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Abstract
The advent of Industry 4.0 has led to a rapid increase in cyber attacks on industrial systems 
and processes, particularly on Industrial Control Systems (ICS). These systems are increas-
ingly becoming prime targets for cyber criminals and nation-states looking to extort large 
ransoms or cause disruptions due to their ability to cause devastating impact whenever they 
cease working or malfunction. Although myriads of cyber attack detection systems have 
been proposed and developed, these detection systems still face many challenges that are 
typically not found in traditional detection systems. Motivated by the need to better under-
stand these challenges to improve current approaches, this paper aims to (1) understand 
the current vulnerability landscape in ICS, (2) survey current advancements of Machine 
Learning (ML) based methods with respect to the usage of ML base classifiers (3) provide 
insights to benefits and limitations of recent advancement with respect to two performance 
vectors; detection accuracy and attack variety. Based on our findings, we present key open 
challenges which will represent exciting research opportunities for the research community.
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1 Introduction

Industrial control systems (ICS) are commonly defined as a subset of operational tech-
nology (OT) that regulate critical industrial processes such as power generation, water 
utilities, oil & gas and transportation systems. Historically, ICS have not been designed 
with in-built security features (Hahn, 2016). However, with the rise in remote man-
agement capabilities facilitated by the increased use of the Internet over the last two 
decades, ICS began to connect to information technology (IT) systems. The so-called 
convergence of OT and IT in Industry 4.0 has brought vulnerabilities from IT systems 
(e.g insecure protocols, remote connections, etc) into OT systems. This has led to cyber 
attacks, previously only occurring in IT, now being seen in ICS. These cyber attacks 
have caused massive negative environmental, safety, societal, and physical impact to 
ICS asset owners, government and the general public.

One of the most notable early examples of ICS cyber attacks is the attack on the Ira-
nian nuclear facility using the Stuxnet malware (Langner, 2011). The malware infected 
specific programmable logic controllers (PLCs), which led to the destruction of approx-
imately 1,000 centrifuges used in Iran’s nuclear program. In 2015, the BlackEnergy3 
malware compromised the Ukrainian power grid system, causing power outages in sev-
eral areas, which affected nearly a quarter-million customers (Case, 2016). In May 2021, 
the Colonial pipelines, which supply 45% of the fuel consumption along the east coast 
of the United States of America, were hit by a cyber attack. As a result, the company 
was forced to shut down its operations for several days, which caused fuel shortages, 
price hikes and panic buying across the country (Sanger et al., 2021).

With the rising number of cyber attacks on ICS, the need for automated cyberse-
curity tools to augment current mostly-manual capabilities is becoming more apparent 
(Asghar et al., 2019; El Mrabet et al., 2018; Mehrfeld, 2020; Ko, 2020). Increasingly, 
researchers are achieving cybersecurity automation using machine learning (ML) tech-
niques – learning patterns in ICS signals and data to make better security decisions 
(Beaver et al., 2013; Begli et al., 2019; Cui et al., 2020; Buczak & Guven, 2015; Torres 
et al., 2019; Apruzzese et al., 2018). In the literature, most of these ML techniques have 
shown promising results. However, adopting these approaches to the real environment 
still poses many challenges.

Motivated by the need to better understand these challenges to improve current approaches, 
this paper aims to investigate the issues affecting cybersecurity automation, particularly 
in cyber attack detection systems on ICS. Ultimately, this paper will answer the following 
research questions (RQ) with the associated key contributions (C) and expected takeaways (T):

RQ1: What are the vulnerabilities found in ICS? (Section 3)

C1: We identify the well-known vulnerabilities in common ICS components and proto-
cols that may still exist till this day in some critical infrastructure environments.

C2: We also discuss the the common ICS cyber attacks that exploit these vulnerabilities 
and present three of the biggest security issues and challenges in ICS.

T1: Understanding the well-known vulnerabilities commonly found in ICS components 
and the implications of these vulnerabilities in regards to cyber attacks can equip 
researchers with better knowledge of the ICS domain. This knowledge can be use 
to identify the potential root cause of cyber attacks and researchers can use the 
knowledge to developed effective detection/mitigation strategies.
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RQ2: What are the current advancements in Machine learning for detecting cyber attacks 
in ICS with respect to detection accuracy, attack variety and type of learning classifiers? 
(Section 4)

C3: We identify the contemporary machine learning algorithms which are commonly 
used as the basis of current state-of-the-art ML approaches and the type of cyber 
attacks they can detect.

