1 and xsmoke=0 ) be-

comes:
h(t|xsmoke=1)

h(t|xsmoke=0)
= exp(β)

To understand the effect of smoking on lung cancer, we just need to estimate β. If

β = 0, smoking has no effect on lung cancer. If β < 0, then smoking reduces the

hazard of lung cancer. If β > 0, smoking increases the risk of lung cancer.

We can convert the Cox proportional hazard model into a regression model by rewrit-

ing (2.7) as:
h(t|x)

h0(t|x)
= exp(βT x)

Taking natural logarithm on both sides:

ln[
h(t|x)

h0(t|x)
] = βT x (2.8)

Hence in Cox regression, the linear combination of predictors represent the hazard

ratio. The parameter estimation of Cox model is detailed in Appendix section A.2.
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Relationship of Survival Function and Hazard Function Given the probability

density function f(t), with cumulative distribution function F (t), the survival function

becomes:

S(t) = 1 − F (t)

=⇒ F (t) = 1 − S(t)

The hazard function can be written as:

h(t) =
f(t)

1 − F (t)

Hence, the relation between probability density function f(t), hazard function h(t)

and survival function S(t) can be written as:

h(t) =
f(t)

S(t)
(2.9)

Since the probability density function is the derivative of the cumulative distribution

function, we have:

f(t) =
d

dt
F (t)

=
d

dt
[1 − S(t)]

= −S ′(t) (2.10)

Substituting (2.10) in (2.9), we have:

h(t) =
−S ′(t)

S(t)

= −
d

dt
logS(t)
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We can rewrite this as:

logS(t) = −

t
ˆ

0

h(x)d(x)

S(t) = exp


−

t
ˆ

0

h(x)d(x)




= exp


−

t
ˆ

0

h0(x)exp(βT x) d(x)




= exp


−

t
ˆ

0

h0(x)d(x)




exp(βT x)

= S0(t)
exp(βT x)

Hence, we can express the survival function S(t) in terms of a baseline survival function

S0(t) as:

S(t) = So(t)
exp(βT x) (2.11)

2.1.5.4 Generalized Linear Models

In linear regression, we modelled the relationship between input variables X and ob-

served variables y using a linear combination y = wT X . For logistic regression, the lin-

ear combination of input variables becomes the log of odds: wT X = log
[

P (y=1| x)
1−P (y=1| x)

]
.

In the case of Cox regression, linear combination on explanatory variables models the

hazard ratio. Such relationships can be expressed using a generalized linear model for-

mulation.

A generalized linear model, as the name suggests is a generalization of ordinary linear

regression modelling to include different relationships between observed and explana-

tory variables under certain conditions. Ordinary linear regression, in two dimensions,

is a line (as in Figure 2.3). We focus on three characteristics: (1) the distribution of

observed variable (2) the function of explanatory variable, and (3) the connection be-

tween explanatory variable and distribution of observed variable. For ordinary linear

regression, observed variable follows a normal distribution: y:N(µ, σ2). Explanatory

variables are modelled using the function: wT X . The linear model in this case repre-
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sents mean of observed variable: µ = E(w) = wT X . The generalized linear model

makes it possible to model many relationships by allowing more flexibility in these

three characteristics.

Generalized linear models can have any member of the exponential family as the ob-

served variable: y. The function of explanatory variable is linear in parameters, and

can have more than one explanatory variable, making it possible to have functions such

as: wT X + vT Z and wT X + vT X2 + uT Z. Finally, a link function connects the mean

µ = E(y) to the function of explanatory variable. In case of ordinary linear regression,

the link function η is the identity. So we have η = µ = wT X . We can now have a

variety of link functions depending on the type of observed variable y. For example, if

we are modelling the count of patients discharged from a ward, µ can only take positive

values. The observed variables y follows a Poisson distribution and we use the link

function: η = logµ. Table 2.2 lists some common distributions and their link func-

tions. In machine learning literature, the inverse of link function is referred to as the

activation function (Bishop, 2006). Using the activation function f(.), a generalized

linear model becomes:

y = f
(
wT X

)

Here, the decision surface is linear, in spite of non-linearity in activation function. Pa-

rameter estimation can be done using maximum likelihood estimation (Bishop, 2006).

2.1.5.5 Evaluating Prediction Models

There are many methods to evaluate a prediction model. The most common approach

will be to quantify the distance between predictions and actual outcome. Popular mea-

sures are explained variation (R2 statistics) and the Brier score.

Brier Score Brier score, invented by Glenn W. Brier, gives an estimate of predictive

performance of the model (Brier, 1950). More formally, Brier score measures the mean

squared difference between true outcomes and predicted outcomes. For a sample of N

observations where yi, ŷi are the ithtrue outcome and predicted outcome, we calculate
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Distribution support Clinical example
Link
function

Mean function

Normal
real:

( -∞, +∞)
measurement of blood
pressure, weight, height

η = µ µ = wT X

Exponential
real:

(0, +∞)
sample size estimation,
survival analysis

η = µ−1 µ =
(
wT X

)−1

Poisson
integer:
(0, ∞)

population modelling,
patient flow

η = logµ µ = exp
(
wT X

)

Bernoulli
integer:
(0, ∞)

predicting readmission,
mortality

η =
log( µ

1−µ
)

µ = 1
1+exp(−wT X)

Binomial
integer:
(0, ∞)

predicting number of
occurrences of a medical
event

Table 2.2: Common distributions in clinical applications along with link functions.

Brier score as:

Brier score =
1

N

N∑

i=1

(ŷi − yi)
2 (2.12)

A lower Brier score implies better predictive performance.

Coefficient of Determination (R2) In regression studies, R2 is a measure of how

well the model fits the data (Steel and James, 1960). If yi, ŷi are the ith true outcome

and predicted outcome for a sample of N observations, we calculate R2 as:

R2 = 1 −

∑N
i=1 (yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(2.13)

The numerator in (2.13) is the residual sum of squares which represents unexplained

variation in the model. The denominator represents the total variability in the true

outcome. Hence the ratio can be thought of as normalized total variability that is

unexplained by the model. Subtracting this from one gives total explained variation in

the model. A high value of R2 translates to smaller unexplained variations and hence

better model.

In case of logistic regression models, an equivalent of R2 is pseudo-R2. The pseudo-

R2 has a similar scale (from 0 to 1) with higher values indicating a better model, but
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they cannot be interpreted the same way. Since a logistic regression model is derived

from maximum likelihood estimates, most pesudo-R2 measures compare a null model

to the full model. A null model, L(Mnull) is a model with no predictors and only the

intercept, where as the full model, L(Mfull), is a model with the full set of predictors.

A common measure of pseudo-R2 is McFadden’s R2.

McFadden’s R2 McFadden’s R2 compares the null and full models as:

McFadden’sR2 = 1 −
ln L(Mfull)

ln L(Mnull)
(2.14)

The ratio of the likelihood is a measure of fit of the full model over the null (intercept

only) model. Small ratios of log likelihood indicate a better fit.

Calibration andHosmer-LemeshowGoodness-of-fit Calibration is another method

to examine whether the model assumptions conflict with data. For a well calibrated

model, the proportion of predicted outcomes should be similar to the proportion of

actual outcomes in the data (Steyerberg et al., 2010). A popular test for measuring this

goodness-of-fit is the Hosmer-Lemeshow test.

Hosmer-Lemeshow test (Hosmer Jr et al., 2013) assesses the degree of fit by matching

observed probabilities with estimated probabilities. The validation set is divided into

G ordered groups based on estimated probability of outcome events. The Chi-squared

test statistic is calculated by comparing the expected and observed number of outcome

events in each group as:

χHL =
G∑

g=1

(Og − Eg)2

Eg(1 − Eg/ng)
(2.15)

where Og= number of observed events in group g, Eg= number of expected events

in group g, and ng= number of observations in group g. For an ideal test, we have

G > 5, Eg > 5 and ng = ng′ , (g, g′) ∈ G. When the significance of χHL is less than

.05, we reject the null hypothesis which states there is no difference between estimated

values and observed values. A large value for the test statistic with small significance (p-

value < 0.05) indicates poor model fit while a small test statistic with large significance

(p-value closer to 1) indicates a better fit (Pampel, 2000).
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Classification Table A classification table can be used to measure the validity of pre-

dicted probabilities. For a 2-class problem, the classification table (also called confusion

matrix) is tabulated as shown in Table. 2.3. Sensitivity measures the proportion of cor-

rectly classified events, whereas specificity measures the number of correctly classified

non-events. Classification accuracy is proportion of correctly classified results (events

and non-events) in the sample.

Predicted Outcomes

True Outcomes Positive Negative

Positive TP FN

Negative FP TN

Sensitivity = TP/(TP+FN)
Specificity = TN/(TN+FP)
Accuracy = TP + TN / (TP + TN + FP + FN)

Table 2.3: Classification table for a 2-class problem

Discrimination and ROC Curve Besides being well calibrated, we would like our

model to have high discriminative ability. The discrimination of a model represents the

ability to distinguish between patients at high risk from those at relatively lower risk

for a given event. A Receiver Operating Characteristic (ROC) curve measures discrim-

ination by plotting the true positive rate (proportion of hits) against the false positive

rate (proportion of false alarms, also expressed as 1-Specificity) (Bewick et al., 2004).

For a perfect model, both sensitivity and specificity would be 1. Hence the ROC curve

would start at the origin (0,0), climb through the Y-axis to (0,1) and remain constant

to (1,1). A random guessing model is equally likely to produce a true positive or a false

positive. The equality in true positive rate and false positive rate for a totally random

model is represented as the 45◦ line from (0,0) to (1,1) in Figure 2.6. Area under the

ROC Curve (AUC) is a single scalar value that quantifies classification performance.

AUC values range from 0.5 to 1.0 where 0.5 represents a random model and 1.0 repre-

sents an ideal model. Thus, different models fitted to the same data can be compared

based on their AUC. Better models have higher AUC.
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Figure 2.6: Example of ROC curve

2.1.5.6 Validating Prediction Models

Once a predictive model is built, it is important to determine how the model will

generalize for external independent data. Model validation is an estimation of how well

our derived model performs in practice. Validation techniques provide the means for

unbiased evaluation of a predictive model. Depending on the nature of the data, these

techniques are generally categorized as internal validation and external validation.

Internal Validation Here, the sample data for building the model is separated into

training data and testing data. Two popular techniques used are cross-validation and

bootstrap validation. In cross-validation, the sample data is randomly partitioned into

complementary subsets which are used for analysis and validation (Kohavi et al., 1995).

A popular approach is k-fold cross validation. Here, the data is partitioned into k equal

sized subsets. Keeping one subset for testing and validation, the model is trained using

the remaining k − 1 subsets. This process is repeated k times (also called k-folds), with

a different testing set during each iteration (fold). The k results from each fold is either

averaged or combined for final evaluation.

During bootstrap validation, the training and testing data are created by repeatedly

sampling (with replacement) the original data (Efron and Tibshirani, 1994). Hence B

iterations of the bootstrap procedure will end up in B data samples that can be used in
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learning and evaluation of the model. A comprehensive review of internal validation

techniques applied to a logistic regression model predicting 30-day mortality after an

acute myocardial infarction is presented in Steyerberg et al. (2001).

External Validation External validation techniques inspect the generalizability of the

model when applied to other cohorts and settings (Reddy and Aggarwal, 2015; König

et al., 2007). Two commonly used techniques are temporal validation and geographical

validation. Temporal validation is when the model is derived from patients treated in the

past and validated using more recently treated patients. Geographical validation of the

model is performed using testing data from another geographic location (for example,

patient data from another hospital).

2.2 Model Stability

Reproducibility, replication, assessments of variability are of crucial importance in any

statistical research (Kass et al., 2016). Clinical prediction models derived from a small

cohort need to generalize well on unseen patient groups. Stability of the learning pro-

cess is crucial to obtaining conditions for generalization (Poggio et al., 2004; Bousquet

and Elisseeff, 2002; Mukherjee et al., 2006). According to Turney (1995): “The stability
of a classification algorithm is the degree to which it generates repeatable results, given dif-
ferent batches of data from the same process” . In the following sections, we elaborate on

the notion of stability with emphasis to model stability and feature stability.

2.2.1 Stability

The most common notion of stability in computational learning theory is that of algo-
rithmic stability, and was introduced by Devroye and Wagner (1979). This concept is

also called perturbation analysis in statistics (Bonnans and Shapiro, 2013), while some

machine learning literature attributes it to sensitivity analysis (Bousquet and Elisseeff,

2002). Essentially, algorithmic stability examines how perturbations in input affect

prediction performance, and is closely associated with bounds for generalization error.
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Generalization error is a measure of performance of the learning algorithm on unseen

data. According to statistical learning theory, the learning process involves modelling

the target function f(.) using given input X and observations y to estimate a function

f̂ (.) that minimizes the empirical error (training error). For a given loss function

V (f̂ (X), y), the expected error of f̂ (.) can be written as:

I[f̂ ] =
w

X×y

V (f̂ (X), y)ρ(X, y) dXdy (2.16)

where ρ(X, y) is the joint distribution for X and y. Ideally, we would want to choose

the particular f̂ (.) which minimizes I[f̂ ], but ρ(X, y) is unknown. However, we can

calculate the empirical error from the given training data set: S = (X, y). If the dataset

has M instances, the empirical error becomes:

IS[f̂ ] =
1

M

M∑

i=1

V (f̂ (xi), yi) (2.17)

Generalization error becomes the difference between expected error and empirical er-

ror. Mathematically, we can state this as: G = I[f̂ ] − IS[f̂ ]. The learning function

f̂ generalizes well if lim
n→∞

I[f̂ ] − IS[f̂ ] = 0. For any given domain, it is impossible to

calculate ρ(X, y), hence generalization error becomes impossible to compute. Instead,

learning theory proposes to seek bounds for generalization error as:

PG = P (I[f̂ ] − IS[f̂ ] ≤ ǫ) ≥ 1 − δ

where ǫ is called the learning rate. The goal now becomes to characterize the probabil-

ity 1 − δ that the generalization error is less than an error bound ǫ.

Studies have shown that stable algorithms are able to generalize well. For example,

Bousquet and Elisseeff (2002) introduced uniform stability: for any training set S,

changing any example in S to any other possible example affects at most a small change

in f̂ . They show that for uniform stability, mean generalization error becomes zero

and proceed to demonstrate that regularization is uniformly stable. A common criti-

cism of this work declares uniform stability to be too restrictive for general use (Poggio

et al., 2004; Bousquet and Elisseeff, 2002; Mukherjee et al., 2006). Mukherjee et al.

(2006) proposed that symmetric algorithms with bounded loss, leave-one-out cross-

validation stability and expected leave-one-out cross-validation stability are generaliz-
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able.

In our work, we focus on model stability – a generalized form of feature stability, which

is related to algorithmic stability. The importance of model stability has been recog-

nized since the last decade, when Famili and Turney (1991) used decision tree induction

to generate rules to analyse why plans fail in an industrial planning system. Different

batches of data from the same process resulted in vastly different decision trees, hinder-

ing interpretability and repeatability. In a follow up to this study, Turney (1995) pro-

posed to measure stability of a learning algorithm based on agreement between learned

concepts. The study defines concepts as explicit (for example decision tree, set of rules,

feature weights), or implicit (set of stored instances), that are learnt from data during

the training process. When subjected to variations in training data, the variations in

learned concepts are measured using the semantic measure of agreement.

In this thesis, we investigate stability of linear prediction models by focussing on stabil-

ity in feature selection and feature weights. In the following sections we look at feature

stability and stabilization methods.

2.2.2 Feature Selection Stability

The process of feature selection identifies a reduced subset of important features and

removes the redundant ones from a given dataset. All further analysis is carried out

using this identified subset. In such scenario, the stability of selected features is of

much importance, since further analysis and model building critically depends on this

set. Feature stability can be defined as the degree of agreement between feature subsets

chosen by a given method to random perturbations of input data (Kuncheva, 2007;

Loscalzo et al., 2009). We now describe the process of feature selection and the causes

of instability.

2.2.2.1 Process of feature selection

Feature selection techniques serve as the workhorse for high-dimensional applications

like bioinformatics and clinical prediction. These techniques remove unwanted, redun-

dant and duplicate information from the dataset. This results in several advantages. A
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reduced feature/predictor set results in simpler learning models. The learning perfor-

mance may also improve (Guyon and Elisseeff, 2006). A reduced feature set also results

in easier interpretation, visualization and reduced storage costs.

The process of feature selection can be supervised or unsupervised. Broadly, super-

vised feature selection techniques can be classified as filter based, wrapper based and

embedded techniques.

Filter based techniques The filter methods are so named because they do feature

selection (filtering) as a preprocessing step, before training the model. The selection

process is independent of the learning model, and depend on the general characteristics

of data and associated class label (Sánchez-Maroño et al., 2007). Classical methods

consider each feature independently or with regards to the class label, and assigns a

score for selection. For example, the popular fisher score and generalized fisher score

evaluates features using fisher criterion when selecting optimum subsets (Gu et al.,

2012).

Since the selection process is autonomous when compared to learning, these techniques

can be faster and more generalizable. On the contrary, this may result in feature subsets

that do not maximize the model performance. Wrapper based techniques resolve this

dilemma, but at an expense.

Wrapper based techniques Unlike filter based methods, wrapper models choose the

best feature subset using feedback from the learning model (Kohavi and John, 1997).

Here, wrapper models formulate feature selection as a search problem. They construct

and evaluate different combinations of feature sets. Each feature set is evaluated using

a predictive model associated with the learning problem. The best feature set is chosen

to be one that maximises model accuracy. Knowledge of the predictive model is not

required and it can essentially act as a black box (Guyon and Elisseeff, 2003).

Feature subset creation can be methodical (best-fit search), stochastic (random hill-

climbing algorithm) or heuristic (forward selection, backward elimination). An ex-

ample of heuristic mode is the popular Recursive Feature Elimination Support Vector

Machine (RFE-SVM) (Guyon et al., 2002).



2.2. Model Stability 42

When compared to filter methods, wrappers guarantee better features, but the process is

computationally expensive. When large number of features are involved, filter methods

are more efficient.

Embedded feature selection Embedded feature selection techniques, as the name sug-

gests, are embedded in the learning algorithm. When the algorithm learns from a given

dataset, it performs feature selection as a part of the learning process. The learning

process is thus made of two competing objectives. (1) maximising the goodness-of-fit

(model learning) (2) minimizing the number of model parameters (feature selection).

Most popular embedded techniques are regularization methods such as lasso (Tibshi-

rani, 1996), ridge regression (Ng, 2004) and elastic net (Zou and Hastie, 2005). In this

thesis, we use lasso regularization for embedded feature selection

Sparse feature selection with Lasso Least absolute shrinkage and selection operator,

or lasso, is a popular statistical method that simultaneously performs variable selec-

tion and regularization. Though initially introduced for least squares model, lasso has

been successfully applied to generalized linear models, generalized estimating equations,

proportional hazards models and M-estimators. For data containing many covariates,

it becomes necessary to select a subset of strong features while minimizing prediction

error. Lasso is able to achieve these goals by introducing the following constraint to

learning model: the sum of absolute value of model parameters should be less than

a predefined value, say t . Ensuring a sufficient value for t (often discovered during

cross-validation) forces the coefficients of least predictive covariates to be zero, thereby

choosing a simpler model. For a model with loss function L(w|D), lasso regularization

can be expressed as:

min
w

L(w|D)

subject to|w| ≤ t (2.18)

We can rewrite the general form in (2.18) as the Lagrangian form as:

Llasso = min
w

L(w|D) + α||w||1 (2.19)
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Figure 2.7: Effect of lasso regularization on a linear model derived from diabetics dataset
used in Efron et al. (2004). The plotted lines trace values of each model coefficient for
corresponding value of t.

Increasing the value of t (or α) results in shrinking the model parameters and inducing

sparsity, thereby increasing bias and reducing variance. As example, Figure 2.7 illus-

trates the lasso regularization path for 10 coefficients of a linear model derived from a

diabetic cohort used in Efron et al. (2004). For the optimum value of t (found using

10-fold cross-validation and illustrated by a vertical dashed line), the final model was

described by 6 non-zero features. This property of lasso can be further understood by

looking at the geometric and Bayesian interpretations.

Geometric interpretation of lasso The lasso constraint boundary due to the ℓ1norm

is in general a cross-polytope. For ordinary least squares regression in two dimensions,

lasso constraint region becomes a square with the corners meeting at X-axis and Y-axis,

and the objective function level sets become elliptical centred at the OLS estimates

as shown in Figure 2.8. The solution will be at the intersection of the contours of

objective function and lasso. In most cases, this will be at the corners of the square (as

shown in Figure 2.8) ensuring dimensionality reduction.

Bayesian interpretation of lasso When linear regression coefficients are assigned nor-

mal prior distributions, it becomes ridge regression. However, when they are assigned

Laplace prior distributions, it becomes lasso regression. Laplace distributions are char-

acterized by sharp peak at zero: as a result of two exponential distributions spliced
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Figure 2.8: Lasso: Automatic shrinkage and variable selection in a 2D scenario. The
blue contours represent the likelihood function, the red contours represent the ℓ1norm.

Figure 2.9: Histogram and probability density function of Laplace distribution with
locality µ = 0 and scale b = 2

together (illustrated in Figure 2.9). Hence, the gradient becomes discontinuous. The

probability mass of Laplace distributions are closer to zero tending to suppress some

lasso coefficients.

2.2.2.2 Causes of instability in feature selection

A feature selection method could result in a different subset of features during each

training run, causing instability in selected features. Feature instability is a growing

concern, particularly in high-dimensional datasets. A feature selection method could

be unstable due to the following reasons:
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Design of the learning model: The “minimalist” design principles of the feature selec-

tion algorithm aims to find the minimum feature subset that maximizes performance

(for example, accuracy or area under the ROC curve) (Yu et al., 2008; Awada et al.,

2012). In this process, they often ignore stability of selected features. For example,

embedded methods like lasso (Tibshirani, 1996) selects the strongest features ignoring

redundant subsets that may contain important information.

Presence of multiple feature subsets that result in similar model performance: As

example, some bioinformatics datasets may contain multiple sets of true markers. Dif-

ferent runs of model training may select a different set of markers. While this could

be primarily due to high correlation between the biomarkers (Yu et al., 2008), in some

cases there may also be multiple non-correlated true markers (Zhang et al., 2008).

Insufficient training data: High dimensional datasets with low sample sizes cause

feature instability (Awada et al., 2012; Kim, 2009; Loscalzo et al., 2009). The typical

domains which encounter this problem are clinical prediction (Austin and Tu, 2004;

Gopakumar et al., 2015b; Tran et al., 2015b; Zhou et al., 2013), bioinformatics (Ein-

Dor et al., 2006; Awada et al., 2012; He and Yu, 2010; Sun et al., 2014; Kim, 2009) and

ecology (Dormann et al., 2013)

Variance in the data: When there is variation between samples of training data,

feature selection process may result in multiple outcomes during each training run

(Alelyani et al., 2011; Han and Yu, 2012).

2.2.2.3 Stabilization Strategies

The previous section illustrated the causes for instability. We now look at the popular

approaches for robust feature selection. Feature stability (also called selection stability)

can be formally defined as: “the sensitivity of a feature selection algorithm to perturbation
in the training data”(Kalousis et al., 2007; Křížek et al., 2007; Yu et al., 2008; He and Yu,

2010; Gulgezen et al., 2009). The existing methods for ensuring stable feature selection

can be broadly classified into:
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Group feature selection These techniques exploit a key observation: high dimen-

sional data may contain groups of correlated features that are unaffected by data varia-

tion (Loscalzo et al., 2009; Yu et al., 2008). It is hypothesised that such correlations or

feature relationships have some relevance to the associated class labels, and hence can

be treated as a single group during feature ranking (Yu et al., 2008). Feature stability

is ensured either by selecting one feature per identified group, or treating a whole cor-

related group as a single feature. Group based methods work in a two stage process:

feature grouping and feature selection from the identified groups.