C4: We review and compare 30 recent ML approaches for ICS with respect to the type 
of base learning classifier used in the approach, types of cyber attacks and datasets 
the approaches have been evaluated upon, and performance metric used to evaluate 
the efficacy of the approach.

T2: The key takeaway from C3 and C4 is the insight of ’which’ base ML algorithm is 
best suited for ’which’ cyber attack. This information may help researchers narrow 
down the best base ML classifier for developing new and better approaches. It also 
gives an overview of base ML algorithms that have or have not been used, alongside 
the type of datasets they have been evaluated upon.

RQ3: What are the current limitations and challenges that prevent real-world adoption of 
ML based approaches, and the research opportunities to address these limitations and 
challenges? (Sections 5 & 6)

C5: We identify four critical challenges facing current ML research for detecting ICS 
cyber attacks based on the insights gained from C4.

C6: We provide four recommendations for the research community to consider as the way 
forward and future research opportunities to overcome the challenges mentioned in C5.

T3: The challenges mentioned in C4 highlight the important current research gaps in 
ICS security based on the findings of our literature reviews. Understanding these 
challenges could help generate new research directions and possibly draw focus to 
priority areas that would benefit critical infrastructures. In C5, we list several of the 
top priority areas and research directions that we believe should be the focal points 
in the development of ML in ICS security.

We begin by describing the vulnerabilities in ICS based on its components and protocols 
and present the cybersecurity challenges arising from these vulnerabilities. Subsequently, 
we reviewed current contemporary ML approaches performance focusing on the choice of 
base ML classifiers and cyber security datasets used within the development of the detection 
system. Based on the review, we summarise our observations and list key challenges ahead. 
Lastly, we highlight future research opportunities and recommendations to address the chal-
lenges in this increasingly important field. The contribution map is as shown in Fig. 1.

2  Related work

Buczak and Guven (2015) present a survey on data mining and ML methods for intru-
sion detection where most of their approaches are tested on the old KDDCup’99 dataset. 
Kwon et al. (2019) present a survey on deep learning methods which includes local experi-
ments to show the effectiveness of deep learning methods in detecting network anoma-
lies. Nguyen et al. (2018) surveyed deep learning techniques used to detect cyber attacks 
in mobile cloud computing. Unlike these surveys that focus only on network anomaly 
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detection or IT applications such as mobile cloud computing, our paper focuses on anoma-
lies (or cyber attacks) found in the network and process layers in ICS.

Existing surveys usually focus on specific types of ICS cyber attacks. For example, Men 
et al. (2020) present a survey on ML methods focusing on addressing ICS protocol-based 
attacks. Cui et al. (2020) present a survey on detecting false data injection, replay and so-
called ‘zero-dynamic’ attacks using ML techniques for smart grid. Zhang et  al. (2021) 
review attack detection, estimation and control methods for two types of cyber attacks; 
denial-of-service and deception attacks where the latter mainly consist of spoofing and 
false data injection attacks. Tan et al. (2020) provide a brief survey on detection methods 
specific to false data injection attacks. Our work covers many types of ICS cyber attacks 
that existed in the real world and those that are used in cyber security research.

Some surveys look at ML approaches used for a wide range of purposes in industrial 
systems including anomaly detection and hardware/software fault detection. For example, 
Diez-Olivan et al. (2019) present a survey on the usage of ML for an industrial prognosis 
for a variety of critical infrastructure sectors. A recent survey (Umer et al., 2022) discusses 
a variety of ML methods that have been used in the ICS domain. Our survey only focuses 
on the advances of ML approaches by providing a comparison of the best ML methods for 
specific cyber security attacks and datasets.

Other surveys look at non-ML techniques for securing ICS. Hurst et al. (Hurst et al., 2014) 
present conventional methods for detecting and mitigating cyber threats on ICS in critical 
infrastructure. Maynard et al. (2020) study the various ICS cyber attacks and map them to the 
‘so called’ ICS attack Kill Chain, which is popular in the industry (Assante and Lee, 2015). In 
our survey, we only include papers that use ML approaches to detect cyber attacks (or anoma-
lies) and study their attack coverage, choice of classic ML algorithms as the foundation of 
their approach, quality of datasets and performance metrics used for cyber attack detection.