During feature grouping, we identify the intrinsic feature relationships using either a

knowledge-driven approach or data driven approach. Knowledge driven approaches

resort to existing domain knowledge to find feature correlations. For example, the

bioinformatics domain utilize prior biological knowledge and pathway information to

enhance the stability of biomarkers. These information, compiled from many years

of research, is made available through online databases like KEGG, HPRD, Pathway

Commons, Reactome, BioCarta and BioCyc (Li and Li, 2008; Cun and Fröhlich, 2013).

Context specific data extracted from such databases can be used to create a graph net-

work with nodes as genes or gene products and edges as interactions or relationships

(Li and Li, 2008). Such networks can be used to stabilize learning models by either a fil-

ter based approach or using embedded feature selection techniques (Cun and Fröhlich,

2013). This approach has been used in clinical prediction to create feature correlations

based on the hierarchical nature of diagnosis code (refer to EMR ICD-10 section) to sta-

bilize feature stable models (Kamkar et al., 2015; Tran et al., 2015b; Gopakumar et al.,

2015b).

Groups of identified features can also be converted into a single “super feature”, using
summary statistics (for example: mean, principal component analysis). These super
features can then be used in place of individual features for feature selection (as in iden-

tifying biomarkers) or improving model performance (Chen et al., 2006; Chuang et al.,

2007; Lee et al., 2008; Rapaport et al., 2007; Tai and Pan, 2007) .

Data driven methods learn the feature groupings/relationships directly from the given

data, either using cluster analysis (Au et al., 2005; Hastie et al., 2001a; Ma et al., 2007;

Park et al., 2007), density estimation (Loscalzo et al., 2009; Yu et al., 2008) or statisti-

cal analysis (Gopakumar et al., 2015a; Vinzamuri and Reddy, 2013). Cluster analysis

methods employ clustering algorithms as K-means (Ma et al., 2007), attribute clustering



2.2. Model Stability 47

(Au et al., 2005) and hierarchical clustering (Park et al., 2007; Hastie et al., 2001a) to

group similar features, whereas density estimation methods group features into clus-

ters of similar densities using principles of kernel density estimation (Wand and Jones,

1994). Feature correlations were also discovered using RBF kernels (Vinzamuri and

Reddy, 2013) and Jaccard similarity graphs (Gopakumar et al., 2015a).

Since lasso regularization ignores feature relationships, variations to lasso have been

proposed that takes into account the many feature relationships present in data. Clin-

ical data and biomedical data such as microarrays and genes often exhibit spatial, tem-

poral or hierarchical relationships using trees and graphs (Yuan et al., 2009; Jenatton

et al., 2011; Sun et al., 2014; Tran et al., 2014).

Group Lasso: was proposed by Yuan and Lin (2006) as a modification for lasso, when

features exhibit natural groupings as in multifactor ANOVA problems, or gene cluster

data (Ma et al., 2007) or analysis of PET images (Huang et al., 2009). When features

are divided into k disjoint groups {G1, G2, · · · , Gk}, group lasso modifies the ℓ1- norm

of lasso to ℓq,1-norm penalty as:

ΩgLasso(w) =
k∑

i=1

λi||wGi
||q

where ||wGi
||q with q > 1 becomes the ℓq-norm of parameter w in group Gi, and λi

is the weight for corresponding group Gi. Unlike lasso regression in (2.19), the group

lasso formulation uses group information during feature selection. However ΩgLasso(x)

is unable to perform feature selection within each group. This can be made possible by

extending group lasso to sparse group lasso (sgLasso) as

ΩsgLasso(w) = α||w||1 + (1 − α)
k∑

i=1

λi||wGi
||q (2.20)

where α ∈ [0, 1] controls the relative contribution of lasso term (sparsity at feature

level) and group lasso term (sparsity at group level).

Tree Lasso: is an extension of group lasso, when feature groupings closely resemble a

tree structure. In this case, we consider features at each node in the tree (Zhao et al.,
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2009; Kim and Xing, 2010). The modified group lasso penalty can be written as:

ΩtreeLasso(w) =
∑

i,j

λi
j ||wGi

j
||q

where Gi
j denotes group j containing subtree at depth i of the tree. In such tree struc-

ture, if a node is not selected, its children nodes will also be discarded.

Fused Lasso: was introduced by Tibshirani et al. (2005), and is yet another extension

of lasso that takes into account the predefined structures in data. For example, when

specific features are known to be adjacent (as in genomic data), the change in corre-

sponding model parameters should be smooth. This smoothness structure is enforced

by fused lasso as:

Ωfused(w) = α||w||1 + (1 − α)
N−1∑

i=1

|wi − wi+1|

As in sparse group lasso in (2.20), α ∈ [0, 1] controls the relative contribution of pure

lasso component and smoothing component.

Ensemble feature selection Ensemble learning technique uses a voting mechanism

to combine the outcome of several learners (Dietterich, 2000a; Bühlmann, 2012). Such

methods are very popular since they often outperform a single model (Bühlmann,

2012). When applied to feature selection, ensemble techniques either use multiple fea-

ture rankers, or run feature selection multiple times to combine the results into a single

feature list. During this process, strong features which appear frequently or consistently

ranked higher are preferred over others, resulting in a more stable set.

Broadly, there can be three types of ensembles for feature selection: data ensemble,

functional ensemble and hybrid ensemble. In data ensemble methods, a single fea-

ture selection algorithm is applied to multiple sub-samples (or bootstraps) of the train-

ing data. The final stability measure then becomes the average over pairwise compar-

isons over different samples (Saeys et al., 2008; Tran et al., 2015b; Kamkar et al., 2015;

Gopakumar et al., 2015a). Functional ensemble techniques use multiple feature selec-

tion methods on the same training data. Finally, hybrid ensemble is a combination

of data and functional variations. Here, different selection techniques are repeatedly

applied to variations in training data.
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There is no consensus on which of these methods perform the best (Awada et al., 2012).

Kalousis et al. (2007) compared the stability of five popular feature selection algorithms

on 11 datasets taken from three different application domains. Feature stability was in-

vestigated based on weight-scores, rank, and selected feature subsets. No algorithm was

found to be superior and it was concluded that feature stability depends significantly

on the dataset used.

Saeys et al. (2008) compared the stability of four methods: two filter based methods;

Symmetrical Uncertainty (Press et al., 1996), RELIEF algorithm (Kononenko, 1994),

and two embedded techniques: random forests (Breiman, 2001), linear support vec-

tor machines (Vapnik, 2013). A data ensemble of 40 bags of data was created using

bootstrap. The feature rankings were aggregated using weighted voting.

Variance reduction method As mentioned in Section. 2.2.2.2, variation in the data

could cause instability. Yu et al. (2008) proposed a two stage process for feature selec-

tion using variance reduction. In the first stage, each instance vector (x) is projected

from its original space to a margin vector feature space calculated using its neighbour-

ing instance vectors. Representation of this instance vector in this margin vector feature

space (say x′) reduces the effect of noise or outliers in the training data, thereby reduc-

ing data variance. In the second stage, each instance x is weighted using its average

distance from all instances in the margin vector feature space. Algorithms like RELIEF

(Kononenko, 1994) and SVM-RFE that use sample weighting for feature selection can

now be applied on this data. This methodology was also used to find stable gene signa-

tures from microarray data and outperformed ensemble methods (Yu et al., 2012).

The dilemma in assessing feature stability in face of sample variance was investigated by

Alelyani et al. (2011). This research concluded that similarity between training samples

should be considered when assessing stability of an algorithm.

2.2.3 Evaluation of Model Stability

Two aspects are involved in evaluating stability: (i) a framework for testing stability

(ii) a mathematical measure for stability (Awada et al., 2012; Khoshgoftaar et al., 2013).

We shall look at each aspect in detail.
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Figure 2.10: Instance perturbation for measuring stability.

2.2.3.1 Framework for testing stability

A framework to test stability usually involves some method that introduces pertur-

bations in training data. Such perturbations usually involve randomly removing data

instances, features or both. During instance perturbation of a given dataset of m in-

stances and n features, a modified dataset is created by retaining only a fraction c of the

original dataset. The remaining fraction of (1 − c) instances are dropped. This process

is randomly repeated to create multiple training sub-samples, as shown in Figure. 2.10.

Such techniques have been used in the works of Saeys et al. (2008); Boulesteix and

Slawski (2009); Dittman et al. (2011); Wang et al. (2011) to measure the stability of

ranked feature lists. Wang et al. (2011) used perturbations using four c values (95%,

90%, 80%, 66.67%) to measure the stability of 18 feature rankers on 3 software engi-

neering datasets. When creating training sub-samples, Alelyani et al. (2011) cautioned

that variance among samples could influence the assessment of stability. The dilemma

in selection stability is: are the selected feature subsets different due to the instability of

the feature ranker, or due to the difference in training data? Their study proposes con-

sidering the percentage of overlap between training sub-samples, demonstrating higher

stability when overlap is higher. The study concludes that when data variance is not

considered, current methods do not assess stability, rather rank the algorithms accord-

ing to repeatability of results.

Cross-validation is also a popular method in dataset perturbation (Van Hulse et al.,

2009). Cross-validation (also called rotation estimation) is generally used to prevent

overfitting in machine learning. The process involves dividing the training data into k

equal partitions or folds of the same size. The model is trained using the first k−1 folds

and tested on the remaining folds. This process is repeated k times, where each fold is
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Figure 2.11: The process of cross validation with number of folds (k) as 3.

used for testing (as illustrated in Figure. 2.11). There is no overlap between the folds. A

recent study suggests that stability is best evaluated on datasets with no overlap (Haury

et al., 2011). A more recent study introduces a predetermined amount of overlap by

proposing a fixed overlap partitioning algorithm to create two subsets of the same size

(Wang et al., 2012b). The control on overlap allows to test the stability of algorithms

as suggested by Alelyani et al. (2011).

Finally, bootstrapping (random sampling with replacement) is a well accepted method

of sampling the training data.

2.2.3.2 Measuring Stability

Once the model is run on each of the training sub-samples, we need a similarity measure

to assess the amount of agreement among model parameters during each training run.

Kalousis et al. (2007) has broadly classified the existing stability measures into three

categories:

1. Stability by index: these measures see if a particular feature is selected or rejected,

without considering ranking or relevance weights.

2. Stability by rank: these measures take into account the rank of selected features.

3. Stability by weight: these measures look at correlation between weights of corre-

sponding features.

Though features are selected based on the weights assigned by the learning model, differ-

ent applications would be interested in specific information: some applications would
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require to know if a feature is selected or not. Some applications would require a rank-

ing of features, while some other would require the exact weights.

Stability by index The measures in this category quantify the amount of overlap

between selected feature subsets. These feature subsets are not ordered by rank or

weight. Let us assume that the models were trained on K sub-samples of data resulting

in list of feature subsets as: S = {S1, S2, · · · , SK}. Further, let each feature subset

contain top k selected features. Hence we have |Si| = k. We use this notation to

explain the following measures.

Hamming distance Hamming distance (Hamming, 1950) is quite popular in cod-

ing theory to quantify the similarity between equal-length strings. Given two feature

subsets: Si and Sj , the pairwise hamming distance can be written as:

H(Si, Sj) =
n∑

p=1

|Sip − Sjp|

where Sip is the pth feature in subset Si with a total of n features. Here each feature

subset Si is a binary vector, where the components indicate the presence or absence of

a feature. For K feature subsets in our data, the total Hamming distance becomes:

Ht =
|K|−1∑

i=1

|K|∑

j=i+1

H(Si, Sj)

The averaged normalised Hamming distance (ANHD) represents the stability across

all feature pairs and is calculated by normalising Ht as:

Ĥ =
2 × Ht

n × |K| × (|K| − 1)

Dunne et al. (2002) used the averaged normalized Hamming distance to measure the

selection stability of wrapper based models on 4 datasets. ANHD is in the range [0, 1],

where 0 represents maximum similarity and 1 represents maximum variance.
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Jaccard index Jaccard index (Real and Vargas, 1996) measures similarity as a fraction

between cardinalities of intersection and union feature subsets. Given two feature sets

Si and Sj , the pairwise Jaccard index reads:

JC(Si, Sj) =
|Si ∩ Sj|

|Si ∪ Sj|
(2.21)

The Jaccard index evaluating all K subsets is averaged as:

JS =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

JC(Si, Sj) (2.22)

Jaccard index is bounded in [0, 1] and increases when k increases. The Jaccard index or

Jaccard similarity coefficient is a popular measure and has been used to quantify feature

stability in the works of Saeys et al. (2008); Alelyani et al. (2011); Peteiro-Barral et al.

(2012); Gopakumar et al. (2015b); Kamkar et al. (2015).

Tanimoto Distance is a generalization of Jaccard index, and is formulated by re-

writing (2.21) as:

T (Si, Sj) = 1 −
|Si| + |Sj| − 2 |Si ∩ Sj|

|Si| + |Sj| − |Si ∩ Sj|
(2.23)

The Tanimoto distance is a generalization of Jaccard index to multiple classes. Here,

(2.23) measures the amount of overlap between two subsets of arbitrary cardinality.

Kalousis et al. (2007) used this measure to evaluate the stability of six feature selection

methods.

Dice’s Coefficient is also related to Jaccard index. It is also known as Sørensen Dice

coefficient or Sørensen index and was used to calculate feature stability frommicroarray

data (Yu et al., 2008). This measure is a variation of (2.21) as:

D(Si, Sj) =
2 × |Si ∩ Sj|

|Si| + |Sj|
(2.24)

As with Jaccard and Tanimoto metrics, Dice’s coefficient takes values between 0 and 1,

where 0 indicates no overlap and 1 indicates complete overlap. Although Dice, Jaccard

and Tanimoto indices have similar characteristics, dice similarity measure returns more

meaningful results. For example, if two subsets Si and Sj with k = 10 features have
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5 common features ( |Si ∩ Sj| = 5), Dice’s coefficient by (2.24) becomes 0.5 which is

closer to 50% overlap than the values of Tanimoto and Jaccard index which returns

0.33. An issue with all three measures is increase in score as the size of Si increases.

This could be attributed to overlapping of large subsets due to chance.

Consistency Index also called Kuncheva index was proposed by Kuncheva (Kuncheva,

2007) to correct for the overlapping due to chance. Considering a pair of subsets Si and

Sj , the pairwise Consistency index IC is defined as:

IC(Si, Sj) =
rd − k2

k(d − k)
(2.25)

in which |Si ∩ Sj| = r and d is the total number of features in the original data. Taking

the average of all pairs, the overall Consistency index is:

IS =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

IC(Si, Sj) (2.26)

The Consistency index is bounded in [−1, +1].

Stability by rank These metrics require the feature subsets to be ordered by ranks.

Unlike stability by index measures, they cannot handle subsets with different cardi-

nalities; they operate on the full feature set. Popular measures in this category are as

follows.

Spearman’s rank correlation coefficient (SRCC) Given two ranked subsets as r and

r′ with m observations, the pairwise SRCC becomes:

SRCC(r, r′) = 1 − 6
∑

i

(ri − r′
i)

2

m(m2 − 1)

The value of SRCC will vary from -1 (inverse correlation) to 1 (perfect correlation),

with 0 representing no correlation. This metric was used to verify the rank stability of

six feature selection methods (Kalousis et al., 2007).
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Canberra Distance (CD) measures the absolute difference between two ranked fea-

ture sets r and r′ as:

CD(r, r′) =
N∑

i=1

|ri − r′
i|

ri + r′
i

(2.27)

Jurman et al. (2008) used a weighted version of (2.27) to study the stability of top

k ranked subsets. There is no upper bound for the formulation in (2.27); the value

increases with increasing number of features.

Stability by Weight These measures look at the variation in weights assigned to fea-

tures among the feature subsets. The feature subsets should be of the same size. The

popular measures are detailed below.

Pearson’s Correlation Coefficient (PCC) calculates the correlation between two

weighted sets w and w′ as:

PCC(w, w′) =

∑
i(wi − µw)(w′

i − µw′)√∑
i(wi − µw)2

∑
i(w

′
i − µw′)2

(2.28)

where µ is mean. Pearson’s correlation coefficient ranges from -1 (anti-correlation) to

+1 (perfect correlation), with 0 representing no correlation. This measure was used in

a study of stable feature selection in high dimensional space (Kalousis et al., 2007).

Signal-to-Noise Ratio (SNR) We borrow the concept from signal processing to mea-

sure the robustness of feature weights against variations in the subset. For the ith feature,

if the mean feature weight across K subsets is w̄i with corresponding standard deviation

as σi, then signal-to-noise ratio becomes:

SNR(i) =
w̄i

σi

This metric has no upper bound, and increases with increasing feature weights. Re-

cently, SNRwas used to measure the stability of model parameters in clinical prediction

applications (Tran et al., 2015b; Gopakumar et al., 2015a,b).
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2.3 Concluding remarks

The research direction of this thesis ultimately aims to enhance the stability of any and

all predictive discoveries. This is important for a number of reasons. First and foremost,

models discover truth about data, and universal truth do not vary. Hence stability

should be one of the most important characteristic when selecting a model. Biologically

plausible models are generally stable against data variations. Further, models need to be

transferable and generalizable from one cohort to another. High quality training data

is hard to obtain. A similar work in stability by Zhou et al. (2013) declares: “Because
of the highly noisy nature of EHR data, clinical experts often have to be involved in the
annotation process in order to obtain reliably labeled training data. As a result, in many
cases only limited labeled data can be obtained.” In such conditions, its imperative that

models generalize well, and transfer between cohorts. The experiments on data need

to be reproducible for clinical adoption. But the nature of our data introduces the

following problem.

Clinical data used in this thesis is a classic example of large p small n paradigm, charac-

terized by large number of features (p) with relatively smaller number of samples (n).

Hence, we need a strong feature selection technique to provide insights into underlying

causal relationships by focusing on smaller feature subsets, exclude noisy features for

more reliable estimates and derive faster more efficient models for further analysis (Ma

and Huang, 2008).

In this thesis, we focus on lasso regularization (as detailed in Section 2.2.2.1) for sparse

feature selection. We choose lasso because of it is highly interpretable, and interpretabil-

ity is key for clinical process. For a classification problem, lasso sets the weights of weak

covariates to be exactly zero during optimization. Such features have no discriminatory

power between classes. Hence lasso regularization results in simultaneous shrinkage

and variable selection. The weights of non-zero covariates represent the relative impor-

tance of features that is able to discriminate between classes, making the model highly

interpretable. The interpretability of lasso is also discussed in literature, most notably

by James et al. (2013), which illustrates that restrictive models are in general more in-

terpretable, and hence preferred when the goal is inference from data (Figure 2.12).
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Figure 2.12: Interpretability of lasso and other traditional methods. Adapted from
James et al. (2013)

In the next chapter, we explain the instability problem of lasso regularization using a

case-study of modelling patient flow. The following chapters detail three novel strate-

gies to overcome this instability. When compared to traditional lasso variants such as

group lasso, tree lasso, fused lasso and elastic nets (Section 2.2.2.3), our methods ad-

dress the following limitations. Elastic net regularization encourages grouping effect,

but does not take the underlying structure of features into account. While tree lasso,

group lasso and fused lasso require predefined feature groupings as input, our meth-

ods are data driven and automatically discover underlying feature groupings and latent

structures.

We now proceed to illustrate model instability problem in clinical domain with a case

study using data from a regional hospital in Victoria, Australia.



"I can’t explain myself", said Alice, "because I’m not myself, you see."

Alice in Wonderland, Chapter V

Chapter 3

Model Instability: A Case Study

odel stability, in the scope of this thesis, refers to the sensitivity of learning

model parameters to variations in the training data. Specifically, we look at

two important model parameters: (i) predictors or features selected by the

learning algorithm to represent the final model, and (ii) the corresponding feature

weights. Due to the nature of medical data (as detailed in Section 2.1.3), popular learn-

ing algorithms become susceptible to model instability. In this chapter, we demonstrate

model instability in a medical setting. To this purpose, we address the open and im-

portant problem of forecasting daily discharges from a ward with no real-time clinical

data.We study patient outflow from an open ward in an Australian hospital, where

currently bed allocation is carried out by a manager relying on past experiences and

looking at demand. We build three linear and three non-linear models to predict the

total number of next-day discharges. The data for all our models is extracted from the

hospital database and consists solely of administrative information. The ward presented

no real-time clinical data.

We begin by giving a brief background on predicting patient discharge, and then pro-

ceed to describe our data extraction process. Next, we introduce the six popular pre-

diction algorithms and explain our experimental setting. We demonstrate that the

algorithms have comparable performances. But in choosing the most interpretable

model, we encounter instability in predictors and parameters. We conclude by propos-

ing our stabilization strategies.

58
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3.1 On ward-level forecasting

Discharge forecasting is an important tool for efficient bed management (Wong et al.,

2010), which is critical for meeting rising demand in health services and reducing cost.

Such demand has become unsustainable in recent decades (Kalache and Gatti, 2002;

OECD, 2003). This is largely due to increase in population and life expectancy, escalat-

ing costs, increased patient expectations and workforce issues (Mackay and Lee, 2005).

Efficient bed management is highly challenging given the number of inpatient beds in

hospitals has come down by 2% since the last decade (OECD, 2003; Alijani et al., 2003).

Daily discharge rate is a real-time indicator of operational efficiency (Wong et al., 2010).

From a ward-level perspective, a good estimate of next-day discharges will enable hos-

pital staff to foresee potential problems such as changes in number of available beds

and changes in number of required staff. Efficient forecasting reduces bed crisis and

improves resource allocation. This foresight can help accelerate discharge preparation,

which has huge cost on clinical staff and educating patients and family, requiring post-

discharge planning (Connolly et al., 2010, 2009). However, studying patient flow from

general wards offers several challenges.

Ward-level discharges incorporate far greater hospital dynamics that are often non-

linear (Harper and Shahani, 2002). Accessing real-time clinical information in wards

can be difficult because of administrative and procedural barriers, such data may not

be available for predictive applications. Because the diagnosis coding is performed after

discharge, there is little information about medical condition or variation in care qual-

ity in real time. In addition, factors other than patient condition play a role in discharge

decisions (Wong et al., 2009, 2010; van Walraven and Bell, 2002).

The current practice of bed allocation in general wards of most hospitals involve a hos-

pital staff/team, who use past information and experience, to schedule and assign beds

(Daniels et al., 2005). Modern machine learning techniques can be used to aid such

decisions and help understand the underlying process. As an example, Figure 3.1 illus-

trates a decision tree trained on past discharges and ward occupancy statistics, which

models the daily discharge pattern from an open ward in a regional Australian hospital.

Although the absence of patient medical information affected forecast performance, the

decision rules provide important insight into the discharge process.
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Figure 3.1: Decision tree modelling of total discharges from an open ward using day of
the week and ward occupancy (Prev. day Occup) data for five years. The leafs represent
total number of patient discharges.

3.2 Methods

We describe seven diverse methods that are applicable to forecasting under complex

data dynamics. Of these, three methods are linear: (1) the classical autoregressive in-

tegrated moving average (ARIMA), (2) autoregressive moving average with exogenous

variables (ARMAX) and (3) Sparse Linear Regression. Rest of the methods exploit non-

linearity to model data. Specifically, we employ the most popular non-linear models:

(1) k-nearest neighbour (kNN) regression, (2) Decision trees, (3) random forest (RF)

regression, and (4) support vector regression (SVR). Autoregressive methods and linear

regression model temporal linear correlation between nearby data points in the time

series. Nearest patterns lift this linearity assumption and assumes that short periods

form repeated patterns. Decision trees, RF and SVR models look for a non-linear func-

tional relationship between the future outcomes and descriptors in the past. Finally,

we inspect the stability (in terms of model reproducibility) for each of these models.