3  Vulnerabilities in ICS

Industrial control systems (ICS) are of programmable system which is used for monitor-
ing, controlling and regulating industrial processes. Common types of ICS are supervisory 
control and data acquisition systems (SCADA) and distributed control systems (DCS). The 

Fig. 1  Contribution map
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ICS environment contains a number of components specific to industrial control and man-
agement. Common types of ICS components are programmable logic controllers (PLCs), 
human machine interfaces (HMIs), sensors/actuators, safety instrumented systems (SIS), 
data historians, remote terminal units (RTUs) and engineering workstations.

The ICS environment is often (or ‘may be’) hierarchically ordered. The Purdue Enterprise 
Reference Architecture (PERA) (Williams, 1994) organises industrial control components 
into a six-tier architecture within specific network zones related to the broad ICS functionality 
required at each zone as shown in Fig. 2. ICS components are mainly found within Level 0 - 3.

We describe each of the ICS components in the OT network with their typically associ-
ated vulnerabilities in the next few paragraphs.

Programmable logic controllers (PLCs) are controller devices in Level 1 of PERA that are 
commonly programmed using ladder logic. Historically, PLC often has a customised operat-
ing system and a combination of function code and data blocks which may risk corruption, 
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modification and configuration manipulation (Wu et al., 2019). An example an of attack that 
took advantage of PLC’s known vulnerabilities is the Stuxnet attack (Langner, 2011).

Human Machine Interfaces (HMIs) are any device in a plant that requires human control 
in providing or in some cases displaying the state of a process or large piece of equipment. 
They are at level 2 of the Purdue architecture providing control panels to PLCs and often 
run commercially available lightweight operating systems such as Windows, but cannot 
usually be patched or secured (Chan et al., 2019). This makes them attractive targets for 
cyber attackers looking to gain operating systems access when onsite to install malicious 
software or gain control of other devices in the ICS environment.

Sensors/Actuators are at Level 0 of the Purdue architecture, and provide raw data feeds 
into PLCs (typically as data blocks). The key problem associated with sensors is that they 
are not capable of providing authentication or integrity guarantees to the data they provide, 
and PLCs in turn use sensor data to evaluate and execute control logic. The consequence 
is that control logic is based on unauthenticated inputs with no integrity controls such as 
‘unauthorised command’ messages, thus compromising systems (Govil et al., 2017).

Safety Instrumented Systems (SIS) are designed and operated as independent systems that 
monitor the condition of the industrial process with the aim to shut it down should it enter 
a state in which the system itself may be damaged. The safety system itself is usually engi-
neered to similar cybersecurity standards as the control system, with probably less monitor-
ing on safety systems and can be compromised, as in the Trisis malware (Kanamaru, 2017).

Data Historians collect and maintain records of past events for analysis and display, usu-
ally in a database platform. It usually has the same vulnerabilities as common database 
platforms (Gonzalez et al., 2019).

Remote Terminal Units (RTUs) typically reside in remote locations to monitor field devices 
and transmit data back to a central monitoring station such as a Master Terminal Unit (MTU), 
a central PLC or an HMI. Like PLCs, RTUs suffer from poor security features and are vul-
nerable to attacks such as authentication bypass, data manipulation and malformed protocol 
messages (Graham et al., 2016). An example of known attacks on RTU is the Industroyer 
incident (Kshetri & Voas, 2017).

Engineering Workstations are placed at various locations in the plant to allow engineers 
to update components in the rest of the ICS systems. They are often poorly controlled from 
an IT security perspective, may run unsupported operating systems and run under generic 
administrator accounts, often allowing remote access. In addition, they are prone to soft-
ware vulnerabilities, USB insertion of code or data on sites and may not run log monitor-
ing and malware detection software (Antrobus et  al., 2016). In the case of Stuxnet, the 
attacker utilises an engineering workstation as the initial access point.

To be able to visualise how these ICS components are connected and set up in the real-
world, we present Fig. 3 which shows an example of an ICS environment in a water treat-
ment plant. It contains the ICS components of a typical IT network, Demilitarized Zone 
(DMZ) and OT network based on the PERA model. From the figure, Zone A represents 
the SIS, Zone B represents the control systems where operators can control the sensors (A) 
and actuators (S) via engineering workstation and HMI, Zone C represents the Demilita-
rized Zone (DMZ) where external/untrusted devices (e.g remote operator console, smart 
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devices) can connect to the plant and Zone D represents the plant network (e.g. Laptop PC, 
SCADA workstation. More details of the plant will be described in Section 4.2.

3.1  OT network protocols

In addition to vulnerabilities and weaknesses in ICS components, many ICS specific proto-
cols are also vulnerable to cyber attacks. We list common protocols with their vulnerabilities:

Modbus is a de-facto communication protocol developed by Mobicon (now Schneider Electric) 
for PLCs and other ICS devices (Swales et al., 1999). It is insecure by design with known vulner-
abilities that can lead to denial-of-service (Voyiatzis et al., 2015; Upadhyay & Sampalli, 2020).

PROFINET is an I/O protocol by PROFIBUS International (Feld, 2004). The protocol is 
based on ETHERNET standard and is vulnerable against attacks such as unauthorised 
access (Dias et al., 2018).

S7COMM is a proprietary protocol for Siemens PLCs (Beresford, 2011). The protocol 
lacks authentication and encryption which makes it vulnerable to spoofing and denial-of-
service attacks (Alsmadi et al., 2021).

DNP3 is a reliable protocol that is used for communications between control system devices. 
In the default configuration it contains no authentication or encryption of the payload (East 
et al., 2009).

The main problem associated with ICS security protocols is many protocols currently 
in use do not implement message authentication and encryption, and have only weak or 
absent integrity protection. In consequence, adversaries have the ability to set up malicious 
control points and in some cases manipulate data in transit or through malicious drivers.

3.2  Common cyber attacks on ICS

cyber attacks on ICS may be targeted or opportunistic. Targeted attacks are defined as 
attacks that immediately target the physical infrastructure, whereas opportunistic attacks 

Fig. 3  Secure Water Treatment Tesbed (left) and its Architecture (right) for SWAT dataset from Goh et al. 
(2016)
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are classified as attacks that have an industrial attack as a byproduct rather than as the 
main objective.

The MITRE Corporation has recently released a MITRE ATT&CK for ICS framework 
to model the attack pathways to OT, in the form of tactics, techniques and procedures 
(Alexander et al., 2020). Some of the tactics in the ICS ATT&CK framework reappear in 
the general ATT&CK matrix, others are unique to industrial control systems. Among the 
unique tactics are inhibiting control functions, impairing process control and an impact cat-
egory that lists the various forms of impacts that ICS cyber attacks may have. Attacks are 
usually not executed in a single step and with a single technique or procedure. Instead, they 
rely on a set of techniques executed in a sequence known as the kill chain. As an example, 
the ICS specific kill chain that underpins a lot of the impacts in the ATT&CK for ICS 
framework is developed in Assante and Lee (2015).

Existing ML approaches mainly have a more limited focus on specific techniques (in 
the technical sense related to the above). Our studies found that the most common cyber 
attacks can be categorised into four categories; denial-of-service (DoS) (Long et al., 2005), 
false data injection (FDI) (Mo & Sinopoli, 2010), reconnaissance (Rec) (Mazurczyk & 
Caviglione, 2021) and spoofing (Spo) (Hijazi & Obaidat, 2019).

3.3  ICS security issues and challenges

ICS environments are usually designed to rely on their environments for their security. 
Security weaknesses in industrial protocols, for instance, are usually addressed by running 
them on a separated network, with the presumption that access to such separated networks 
can be strictly controlled by the operator. In modern environments, such separation is less 
and less possible. Relative to the context in which ICS systems operate, three trends influ-
ence the degradation of cyber-security in ICS networks.

Convergence of IT and OT networks The advent of Industry 4.0 has led to a gradual con-
vergence of IT and OT to allow process automation. ICS networks are a core part of OT 
networks. As a consequence, ICS networks are no longer isolated but are now exposed 
to automation components as well as increasingly the IT environment (and in some cases 
even the Internet), which increases their attack surface. For example, the Industrial Internet 
of Things often relies for its functionality on connections between critical infrastructure 
and a cloud platform that in turn is controlled via mobile phone apps. In many cases (like 
with intelligent lighting systems), these devices, apps and associated cloud infrastructure 
are deployed as an end-to-end third party solution over which the owner has little say, yet 
still ends up owning all of the risks.

Outdated Best Practices in the OT network It is considered best practice to maintain a 
separation between IT and OT networks as well as separate these networks from the Inter-
net, as in the PERA model (Williams, 1994). Devices and applications in the OT environ-
ment are designed for long lifetimes and high availability, not for resistance to IT or Inter-
net cyber threats. Notwithstanding recommended best practices, many OT environments 
have long had backdoors to enable remote support, often via insecure protocols such as 
FTP, TeamViewer, VNC and other remote access protocols. Such backdoors often existed 
without the knowledge of IT or cybersecurity departments and usually deployed consumer 
grade hardware and software standards.
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Security is not a priority in the ICS infrastructure ICS infrastructure is usually not safe 
by design. There are many instances of processes running with elevated privileges in an 
‘always on’ mode on devices that can be accessed by many users. A notable example is 
engineering workstations, where the software used to program the PLCs does not work 
well in a multi-user environment and needs to be available to contractors in case an update 
of the PLC programming is needed. Access to data blocks on PLCs is in turn required by 
industrial monitoring software and requires network access to the PLC over a program-
ming port. In these situations, normal network controls, such as firewalls, are ineffective 
and to detect an intrusion, a protocol level understanding of the traffic is required.