We formally begin our discussion by detailing the feature extraction process. This

process is common to all models.
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Figure 3.2: Tables in hospital database used in our data collection

Total patient visits 12,141

Unique patients 10,610

Length of stay: mean, median, IQR 4.26, 3, 5

Discharges per day: mean, median, IQR 8.7, 8, 5

Admissions per day: mean, median, IQR 8.6, 8, 5

Mean ward occupancy, IQR 30.9, 4

Gender 54.8% Female

Age: mean, median 66, 63.23

Table 3.1: Cohort details

3.2.1 Data and Feature Extraction

The data for our case study was collected from Barwon Health, a regional hospital in

Australia. The total number of available beds depended on the number of staff assigned

to the ward. On average, the ward had 36 staffed beds, but fluctuated between 20

and 80 beds with varying patient flow. The physicians in the ward had no teaching

responsibilities.

The data for our study came from three tables in the hospital database, as shown in

Figure. 3.2. Additional real-time data that described patient condition or disease pro-

gression were unavailable because diagnosis coding using medical codes is done after

discharge. Patient flow was collected for a period of 4 years. Using the admission and

discharge times for each patient, we calculated the daily discharges from our ward in

study. A total of 12,141 patients were admitted into the ward with a median discharge of

8 patients per day from January 1, 2010, to December 31, 2014. Table. 3.1 summarizes

the main characteristics of our data.
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Figure 3.3: Mean admissions and discharges per day from ward.

Figure 3.4: Time series of monthly discharges from ward.

A time series decomposition of our data revealed strong seasonal variations and high

non-linearity in daily discharge patterns. There was a defined weekly pattern–discharge

from ward peaked on Fridays and dropped significantly on weekends (see Figure 2).

This seasonal nature is in tune with previous studies (Wong et al., 2009; Lin et al.,

2011). Aggregating the daily discharges into a monthly time series revealed defined

monthly patterns (see Figure 3.4). The data displayed no significant trend. In addition,

the daily discharge pattern was found to be highly non-linear. Our forecasting methods

must be able to handle such data dynamics.

As the first step in our case study, we inspect and extract features from commonly

available administrative data in the hospital database. Two main groups of features

were identified: (1) ward level and (2) patient level. Our feature creation process res-

ulted in 20 ward-level and 88 patient-level predictors, as listed in Table 3. The ward-

level descriptor: trend of next-day discharge was calculated by fitting a locally weighted
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Ward level predictors

Seasonality current day-of-week, current month

Trend calculated using locally weighted
polynomial regression from past
discharges on the same weekday

Admissions Number of admissions during past 7
days

Discharges Number of discharges during past 7
days, number of discharges in previous
14th day and 21st day

Occupancy ward occupancy in previous day

Patient level predictors

Admission type 5 categories

Patient Referral 49 categories

Patient Class 21 categories

Age Category 8 categories

Number of wards visited 4 categories

Elapsed length of stay Calculated daily for each patient in the
ward

Table 3.2: Features constructed from ward data in hospital database. The random
forest and support vector regression models used the full set of features. The ARMAX
(autoregressive moving average with exogenous variables) model used seasonality and
occupancy. All other models were derived from daily discharges.

polynomial regression (Cleveland et al., 1992) from past discharges. An example of this

regression fitting is shown in Figure 3.5.

3.2.2 Classic Forecasting Methods

Here, we describe two most common techniques to model forecasts - ARIMA and

ARMAX. These methods are linear, hence they are relatively simple and interpretable.

They are also surprisingly effective and are often used as benchmarks for more complex

hypothesis.
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Figure 3.5: An example of the discharge trend, as derived from a locally weighted poly-
nomial regression model.

3.2.2.1 Autoregressive Integrated Moving Average (ARIMA)

Time series is defined as a sequence of observations over time (Chatfield, 2013). Daily

discharges from the ward is a discrete time series. To predict next day discharge, we

capture the variation in discharge series. Traditional methods in time series analysis

decompose this variation into a trend component, a seasonal component and irregular

fluctuations (or noise) (Chatfield, 2013). Trend signifies the long term change in the

mean level of the time series. Trend can increase or decrease in a linear or non-linear

manner. Seasonal component captures the regular or semi-regular variations in data.

Seasonal variations (also called seasonality) in data refers to predictable changes that

repeats within a time frame (weekly, monthly or annual).

Time-series forecasting methods can analyse the pattern of past discharges and formu-

late a forecasting model from underlying temporal relationships (Chatfield, 2013). Such

models can then be used to extrapolate the discharge time series into the future. Autore-

gressive Integrated Moving Average (ARIMA) models are widely used in time-series

forecasting. Their popularity can be attributed to ease of model formulation and in-

terpretability (Kane et al., 2014). ARIMA models look for linear relationships in the

discharge sequence to detect local trends and seasonality. However, such relationships

can change over time. ARIMA models are able to capture these changes and update

themselves accordingly. This is done by combining autoregressive (AR) and moving

average (MA) models. Autoregressive models formulate discharge at time t = yt, as a

linear combination of previous discharges. On the other hand, moving average models

characterize the discharge at time t as linear combination of previous forecast errors.
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For ARIMA model, the discharge time series is made stationary using differencing. Let

φ be autoregressive parameters, θ be moving average parameters, and ǫ be the forecast

errors. Such an ARIMA model can be defined as:

yt = µ +
p∑

i=1

φi yt−i + ǫt −
q∑

i=1

θi ǫt−i (3.1)

where µ is a constant. By varying p and q, we can generate different models to fit the

data. Box Jenkins method (Box and Jenkins, 1990) provides a well-defined approach

for model identification and parameter estimation. In our experiments, we choose the

auto.arima() function from the forecast package (Hyndman and Khandakar, 2008) in R

(R Core Team, 2013) to automatically select the best model.

3.2.2.2 Autoregressive Moving Average With Exogenous Variables (ARMAX)

Dynamic regression techniques allow adding additional explanatory variables, like day

of the week and number of current patients in the ward, to autoregressive models.

Autoregressive moving average with exogenous variables (ARMAX) modifies ARIMA

model by including external variable xt at time t, as shown in (3.2). We model xt using

features from the hospital database.

yt = µ +
p∑

i=1

φi yt−i + ǫt −
q∑

i=1

θi ǫt−i + βxt (3.2)

3.2.3 Sparse Linear Regression

Classic forecasting relies on strong assumption of the temporal dynamics. However, the

methods described till now only used a small subset of extracted features. Our feature

extraction process was designed to generate data descriptors that are expected to contain

all information of the history and dynamics of patient flow from available administrat-

ive data. Machine learning algorithms like regression can then learn to combine these

features to predict the future. To this end, we resort to sparse linear regression. Linear

regression (detailed in Section 2.1.5.1) is able to model future discharges using a lin-

ear combination of all available descriptors, while sparsity ensures interpretability and
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discards irrelevant features.

We describe our sparse linear regression model as follows. Let D = {xℓ, yℓ}
n

ℓ=1 be the

training dataset. For each day ℓ ∈ [1, n], where n is the total number of days in data,

xℓ ∈ R
p denotes the high-dimensional feature vector and yℓ is the number of patients

discharged on day ℓ. Linear regression assumes y = β + w⊤x + ǫ where β is the mean

output, w ∈ R
p are sparse feature weights, and ǫ is random noise. The weights are

estimated by maximizing lasso (Tibshirani, 1996):

Llasso =
1

2

n∑

ℓ=1

(
yℓ − β − w⊤xℓ

)2
− α

∑

i

|wi| (3.3)

where α > 0 is the penalty controlling sparseness of the feature weights. Lasso checks

overfitting while simultaneously performing feature selection. Under lasso, weights of

weak features are driven towards zeros, and thus the resulting model is sparse. This

process has been detailed in Section 2.2.2.1.

The main advantages of lasso-based forecasting are that lasso methods tend to be more

interpretable. Sparse models have a smaller feature subset. Prediction can be explained

using this smaller subset, with feature weights indicating the relative contribution of

each feature. This leads to a simple check-list style estimate for understanding the pre-

diction process.

3.2.4 Machine Learning: Non-linear Methods

Linear methods may be less optimal in predictive power if the outcome is non-linear in

features. For example, the ARIMA assumes that data is linearly auto-regressive. How-

ever, a close examination on the time-series suggests there are strong weekly patterns

with complex dynamics. Under the lack of theoretical structure of the dynamics, we

assume that although they are complex, the patterns might be repetitive over time. No

further assumption is then made. To provide an estimate of upper-bound on predictive

accuracy, we employ several best-known non-linear methods. These methods may be

better suited to handle the underlying data dynamics. However, they lack interpretab-

ility and it is difficult to assess feature importance in some cases.
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Figure 3.6: k-nearest neighbour forecasting example with k=3 and P=7.

3.2.4.1 k-Nearest Neighbours

k-nearest neighbours (kNN) (Cover and Hart, 1967) are effective in exploiting repeated

patterns. The kNN algorithm has been successfully applied to forecast to histogram

time series in financial data (Arroyo and Maté, 2009). The non-parametric regression

using kNN was also used for short term traffic forecasting (Davis and Nihan, 1991).

However, kNN regression has not been studied for patient flow.

The basic assumption is that similar historical patterns will result in similar outcome in

the near future. The kNN algorithm takes advantage of the locality in data space. We

assume the next day discharge depends on the discharges happening in previous d days.

Using kNN principles, we can do a regression to forecast the next day discharge. To

forecast the next day discharge: yt+1, we look at the discharges over the past d days as:

disch_vec = [yt−d : yt]. Using Euclidean distance metric, we find k closest matches to

disch_vec from the training data. An estimate of next day discharge ŷt+1 is calculated

as a measure of the next day discharges of the k matched patterns (ymatch)i, i ∈ (1 :

k). Figure 3.6 shows an example of kNN based forecasting. Here, disch_vec in red

[yd−7 : yd] results in 3 matches from the training data. For simplicity, we have plotted

the matched patterns alongside disch_vec, although they had occurred in the past. The

next-day forecast ŷd+1 becomes a measure of (ymatch)i, where (ymatch)i i ∈ (1 : 3) is the

(d + 1)th term of each of the matched patterns (Altman, 1992).
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Figure 3.7: Scatterplot of next-day forecast using k-nearest neighbour for a given day.
X-axis represents each matched nearest neighbour pattern. Y-axis represents the next
day forecast of that matched pattern.

One popular method of calculating ŷt+1 is by minimizing the weighted quadratic loss:

ŷt+1 = min
y

k∑

i=1

wi ((ymatch)i − y)2

=
k∑

i=1

wi(ymatch)i

where wi is subject to wi ∈ (0, 1) and
∑k

i=1 wi = 1. However there are two main

drawbacks making it less desirable for our data. First, the quadratic loss is sensitive to

outliers. Second, it is difficult to robustly estimate {wi}. Our data contains significant

noise, causing large variations in next day forecasts of the k matched patterns. The

problem is illustrated in Fig. 3.7. The scatterplot of next day forecasts from the matched

125 patterns display significant variations. In such scenario, we resort to estimating ŷt+1

by minimizing the following robust loss:

ŷt+1 = min
y

(
k∑

i=1

|(ymatch)i − y|

)

= median [(ymatch)i=1 to k]
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3.2.4.2 Decision tree and Random Forest

While kNN is non-parametric and the assumptions are minimum, it requires a large

amount of data to search for a good local match. The assumption that the surface

patterns repeat may not hold due to constant changes in healthcare dynamics. The

kNN algorithm also depends greatly on the choice of similarity measure, the number

of related patterns and the combination methods between related patterns. A better

technique should be able to distil underlying dynamics from the surface patterns. This

leads to non-parametric function approximation methods.

A popular and widely used method is the decision tree algorithm. Decision Trees

mimic the human thinking process by formulating learning as a sequence of decision

steps from a series of well-designed questions (Reddy and Aggarwal, 2015). The root

and interior nodes corresponds to one of the input features in the data. The edges

of a node correspond to possible values of the feature corresponding to that node.

The leaves of the tree represent the target label (for classification tree) or value (for

regression tree). There are many variations of decision trees, for example: ID3, C4.5,

C5, and Classification and Regression Trees (CART) (Rokach and Maimon, 2014). In

this study, we use the CART algorithm that recursively partitions the feature space

based on gini index (Breiman et al., 1984). We then extend this decision tree regression

using an ensemble approach as detailed below.

We assume the next-day discharge as a function of historical descriptor vector x. We

use each day in the past as a data point, where next-day discharge is the outcome y, and

the short-period prior to discharge is used to derive descriptors x. A regression tree

approximates a function f(x) by recursively partitioning the descriptor space. At each

region Rp, the function is approximated as:

f (x) =
1

|Rp|

∑

xj∈Rp

yj

where |Rp| is the number of data point falling in region Rp. While regression trees are

susceptible to overfitting, random forest is currently one of the most powerful methods

to model the function y = f(x) (Breiman, 2001; Hastie et al., 2001b). A random forest

is an ensemble of regression trees. The random forest creates a diverse collection of

random trees by varying the subsets of data points to train the trees and the subsets of
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descriptors at each step of space partitioning. The final outcome of random forest is an

average of all trees in the ensemble. Since tree growing is a highly adaptive process, it

can discover any non-linear function to any degree of approximation if given enough

training data. However, the flexibility makes regression tree prone to overfitting, that

is, the inability to generalize to unseen data. This requires controlling the growth by

setting the number of descriptors per partitioning step, and the minimum size of region

Rp.

The voting leads to great benefits: reduce the variations per tree. The randomness helps

combat against overfitting. There is no assumption about the distribution of data, or

the form of the function f(x). There is controllable quality of fits. This process also

generates a large number of weak learners that control overfitting and produce stable

predictions (Schapire, 1990).

Related to random forest is bagging (Breiman, 1996), boosting (Friedman et al., 2000)

and randomization (Dietterich, 2000b). Gradient tree boosting (Friedman, 2001) is a

high competitive methods with even greater control of flexibility and overfitting. But

random forest has the reputation of ease of use and of great prediction quality.

3.2.4.3 Support Vector Regression

The historical descriptor vector x, used in the random forest model can also be used

to build a Support Vector Regression (SVR) model (Vapnik, 2013). Given the set of

data (x1, y1), (x2, y2), · · · (xn, yn), where each xi ∈ R
m denotes the input descriptor

for the corresponding next day forecast yi ∈ R
1, a regression function takes the form:

ŷi = f(xi). Support vector regression works by (i) mapping the input space of xi

into a higher dimensional space using a non-linear mapping function: φ (ii) performing

a linear regression in this higher dimensional space. In general, we can express the

regression function as:

f(x) = (wφ(x)) + b
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Figure 3.8: The loss function fits a tube of radius ǫ during support vector regression

where w ∈ R
mis the weights and b ∈ R

1 is the bias term. Vapnik (2013) proposed the

ǫ-insensitive loss function for SVR, which takes the form:

Lǫ (f(x) − y) =





|f(x) − y|, |f(x) − y| ≥ ǫ

0 otherwise

The loss function Lǫtolerates tolerates errors that are smaller than the threshold: ǫ,

resulting in a “tube” around the true discharge values (see Figure 3.8)

Model parameters can be estimated by minimizing the following cost function:

R = C ×
1

n
Lǫ (f(x) − y) +

1

2
||w||2

where C is a constant that penalizes error in training data.

In our work, we use an RBF kernel (Schölkopf et al., 2004) for mapping our input

data to higher dimensional feature space. RBF kernels are a good choice for fitting our

non-linear discharge pattern because of its ability to map the training data to an infinite

dimensional space, and easy implementation. The solution to the dual formulation of

SVR cost function is detailed in (Vapnik, 2013; Smola and Schölkopf, 2004).
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3.3 Experimental Setting

We extracted all data from the database tables (as in Figure 3.2) for our ward in study.

Patient flow was analysed for a period of 5 years. We formatted our data as a matrix

where each row corresponds to a day and each column represents a feature (descriptor).

The current hospital strategy involves using past experience to foresee available beds.

To compare the efficiency of our proposed approaches, wemodel the following baselines:

(1) Naive forecasting using the last day of week discharge: Studies (Wong et al., 2009;

Lin et al., 2011) have shown a strong weekly pattern in daily discharges, we model the

next day discharge as the number of discharges for the same day during previous week;

(2) naive forecasting using mean of last week discharges: to better model the variation

and noise in weekly discharges, we model the next-day discharge as the mean of dis-

charges during previous 7 days; and (3) naive forecasting using mean of last 3-week

discharges: to account for the monthly and weekly variations in our data, we use mean

of daily discharges over the past 3 weeks to model the next-day discharge.

3.3.1 Evaluation Protocol

Our training and testing sets are separated by time. This strategy reflects the common

practice of training the model using data in the past and applying it on future data.

Training data consisted of 1460 days from January 1, 2010, to December 31, 2013.

Testing data consisted of 365 days in the year 2014. The characteristics of the training

and validation cohort are shown in Table 3.3. Most stays were short, around 65% of

patients stayed for less than 5 days.

We compare the next-day forecasts of our proposed approaches with the baseline meth-

ods on the measures of mean forecast error, mean absolute error, symmetric mean abso-

lute percentage error and root mean square error (Shcherbakov et al., 2013; Hyndman

and Koehler, 2006). If yt is the measured discharge at time t, and ft is the forecast

discharge at time t, we can define the following errors.
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Training (2010-2013) Testing (2014)
Total days 1460 365
Mean discharges per day 8.47 9.17
Number of admissions 9630 2511
Gender:

Male 4329 (44.9%) 1135(45.2%)
Female 5301 (55.1%) 1376 (54.8%)

Mean age (years) 63.65 61.62
Length of Stays:

1-4 days 6377 (66.22%) 1636 (65.15%)
5 or more days 3253 (33.78%) 875 (34.85%)

Table 3.3: Training and validation cohorts characteristics.

Mean Forecast Error (MFE): is used to gauge model bias and is calculated as –

MFE = mean (yt − ft). For an ideal model, MFE = 0. If MFE >0 model tends to

under-forecast, and if MFE <0 , model tends to over-forecast.

Mean Absolute Error (MAE): is calculated as the average of unsigned errors –

MAE = mean|yt − ft|. MAE indicates the absolute size of the errors. The use of

unsigned error terms prevents negative and positive error from offsetting each other.

Root mean square error (RMSE): is a measure of the deviation of forecast errors. It

is calculated as – RMSE =
√
mean (yt − ft)

2. Due to squaring and averaging, large er-

rors tend to have more influence over RMSE. In contrast, individual errors are weighted

equally in MAE. There has been much debate on the choice of MAE or RMSE as an in-

dicator of model performance (Willmott and Matsuura, 2005; Chai and Draxler, 2014).

Symmetric mean absolute percentage error (sMAPE): is an alternative to mean

average percentage error (MAPE). It is scale independent and hence can be used to

compare forecast performance between different data series. It overcomes 2 disadvant-

ages of mean absolute percentage error (MAPE) namely, (1) the inability to calculate

error when the true discharge is zero and (2) heavier penalties for positive errors than

negative errors. sMAPE is a more robust estimate of forecast error and is calculated as –

sMAPE = mean (200|yt − ft|/(yt + ft)). Also, sMAPE ranges from −200% to 200%,
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(a) Forecast error (in RMSE) with changing values
of pattern length

(b) Forecast error with changing values of number
of nearest neighbours (k)

Figure 3.9: Parameter tuning in kNN forecasting.

giving it an ambiguous interpretation (Hyndman, 2006).

3.3.2 Model Implementation

The model parameters for lasso, kNN forecast, RF, and SVR models were tuned to

minimize forecast errors. For kNN regression, the optimum value of pattern length:

d and number of nearest neighbours: k, was obtained by analysing forecast RMSE for

values d ∈ (1, 100) (see Figure 3.9a) and k ∈ (5, 1000) (see Figure 3.9b). Minimum

RMSE of 3.77 was obtained at d = 70 and k = 125.

The SVR parametersC (penalty cost) and ǫ (amount of allowed error) were determined

by choosing the best value from a grid search, that minimized the model RMSE. This

is illustrated in Figure 3.10a.Similarly, the optimum number of variables in building

each node of the RF was chosen by examining its effect on minimizing the out-of-

bag estimate (see Figure 3.10b). We compared the naive forecasting methods with our

proposed approaches using MFE, MAE, RMSE, and sMAPE.
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(a) SVR Performance (in RMSE) for different values of
C and epsilon. Darker regions imply better perform-
ance, and smaller RMSE.

(b) Random forest performance for different num-
ber of variables selected in building nodes. Smaller
values imply better performance.

Figure 3.10: Parameter tuning for (a) SVR and (b) RF models

3.4 Results

In this section, we examine the performance of each of our models in terms of forecast

errors mentioned in Section 3.3.1. We then look at model reproducibility in terms of

parameter stability.

3.4.1 Model Performance

The results are summarized in Table , whereas Figure 3.11 compares the distribution of

actual discharges with different model forecasts.

The naive forecasts are unable to capture all variations in the data and resulted in the

maximum error when compared with other models. The variations in seasonality and

trend are better captured in ARIMA and ARMAX models. The time series consist-

ing of past 3-month discharges were used to generate the next-day discharge forecast.

The ARMAX model also included the day of week and ward occupancy as exogenous

variables, which resulted in better forecast performance over ARIMA.

Interestingly, kNN was more successful than ARIMA and ARMAX in capturing the

variations in discharge, demonstrating about 3% improvement in MAE, when com-

pared with ARMAX. However, the kNNmodel tends to under forecast (MFE = 1.09),
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Model MFE MAE sMAPE RMSE

Naive Forecast using
discharge from:

last weekday 0.03 3.81 45.70 % 4.95

last week (mean) 0.02 3.57 41.68 % 4.42

last 3 weeks(mean) 0.04 3.44 40.14 % 4.34

ARIMA Forecast 0.06 3.27 38.32 % 4.15

ARMAX Forecast -0.01 2.99 34.86 % 3.84

kNN Forecast 1.09 2.88 34.92 % 3.77

Lasso 0.68 2.75 32.91 % 3.58

CART 0.60 2.77 32.96 % 3.64

Support vector regression 0.73 2.75 32.88 % 3.64

Random forest 0.44 2.70 32.15 % 3.56

Table 3.4: Forecast accuracy of different models

possibly because of resorting to median values for forecast.

In comparison, RF and SVR forecast models demonstrated better performance. This

can be expected because they are derived from all the 108 features. However, RF demon-

strated a relative improvement of 3.3 % in MAE over SVR model (see Table 3.4). When

looking at forecast errors for each day of week, RF model confirmed better perform-

ance, as shown in Figure 3.12.

The process of SVR with RBF kernel maps all data into a higher dimensional space.

Hence, the original features responsible for forecast cannot be recovered, and the model

acts as a black box. Alternatively, RF algorithm returns an estimate of importance for

each variable for regression. Examining the features with high importance could give

us a better understanding of the discharge process.

The features in random forecast model were ranked on importance scores (see Fig-

ure 3.13). The top 10 significant features are described as follows. The day of week

for the forecast proved to be the most important feature. Other features were number

of patients in the ward during the day of forecast, the trend of discharges measured

using locally weighted polynomial regression, number of discharges in past 14th day,
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Figure 3.11: Comparison of actual and forecasted discharges from ward for each day in
2014.
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Figure 3.12: Forecast error in predicting each day of week in 2014.



3.4. Results 78

Figure 3.13: Features ranked by importance in the random forest model

number of discharges in past 21st day, number of patients who had visited only one pre-

vious ward, the number of males in the ward, number of patients labelled as: “public

standard,” and current month of forecast.

3.4.2 Assessing Model Stability and Reproducibility

The most interpretable models are ARIMA variations, kNN, lasso regression and de-

cision trees. When we have a host of algorithms with comparable performances, we

choose one that is most transparent . Transparency translates to interpretability and re-

peatability – the model parameters (or predictors; hyperparameters are not considered)

should be stable. In the case of patient outflow, we see that lasso and SVR have sim-

ilar performance. The RF model demonstrates a 1.7 % improvement. The SVR model

using RBF kernel maps the original data into a higher dimensional space, essentially

working as a blackbox, and loses all meaning of the original features. The RF model

works uses bagging to aggregate the result of an ensemble of decision trees. Hence the

reasoning process is inherently random, even though the final prediction is stable. Since

the performance of lasso, CART, SVR and RF models are comparable, one would typ-

ically choose either lasso regression model or CART. We now investigate the stability
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Figure 3.14: Variation in feature weights of top 20 features in lasso regression for mod-
elling patient outflow. Figure plots mean feature weight with standard deviation for
100 bootstraps of training data.

of lasso and CART to judge whether these models are reproducible.

We first perturb the original training data using bootstrap method of sampling with

replacement. The lasso model was subjected to 100 bootstraps. The top features selec-

ted by lasso exhibited significant variation in weights. This variation is illustrated in

Figure. 3.14. We see that, except for the top 2 features, all other weights have a possib-

ility to reduce to zero during a training run. Thus these features can be dropped when

the model is re-trained, causing instability in feature sets. We also measured the correl-

ation between feature ranking using Spearman’s correlation. The 100 ranked features

from lasso model returned a correlation score of .06, indicating that there is minimum

correlation between feature ranks selected during each run of lasso.

When looking at CART, each bootstrap of training data resulted in a different decision

tree. We have illustrated this in Figure. 3.15 - 2 different tree architecture resulting from

two bootstraps of our reduced training set. The instability of decision tree algorithm -

producing significantly different hypothesis from training sets that vary slightly - have

been well studied in literature (Turney, 1995; Li and Belford, 2002; Dwyer and Holte,



3.4. Results 80

Figure 3.15: Decision trees resulting from two different bootstraps of training data with
reduced set of features.

2007). Turney (1995) when studying the effects of yield from a manufacturing process

using decision trees noted:“The engineers are disturbed when different batches of data from
the same process result in radically different decision trees. The engineers lose confidence
in the decision trees, even when we can demonstrate that the trees have high predictive
accuracy.” Also, deep decision trees have a tendency to overfit, due to their low bias

and high variance. This high variance is reduced in random forests by bagging an

ensemble of decision trees. However, the bagging process introduces bias and loss of

interpretability (Hastie et al., 2001b). This is because aggregating methods such as

bagging are designed to stabilize predictions and ignore decision rules. In this process,

it becomes difficult to interpret the exact rules for a given prediction (Li and Belford,

2002).

3.4.3 Sources of Instability

From our experiments, we see that the best performing models: Lasso, SVR and RF,

are not reproducible since they are inherently unstable. We had detailed the causes of

instability in Section 2.2.2.2. Applying those principles to our case study, we make the

following observations.

RF and SVR (with RBF kernel) models are unstable by model design. The primary aim

of these models is to reduce generalization error and improve performance. Interpretab-

ility and model reproducibility is overlooked when deriving such models. For example,
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Figure 3.16: Distribution of discharges per day.

RF model is built from an ensemble of randomly sampled decision trees during boot-

strap. Each node in the forest is grown using a random input or combination of inputs.

This randomness minimizes the data correlation and helps increase accuracy (Breiman,

2001). Hence, different training run results in a different RF model, although accur-

acy remains the same. On the other hand, the SVR model uses an RBF kernel which

transforms the input vectors into an infinite dimensional space. The features lose their

physical meaning, and the model loses interpretability and reproducibility.

Linear models are preferred for clinical prediction due to their interpretability and

reproducibility. However, the lasso model in our case study displayed significant in-

stability due to the nature of medical data. The discharge data extracted from patient

records was characterized by: (i) variation in data, and (ii) correlation in data.

Variation in training data could lead to unstable models. Patient length of stay is inher-

ently variable, partly due to the complex non-linear structure of medical care (Harper

and Shahani, 2002). In this study, we have used administrative data from a hospital

database. Such data is often characterized by variations in recording, redundancy and

irregularities. This could be attributed to management of hospital processes such as

ward rounds, inpatient tests, and medication. The non-linear nature of these processes

contributes to unpredictable length of stay even in patients with similar diagnosis. The

number of discharges from a ward is strongly related to the length of stay of the current

patients in the ward. Hence, the variability in ward-level discharges is compounded by

the variability in individual patient length of stay. In our study, the daily discharge pat-
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Figure 3.17: Correlations among features of patient flow data.

tern from ward shows great variation for each day of week, as illustrated in Figure. 3.16.

Further, correlations among features can also lead to model instability in sparse linear

models and decision trees. The correlation plot for our data in Figure. 3.17 reveal

significant feature interactions. We must consider such interactions during learning

stage to stabilize our model.

3.5 Discussion

This chapter set out to explore the challenges in obtaining a prediction model from

hospital data that is interpretable and reproducible. Sparsity promotes interpretability

while stability ensure reproducibility. We compared three linear and four non-linear

approaches to modelling next-day ward discharges. Our case study highlights the fol-

lowing observations. First, high performing models such as random forests and support

vector regression are highly non-linear, complex and are not interpretable. The SVR

kernel maps the features into a higher dimensional space during the regression process.
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Hence, the physical meaning of the features is lost, making it difficult to interpret the

model. The nonlinear SVR kernel computes similarities between data points. With

lots of features, it is close to impossible to judge the features responsible for prediction.

In fact, features are often treated equally in kernels, making it difficult to assess feature

contributions.

By design, random forests are unstable in parameters and it is difficult to trace the exact

reasoning behind predictions. RFs are based on hundreds of decision trees, each of

which is randomly generated. Hence it is very difficult to quantify the contribution of

each tree, and the variables. Although relative variable importance can be computed,

we still cannot quantify the effect on output.

One might argue that model reproducibility and generalization is more important than

performance (Haury et al., 2011; Johansson et al., 2011; De Bock and Van den Poel,

2012). Though model accuracy and discrimination are important, for decision support

and care management, a model also needs to be stable in choosing the risk factors and

weights associated with its predicted risk score. The factors selected by the model are

often subjected to further analysis and study to understand the underlying causes of

disease and modify patient intervention. Hence, when the selected risk factors change

during each training run, they lose validity and the model cannot be clinically accepted

(Saeys et al., 2008; Zhou et al., 2013).

3.6 Conclusion

The patient flow case study employed administrative data recorded over 5 years. The

feature extraction process was simple since the data contained numeric variables as ward

admission/discharge statistics and categorical variables such as types of wards visited.

These statistics were aggregated into distributions for each day.

For the rest of the thesis, we will look at more complex scenarios where data includes

both administrative and clinical information. Our focus will be to stabilize readmission

models derived from electronic medical records (EMR). The features in such data vary

over time requiring advanced more sophisticated feature extraction. We will be dealing

with patient cohorts with almost twice the number of features than sample size. Patient
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data will have missing entries, and will be of variable length. The clinical data will also

exhibit high correlation among features due to related diagnosis, co-occurring diseases

and related medical procedures.

A small number of succinct features offer better interpretability and stability of these

features ensure reproducibility. To this end, we will focus on sparse linear models for

clinical prediction. We use the two most popular models in medicine because of their

ease of interpretability: logistic regression and cox regression. To ensure sparsity, we

use lasso regularization. Our case study, in line with similar studies (Austin and Tu,

2004; Ng, 2004; Lin and Lv, 2013), illustrated that automatic variable selection using

lasso leads to unstable models. In the following chapters, we illustrate strategies to

overcome instability.

3.6.1 Stabilisation Strategies

We now present a general framework for stabilizing lasso models. We shall use this

framework throughout our thesis to suggest extensions to lasso regularization to ensure

model stability. We formulate the framework as follows.

Sparse generalized linear models take the form f(x) = wT x subject to
∑N

i=1 |wi| ≤ α,

where w ∈ R
N is the model parameter derived from data: x ∈ R

N . Here, α is the

sparsity controlling parameter, typically enforced using lasso regularization (Tibshir-

ani, 1996). More formally, let D = {xm, ym}M

m=1 denote the training data, where

xm ∈ RN denotes the high dimensional feature vector of data instance m, and ym is

the outcome (for example, the occurrence of future readmission). If L(w|D) is a linear

loss, we propose a stability component RD(w) to modify lasso regularization as:

Lloss =
1

M
L (w|D) + α

N∑

i

|wi| + RD(w) (3.4)

where α > 0 is the penalty controlling the sparseness of the feature weights. Under

lasso, weights of weak features are driven towards zeros, and thus the resulting model is

sparse. The stabilization term RD(w) ensures statistical sharing of feature weights. In

the following chapters, we explore the following ways in formulating RD(w). Specific-
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ally, we use three strategies:

• Strategy I (detailed in Chapter 4): We exploit the inherent domain semantics to

strengthen data-driven findings. We use domain knowledge, specifically the tem-

poral nature of events and the hierarchical nature coding schemes to formulate

RD(w). Here, RD(w) is not data dependant.

• Strategy II (detailed in Chapter 5): We use data-driven techniques by deriving

statistical feature relations to formulate RD(w). We look at the most popular

statistical measures for RD(w) and compare the effects on stability.

• Strategy III (detailed in Chapter 6): Finally, we exploit higher-order regularities

and use the principles of self-taught learning to derive RD(w).

We proceed to discuss the first strategy in the following chapter.



"Dont let them change you. Or even re-arrange you."

Bob Marley, "Could you be loved"

Chapter 4

Stabilization I: Knowledge-Driven

tability promotes reliability – in performance, estimation, or interpretabil-

ity. Our previous chapter demonstrated instability in a simple clinical pre-

diction model derived on few hundred features from administrative data. We

concluded our case study by proposing a stability component RD(w) (as in (3.4)) to

modify the sparse feature selection using lasso. In this chapter, we present our first

model stabilization strategy using domain knowledge to strengthen data-driven model

discovery. Similar to the case of flow forecasting in the previous chapter, our primary

data source is Electronic Medical Records (EMR). But we consider an even more chal-

lenging setting: for similar data size, we now have thousands of features (instead of

hundreds). In lieu of well-designed features, we call for semi-automatic feature extrac-

tion methods.

In the following chapters, we use both administrative and clinical information of pa-

tients from hospital EMR records. EMR data is temporal, strongly correlated and

high dimensional (He et al., 2013). Each of these aspects poses significant challenges

to data extraction and model building. High dimensional data calls for sparsity indu-

cing feature selection (Ye and Liu, 2012). However, automatic feature selection, par-

ticularly in clinical data, has been known to cause instability in features resulting in

non-reproducible models (Austin and Tu, 2004). This problem is further aggravated by

strong correlations in EMR data. Sparse models often pick the strongest features from

the chosen sample-set (Zou and Hastie, 2005). Under data re-sampling, an alternate

feature from the correlated pair could be selected causing significant variations to the
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Figure 4.1: Feature instability due to data resampling. Mean weights vs standard de-
viation for the top 50 features selected by a lasso-regularized logistic regression model
under bootstraps.

feature weights during each training run (Xu et al., 2012). This problem is illustrated

in Fig. 4.1 – the mean weights of the top 50 predictors from routine EMR data for

6 months readmission due to heart failure is shown. The top predictors selected by

lasso-regularized model (Tibshirani, 1996) have large variance in feature weights under

bootstraps (see Fig. 4.1) - thus rendering them unusable in a clinical setting.

Here, we proceed to model RD(w) using two key observations in medical domain.

First, events that occur during consecutive time periods can be related. Second, dia-

gnosis and procedure codes display a hierarchical nature, where codes that share the

same prefix belong to the same category. For prognosis, we use logistic regression

model for 6 month readmission after heart failure - a deadly and costly disease, with

majority of patients returning within a year after discharge. The main contributions of

this chapter are summarized as follows:

1. We use temporal relations in events and the hierarchical nature of diagnosis codes

to construct a feature graph that encapsulates temporal and semantic correlations

among features in patient records.

2. Using this knowledge driven feature graph, we apply a graph Laplacian regular-

izer to model RD(w) in (3.4). The graph Laplacian encourages pairwise similar-

ity among related features.
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3. Our proposed methodology demonstrates improved feature selection stability as

measured using Consistency index and Jaccard index, and improved model estim-

ation stability as measured by Signal-to-Noise ratio.

4.1 EMR Data Extraction and Challenges

The first step in building a clinical prediction model is extracting features from the hos-

pital database. For all experiments in this thesis, we collected data from BarwonHealth,

a regional health service provider in Victoria, Australia. The provider has been serving

more than 350, 000 residents. Ethics approval was obtained from the Hospital and Re-

search Ethics Committee at Barwon Health (number 12/83) and Deakin University.

We also obtained written consent from patients in storing and using their information

for research.

Patient details were stored in EMR databases. We were provided a single point of

access to query patient records from the database of the hospital. For our study, we

collected the retrospective data of heart failure patients via this access. The resulting

cohort contains 1, 405 unique patients with 1, 885 admissions between January 2007

and December 2011. We identified patients with heart failure if they had at least one

ICD-10 diagnosis code I50 at any admission. Patients of all age groups were included

whilst inpatient deaths were excluded from our cohort. Among these patients, 49.3%

are male and the median age is 81.5 at the time of admission. We focused our study

on emergency attendances and unplanned admissions of patients. The readmission of

patients was defined as an admission within the horizons of 1, 6 and 12 months after

the prior discharge date.

4.1.1 Multi-granular Feature Extraction

A typical EMR consists of demographic information (e.g., age, gender and postcode)

and time-stamped events (e.g., hospitalizations, ED visits, clinical tests, diagnoses, patho-

logies, medications and treatments). It includes International Classification of Disease
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Figure 4.2: An illustration of patient clinical events (as red) over time, which is convo-
luted using one-sided filter bank. Adapted from (Tran et al., 2013)

10 (ICD-10) scheme1, Australian invention coding (ACHI) scheme2, Diagnosis-Related

Group (DRG) codes, detailed procedures and discharge medications for each admission

and ED visit. Our feature extraction process from EMR transforms inpatient time-

stamped events into a high-dimensional feature vector at index discharge. Such events

can be hospitalizations, clinical tests, diagnoses and treatments. For example, the pres-

ence of an ICD code can be considered as an event. For patient demographics, some

events are time invariant (name, gender). For demography information as postcode, a

change in such information is treated as an event. Patient age can be divided into cat-

egories or bands and a change is recorded (event) when the patient age moves from one

category to the other. Finally, for continuous events (for example: treatment episodes),

we model the event as the duration of that entire episode. A representation of such

patient history is illustrated in Figure 4.2.

Extracting features from such data presents several problems. The challenges are that

recorded events are sparse and irregular. As diseases progress in different paces, it is

important to take multiple time scales into account. In addition, recent critical events

carry more weight than mild conditions observed far back in the history. To this

end, we employ the one-sided convolutional filter bank recently introduced in (Tran

et al., 2013). The filter bank summarizes event statistics over multiple time periods and

granularities: (0-3), (3-6), (6-12), (12-24), (24-48), (48-72) months.

1http://apps.who.int/classifications/icd10
2http://www.aihw.gov.au/procedures-data-cubes
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Figure 4.3: Example of correlations in EMR data: (a) clinical correlations (b) correla-
tions among administrative events

4.1.2 Challenges for Model Stability

Instability in clinical prediction is largely due to the nature of data stored in hospital

databases. In this section, we briefly look at the nature of data extracted from our hos-

pital database. The primary purposes of EMR are setting objectives, planning patient

care, documenting the delivery of care and assessing the outcome of care (Häyrinen

et al., 2008). A typical EMR contains unstructured narrative text, structured coded

data, and time stamped events. With so much diverse information, the quality of data

recorded is also important (Thiru et al., 2003). The nature of data and recording process

contributes to model instability due to the following reasons.

First, there is a possibility of data redundancy – the diseases, interventions, medica-

tions may be recorded in more than one way. Also, some patient records may have

incomplete entries. The quality of data recording may be poor resulting in lack of pre-

cise information. Finally, the most common cause of instability is correlation among

features. EMR data is characterized by high correlation among clinical and adminis-

trative events . For example, emergency admission events will be correlated with ward

transfers, diagnosis of co-occurring diseases (heart failure and diabetes) will have high

correlation, pathological measurements (amount of Sodium and Potassium in the body)

will be related. This is illustrated in Figure. 4.3.
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4.2 Feature Graph Construction

In this section, we present our first technique to stabilize lasso in the presence of high-

dimensional correlated data. To ensure correlated features are selected together, we

resort to regularized learning with network of features. We propose to construct this

feature network using prior domain knowledge about which features are correlated and

therefore should result in similar weights (w in (3.4)). To this purpose, we construct a

feature graph with nodes as features and edges representing feature similarity.

Additional regularization of the sparse learning model by RD(w) penalizes each wi

by the amount it varies from the average weight of its neighbouring feature weights.

Similar to recent methods for incorporating domain knowledge for regularization, our

technique can be viewed as constructing a Gaussian prior with non-diagonal covariance

matrix on model parameters:w (Krupka and Tishby, 2007; Sandler et al., 2008; Li and

Li, 2008). However, the covariance matrix is induced from a network.

To construct this network, we exploit two inherent feature associations in patient re-

cords: association in time, and association among diagnosis codes. We detail each of

these in the following sections.

4.2.1 Temporal Structures

First, we look at temporal associations in features. Most events (clinical and adminis-

trative) in patient records are temporal. Some events such as heart attacks occur for a

short amount of time, where as other events such as presence of comorbidities can be

long-term. Thus our feature extraction process takes multiple time scales into account

(as described in Section 4.1.1). The feature extraction process results in patient events

summarized over multiple time scales. Hence when we have identical events over con-

secutive time periods, we consider them to be related and propose these events should

have similar weights.
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Figure 4.4: Format of ICD-10 code

4.2.2 Hierarchical Structures

The second inherent association in patient records is due to the nature of diagnosis

codes. An important component in patient medical records are the diagnosis codes.

These codes identify the reasons for patient encounter, such as: type of diseases, dis-

orders, symptoms and injuries. Our data confirms with the latest coding standard of

ICD-10, which supports over 16, 000 codes for describing patient condition. These

codes follow a logical hierarchy for classification purposes. The general structure of

ICD-10 coding scheme is as follows. Each code can consist of three to seven charac-

ters. They could be alphabets, numbers or alphanumeric. The first three characters

represent the category of patient encounter, followed by a decimal point. All following

characters identify the specific details of patient encounter. Figure. 4.4 illustrates this

structure. The coding scheme follows a defined hierarchical structure, with additional

characters used to resolve the finer specifications of patient encounter. For example,

the ICD-10 codes for types of injuries to elbow and forearm is as below:

S50–S59 Injuries to the elbow and forearm

S52 Fracture of forearm

S52.5 Fracture of lower end of radius

S52.52 Torus fracture of lower end of radius

S52.521 Torus fracture of lower end of right radius

S52.521A Torus fracture of lower end of right radius, initial encounter, closed fracture

S52.6 Fracture of lower end of both ulna and radius

Hence all diagnosis codes prefixed with S5 are related to elbow and forearm injuries.

We can exploit this hierarchical format to construct a feature network of patient dia-

gnosis codes.
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Figure 4.5: Grouping ICD-10 diagnosis codes in 1885 heart failure patients, using hier-
archical coding relations. Diagnosis codes with the same 2 letter prefix are connected
together.

4.2.3 Constructing RD(w)

We propose to build a feature graph by identifying connections between features that

observe temporal (as in Section 4.2.1) and structural relations (as in Section 4.2.2). Two

features are connected if they satisfy one of the following conditions. The first condi-

tion checks if the codes are identical and the periods are consecutive. This represents

the disease progression over the time, for example, from the period of 3-6 months to the

period of 0-3 months before the discharge. The second condition inspects hierarchical

relationship in diagnosis codes – the periods are identical and the codes share the first

two characters. This captures the diagnostic or therapeutic relations. For instance, two

related features are the ICD-10 code I25 (chronic ischaemic heart failure) and I21 (acute
myocardial infarction). The grouping of ICD-10 diagnosis codes for a heart failure

cohort of 1885 patients is shown in Figure 4.5.

These groupings can be considered as prior knowledge derived from the nature of med-

ical domain, and can be used to construct a feature graph that models RD(w) as follows.

Let A ∈ R
p×p be the incident matrix of the feature graph, i.e., Aij = 1 if feature i and
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j are related and Aij = 0 otherwise. Sharing statistical strength between any two re-

lated features is realized by enforcing the similarity in their weights. We model the

graph-regularizing term RD(w) in (3.4) as:

RD(w) =
1

2
β
∑

ij

Aij (wi − wj)
2 (4.1)

where β > 0 is the correlation coefficient controlling the effect of the graph-based reg-

ularization. The graph-regularizer in (4.1) can be simplified as: 1
2

∑
ij Aij (wi − wj)

2 =

=
∑

i

(∑

k

Aik

)
w2

i −
∑

i

∑

j

Aijwiwj

RD(w) = w′Lw (4.2)

where L is the Laplacian matrix of feature graph A, i.e., Lii =
∑

j Aij and Lij = −Aij

(Chung, 1997).

In (4.2), RD(w) is a Laplacian regularizer that penalizes each edge of feature graph

A equally. This formulation of RD(w) combats the instability in several ways. First,

features of the same type tend to cluster, and thus their weights are more difficult to vary

as a whole. Weaker features can borrow the statistical strength from the stronger ones.

Second, two strongly correlated features must either be selected or jointly suppressed

by the lasso.

We proceed to apply this regularization scheme for readmission prediction of heart fail-

ure cohort using logistic regression. The following section explains our model frame-

work.

4.3 Model Framework

We apply our proposed knowledge driven stabilization to the task of predicting heart

failure readmission in 6 months as follows. Our framework consists of a training phase
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Feature extraction

Model training

Feature graph

construction

Learnt model

Predictions Temporal validation

Feature extraction

ICD-10, ACHI
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Figure 4.6: The workflow diagram of the framework for deriving graph-stabilized pre-
diction models from Electronic Medical Records. Temporal feature relations and cod-
ing hierarchies were used to construct the feature graph (Fig. 4.8).

using data from the past and a validation phase using new admission data from the

future (Fig. 4.6 for the workflow diagram). Our model development consists of three

sub-phases: (i) multi-granular temporal feature extraction (as detailed in Section. 4.1.1)

(ii) feature graph construction based on the temporal relations and coding hierarchies

(as detailed in Section. 4.2.2), and (iii) model training with feature selection and feature

graph regularization.

We use sparse logistic regression to model readmission in 6 months. We illustrate this

by revisiting (3.4), as follows. Let D = {xm, ym}M

m=1 be the training dataset in which

xm ∈ R
N denotes the high-dimensional feature vector of data instance m and ym ∈

{0, 1} is the binary outcome (where 1 indicates the occurrence of future readmission).

Our aim was to model the predictive distribution P (ym | xm; w) where w ∈ R
N are

feature weights. Hence the loss function L (w|D) in (3.4) becomes the logistic loss

function (as detailed in Section 2.1.5.2), while the stabilization scheme RD(w) is as

given in (4.2). Our final model can be written as:

Lloss (w|D) =
1

M
Llogit (w|D) + α

N∑

i

|wi| +
1

2
βw′Lw (4.3)

The objective function in (4.3) is convex (Wainwright et al., 2007; Lee et al., 2006; Boyd
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and Vandenberghe, 2004). We applied the L-BFGS algorithm (Liu and Nocedal, 1989)

for parameter estimation.

4.4 Data and Validation

Our model and baselines were derived on the heart failure cohort introduced in Sec-

tion 4.1. All models were built from a training set and validated on a testing set. The

training and testing data were separated in time. In other words, all models were ex-

ternally validated in time. Patients discharged prior to 1st September 2010 were used

for training, and a separate set of those discharged afterwards for testing (see Fig. 4.7).

This validation strategy was chosen because it better reflects the common practice of

training the model in the past and using it in the future. According to Altman et al.

(2009), even though there are similarities in clinical techniques for patients in training

and testing cohort, the testing data is independent of the data and process on which the

model was derived.

Jan 2007 Sep 2010 Dec 2011

Training data
1,088 unique patients;

1,415 index admissions

Testing data
317 unique patients;

360 index admissions

p
a
ti
e
n
t's

 U
R

index admission

index readmission

Figure 4.7: Training and test data: Time of hospitalization (x-axis) and unique patient
id (y-axis), showing patient and temporal split. The temporal split of training and test
data is made on 1st September 2010. The test and training set are disjoint in chosen
patients.

Model performance was evaluated using measures of sensitivity (recall), specificity,

precision, F-measure and AUC (area under the ROC curve) with confidence inter-

vals based on Mann-Whitney statistic (Birnbaum et al., 1956). We used a predefined

threshold to predict readmissions. The value of the threshold was chosen to maxim-

ize the F-measure computed from the training data. The details of the training and
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Derivation Validation
Number of admissions 1415 369
Unique patients 1088 317
Gender:

Male 541 (49.7%) 155 (48.9%)
Female 547 (50.2%) 162 (51.1%)

Mean age (years) 78.3 79.4
Length of Stays:

1-4 days 668 (61.4%) 209 (65.9%)
5 or more days 420 (38.6%) 108 (35.1%)

Table 4.1: Training and validation cohorts characteristics.

validation cohort are shown in Table 4.1.

The stability of selected feature subsets from different regularized models were meas-

ured using Consistency index (Section 2.2.3.2) and Jaccard index (Section 2.2.3.2). Cor-

respondingly, the stability in feature weights were measured using Signal-to-Noise ratio

(Section 2.2.3.2)

4.4.1 Ranking Features by Importance

Features were ranked by their importance. For each feature, importance was calculated

as the product of its weight and the standard deviation in the training data, as in Fried-

man and Popescu (2008). We normalized the feature importance measures in the range

of [0,100].

4.5 Experiments and Results

Our proposed model was trained using the training data and validated on the valida-

tion cohort (as given in Table 4.1) for goodness-of-fit and model stability. The feature

extraction process (Sec. 4.1.1) resulted in 3, 338 features. The lasso-regularized regres-

sion model (Sec. 3.3) resulted in 142 risk factors which were positively predictive of

unplanned rehospitalization following heart failure discharges.
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Figure 4.8: Feature sub-graph of top risk factors. Numbers in brackets are time in-
tervals, measured by months, before the index discharges. Factors selected are: Male;
recent length of stay (LOS)); heart failure (I50, Comord_CHF ); recent ischaemic heart
diseases (angina pectoris (I20), acute myocardial infarction (I21), chronic ischaemic
heart disease (I25)); any time rare diagnoses (Rare_DIAG); time stayed in emergency
department (EDTIME); frequencies of emergency attendance (ED), unplanned admis-
sions (EDWARD, EDADMIT ), admissions (ADMIT ), diagnoses (DIAG) and procedures
(#PROC ); and disorders of lipoprotein metabolism (E78).

Graph-based regularization (Sec. 4.2) resulted in sub-graphs being selected as a whole,

as shown in Fig. 4.8. The question is how does it affect model performance and feature

stability against data resampling?

4.5.1 Model Performance

The model performance was measured for different values of the lasso regularization

term α and the Laplacian regularization term β. Table 4.2 reports other measures

(sensitivity, specificity, precision, F-measure and AUC). Overall, the discriminative

measures were not sensitive of the Laplacian factor β but depended critically on the

lasso factor α. Fig. 4.9a displays the AUC in finer details for α. A good discrimination

was achieved at α = .001 and β = .01, where external validation resulted in an AUC of

0.66 (95%, CIs: [0.6, 0.71]). For the validation cohort, the Laplacian stabilized model

was able to detect more true readmissions (sensitivity = 42.22%) than lasso regular-

ized model (sensitivity = 38.33 %). The overall classification accuracy for Laplacian

stabilized model was 59.6% as opposed to 57.9 % for lasso regularized model.
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Figure 4.9: Effect of graph stabilization on model performance.

Hyperparam. Sens./Rec. Spec. Prec. F-Meas. AUC

α = β = 0 0.49 0.59 0.54 0.51 0.54

α = .001
β = .00 0.41 0.79 0.62 0.51 0.62
β = .01 0.42 0.79 0.62 0.51 0.66
β = .03 0.44 0.76 0.66 0.53 0.66

α = .002
β = 0.0 0.49 0.73 0.66 0.55 0.65
β = .01 0.49 0.73 0.65 0.55 0.65
β = .03 0.48 0.72 0.62 0.54 0.64

α = .003
β = 0.0 0.46 0.76 0.64 0.54 0.62
β = .01 0.46 0.76 0.64 0.54 0.62
β = .03 0.45 0.75 0.63 0.53 0.62

α = .004
β = 0.0 0.44 0.77 0.66 0.53 0.63
β = .01 0.44 0.77 0.66 0.53 0.63
β = .03 0.43 0.78 0.65 0.52 0.63

α = .005
β = 0 0.46 0.81 0.69 0.55 0.63
β = .01 0.46 0.81 0.69 0.55 0.63
β = .03 0.45 0.82 0.69 0.55 0.63

Table 4.2: The performance of model for various settings of lasso regularization term
(α) and Laplacian regularization term (β ) after model averaging from 50 bootstraps.
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Hosmer-Lemeshow test

Model regularization χ2 df Significance

Lasso 26.50 8 .0009

Lasso + Laplacian 7.23 8 .513

Elastic Net + Laplacian 6.25 8 .619

Table 4.3: Measuring goodness-of-fit for logistic regression (df = degree of freedom).
Small χ2 values with large significance (p > .05) indicate better fit.

4.5.1.1 ROC Curve Analysis

The area under the ROC curve (AUC or c-statistic) can be used to compare different

models fitted to the same data. As shown in Fig. 4.9b, the application of Laplacian sta-

bilization marginally improved the AUC over the lasso model. However a combination

of elastic net and Laplacian was not able to improve the model discrimination.

4.5.1.2 Goodness-of-fit Statistics

We now compare the goodness-of-fit of models using Hosmer-Lemeshow (HL) test stat-

istic. We divided our validation cohort into 10 groups defined by increasing order of

estimated risk. Nine groups contained 37 observations, while one group contained 36.

The expected frequencies in each group was more than five. Hence all conditions for

reporting the HL test statistic was met (Peng et al., 2002). Both Laplacian and com-

bination of elastic net and Laplacian regularization resulted in small values of HL test

statistic with p > .05 suggesting that these models fit the data quite well (see Table 4.3).

4.5.2 Stability against Data Re-sampling

During this experiment, the lasso regularization term was fixed at α = .001, corres-

ponding to the value for maximum AUC of the model. Thus, feature stability through

graph regularization is entirely controlled by the hyperparameter β in (4.2). The ef-

fect of β on feature stability is demonstrated in Fig. 4.10a. Both Consistency Index

and Jaccard Index confirmed improvements in feature stability with increasing graph
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(b) Model estimation stability as measured by signal-
to-noise ratios (SNR) of feature weights. High value
of SNR indicates more stability.

Figure 4.10: Effect of EMR graph regularization
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Figure 4.11: Effect of different regularizations on mean feature weights

penalty.

Next, we compared the stabilizing effect of regularization schemes. The feature graphs

were applied for lasso and elastic net, creating four alternatives – lasso (baseline, no

stabilizing), elastic net, Laplacian graph, and the combined elastic net + Laplacian

graph. The hyperparameters were α = .001, β = .03, and λ = .001 for elastic net.

• For model estimation stability, the signal-to-noise ratios (SNR) of top individual

feature weights are presented in Fig. 4.10b. Elastic net and Laplacian regulariz-

ation both reduce weight variance significantly over the baseline lasso, and the

Laplacian performs slightly better. With the combination of the elastic net and
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(a) Consistency Index. (b) Jaccard Index.

Figure 4.12: Feature selection stability as measured by (a) Consistency Index and (b)
Jaccard Index for 6-month prediction. The plot compares the similarity in feature sub-
sets generated by models with and without different stabilization under data variations.
Larger indices imply more stability.

Laplacian, the effect is greatly amplified. At 95% CIs (approximately ±1.96 std),

lasso regularization identified 2 features, Laplacian identifies 12, elastic net 16

and the combination of Laplacian+elastic net regularization identified close to

50 features. Figure. 4.11 show a finer visual representation of the effect, clearly

demonstrating the reduction in weight variance using the graph regularization.

• For feature selection stability, Consistency Index and Jaccard Index are reported

in Figure 4.12. Feature graph regularization consistently outperformed elastic

net regularization for the top ranked features. Again, the combination of feature

graph and elastic net resulted in the most stable set of features for all subset sizes.

4.6 Discussion

Although stability in feature selection is gaining importance (Austin and Tu, 2004;

Kalousis et al., 2007; Khoshgoftaar et al., 2013), measuring the robustness of selec-

ted features in clinical prediction models has not been studied extensively. This is es-

pecially important in EMR-derived models due to its high-dimensional, dynamic and

implementation-dependent nature. In practice, a stable model will allow the clinician

to have more confidence on the selected features and their predictive importance.
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In this chapter, we have introduced feature graphs derived from domain knowledge and

Laplacian regularization to model RD(w) for regression models to enhance stability in

feature selection. Laplacian feature graphs have been used in bioinformatics (Li and

Li, 2008; Cun and Fröhlich, 2013) to improve feature stability. The work (Cun and

Fröhlich, 2013), for example, employs a filter-based method where the feature selec-

tion does not occur during learning of model parameters. The feature graphs were of-

ten constructed based on prior knowledge of interaction between features (e.g., genes)

available from online databases. In our method, the model estimation is stabilized us-

ing a feature graph constructed from two existing feature associations in the training

data. We also perform extensive numerical validation of model stability in both model

estimation and feature selection.

Our experiments confirm that stability of a high dimensional linear clinical prediction

model can be improved by using temporal and structural relations in EMR database.

Our EMR feature graph regularisation resulted in 22% increase in feature subset stabil-

ity and 40% increase in model estimation stability when compared to elastic net reg-

ularisation. The combination of Laplacian regularization with existing state-of-the-art

binary elastic net resulted in most stable features without hurting the model discrimin-

ation. Thus with Laplacian regularization, more features can be confidently selected for

prediction (Sub-fig. 4.10b). This is useful in the EMR setting because each patient typ-

ically has limited number of active features despite the huge number of features across

the database. Having more confident features would make explanation for individual

prediction easier.

With regards to performance, Laplacian regularization along with binary elastic net

resulted in a model with a better fit against the validation cohort (as per Table 4.3). The

marginal increase in sensitivity and classification accuracy in Laplacian regularization

can be attributed to grouping of correlated features.

With regards to feature stability, the improvement upon the elastic net demonstrates

that feature graph is complementary to ridge regression. This could be explained by

the fact that while ridge regression tends to encourage all weights to be similar and

regressed toward zero, graph regularization only requires pairwise smoothness.

Our EMR-derived model achieved a discriminatory capacity (AUC= 0.66 for 6 months)

comparable with or better than existing prediction models for rehospitalization follow-
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ing heart failure discharges (Ross et al., 2008). The model is derived from free available

administrative and medical data, making it readily implementable into existing EMR

systems. Interestingly, the top predictors discovered by our model are consistent with

the existing clinical studies. Our model ranked male gender highest on the importance

scale (Chin et al., 1997; Krumholz et al., 1997; Amarasingham et al., 2010). Looking

at the medical factors, the strong predictors include prior history of hospitalization

(past emergencies, past emergency attend time), which are consistent with those in

(Chin et al., 1997; Krumholz et al., 2000, 1997; Felker et al., 2004; Amarasingham

et al., 2010). The comorbidities observed were occurrence of coagulopathy in the past

year and occurrence of complicated diabetes in the past three months. Other major

predictors for heart failure rehospitalization are heart failure (Chin et al., 1997; Krum-

holz et al., 1997, 2000; Felker et al., 2004), lipoprotein metabolism disorders, angina

pectoris, cataract, and chronic ischaemic heart diseases. Past number of procedures in a

period of 3 months to 2 years was also ranked high.

The discrimination power, the automatic feature selection and stability control capa-

city suggest that the model can be used as a fast and inexpensive screening tool to select

patients and risk factors for more in-depth clinical investigation. For example, through

selected feature subgraphs, related risk factors can be collapsed to achieve more gener-

ality. It could serve as a first step in bridging the translational gap between bench and

bedside (Amarasingham et al., 2010) . We wish to emphasize that the entire predic-

tion process is transparent as the model is capable of explaining what risk factors are

involved in a risk estimate.

4.6.1 Limitations

We acknowledge the following limitations in our study. First, since our main focus

was on stabilizing a high dimensional model, we did not concentrate on improving the

accuracy. In our experiments, graph regularization contributed very little to improv-

ing model discrimination. Second, we did not investigate more complex relationship

between variables in EMR data when building feature graphs. The data could have rich

structures and high-order regularities which can be exploited to model a more robust

RD(w), which may further enhance sharing of statistical strength between correlated

features. Third, the model evaluation was not tested independently by other research-
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ers. However, we have used temporal validation on unique patients, and it matches the

common practice of learning models using past patients and predicting outcomes for

future patient. Fourth, clinical measurements had a high degree of missingness, and

hence were discarded. In review of these limitations, we believe our derived model is

conservative and may have underestimated the AUC of the validation cohort.

4.6.2 Conclusion

In this study, we tackle the seldom studied but notorious problem of feature instability

in clinical prediction models. Stable model features translate to proper understanding

of risk factors, and hence better confidence in prognosis. Our approach consists of

a novel technique to mitigate the problem by utilizing feature graphs that link similar

conditions/interventions and the same condition/intervention over multiple time peri-

ods. Our extensive experiments in predicting 6-month readmission in a heart failure

cohort confirm that the application of feature graphs increases the stability of the selec-

ted feature subset and reduces the variation in feature weights. The performance of the

readmission models derived from administrative hospital data is competitive against

existing models developed on clinical data. Further, since our approach is based on

commonly available administrative attributes, models can be readily implemented on

top of existing EMR systems and portable across cohorts and institutions using similar

EMR databases. We believe our stabilizing framework provides the first proof of concept in
utilizing feature graphs in clinical setting and numerically validating stability for a clinical
prediction model.

A key assumption in building the feature graphs was that diagnosis codes with the

same prefix have similar contributions towards patient outcome. This may be a strong

assumption, especially when the diagnosis codes are long and resolve to specific condi-

tions like first encounter and subsequent encounters. We have to look beyond such se-

mantic relations and explore statistical correlations and higher order regularities among

patient features. Also, medical cohorts are characterized by small sample sizes with high

dimensionality. In such scenarios, transfer learning principles can be applied to transfer

domain knowledge among related cohorts. We will address these issues, one-by-one in

the following chapters.



"After all, we are nothing more or less than what we choose to reveal"

Francis Underwood, "House of Cards"

Chapter 5

Stabilization II: Data-Driven

ata driven methods are guided by statistical relationships in the given data

and empirical evidence, rather than prior assumptions or hypothesis. In the

previous chapter, we used the inherent structural and temporal relationships

among diagnosis codes and events to stabilize model learning. Though we were able

to significantly improve model stability, we ignored statistical relationships among pa-

tient features. In this chapter, we hypothesize that underlying statistical relationships

in patient records can be efficiently exploited to stabilize high-dimensional clinical pre-

diction. Why do we believe this statistical relationship would help? To answer this

question, we need to analyse the source of instability.

Our data is characterized by large degrees of freedom while number of labels is limited.

The statistical relationship offers an additional source of information, which is derived

directly from the features, not the labels. Since there is much information hidden in

the features, we propose to use it to limit the degrees of freedom, and proceed to do so

by introducing a structural prior in the Bayesian framework. A good prior is known

to reduced the variance of the posterior, which is the distribution of feature weights

estimated by the model.

We begin this chapter by re-iterating our objective: stabilizing a high dimensional

model derived from routinely collected EMR data. We focus on minimizing the vari-

ance in feature subsets and model estimation parameters by proposing a regularizer

RD(w) to sparse model learning as in (3.4). As in the preceding chapter, we propose to
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build a feature graph with nodes as EMR features and edges representing feature rela-

tionship. But in difference with the previous approach, we now discover these feature

relationships from the given data. Specifically, we look at popular statistical measures

such as Euclidean similarity, Cosine and Jaccard similarity and even high dimensional

RBF similarity in building feature graphs. Features with similarity values greater than a

predefined threshold are connected with edge weight representing corresponding simil-

arity measure. As in the previous chapter, the exact value of threshold was determined

by maximising the F-measure from training data (Lipton et al., 2014). A random walk

regularization of the proposed graphs is used to stabilize a sparse Cox model that pre-

dicts time to readmission.

To test our hypothesis, we use an additional diabetic cohort along with the heart failure

cohort from the previous chapter. Diabetics and heart failure share many diagnosis

and comorbidities (Barrett-Connor, 2003) – presenting an interesting opportunity to

explore transfer learning of feature relationships. We argue that since the predictors are

related, the feature graph can be transferable. We measure feature stability using the

Consistency index and model estimation stability using signal-to-noise ratio (SNR).

In summary, the main contributions in this chapter are as follows:

1. Representation of medical domain knowledge as feature graphs that embed (i)

statistical correlations between features using Jaccard index (ii) aggregate of stat-

istical and semantic correlation among features (iii) correlations between features

transferred from a related cohort.

2. A random walk regularizer based on the proposed feature graphs to stabilize a

Cox model as opposed to the traditional Laplacian regularizer. While Laplacian

regularizer focuses on pairwise similarity, the random walk regularizer encour-

ages group-wise similarity.

3. Demonstration of improved feature stability as measured by the Consistency in-

dex and improved model stability as measured by signal-to-noise ratio (SNR) for

model regularization using proposed feature graphs. The stability measures were

compared with lasso, elastic net and Laplacian semantic EMR graph regulariza-

tion (introduced in the previous chapter) on a cohort of 1, 784 index admissions

in heart failure patients and 2, 370 index admissions in diabetic patients admitted

to a regional hospital in Australia.
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4. Demonstration of improved stability, using transfer learning on related cohorts.

Related cohorts like heart failure and diabetes share comorbidities and predictors.

Hence, the feature graph constructed from one cohort is used to stabilize the

model derived from related cohort. Stability is measured using the Consistency

index and SNR.

We begin by specifying our model framework. We then proceed to expand on different

methods for feature graph construction, formulate RD(w) with the best feature graph,

and finally explore transfer learning.

5.1 Model Framework

The framework of our proposed model is very similar to the setup used in the previous

chapter (as in Figure. 4.6). The features from patient records in EMR database are

extracted as detailed in Section 4.1.1. However, there are two key differences. First

we model readmission due to heart failure as a hazard function using Cox regression

(Section 5.2 ). Second, we model RD(w) using a random walk regularization or locally

linear embedding of a statistical graph derived from Jaccard similarity among features

in EMR data. We expand on these differences in the following sections.

5.2 Sparse Cox Model

We use Cox regression to model risk of readmission (hazard function) at a future time

instance, based on data from EMR. Unlike logistic regression where each patient is

assigned a nominal label, Cox regression models the readmission time directly (Vin-

zamuri and Reddy, 2013). The proportional hazards assumption in Cox regression

assumes a constant relationship between readmission time and EMR-derived explanat-

ory variables. The formulation for Cox regression incorporates censoring information.

In our data, we only had patients who were right-censored – these patients did not ex-

perience the event (re-hospitalization) for the duration of our study. Hence the survival

time of these patients can be considered to be at least as long as our study. To incorpor-

ate censoring information, we slightly modify our notations for model specification in
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this chapter as follows. Let D = {xm, ym}M

m=1 be the training dataset with M obser-

vations, ordered on increasing ym, where xm ∈ R
N denotes the feature vector for mth

index admission and ym is the time to next unplanned readmission. When a patient

withdraws from the hospital or does not encounter readmission in our data during the

follow-up period, the observation is treated as right censored. Let k observations be

uncensored and R(ti) be the remaining events at readmission time ti.

Since the data D is high dimensional (possibly N ≫ M ), we apply lasso regularization

for sparsity induction (Tibshirani, 1997). The feature weights w ∈ R
N are estimated

by maximizing the ℓ1-penalized partial likelihood:

Lsparse-cox =
1

M
L (w; D) − α

N∑

p=1

|wj| (5.1)

where ‖w‖1 =
∑

p |wp|, α > 0 is the regularizing constant, and L (w; D) is the log

partial likelihood (Cox, 1975) computed as:

L (w; D) =
k∑

i=1



w⊤xi − log


 ∑

l∈R(ti)

exp
(
w⊤xl

)






We propose to stabilize the sparse model in (5.1) using RD(w) from statistical correl-

ations in given data. The following section describes the various statistical relations

considered.

5.3 Formulating RD(w) using RBF Kernel

Radial basis function (RBF) kernels are quite popular in support vector classification

problems. In statistical learning theory, kernel functions are used to calculate the sim-

ilarity between given input. Given two vectors xi and xj , a radial basis function kernel

(K ) calculates similarity as:

K(xi, xj) = exp
−||xi − xj||

2
2

2σ2
(5.2)

where σ is a user defined parameter for controlling the “spread” of the kernel. When

xi and xj are similar, ||xi − xj|| is small. When σ > 0, vectors that are close will result
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in larger RBF kernel similarity than farther vectors. The RBF values take a bell-shaped

curve, where the width is controlled by the choice of σ. These values range between

zero and one (when xi = xj ), and hence can be interpreted as a similarity measure

(Vert et al., 2004). The RBF kernel in (5.2) projects the given input vectors into an

infinite dimensional space. Model learning can be regularized using the RBF kernel as

in (5.2) (Smola et al., 1998). Hence the final model becomes:

Lloss =
1

M
Lcox (w|D) + α

N∑

i

|wi| +
β

2
wKw′ (5.3)

Here, RD(w) = β
2
wKw′, which is the RBF regularization. This approach was recently

used by Vinzamuri and Reddy (2013) to improve feature selection from EMR data.

Unlike traditional SVMs where the kernel calculates similarity between data points,

here we calculate similarity between feature vectors.

5.4 Formulating RD(w) using Structural Regularization

To ensure selection of correlated features, Sandler et al. (2008) proposed regularization

using a network of features. We use a graph with nodes as features and edges corres-

ponding to the statistical similarity between features. Hence the edges are non-negative

with large edge weights signifying greater similarity. An edge weight of zero signifies

the features have zero correlation. Let the adjacency matrix of the feature graph be G,

where Gpq = g∈(0, 1) represents the weighted similarity score between features p and

q. We ensure all features have equal prominence by constraining the out-links of each

node to sum to one. The medical events linked together in the feature graph should

have similar weights.We introduce a random walk regularizer (Sandler et al., 2008):

Ω(w; G) =
∑

p

(
wp −

∑

q

Gpqwq

)2

= w⊤ (I − G)⊤ (I − G) w (5.4)
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where I is the identity matrix. The graph stabilized model likelihood can be written

as:

Lgraph = Lsparse-cox −
1

2
βw⊤ (I − G)⊤ (I − G) w (5.5)

The stabilization parameter RD(w) becomes: RD(w) = 1
2
βw⊤ (I − G)⊤ (I − G) w.

Here the ℓ1regularizer introduces sparsity by pushing weak features towards zero, while

the random walk regularizer distributes smoothness equally among correlated features.

The gradient of (5.5) becomes:

∂Lgraph

∂w
=

k∑

i=1





xi −

∑
ℓ∈R(ti)

xl exp(w⊤xℓ)

∑
ℓ∈R(ti)

exp(w⊤xℓ)





− α sign(w) − β (I − G)⊤ (I − G) w (5.6)

Parameter estimation is done by maximizing the likelihood in (5.5) using L-BFGS al-

gorithm (Liu and Nocedal, 1989).

The only remaining question becomes: how to build the feature graph G. The follow-

ing sections describe statistical similarity measures used to construct G.

Euclidean Similarity Graph The Euclidean distance is the simplest and most widely

used similarity measure in applications like clustering. To build the edges of the feature

graph, we use the measure as suggested by Frey and Dueck (2007) as: Gij = −||Fi −

Fj||
2
2, where ||Fi−Fj||

2
2 is the squared Euclidean distance between feature vectors Fi, Fj .

Cosine Similarity Graph If we assume that the features in patient records form a

network, then cosine similarity among features is a measure of structural equivalence.

However, we do not have the underlying network structure or feature relationships. We

propose to take the cosine similarity between feature vectors in the given data matrix.

For feature vectors Fi and Fj , graph adjacency matrix using cosine similarity becomes

Gij =
Fi • Fj

||Fi|| ||Fj||
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Figure 5.1: A portion of cosine graph derived from 1885 HF patients. Nodes are
diagnosis codes and edges represent cosine similarity between the nodes. Size of the
nodes convey prevalence.

where Fi • Fj is the Euclidean dot product of Fi and Fj . A portion of such graph

derived from a heart failure cohort is illustrated in Figure 5.1.

Jaccard Similarity Graph Another popular statistical measure of similarity is the

Jaccard index. The Jaccard index is the measure of the percentage of agreement between

components among feature vectors. Given two feature vectors Fi and Fj , the pairwise

Jaccard score reads:

Jij =
a

a + b + c
(5.7)

where a is the number of non-zero components in Fi and Fj , b is the number of non-

zero components in Fi but not in Fj and c is number of non-zero components in Fj

but not in Fi. We construct an undirected graph with nodes as features and edges

representing the Jaccard score between features. Figure 5.2 shows a portion of the

Jaccard graph derived from the heart failure cohort.
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Figure 5.2: A portion of Jaccard graph derived from 1885 HF patients. Nodes are
diagnosis codes and edges represent Jaccard similarity between the nodes. Size of the
nodes convey prevalence.

5.4.1 Graph aggregation.

The semantic EMR graph used in the previous chapter captures the temporal relation-

ship between features and the general relationship between diagnostic codes based on

the ICD-10 structures. The statistical graphs listed above are cohort specific and de-

rive correlations directly from given data. Combining domain knowledge with insights

derived from data could yield better stabilization. Hence, we propose aggregating the

two graphs: semantic EMR graph from Section 4.2, denoted as GEMR and the statistical

graph GStat.We use a simple aggregation technique to construct the final 〈EMR; Stat〉

graph as:

G〈EMR;Stat〉 = max(GEMR, GStat) (5.8)

5.4.2 Transferred Graphs

Finally, we examine the capability of our proposed method in transfer learning. Know-

ledge from one domain can be transferred to a related domain when data is scarce or

expensive to collect (Pan and Yang, 2010). Getting high quality training data is often

difficult, particularly in a medical setting. Cohorts that share comorbidities and dia-

gnoses, as in diabetes and cardiovascular diseases, are likely to have similar correlations
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among features. Accordingly, we propose to stabilize a Cox model derived from one co-

hort using the statistical similarity graph constructed from a related cohort. We denote

the transferred graph as: TL-Stat graph. Further, we use TL-Stat graph to construct the

aggregated graph:

G〈EMR;TL-Stat〉 = max(GEMR, GTL-Stat)

Here, the temporal and hierarchical feature relations in the cohort are captured by

the EMR graph. The statistical relations among features, which can be expensive to

calculate, are transferred from the related cohort using TL-Stat graph.

5.5 Experiments

In this section, we evaluate feature and model stability of our framework. The results

are reported on two cohorts: heart failure (HF) and diabetes (DB), provided by Bar-

won Health (as detailed in Section 4.1). We collect retrospective data for heart failure

and diabetes patients from the hospital EMR database. The heart failure cohort con-

tains all patients with at least one ICD-10 diagnosis code I50, while the diabetes cohort

includes all patients with at least one diagnosis code between E10-E14. This resulted

in 1, 885 heart failure admissions and 2, 840 diabetes admissions between January 2007

and December 2011. Patients of all age groups were included whilst inpatient deaths

were excluded. We focus our study on emergency attendances and unplanned admis-

sions of patients. The heart failure cohort was introduced in the previous chapter (see

Table 4.1). The characteristics of diabetic cohort are listed in Table 5.1.

We perform temporal validation for both cohorts as described in Section 4.4. Feature

selection stability is measured using Consistency index (Section 2.2.3.2) and model

stability was evaluated using signal-to-noise ratio (Section 2.2.3.2).

We use the one-sided convolutional filter bank, as detailed in Section 4.1.1, to extract a

large pool of features from EMR databases. The filter bank summarizes event statistics

over multiple time periods and granularities. The feature extraction process resulted

in 3, 338 features for heart failure cohort and 7, 641 features for diabetes cohort. The

extracted features are used to derive a sparse Cox model. Our proposed feature graphs
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Diabetes
Training set Testing set

Checkpoint Dec 2008
Number of admissions 1, 341 1, 029
Unique patients 951 765
Gender

Male 501 (52.68%) 407 (53.20%)
Female 450 (47.32%) 358 (46.80%)

Mean age (years) 57.8 56.4

Table 5.1: Characteristics of training and validation cohorts.

capture correlations between these features to stabilize model learning.

5.5.1 Results

Our models are designed using two hyper-parameters: lasso regularization parameter

α and graph regularization parameter β. We empirically tune these parameters to im-

prove feature stability without hurting model discrimination. Overall, feature stability

depended more on graph parameter β, while model discrimination was more sensitive

to α. A good trade-off was achieved at α = 0.003 and β = 0.8 for cosine and Jaccard

graph models, while RBF regularized mode resulted in best parameters of α = 0.01 and

β = 0.3. Figure 5.3 illustrates the variation in model discrimination (as measured using

area under ROC curve) for different settings of hyperparameters on the heart failure

cohort. The models exhibited similar behaviour on diabetes cohort.

All models are externally validated against (i) heart failure cohort with a 6-month ho-

rizon (ii) diabetes cohort with a 12-month horizon. Table 5.2 reports the AUC scores

with confidence intervals for our proposed models. The predictive performance is com-

parable with the baselines.

5.5.1.1 Stability against Data Re-sampling

We now compare the effects of our proposed stabilization strategies. In these experi-

ments, we fix the lasso regularization parameter α and graph regularization parameter β
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Figure 5.3: Effect of lasso regularization α and graph regularization β for different
stabilization models on heart failure cohort.

Stabilization
AUC

HF DB

No stabilization (lasso) 0.60 [0.55,0.66] 0.74 [0.70, 0.77]

RBF 0.61 [0.55,0.66] 0.75[0.72, 0.79]

Cosine 0.62 [0.55,0.67] 0.76 [0.73, 0.79]

Jaccard 0.62 [0.56,0.68] 0.76 [0.73, 0.79]

Table 5.2: Performance comparison of different graph stabilization mechanisms on
heart failure and diabetes cohort
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Figure 5.4: Comparing feature subset stability and model estimation stability of our
proposed methods on heart failure cohort. Our proposed models are compared with
lasso (no stabilization) and EMR Graph proposed in the previous chapter.

to the values corresponding to maximum AUC. Each model regularization is subjected

to 100 bootstraps. The feature subsets returned from the bootstraps are compared using

Consistency index, and variation in model weights is measured using Signal-to-Noise

ratio. Among all statistical methods, Jaccard graph performed the best for stabilizing

feature selection in heart failure cohort, as illustrated in Figure 5.4. Similar results were

obtained for diabetic cohort.

For increasing feature subset sizes (>100), Jaccard graphs proved effective. The tem-

poral and structural relations of diagnosis codes have stronger effect for small set of

features, while Jaccard index was effectual on larger sets. This behaviour suggests ag-

gregating statistical and semantic structures. In the following section we examine the

results of graph aggregation and transfer learning using Jaccard graphs.

5.5.1.2 Graph Aggregations and Transfer Learning

For this set of experiments, we investigate the effect of aggregating knowledge driven

graph (GEMR) and statistical graph, particularly the Jaccard graph GJaccard. We re-iterate

our graph construction process for clarity. We construct G using the following meth-

ods. First, we represent the edges using the Jaccard index between features, as in

Fig. 5.5.(a). Second, we aggregate the baseline semantic EMR graph and the Jaccard

graph. Here, each edge is the maximum of Jaccard and semantic scores between the
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Figure 5.5: Feature correlation captured by constructing feature graph with nodes as features

and edges as: (a) statistical correlation measured using Jaccard score (b) semantic relations de-

rived from temporal and ICD-10 structures (c) aggregation of Jaccard and Semantic graphs. (d)

transfer of Jaccard similarity between features from a related cohort.

features (Fig. 5.5.(c)). Finally, we investigate transferring the adjacency matrix between

related cohorts. Specifically, the Jaccard similarity scores between features in one co-

hort is transferred to a related cohort (Fig. 5.5.(d)).

The baseline regularization methods for the readmission model are chosen to be (i)

lasso (ii) elastic net (iii) knowledge-driven EMR graph (as in Chapter 4). Based on the

construction of the feature graph, we arrive at four different models: (i) Jaccard graph

regularized model: feature graph is the Jaccard similarity graph among features in the

given cohort (ii) EMRJaccard regularized model: feature graph is the aggregation of

Jaccard graph with semantic EMR graph, as in ((5.8)) in the given cohort (iii) TL Jac-

card regularized model: feature graph is the Jaccard similarity graph transferred from

a related cohort (iv) EMR; TL Jaccard regularized model: feature graph is the aggrega-

tion of semantic EMR graph from the given cohort and Jaccard graph transferred from

a related cohort.

The maximum AUC scores (along with confidence intervals) for models and baselines

are reported in Table 5.3. We observe that knowledge-driven and data-driven regulariz-

ation offers very little in terms of improving performance.

For the top 100 predictors, EMRJaccard graph stabilization demonstrated the highest

feature stability in both cohorts (see Fig. 5.6). Next, we compare variance in parameter

weights using SNR measures. In Fig. 5.8, each model is represented by average of its

20 highest SNR values. The Jaccard graph regularized model proved to be most robust

in both cohorts. Interestingly, model stability using EMRJaccard graph was similar to

elastic net and was not able to improve upon semantic EMR graph or Jaccard graph.
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Heart failure Diabetes

Lasso 0.60 [0.55; 0.66] 0.74 [0.70; 0.77]
Elastic net 0.61 [0.55; 0.67] 0.75 [0.72; 0.79]

EMR-graph+Lasso 0.61 [0.56; 0.67] 0.76 [0.72; 0.79]
Jaccard-graph+Lasso 0.62 [0.56; 0.67] 0.76 [0.73; 0.79]

〈EMR; Jaccard〉-graph+Lasso 0.62 [0.56; 0.67] 0.76 [0.73; 0.79]
Stabilization using Transfer Learning

TL_Jaccard-graph+Lasso 0.62 [0.56; 0.67] —

〈HF_EMR;TL_Jaccard〉-graph+Lasso 0.62 [0.57; 0.68] —

TL_Jaccard-graph+Lasso — 0.76 [0.73, 0.79]
〈DB_EMR;TL_Jaccard〉-graph+Lasso — 0.75 [0.72, 0.79]

Table 5.3: AUC scores with confidence intervals for readmission prediction within 6
months for heart failure and 12 months for diabetes patients. Model performance on
individual cohorts and on cohorts with Jaccard graph transferred from the other cohort
is shown in separate sections.
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Figure 5.6: Stabilization using statistical and semantic structures. Feature stability
measured by the consistency index as functions of the subset size for readmission pre-
diction within 6 months for heart failure (Fig. 5.6a) and 12 months for diabetes patients
(Fig. 5.6b). Larger indices imply more stability.
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Figure 5.7: Stabilization using transfer of Jaccard graph (TL Jaccard). Stabilization
using statistical and semantic structures. Feature stability measured by the consistency
index as functions of the subset size for readmission prediction within 6 months for
heart failure (Fig. 5.7a) and 12 months for diabetes patients (Fig. 5.7b). Larger indices
imply more stability.

Stabilization using transfer learning. We investigate transfer of feature graphs between

related cohorts. For the heart failure cohort, TL Jaccard graph represents the Jaccard

scores transferred from diabetes cohort, while EMR;TL Jaccard graph is the aggregation

of the semantic EMR graph of heart failure cohort and Jaccard graph transferred from

diabetes cohort. The same technique is applied to stabilize diabetes cohort, where the

Jaccard scores are transferred from heart failure cohort. We compare the transferred

graph stabilization with lasso and elastic net. Our experiments confirm that cross-

domain graphs also help the stability of feature selections (see Figure. 5.7) and model

estimation (see Figure. 5.8).

5.6 Discussion

Integrating domain knowledge to improve learning has been gaining much attention

recently (Sandler et al., 2008). Biological understanding of gene-disease networks, for

example, has enabled discovery of what genes contribute to a disease, and what proteins

would bind with a particular chemical compound (Barabási et al., 2011). However,

little has been explored in networks derived from the healthcare processes and their

contribution to prediction models.
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Figure 5.8: Model estimation stability measured by signal-to-noise ratios (SNR) of fea-
ture weights. High value of SNR indicates more stability. “TL Jaccard” means the
Jaccard-graph used in transfer learning settings: heart failure Jaccard graph for stabiliz-
ing diabetes data and diabetes Jaccard graph for stabilizing heart failure cohort.

In this chapter, we extend our previous work on stabilizing high-dimensional clinical

prediction using statistical relations automatically discovered from the given data. We

explored kernel based and structural based regularizations, and concluded that reg-

ularizer RD(w) based on random walk transformation of Jaccard similarity graph

(GJaccard)from EMR features demonstrated better stabilization. Model stability was fur-

ther enhanced when data-driven Jaccard graph was combined with knowledge-driven

semantic graph built from structural relations in diagnosis codes (G<EMR;Jaccard>). This

suggests structural relations and statistical relations among features is complementary

and combining such relations during model regularization results in enhanced stability.

The statistical graphs improved feature stability by 66% and model stability by 50%

when compared to elastic nets.

5.6.1 Transfer Learning by Identifying Comorbidity relations

Medical events often co-occur, especially in aged cohorts. For example, the presence of

comorbidities causes multiple diagnoses at the same time. Comorbidity is the presence

of multiple co-existing diseases in a patient. Feinstein (1970) defined comorbidity as:



5.6. Discussion 122

B95B95
E10E10

E11E11

E78E78

E86E86

E87E87

G62G62

I10I10

L03L03

N17N17
N18N18

DiabetesDiabetes

Electrolyte DisordersElectrolyte Disorders

HypertensionHypertension

Renal failureRenal failure

H35H35
I70I70

Peripheral Vascular DisordersPeripheral Vascular Disorders

N28N28

(a) (b)

Figure 5.9: Extracting disease correlations in diabetic cohort. Common comorbidities
and diagnosis codes are shown in (a). A portion of the disease graph constructed using
Jaccard similarity between EMR features in a diabetic cohort is shown in (b). The
nodes represent EMR features, and links represent interaction strength, measured using
Jaccard index. Blue nodes are co-occurring diseases, green nodes are diagnosis codes for
diabetes, orange nodes for heart diseases, and yellow nodes for urinary diseases.

“any distinct clinical entity that has co-existed or that may occur during the clinical course of
a patient who has the index disease under study”. For example, a patient with diabetes fre-

quently has hypertension (high blood pressure), dyslipidemia (Abnormal LDL, HDL,

or triglycerides, increasing risk for heart attack), liver complications, cardiovascular

disease, kidney disease and obesity (Pantalone et al., 2015). Such domain knowledge

should ideally be integrated into feature selection process during clinical prediction.

In this chapter, we captured feature correlation in a knowledge network, with features as

nodes and relations between features as edges. We examined popular statistical similar-

ity measures to build such network from the data and concluded that Jaccard similarity

is better suited for our cohort. Our Jaccard graph was able to capture the common

complications in a diabetic cohort (as in Figure 5.9(a)1) as a feature graph shown in

Figure 5.9(b).

This ability to automatically find implicit correlations could be the reason for improved

stability during transfer learning. Our transfer learning process uses statistical correla-

tions among features in one cohort to construct the feature graph in a related cohort.

1Image courtesy: http://www.clker.com/clipart-human-body-anatomy-basics-no-lines.html
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In this chapter, we conducted experiments on heart failure and diabetes cohort. Heart

failure is a chronic condition that also affects several other organs, most importantly,

the kidney (Amaral et al., 2013; Moukarzel et al., 2013). Diabetic patients are also at

increased risk of kidney diseases (Johnson et al., 2007; Fox et al., 2012). Further, dia-

betes was found to be an independent risk factor for heart failure (Widmer, 2011; van

Deursen et al., 2014; Lüscher, 2015), with several studies including the 18 year Framing-

ham study establishing strong correlation between diabetes and heart failure conditions

(Kannel et al., 1974; Huo et al., 2016; Gregg et al., 2016). Our graph in Figure 5.9 was

able to discover significant correlation between diabetics, heart problems and kidney

diseases (including renal failure), among other relationships. Transferring this feature

graph between heart failure and diabetes cohort resulted in enhanced stability.

5.7 Conclusion

Novel methods in feature selection often concentrate on model performance and over-

look stability (Vinzamuri et al., 2014; Bilal et al., 2013). Stable predictors inspire confid-

ence in prognosis, as they are often subjected to further examinations. In this chapter,

we utilize statistical and semantic relations in EMR data to stabilize a sparse Cox model

for predicting readmission. The model is validated on two different retrospective co-

horts. When compared with similar studies, the model AUC is competitive and the top

predictors were found to be common with related studies (Ross et al., 2008). On two

stability measures, the proposed method has demonstrated to largely improved stabil-

ity. In related cohorts, when collecting data becomes expensive, transferring domain

knowledge using TL-Jaccard graph was also found to improve stability. The practical

significance is that our proposed model is hypothesis free, fully automated and derived

from freely available administrative and medical data.

The data driven methods in this chapter address the concerns over strong assumptions

of EMR feature graphs built from ICD-10 structures. The Jaccard similarity graph is

derived directly from given data with no prior hypothesis. Our experiments demon-

strated such graphs are complementary to EMR feature graphs.The random walk reg-

ularization of the aggregated feature graph promotes group level selection and rare-

but-important features. However, we have overlooked higher-order correlations in our

data. In the next chapter, use higher-order correlations in data to formulate RD(w).



"To understand is to perceive patterns."

Isaiah Berlin

Chapter 6

Stabilisation III: Pattern Discovery

raph based regularizations from previous chapters investigated pairwise and

groupwise constraints using semantic relations in diagnosis codes and statist-

ical relations derived from data. Yet, the graphs we derived captured only first

order correlation in data. These first order correlations may be in hospital events or

patient diagnosis, as example in Figure 6.1. Often, high dimensional data may contain

linear, as well as non-linear correlations among features, as demonstrated in Figure 6.2.

Feature transformation methods can be applied to uncover low-dimensional embed-

dings from such data.

Low dimensional embedding or patterns can reveal interesting feature relationships

that were invisible to the graph based methods used in the previous chapters. The ques-

tion now becomes how to exploit patterns and formulate RD(w) for stabilizing model

Admission

Operation

Theatre

Length of Stay

(a) Correlation in events

Diabetes

Renal Failure

Hypertension Obesity

Heart Failure

(b) Correlation in comorbidities

Figure 6.1: An example of first-order feature correlations in heart failure cohort. Nodes
represent events and edges represent correlation strength.
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Figure 6.2: Linear and non-linear local correlations in example data used in Zhang et al.
(2010).

learning as in (3.4). In this chapter, we resort to recent advances in deep learning and

self-taught learning (Raina et al., 2007). Specifically, we use an autoencoder network

to learn higher order correlations in our data. This is done by examining the encoding

weights of the neural network. When an autoencoder has significantly lesser nodes in

the hidden layer, the encoding weights capture all correlations in data, which can be

used to stabilize model learning.

We list the main contributions of this chapter:

1. To capture higher order correlations in data, we reformulate our learning model

by factorizing the linear parameter as a combination of a lower dimensional vec-

tor u and a high dimensional matrix W . By modelling W as the encoding weights

of an autoencoder network, we capture higher order feature correlations in data.

2. We model the stabilizing factor: RD(w) using the encoding weights W , which

capture all levels of feature correlation. We extend this model to use semantic

relations by further regularization with feature graph derived in Chapter 4.

3. We propose a more robust estimation of higher order correlation matrix W by

augmenting the training data with an external cohort. This is in accordance with
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the principles of self-taught learning (Raina et al., 2007).

4. We demonstrate improved feature subset stability and model estimation stability

for each sparse linear model regularized with: 1) autoencoder derived from train-

ing cohort, 2) combination of autoencoder and feature graph derived from train-

ing cohort, 3) combination of feature graph derived from training cohort and

autoencoder derived from augmenting an external cohort to training data. We

conducted our experiments on 1, 885 heart failure admissions from an Australian

hospital. The augmented external data consisted of 2, 840 diabetic admissions.

Feature stability was measured using Consistency index. Parameter estimation

stability was measured using Signal-to-Noise Ratio (SNR).

The rest of the chapter is organized as follows. We begin by describing our model

specification that uses factorization of the learning parameter. We then explain autoen-

coder learning and regularization to formulate the modified RD(W ). Two extensions of

this technique are proposed that ensures tighter constraints. Finally we examine the res-

ults of our proposed stabilization techniques and compare it with previous approaches.

6.1 Framework

Our model is built on patient records vectorized using the feature extraction process

detailed in Section 4.1.1. However, the general framework now differs from the pre-

vious chapters in the following ways. To model higher order correlations in data, we

begin by decomposing model parameter w in (3.4) into a lower order vector u and a

high dimensional matrix W as: wN×1 = W T
k×N uk×1, where k ≪ N. This factoriza-

tion offers several advantages. The lower dimensionality of u makes it more easier to

learn and more stable to data variations. The W captures higher order correlations

that be modelled using different auxiliary tasks. Greater number of tasks ensure better

solution, since there are more constraints. Hence, we can rewrite 3.4 as:

Lloss =
1

M
L
(
W T u|D

)
+ α

∣∣∣W T u
∣∣∣+ RD(W ) (6.1)

In this modified formulation, the stability component RD(.) focuses only on higher

order component W , since the lower dimensional u is assumed to be stable. We now
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need a model to learn the parameters u and W , and a feature transformation method to

derive RD(W ).

As a concrete example for generalized linear models, we work on binary prediction

using logistic regression. The modified logistic loss function L(w|D) using u and W

becomes:

Llogit(u, W |D) = log(1 + exp(−yuT Wx)) (6.2)

= log(1 + exp(−yuT z))

where y ∈ ±1 represents the data label1. Notice that z = Wx is a data transformation

from N dimensions to the smaller k dimension. To learn W , we need to choose a com-

petent auxiliary task. The primary objective of this task involves feature transformation

to a lower dimensional subspace or manifold that is embedded in the full-dimensional

space.

One of the most popular methods for such transformation is principal components

analysis or PCA (Jolliffe, 2002). Using PCA, high-dimensional data can often be repres-

ented using a lower dimensional linear representation, when there is a linear manifold

near the original high-dimensional data. PCA projects the data onto this linear mani-

fold without losing much information. This process can also be done using a neural-net

with linear units and a single hidden layer (Hinton and Salakhutdinov, 2006). Inter-

estingly, we can generalize such feature transformation to include lower dimensional

non-linear manifolds by using non-linear activation functions and deep neural nets.

In our experiments, we model W as the encoding weights of a classical autoencoder

with sigmoid activation function, derived from the same data D. The workflow dia-

gram of our method is illustrated in Figure 6.3.

6.1.1 Learning Higher Order Correlations using Autoencoder

An autoencoder is a neural network that learns by minimizing the reconstruction error

using back-propagation (Bengio, 2009). The learning process is unsupervised, wherein

the model learns useful properties of data. An autoencoder network consists of two

1We ignore the bias parameter for simplicity
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w

w

Figure 6.3: The work-flow diagram of our framework for deriving autoencoder stabil-
ized prediction model from EMR. The model parameter w is factorized into a lower di-
mensional vector u and high dimensional matrix W . The W matrix is jointly modelled
as encoding weights in an autoencoder network and is used to regularize the prediction
model.

Figure 6.4: General framework of an autoencoder with one hidden layer
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components: (1) An encoder function that maps the input data x ∈ R
N as: h(x) =

σ(Wx + bW ) , where σ can be any non-linear function (for e.g., the sigmoid function)

and W, bW are the weights and bias of the hidden layer (2) A decoder function that

attempts to reconstruct the input data as: x̃ = V h + bV , where V, bV are the weights

and bias of the output layer. This is illustrated in Figure 6.4. The loss function is

modelled as the reconstruction error:

LAE(W, V, bW,bV |D) =
1

2N
||x − bV − V σ(Wx + bW )||22 (6.3)

Once trained, evaluating a feed forward mapping using the encoder function gives a

latent representation of the data. When the number of hidden units is significantly

lesser than the input layer, W encapsulates the higher order correlations among features.

We propose to regularize our sparse linear model in (6.2) using the autoencoder frame-

work in (6.3). The joint loss function becomes:

Lmodel(u, W, V, bW , bV |D) = Llogit(u, W |D) +

+ αΣ
i

|Σ
k

W T
ikuk|

+ λAE LAE(W, V, bW , bV |D)

+ λℓ2

(
W 2 + V 2 + b2

W + b2
V

)
(6.4)

where α > 0 is the lasso regularization parameter which ensures weak wi = Σ
k

W T
ikuk

are driven to zero. While λAE controls the amount of regularization due to higher

order correlation, λℓ2 controls overfitting in autoencoder. The loss function in (6.4) is

non-convex. Referring to (6.1), the stabilization parameter now becomes:

RD(W ) = λAE LAE(W, V, bW , bV |D) + λℓ2

(
W 2 + V 2 + b2

W + b2
V

)

The number of nodes in the hidden layer was chosen to be around 20% of the total

number of features. We now propose two extensions to the model in (6.4) by adding

further constraints on RD(W ).
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6.1.1.1 Augmenting Feature Graph regularization

For the first constraint, we revisit predefined associations in patient medical records.

Autoencoders can be used to find automatic feature grouping, but as we saw in Chapter 4,

we can enforce two additional associations from domain knowledge – diseases or con-

ditions reoccurring over multiple time-horizons (as detailed in Section 4.2.1 ), and hier-

archical nature of ICD-10 diagnosis and procedure codes (as described in Section 4.2.2).

We build a feature graph regularizer using these associations, as in Section 4.2.3, and

use it to further regularize our model in (6.4) as:

Lmodel-fg(u, W, V, bW , bV |D) = Lmodel(u, W, V, bW , bV |D)

+
1

2
λfg

[
(uT W ) L (W T u)

]
(6.5)

In this case, our modified RD(W ) now becomes:

RD(W ) =λAE LAE(W, V, bW , bV |D)

+ λℓ2

(
W 2 + V 2 + b2

W + b2
V

)

+
1

2
λfg

[
(uT W ) L (W T u)

]

6.1.1.2 Augmenting External data for Autoencoder learning

The encoding weights W in (6.3) can be estimated from multiple sources. For example,

we propose to augment the current training data D (for example: heart failure cohort)

with another cohort containing the same features (say, diabetic cohort). Training the

autoencoder network on this augmented data will result in more robust estimation of

W . Both cohorts are from the same hospital. Hence the common features in these

cohorts share the same feature space. Augmenting additional data from same feature

space would aid in finding latent correlations in data. The augmented data is provided

only for autoencoder learning, and not for the linear model. If the augmented dataset
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is DAUG, we can specify our model as:

Lmodel(u, W, V, bW , bV |D) = Llogit(u, W |D) + RDAUG
(W ) where,

RDAUG
(W ) =λAE LAE(W, V, bW , bV |DAUG)

+ λℓ2

(
W 2 + V 2 + b2

W + b2
V

)

+
1

2
λfg

[
(uT W ) L (W T u)

]
(6.6)

6.2 Experiments

We now evaluate our proposed stabilization strategies using heart failure (HF) and

diabetes (DB) cohorts. The cohort details and setting is similar to the previous chapter,

as described in Section 5.5

As with previous experiments, all models undergo temporal validation for both cohorts

as described in Section 4.4. Feature selection stability is measured using Consistency

index (Section 2.2.3.2 ) and model stability was evaluated using signal-to-noise ratio

(Section 2.2.3.2).

6.2.1 Models and Baselines

On HF and DB data, we derive a lasso regularized logistic regression model to pre-

dict heart failure readmissions in 6 months. We force lasso to consider higher order

correlations in data by using the following three regularization schemes:

1. Lasso-Autoencoder: The linear model is regularized by encoding weights of an

autoencoder derived from HF cohort as described in (6.4). This becomes our

initial model. We now extend this model with two regularization schemes.

2. Lasso-Autoencoder-Graph: For our first extension, we use the feature graph reg-

ularization as in (6.5). We construct a feature graph from 3, 338 features in HF

cohort as in Section 4.2, and use it to further regularize the Lasso-Autoencoder

model as in (6.5).
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RD(w) Sensitivity Specificity Precision F-Measure AUC

Pure Lasso 0.38 0.77 0.62 0.47 0.60
Elastic Net 0.38 0.80 0.65 0.48 0.62

EMR Graph 0.42 0.73 0.59 0.49 0.64
AE 0.39 0.76 0.61 0.47 0.64

AE-Graph 0.39 0.76 0.61 0.47 0.64
AG-AE-Graph 0.39 0.76 0.61 0.47 0.64

Table 6.1: Comparing model performance for different RD(w) settings. AE denotes
autoencoder regularization. AG denotes augmented data.

3. AG-Lasso-Autoencoder-Graph: Our third and final extension to autoencoder reg-

ularization consists of using augmented data to train the autoencoder. We use the

notation AG to denote augmented data. To estimate W , we used DB cohort aug-

mented to the HF cohort. Training data consisted of 558 features common to

both HF and DB. The sparse prediction model was built from common features

in HF cohort, and regularized using a HF-based feature graph and autoencoder

from augmented data as in (6.6).

We compare the stability of our proposed regularization methods with the following

baselines: 1) pure lasso 2) elastic net and 3) semantic EMR feature graph regularization

from Chapter 4.

6.2.2 Results

In this section, we demonstrate the effect of autoencoder regularization on model per-

formance and stability, and compare with our baselines. The prediction models for

heart failure readmission were derived from 3, 338 features extracted from hospital data-

base. The self taught learning stage during autoencoder training used an augmented

2, 840 diabetic admissions with 558 features that were common in both cohorts. A grid

search for the best hyper-parameter setting resulted in α = .001, λen = .01, λgraph = .03

for the baseline models, and α = .005, λAE = 3000, λgraph = 0.3 for our autoencoder

regularized models. Table 6.1 compares the model performance with different stabiliz-

ations schemes.
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(a) Feature correlations from raw data
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(b) Feature correlations discovered using autoen-
coder

Figure 6.5: Visualizing data correlation: Correlation matrix is calculated using absolute
values of Pearson’s correlation among EMR features. Denser matrix indicates higher
correlation.

6.2.2.1 Capturing Higher Order Correlations

The efficacy of autoencoder network to model higher order correlations was verified by

comparing the correlation matrices of raw data and data from the encoding layer. As

illustrated in Fig. 6.5, the autoencoder derived correlation matrix was denser (matrix

mean = 0.19) than the correlation matrix for raw data (matrix mean = 0.05). Further,

comparing the entropy of these matrices, we found autoencoder derived correlation

matrix had significantly higher entropy of I = 2.45, when compared to correlation

matrix for raw data with I = 0.22. Hence the autoencoder was able to capture higher

levels of correlation resulting in more information.

6.2.2.2 Effect on Model Sparsity

Table 6.2 provides a summary of the effects of stabilization schemes on model sparsity.

Autoencoder regularization resulted in sparser models with no loss in performance.

Model performance was measured using area under the ROC curve (AUC). For autoen-

coder regularization, AUC critically depended on the choice of autoencoder penalty

(λAE) and number of hidden units (see Fig. 6.6). AmaximumAUC of 0.65 was obtained

for AG-Lasso-Autoencoder-Graph model with 20 hidden units and hyper-parameters as



6.2. Experiments 134

Regularization Features Selected (%)

Lasso 550 (16.5 %)

Elastic Net 753 (22.6 %)

Lasso-Graph 699 (20.9 %)

Lasso-Autoencoder 513 (15.4 %)

Lasso-Autoencoder-Graph 503 (15.1 %)

AG-Lasso-Autoencoder-Graph 412 (12.3 %)

Table 6.2: Effect of stabilization methods on model sparsity
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Figure 6.6: Effect of number of hidden units (nodes) and autoencoder penalty (λAE) on
AUC. Lasso parameter fixed at α = .005

α = .005, λen = .03, λgraph = .3, λAE = 3000.

The top predictors identified by our model are given in Table 6.3. The features were

ranked based on importance measure calculated as described in Section 4.4.1.

6.2.3 Effect on Stability

When compared to λAE, the choice of hidden units had more influence on feature sta-

bility (see Fig. 6.7). Consistency index measurements for feature selection stability is

reported in Fig. 6.8. In general, capturing higher order correlations using autoencoder

improved feature stability when compared to baselines. Even though pure autoen-

coder regularization proved to be more effective for larger feature sets (> 120), the
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Top predictors Feature Importance

Age > 80 21

Past Emergency visits in 0-3 months 17.4
Past heart failures in 0-3 months 17.1
Past hospital admissions in 0-6 months 12.7

Past occurrence: congestive heart failure 11.7
Past occurrence: renal failure 10.3
Past occurrence: hypertension 10.3
Past occurrence: Acute kidney failure 10

Male 9.6

Past diagnosis: Angina pectoris 7.7
Past diagnosis: Pleural effusion 7.5
Past diagnosis: Type 2 diabetes mellitus 7.4

Personal history of certain other diseases 7.2

Table 6.3: Top predictors for 6-month unplanned re-hospitalization following heart
failure discharges as identified by our autoencoder regularized linear model. Feature
importance was calculated as product of feature weight and feature standard deviation
in the training data set.

6000.1

0.2

0.3

2000

0.4

0.5

400

C
I

0.6

0.7

nodes

0.8

3000

λ
AE

2004000
05000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 6.7: Effect of number of hidden units (nodes) and autoencoder penalty
(λAE)feature stability measured by consistency of top 100 features. Lasso parameter
fixed at α = .005
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Figure 6.8: Feature stability as measured using Consistency Index. The plot compares
similarity in feature subsets generated by our proposed models and baselines. Higher
values indicate more stability.

combination of autoencoder and graph regularization consistently outperformed the

baselines. Further, augmenting external cohort to autoencoder learning resulted in the

most stable features. Similar observations were made when measuring model estima-

tion stability. Fig. 6.9 reports the signal-to-noise ratios of the top 50 individual features.

At 95% CI (approximately 1.96 std), lasso regularization identifies 3 features, elastic

net identifies: 21, Graph regularization: 24, while the autoencoder regularized mod-

els identify all the 50 features. The variance in feature weight is greatly reduced by

AG-Lasso-Autoencoder-Graph regularization.

6.3 Discussion and Conclusion

Higher order correlations in data have been studied in the past for pattern classific-

ation (Taylor and Coombes, 1993), finding associations among gene networks (Qian

et al., 2009; Zhang et al., 2010), and distributed programming (Kannan et al., 2014). In

this chapter, we utilize higher order correlations to stabilize a high dimensional sparse

clinical model. Sparsity and stability are two important characteristics of interpretable

healthcare. Sparsity promotes interpretability and stability inspires confidence in the

prediction model.
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Figure 6.9: Model stability as measured using signal-to-noise ratio (SNR) of feature
weights. Higher values indicate more stability.

Traditionally, autoencoder variants are used to improve prediction/classification accur-

acy. We have demonstrated a novel use of autoencoders – to stabilize high dimensional

clinical prediction. We have achieved this by factorising the linear model parameter

into a lower dimensional stable component, and a higher dimensional matrix that en-

capsulates all orders of correlation in data. The autoencoder was used to model these

correlations using the encoding weights in the neural net. During network training,

the interaction between the layers result in higher-order couplings, resulting in a low

dimensional representation (Köster et al., 2014).

The encoding weights are responsible for mapping data from original space in the input

layer to a reduced space in the hidden layer. Our input data contained 3338 features

and we used a hidden layer with 20 nodes. An illustration of top features that were

found to be correlated in the first two hidden nodes is shown in Figure 6.10(a). The

final predictors chosen by our model are consistent with current medical literature, as

shown in Figure 6.10(b) (adapted from website of National, Heart, Lung and Blood

Institute2).

When looking at the top predictors (Table 6.3), our model selected old age (>80) as

one of the most important predictors. This is consistent with a recent study by Muz-

zarelli et al. (2010), who concluded that elderly patients required frequent readmissions.

Strong predictors also included past history of hospitalizations (past emergency visits,

2https://www.nhlbi.nih.gov/health/health-topics/topics/hf/signs
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(a) (b)

Figure 6.10: Extracting higher order correlations in heart failure cohort. Top features
associated in the first 2 hidden nodes is shown in (a). Common symptoms of heart
failure is shown in (b).

ward transfers and direct admissions), consistent with the findings of (Chin et al., 1997;

Krumholz et al., 2000, 1997; Felker et al., 2004; Amarasingham et al., 2010). Males

were also found to be at increased risk of readmission, which is corroborated by recent

studies (Chin et al., 1997; Krumholz et al., 1997; Amarasingham et al., 2010). Among

comorbidities, renal failure, hypertension and kidney failure were strong predictors.

Personal history of diseases were also ranked high by our model.

The predictive performance of our proposed model (as measured by AUC) is compar-

able with existing studies (Ross et al., 2008; Betihavas et al., 2012). We have demon-

strated that the encoding process of an autoencoder, though intrinsically unstable, can

be applied to regularize sparse linear prediction resulting in more stable features. The

encoding weights capture higher level correlations in EMR data. When collecting data

becomes expensive, augmenting another cohort during autoencoder training resulted in

a more robust estimation of encoding weights, translating to better stability. This ap-

proach belongs to the emerging learning paradigm of self-taught learning (Raina et al.,

2007). We believe this work presents interesting possibilities in the application of deep

nets for model stability.



"For even the very wise cannot see all ends."

The Fellowship of the Ring, J.R.R.Tolkien

Chapter 7

Conclusion

table prediction is often overlooked in favour of performance. Yet, stability

prevails as key when adopting models in critical areas as healthcare. Stabil-

ity facilitates reproducibility between model updates and generalization across

medical studies. Stable models also aid meta-analysis, which combines analytic results

from similar studies (Haidich, 2011).

This thesis set out to investigate model stability, characterized as feature subset stability

and parameter estimation stability, for linear models derived from EMR data. Our

contribution is in understanding the need for stable prediction, when much research

has been dedicated to improving performance. For critical applications like healthcare,

where data is sparse and redundant, stable features and estimates are necessary to lend

credence to the model and its performance.

In this thesis, we have proposed three broad stabilization techniques that are fully auto-

mated. All models were derived from freely available administrative and medical data.

This makes them portable to other cohorts or institutions using similar EMR systems.

In the following sections, we summarize and discuss our scientific contributions of

Chapters 3 through 6. We then provide directions for future research.

In Chapter 3, we presented a case study on instability using patient flow forecasting.

To the best of our knowledge, this is the first work in forecasting next day discharges

from a ward with no real-time clinical data. When comparing 3 linear and 4 non-linear

139
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prediction models, we demonstrated that better performance may not guarantee better

generalization. The instability in model parameters (we ignore hyper-parameters) poses

a serious challenge for clinical acceptance of the model. The models in this chapter were

derived purely from administrative data in hospital records. However, for prognosis,

we need to include clinical, procedural and pathological information. This adds thou-

sands of features to training data, which in turn necessitates parsimonious models to aid

interpretation, visualization, faster computation and efficient storage. We resort to the

efficient lasso regularization for simultaneous overfitting control and feature selection.

The application of lasso guarantees sparsity irrespective of the number of irrelevant

features in the training data. Since inducing sparsity invites instability (Xu et al., 2012),

we propose three approaches to stabilize high-dimensional clinical prediction.

We presented our first approach in Chapter 4. Our approach consists of a novel tech-

nique to mitigate the stability problem by utilizing feature graphs that link similar

conditions and the same condition of multiple time periods. To reduce variance in the

selected features that are predictive, we introduced Laplacian-based regularization into

a regression model. The Laplacian is derived on a feature graph that captures both the

temporal and hierarchic relations between hospital events, diseases and interventions.

Laplacian feature graphs have been used in bioinformatics , but not in healthcare. The

model can be widely applicable and readily deployed in existing health information sys-

tems. We believe our framework provides the first proof of concept in utilizing feature

graphs and numerically validating stability for a clinical prediction model.

In Chapter 5, we examined inherent statistical and structural relationships in routinely

collected electronic medical records to propose two stabilization schemes.Using a sparse

Cox model as basis for prediction, we achieved stability using random walk transforma-

tion of a feature graph. The feature graph was constructed with nodes as EMR features

and edges as relationship between the features. We focussed on two types of feature re-

lationships: (i) statistical similarity (ii) aggregate of statistical and semantic similarity.

The Jaccard index was used to measure statistical similarity, while semantic similar-

ity was derived from temporal and structural ICD-10 diagnosis tree relations among

EMR features. Our experiments were conducted on 2 real world hospital datasets: a

heart failure cohort (1, 784 index admissions) and a diabetes cohort (2, 370 index admis-

sions). The Jaccard graph regularization proved to be the best for stabilizing parameter

weights, whereas aggregate Jaccard scores and semantic EMR graph was superior in sta-

bilizing feature subsets. Transferring Jaccard scores from a related cohort also improved
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stability when compared with lasso and elastic net.

Finally we exploited higher order correlations for model stabilization in Chapter 6.

Here, we demonstrated a novel formulation for the linear model parameter by factor-

izing it into (i) a lower order vector, which is stable and easy to learn, and (ii) a higher

dimensional matrix that encapsulates all orders of correlation in data. By modelling this

higher order component as the encoding weights of a classical autoencoder, and using

it to regularize model learning, we achieved stability in feature subsets and weights.

All our regularization methods were posed as constrained optimization problems, and

were solved using L-BFGS method (Liu and Nocedal, 1989). Hence the time complex-

ity is linear with respect to the number data points. Our proposed schemes improved

feature stability by over 20% when compared to the traditional methods, and offered

marginal improvement in classification performance. A similar observation was made

by Kalousis et al. (2007) in their study on high dimensional feature selection stabil-

ity. This study compared the stability of five popular feature selection algorithms on

11 datasets taken from three different application domains and came to the following

conclusion: “Stability provides an objective criterion on which we can base our choice of
feature selection algorithm in the absence of any significant difference in classification per-
formance. Selecting the most stable algorithm, we have a higher confidence in the quality
of the features that it selects but also a higher confidence in the corresponding classification
performance”(Kalousis et al. (2007), pp.113).

A general question often asked is “What would happen with these methods if we have
more data”? With more data, model instability becomes less severe, as instability is

partly caused by lack of data (more precisely, labels, other sources may be because of

redundancies or noise in the labels & data collection). However, finer feature extraction

rules could result in growing number of features with data size, inviting instability. In

such cases, our proposed methods continue to remain effective.

7.1 Future Work

The stabilization techniques in this thesis open up interesting avenues for future work.

The simplest extension of our work would be external validation. We have validated
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our methods on heart failure and diabetic cohort from a single regional hospital. Ex-

ternal validation of these methods on other cohorts possibly from other care centres

would reveal interesting generalization properties in terms of stability and perform-

ance. This could be combined with more theoretical analysis on the effect of stabiliza-

tion on confidence intervals of performance measures.

In Chapters 4 and 5, feature graph regularization has proven to be effective. The know-

ledge driven graph in Chapter 4 was constructed from two types of relations. It would

be interesting to see which of the two relations – temporal or hierarchical – has more

influence over feature stability. Further, in Chapter 5, Jaccard similarity graph proved

to be more effective when compared to other statistical measures. A possible extension

would be to investigate the different properties of the constructed feature graphs with

its effects on stabilization.

Chapter 6 used autoencoder regularization to capture higher order correlations in pa-

tient data. It would be interesting to see other autoencoder variants to this purpose,

opening interesting avenues in the application of deep learning.

This thesis primarily addresses the problem of model instability due to data correlation.

Model instability can also happen due to missing data, which is quite common in data

from EMRs. In patient records, data may be missing due to unknown past history,

or due to error in documentation (Wells et al., 2013). Preprocessing the data using

available popular techniques (Wells et al., 2013; Saha et al., 2015) could help to reduce

instability.

Finally, we conclude by proposing two more approaches to counter instability due to

data redundancy. Data redundancy can happen due to duplicate entries, or recording of

the same clinical events in different formats. We hypothesize that artificially perturbing

the features would help weed out weak features during model learning process. Specific-

ally we propose the following experiments: (1) randomly drop features (dropout noise

Section 7.1.1) during each bootstrap run (2) directly derive a learning model from data

artificially corrupted using blankout noise (Section 7.1.2). We briefly expand on these

techniques in the following sections.
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7.1.1 Dropout

Dropout is a feature noising scheme that promotes model generalization by artificially

corrupting the training data. When first introduced, dropout promoted model general-

ization by randomly omitting feature subsets during each iteration in training (Hinton

et al., 2012). Since it prevents overfitting, dropout can be considered as a regularization

technique along with parameter shrinkage methods and model averaging. In dropout

training, the training data xi is converted to x̃i using dropout noise by setting xij = 0

with a probability δ, and xij = xij/(1− δ) with a probability 1− δ (Wager et al., 2013).

For linear regression, dropout training is found to be equivalent to ridge regression

(Wang and Manning, 2013). For logistic regression, dropout regularization favoured

strong predictors and parameter shrinkage (Wager et al., 2013).

7.1.2 Learning with Marginalized Corrupted Features

Ideally, a good training set should represent all the variations in the data. However,

this is not possible all the time. An interesting development (Maaten et al., 2013) is to

artificially corrupt the training data to introduce variations, thereby enhancing the gen-

eralization of the model. Since EMR data is characterized by correlations, redundancy

and high degree of missingness, we use blankout feature corruption characterized as:

p(x̃|x) =
D∏

d=1

p(x̃d|xd; qd) (7.1)

where the dth feature is randomly set to zero with the probability qd. We assume that

the corrupting distribution is unbiased with E(x̃|x) = x. Each element xn in the train-

ing set, D = {xn, yn}N

n=1is corrupted M times using (7.1) to obtain x̃nmobservations

(where m = 1, · · · , M ). The loss function of the extended dataset D̃ becomes:

L(D̃, Θ) =
N∑

n=1

1

M

M∑

m=1

L (x̃nm, yn; Θ) ,
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where: x̃nm ∼ p(x̃nm|xn), Θ is the model parameters, and L(x, y; Θ) is the loss function

of the model. When M → ∞, we have:

L(D, Θ) =
N∑

n=1

E (L (x̃n, yn; Θ)) (7.2)

Logistic Loss and Blankout Noise Given D = {xn, yn}N

n=1 be the training dataset

in which xn ∈ R
p denotes the high-dimensional feature vector of data instance n and

yn ∈ {+1, −1} is the outcome label. The logistic loss function becomes:

Loss =
N∑

n=1

log
(
1 + exp

(
−yn(wT xn)

))
(7.3)

where w ∈ R
p are the feature weights. Using logistic loss (7.3)) in (7.2), we have:

L(D, w) ≤
N∑

n=1

log

{
1 +

D∏

d=1

E (exp(−ynwdxnd))p(x̃nd|xnd)

}
(7.4)

Here, in (7.4), we can think of E (exp(−ynwdxnd)) as a moment generating function

E (exp(tndxnd)) with tnd = −ynwd (Maaten et al., 2013). The moment-generating func-

tion (MGF) of corrupting distribution can be used here. For blankout noise, we can

write the probability mass function (PMF) as:

fX(x̃nd) =





qd when x̃nd = 0

1 − qd when x̃nd = 1
1−qd

xnd

Hence, moment generating function using blankout noise becomes:

Mx(blankout) = qd + (1 − qd) exp(−ynwd

1

1 − qd

xnd) (7.5)

The logistic regression model can be derived from data marginally corrupted using

blankout noise by plugging (7.5) in (7.4) to give:

L(D, w) ≤
N∑

n=1

log

{
1 +

D∏

d=1

(
qd + (1 − qd) exp(

−ynxnd

1 − qd

wd)

)}
(7.6)
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Survival Loss and Blankout Noise Cox regression models the readmission time

directly and takes censored information into account. Let k observations be uncensored

and N − k be right censored. Let t(i) be the ith ordered unique failure time. Let R(t(i))

is the risk at time t(i). Hence R(t(i)) consists of all persons surviving up to t(i). Using

Jensen’s inequality, we can write the Cox loss as:

L(D̃, w) ≤
k∑

n=1

log





∑

lǫR(t(n))

D∏

d=1

E [exp(wdx̃ld)]



−

k∑

n=1

D∑

d=1

E

(
wdx̃(n)d

)

The Cox model can be derived from data marginally corrupted using blankout noise

(7.5). The modified loss function becomes:

L(D̃, w) ≤
k∑

n=1

log





∑

lǫR(t(n))

D∏

d=1

[
qd + (1 − qd) exp(wd

1

1 − qd

xld)

]
−

k∑

n=1

D∑

d=1

wdx(n)d

We detail the derivations of loss functions corrupted with blankout noise and their

gradients in Appendix Section A.2.1.



Appendix A

Supplementary Material

A.1 Parameter Estimation for Logistic regression

Given a list of input variables X ∈ R
M×N with corresponding output labels y ∈ {0, 1},

the logistic regression model with parameter w ∈ R
N becomes:

J(w) =
M∑

i=1

− y(i)loghw(x(i)) − (1 − y(i)) log (1 − hw(x(i))) (A.1)

Thus, J(w) becomes the cost function. The maximum likelihood estimate for w is

obtained by minimizing the cost function with respect to w. Hence we have:

min
w

J(w) = d
dw

J(w)= d
dw

M∑
i=1

− y(i)loghw(x(i)) − (1 − y(i)) log (1 − hw(x(i)))

If we consider only a single training example (x, y), we have:

∂

∂wj

ℓ(w) =
∂

∂wj

[−y loghw(x)] −
∂

∂wj

[(1 − y) log (1 − hw(x))]

=
∂

∂wj

[
−y log g(wT x)

]
−

∂

∂wj

[
(1 − y) log (1 − g(wT x))

]

=

[
−y

1

g(wT x)
+ (1 − y)

1

(1 − g(wT x))

]
∂g(wT x)

∂wj

(A.2)
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The derivative of the sigmoid function g(z) can be written as:

d

dz
g(z) =

d

dz

1

1 + e−z

=
1

(1 + e−z)

(
1 −

1

(1 + e−z)

)

= g(z) (1 − g(z)) (A.3)

Substituting (A.3) in (A.2), we have:

∂

∂wj

ℓ(w) =

[
−y

1

g(wT x)
+ (1 − y)

1

(1 − g(wT x))

]
g(wT x) (1 − g(wT x))

∂g(wT x)

∂wj

= [hw(x) − y] xj (A.4)

To summarize, the logistic regression learns parameter w, by minimizing the object-

ive function in (A.1). The objective function is guaranteed to be convex and the op-

timum can be found with the help of (A.4) using gradient descent or conjugate gradient

method.

A.2 Estimating parameters of a Cox proportional haz-

ards model

Let the number of individuals be n. Let k observations be uncensored and n−k be right

censored. Let t(i) be the ith ordered unique failure time. Let R(t(i)) is the risk at time

t(i). Hence R(t(i)) consists of all persons surviving up to t(i). The partial likelihood for

the model is calculated as:

L(β) =
k∏

i=1

exp(βT xi)∑
lǫR(t(i))

exp(βT xl)
(A.5)
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and the log-partial likelihood becomes

l(β) = logL(β)

=
k∑

i=1



βT x(i) − log


 ∑

lǫR(t(i))

exp(βT xl)





 (A.6)

Maximizing the likelihood, we have:

∂l

∂βu

=
k∑

i=1





∂

∂βu

βT x(i) −
∂l

∂βu

log


 ∑

lǫR(t(i))

exp(βT xl)







=
k∑

i=1





xu(i) −

∑
lǫR(t(i))

xul exp(βT xl)

∑
lǫR(t(i))

exp(βT xl)





= 0 (A.7)

We can simplify (A.7) as:

∂l

∂βu

=
k∑

i=1

{
xu(i) − Aui(β)

}
(A.8)

where:

Aui(β) =

∑
lǫR(t(i))

xul exp(βT xl)

∑
lǫR(t(i))

exp(βT xl)
(A.9)
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Taking the second derivative, we have :

∂l

∂βuβv

= −
k∑

i=1




∑
lǫR(t(i))

exp(βT xl)
∂l

∂βv


 ∑

lǫR(t(i))
xul exp(βT xl)





 ∑

lǫR(t(i))
exp(βT xl)




2

−

∑
lǫR(t(i))

xul exp(βT xl)
∂l

∂βv


 ∑

lǫR(t(i))
exp(βT xl)





 ∑

lǫR(t(i))
exp(βT xl)




2




= −
k∑

i=1




∑
lǫR(t(i))

exp(βT xl)


 ∑

lǫR(t(i))
xulxvl exp(βT xl)





 ∑

lǫR(t(i))
exp(βT xl)




2

−

∑
lǫR(t(i))

xul exp(βT xl)


 ∑

lǫR(t(i))
xvlexp(βT xl)





 ∑

lǫR(t(i))
exp(βT xl)




2




∂l

∂βuβv

= −
k∑

i=1




−


 ∑

lǫR(t(i))
xulxvl exp(βT xl)




∑
lǫR(t(i))

exp(βT xl)
+

∑
lǫR(t(i))

xul exp(βT xl)


 ∑

lǫR(t(i))
xvlexp(βT xl)





 ∑

lǫR(t(i))
exp(βT xl)




2




(A.10)
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We can simplify this using notation in equation(A.9) as:

∂l

∂βuβv

=
k∑

i=1





−

∑
lǫR(t(i))

xulxvl exp(βT xl)

∑
lǫR(t(i))

exp(βT xl)
+ Aui(β)Avi(β)





(A.11)

= Cuvi(β)

A.2.0.1 Breslow’s estimator for baseline cumulative hazard function

We need to estimate the cumulative baseline hazard function and also the baseline sur-

vival function. Assuming that the baseline hazard function is constant between suc-

cessive observed failure times, the Breslow’s estimator (ignoring tied survival times) is

given by:

Ĥ0(t) =
∑

ti≤t

1
∑

lǫR(t(i))
exp(βxl)

where, ti is unique ordered failure time. For a discrete distribution, we have:

ĥ0(t) =
1

∑
lǫR(t(i))

exp(βxl)

where ĥ0(t) = 0 if t is not an event time.

The Survival Function Estimator

The estimator for the baseline survival function becomes:

Ŝ0(t) = e−Ĥ0(t)
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The survival probability S(t|xi) of the ith patient at time t becomes:

S(t|xi) = S0(t)
exp(βT xi)

A.2.1 Learning with Marginalized Corrupted Features

A.2.1.1 Logistic Loss and Blankout Noise

Given D = {xn, yn}N

n=1 be the training dataset in which xn ∈ R
p denotes the high-

dimensional feature vector of data instance n and yn is the outcome label. We can

model the probability of label y ∈ {+1, −1}, given data x ∈ R
pas:

P (y|x; w) =
1

1 + exp (−y(wT x))

where w ∈ R
p are the feature weights. Hence the likelihood becomes:

L(w; x, y) =
N∏

n=1

1

1 + exp (−yn(wT xn))

logL(w; x, y) = −
N∑

n=1

log
(
1 + exp

(
−yn(wT xn)

))

Maximizing the likelihood is equivalent to minimizing the negative log likelihood.

Hence the logistic loss function becomes:

Loss =
N∑

n=1

log
(
1 + exp

(
−yn(wT xn)

))
(A.12)
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Using logistic loss (A.12) in(7.2), we have:

L(D, w) =
N∑

n=1

E

[
log

(
1 + exp(−ynwT xn)

)]
p(x̃n|xn)

L(D, w) ≤
N∑

n=1

log

{
1 +

D∏

d=1

E (exp(−ynwdxnd))p(x̃nd|xnd)

}
(A.13)

In (A.13), we can think ofE (exp(−ynwdxnd)) as a moment generating functionE (exp(tndxnd))

with tnd = −ynwd (Maaten et al., 2013). The MGF of corrupting distribution can be

used here.

For blankout noise, we can write the PMF as:

fX(x̃nd) =





qd when x̃nd = 0

1 − qd when x̃nd = 1
1−qd

xnd

Hence, moment generating function using blankout noise becomes:

Mx(t) = E [exp(tx̃nd)] , where t= − ynwd

Mx(t) =
∑

x̃nd

exp(tx̃nd) × fX(x̃nd)

= exp(0) × qd + exp(t
1

1 − qd

xnd) × (1 − qd)

Mx(blankout) = qd + (1 − qd) exp(−ynwd

1

1 − qd

xnd) (A.14)

The logistic regression model can be derived from data marginally corrupted using

blankout noise by plugging (A.14) in (A.13) to give:

L(D, w) ≤
N∑

n=1

log

{
1 +

D∏

d=1

(
qd + (1 − qd) exp(

−ynxnd

1 − qd

wd)

)}
(A.15)

The gradient for loss function in (A.15) becomes:

∂L(D, w)

∂wd

=
∂

∂wd

(
N∑

n=1

log

{
1 +

D∏

d=1

(
qd + (1 − qd) exp(

−ynxnd

1 − qd

wd)

)})
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For sake of simplicity, let us assign:

Bnd = qd + (1 − qd) exp(
−ynxnd

1 − qd

wd)

∂wdBnd = −ynxnd exp(
−ynxnd

1 − qd

wd)

∂L(D, w)

∂wd

=
∂

∂wd

(
N∑

n=1

log

{
1 +

D∏

d=1

Bnd

})

=
N∑

n=1

−ynxnd

1 +
D∏

d=1
Bnd

exp(
−ynxnd

1 − qd

wd)
∏

d̃6=d

Bnd

=
N∑

n=1

−ynxnd

Bnd

D∏
d=1

Bnd

1 +
D∏

d=1
Bnd

exp(
−ynxnd

1 − qd

wd) (A.16)

A.2.1.2 Cox Loss and Blankout Noise

Cox regression models the readmission time directly and takes censored information

into account. Let k observations be uncensored and N − k be right censored. Let t(i)

be the ith ordered unique failure time. Let R(t(i)) is the risk at time t(i). Hence R(t(i))

consists of all persons surviving up to t(i). The log-partial likelihood function for Cox

regression model is:

logℓ(w; x) =
k∑

n=1



wT x(n) − log


 ∑

lǫR(t(n))

exp(wT xl)







Maximizing the likelihood is equivalent to minimizing the negative of log-likelihood.

Hence the loss function becomes:

L(x; w) =
k∑

n=1



log


 ∑

lǫR(t(n))

exp(w⊤xl)


− w⊤x(n)



 (A.17)
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Using (A.17) in (7.2), we have:

L(D̃, w) =
k∑

n=1

E



log


 ∑

lǫR(t(n))

exp(w⊤x̃l)


− w⊤x̃(n)





=
k∑

n=1

E



log


 ∑

lǫR(t(n))

exp(w⊤x̃l)





−

k∑

n=1

E

(
w⊤x̃(n)

)

L(D̃, w) ≤
k∑

n=1

log



E


 ∑

lǫR(t(n))

D∏

d=1

exp(wdx̃ld)





−

k∑

n=1

D∑

d=1

E

(
wdx̃(n)d

)
(A.18)

Here, (A.18) is the result of applying Jensen’s inequality. We further simplify as:

L(D̃, w) ≤
k∑

n=1

log





∑

lǫR(t(n))

E

[
D∏

d=1

exp(wdx̃ld)

]
−

k∑

n=1

D∑

d=1

E

(
wdx̃(n)d

)

≤
k∑

n=1

log





∑

lǫR(t(n))

D∏

d=1

E [exp(wdx̃ld)]



−

k∑

n=1

D∑

d=1

E

(
wdx̃(n)d

)
(A.19)

Since we assume that the corrupting distribution is unbiased, we have:E[x̃nd]p(x̃nd|xnd) =

xnd

Hence, E
(
wdx̃(n)d

)
= wdE

(
x̃(n)d

)

= wd

[(
x̃(n)d × P(x̃(n)d = 0)

)
x̃(n)d=0

]

+wd



(

x̃(n)d × P(x̃(n)d =
1

1 − q
x(n)d)

)

x̃(n)d= 1
1−q

x(n)d




= wd

[
0 +

(
1

1 − q
x(n)d × (1 − q)

)]

E

(
wdx̃(n)d

)
= wdx(n)d (A.20)

Using (A.14) and (A.20) in (A.18) we have:

L(D̃, w) ≤
k∑

n=1

log





∑

lǫR(t(n))

D∏

d=1

[
qd + (1 − qd) exp(wd

1

1 − qd

xld)

]
−

k∑

n=1

D∑

d=1

wdx(n)d
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The gradient of loss function becomes:

∂L

∂wd

=
∂L

∂wd




k∑

n=1

log





∑

lǫR(t(n))

D∏

d=1

[
qd + (1 − qd) exp(wd

1

1 − qd

xld)

]





−
∂L

∂wd

(
k∑

n=1

D∑

d=1

wdx(n)d

)

=
∂L

∂wd

(Term1) −
∂L

∂wd

(Term2)

We now find the differentials of the two terms individually.

∂L

∂wd

(Term2) =
∂L

∂wd

(
k∑

n=1

D∑

d=1

wdx(n)d

)

=
k∑

n=1

x(n)d (A.21)

Let

Bld = qd + (1 − qd) exp(
xld

1 − qd

wd)

Al =
D∏

d=1

Bld

Here,

∂wdAl =


∏

d̃6=d

Bld̃


 exp(

xld

1 − qd

wd)xld

=

(
D∏

d=1

Bld

)
exp( xld

1−qd
wd)xld

Bld

= Al

exp( xld

1−qd
wd)xld

Bld
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then:

∂L

∂wd

(Term1) =
∂L

∂wd




k∑

n=1

log
∑

lǫR(t(n))

Al




=
k∑

n=1

1
∑

lǫR(t(n))
Al

∂wd


 ∑

lǫR(t(n))

Al




=
k∑

n=1

1
∑

lǫR(t(n))
Al

∑

lǫR(t(n))

∂wdAl

=
k∑

n=1

∑

lǫR(t(n))

Al∑
l∗ǫR(t(n))

Al∗

exp( xld

1−qd
wd)xld

Bld

=
k∑

n=1

∑

lǫR(t(n))

Q(l)
exp( xld

1−qd
wd)

Bld

xld

where,

Q(l) =
Al∑

l∗ǫR(t(n))
Al∗



Appendix B

Additional Experiments

B.1 Effect of Knowledge-based Stabilization on heart

failure readmission within 12 months

In Chapter 4, we applied knowledge-based feature graph (EMR graph) for stabilizing an

individual patient predictive model for unplanned readmission within 6 months. We

applied the same techniques for a 12 months readmission model. Feature extraction

and graph generation techniques were as detailed in Chapter 4. We present the results

on performance and stability for the 12 months model.

The AUC reaches the pick of 0.66 (95% CI: 0.60–0.71) when α = .001 and β = .01.

After a certain point, model discrimination gradually decreased with increasing regular-

ization penalties (Figure B.1a). This suggests a trade-off between maintaining discrim-

inative power, sparsity and stability. A good trade-off was achieved at α = .001 and

β = .03, where external validation resulted in an AUC 0.66 on 12-month prediction

(Fig. B.1b).

The stability of the feature subset selected by our 12 month readmission model was

numerically validated using measures of Consistency index and Jaccard index. The top

ranked features of the model with and without Laplacian feature graph regularization

were compared among each other for different bootstraps. The Laplacian-regularized
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Figure B.1: Model performance for 12 months HF readmission. (a) Variation in
AUC w.r.t different hyperparameter settings for models predicting HF specific re-
hospitalization 6 months and 12 months. The X-axis represents ordinal values
of increasing penalty in regularization variables. The Y-axis represents the AUC.
(b) Receiver operating characteristic curve for our stabilized model predicting re-
hospitalization in 6 months and 12 months with α = .001 and β = .03.

model resulted in more stable feature subsets when measured using both indices, as

demonstrated in Figures B.2a,b.

From a total of 3,338 features extracted from the EMR database, the lasso-regularized re-

gression model resulted in 142 risk factors which are positively predictive of unplanned

readmissions following heart failure discharges. We list the top predictors for 12-month

re-hospitalizations in Table B.1.

B.2 Stabilization: Data driven experiments

In Chapter 5, we examined data driven stabilization schemes. We also experimented on

stabilization using data perturbations. In this process, we introduce data perturbations

to the model to weed out weak and inconsequential features. We had briefly mentioned

two methods for data perturbations – dropout (Section 7.1.1) and learning with mar-

ginalized corrupted features (Section 7.1.2). Here, we introduce two more methods.

We then present our initial results on stabilization with these methods.
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(a) Consistency index.
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(b) Jaccard index.

Figure B.2: Stability of the model as measured by the Consistency index (see Fig-
ure B.2a) and Jaccard index (see Figure B.2b) for 12-month prediction. The plot com-
pares the similarity in feature subsets generated by models with and without Laplacian
EMR graph stabilization under data variations. The stability indices are evaluated at
different sizes of the feature subsets. Larger value of indices implies more stability.

B.2.1 Augmenting training data

We apply the converse principle of dropout to our data. Instead of dropping out ran-

dom data points, we now augment (“drop in”) a random sub-sample of our original

data during model learning. This augmenting process is similar to bootstrap, we try to

see if such perturbations have any effect on model stability.

B.2.2 Adding Gaussian Noise

Training features by adding Gaussian noise is similar to L2regularization (Bishop, 1995).

Though adding noise to features may look counter-intuitive, this increases the variance

in model parameters, thereby forcing feature selection algorithms to choose only the

strong features.

B.2.3 Double Bootstrap

Breiman et al. (1996) studied instability in prediction and proposed bagging. Bagging

is an ensemble technique based on bootstrapping (Efron and Tibshirani, 1994) and
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Top predictors for 12 months readmission Importance

Male 50.2

Public health insurance 47.2

Admissions past 2-4 years 31.6
Rare diagnoses past 0-3 months 30.8
Emergency visits past 0-3 months 29.3
Emergency attend time past 0-3 months 27.9
Emergency-to-ward transfers past 0-3 months 25.2

Procedures past 0-3 months 27.4

Occupations: pensioner, retired or home duties 25.8

Acute myocardial infarction 12.2
Disorders of lipoprotein metabolism 12.8
Angina pectoris 11.8
Personal history of certain other diseases 11.7

Complicated diabetes diagnoses past 3-6 months 14.2

Table B.1: Top predictors for 12-month unplanned re-hospitalization following heart
failure discharges as identified by our model. Feature importance was calculated as
product of feature weight and feature standard deviation in the training data set, nor-
malized into the range [0–100].

aggregating. In theory, if a base classifier could perform better than random guessing,

then aggregating results from an ensemble of classifiers would always outperform the

base classifier. In bagging, B bootstrap samples are generated from the original training

set. For each of the B samples, a learning model is derived, resulting in B independent

models. A test instance is estimated using a majority vote from the B models or by

averaging the model parameters. The bagging algorithm is described by Breiman in

(Breiman et al., 1996). In our work, we implement bagging as a double bootstrap

shown in algorithm B.1.

On average, a bootstrap sample will not contain around 37% of training data. Hence

sampling with replacement could possibly avoid potential outliers, resulting in better

classifiers (Skurichina and Duin, 2002). Aggregating results reduces their variance and

hence increases stability. In our algorithm, we do two bootstrap aggregations. The

inner bootstrap resamples from an already bootstrapped sample and derives the model

parameters. Hence, each iteration of the outer for loop produces a w̄i: the aggregated
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Algorithm B.1 Double Bootstrap: variation of Bagging for predicting HF readmission
1. for i = 1,2,...,Bouter

2. Generate a bootstrap replicate Di from Dtrain

3. for j = 1,2,...,Binner

4. Generate a bootstrap replicate Dj from Di

5. Derive model parameters wj using Dj

6. end for

7. Compute w̄i =

∑
j

wj

Binner

8. Compute P(yi|Dtest) = Model(Dtest, w̄i)
9. end for

10. Compute P(y|Dtest) =
∑

i
P(yi|Dtest)

Bouter

model parameters from Binner bootstrapped samples.

B.2.4 Results for Data Perturbation Methods

We compared the predictive performance and stability of our proposed data perturba-

tion methods with lasso, elastic net and EMR Feature graph introduced in Chapter 4.

We also implemented a combination of these methods.

The discrimination of the model with respect to various stabilization techniques are

shown in Table B.2. We can infer the following details. The best AUC achieved by the

model is 0.65, competitive with existing systems. However, model performance is not

improved by combining regularization techniques.

In our experiments, model AUC is least when artificially corrupting features using

dropout and data augmentation. The best AUC achieved in this case is 0.63, which is

still competitive with existing heart failure readmission models. We believe that this

value is a better estimate of the true model AUC, since this resulted from artificially

corrupting the features. Hence it is less optimistic.

We looked at various aspects of stability. The stability of the feature subset was numer-

ically validated using Consistency index (Fig B.3).
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Standard Techniques AUC
No stabilization (lasso) 0.657 [0.601,0.713]
Elastic Net 0.651 [0.595,0.707]
Graph 0.650 [0.594,0.706]
Multiplicative Gaussian Noise 0.653[0.596, 0.708]
Double Bootstrap 0.648 [0.592,0.704]
Feature dropout 0.633 [0.577,0.690]
Data augmentation 0.623 [0.566,0.679]
Combined Techniques AUC
Elastic Net + Graph 0.654 [0.598,0.710]
Feature dropout + Elastic Net 0.642 [0.586,0.698]
Double Bootstrap +Elastic Net + Graph (Bagging) 0.652 [0.596,0.707]
Gaussian Noise + Bagging 0.653[0.596, 0.708]
Dropout in Bagging 0.640 [0.583,0.696]
Data augmentation + Elastic Net + Graph 0.630 [0.573,0.687]

Table B.2: Model Performance measured as area under the ROC curve (AUC)
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Figure B.3: Feature Stability as measured by Consistency index

Stability in prediction for each patient is calculated using SNR values (Fig B.4). Probab-

ility stability is defined as the variance in probability for each example, and is calculated

as SNRprobs = p̄i

σpi

.
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Figure B.4: Prediction Stability for each patient

Algorithmic stability was measured as the stability of accuracy in high risk patients and

is illustrated in Figure B.5.
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Figure B.5: Algorithmic stability measured as Accuracy in high risk patients

We concluded that knowledge based feature graph regularization performed the best in

terms of performance and overall stability of features. This regularization scheme was

also easier to implement and was less time consuming compared to others.
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