3.4  ICS vulnerabilities in a nutshell

Overall, this section lists the well-known vulnerabilities found in ICS components and 
protocols, four common categories of cyber attacks, and the ICS security issues and chal-
lenges. In summary, the vulnerabilities mentioned are mostly around insecure authentica-
tion, risks to unauthorised modification to data/configuration, and outdated/unpatchable 
software. These are generally caused by poor design which did not consider the security 
aspect of the particular component or protocols. Therefore, vulnerabilities in ICS are not 
an easy fix because most of these components and protocols would require a design update 
or an extra layer of security added to them in order to make them secure. Alternatively, 
better detection strategies can be developed to detect cyber attacks that arise from these 
vulnerabilities.

4  Current advancement in machine learning

We review the performance of recent ML-based approaches for detecting ICS cyber 
attacks, particularly focusing on the last five years (2017-2022). We structured our review 
to provide insights on the following two key components (i.e. machine learning algorithms 
and datasets) used in the development of the ML-based detection systems:

1. machine learning algorithm - an algorithm that will ‘learn’ from input data and save 
the ‘learned’ information into a model. The model will then be used for classification, 
prediction or clustering tasks.

2. dataset - a set of data used for building and training the model. The data normally 
consists of both normal and attack samples. It will also be used to evaluate the machine 
learning model’s performance.

We primarily queried from Google Scholar and Web of Science databases using a set of 
keywords from Table 1 and then manually filter the queried papers that are relevant to our 
survey and are highly cited or in the top ranked publications.

4.1  Contemporary machine learning algorithms

ML algorithms are used for learning the patterns from input data to build a model that can 
later be used to recognise the learned patterns from new data. This input data is also known 
as the training data. The ML model built can then be used on newer data for tasks such 
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as classification, prediction, clustering, dimensionality reduction and density estimation. In 
practice, ML model is periodically updated by adding newer data into the training data to 
ensure that the model can recognise newer patterns and maintain its accuracy.

In this section, we review contemporary ML algorithms used in ML-based detection 
approaches. These approaches typically use one of the contemporary ML algorithms 
with refined hyperparameters or input features. Some approaches combine two or more 
contemporary machine learning algorithms to improve performances. We divide these 
approaches into four main groups based on their learning characteristics, namely super-
vised learning, unsupervised learning, deep learning and ensemble learning.

Supervised learning use human intervention or ‘labels’ to learn the patterns. In attack 
detection tasks, binary-class labels (‘normal’, ‘attack’) are the common labels used to 
distinguish between benign data (“normal”) and malicious data (“attack”). Several types 
of supervised learning algorithms are k-Nearest Neighbour, Regressions (linear, logistic, 
Lasso, softmax), Bayes (Naive Bayes, Bayesian Network), Decision Trees (CART, J48, 
ID3, C4.5, REPTree), Artificial Neural Networks (NeuralNet, MLP, BPNN), Rule Induc-
tion (One-R, Zero-R, Ripper), Support Vector Machines (SVM), and Discriminant analysis 
(LDA, QDA).

Unsupervised learning requires no human intervention because it learns by grouping 
similar data together to form clusters or associations. This type of learning is desirable 
when labels are absent or insufficient from the training data. Common unsupervised learn-
ing algorithms found in the literature for ICS attack detection are Isolation Forest, One-
Class Support Vector Machine (OCSVM) and Autoencoders such as Sparse Autoencoders 
(SpAE), Undercomplete Autoencoders (UAE), Variational Autoencoders (VAE) and Fair 
Clustering (FD). These algorithms only learn from normal data and any outliers or anoma-
lies detected will be classified as ‘attack’.

Deep learning employs ‘multiple processing layers to learn representations of data with 
multiple levels of abstraction’(LeCun et al., 2015). Due to the deep learning from multiple 
representation levels, when trained properly, it can provide significantly better results than 
traditional ML algorithms. Deep learning algorithms can be a combination of both super-
vised and unsupervised learning techniques. Common deep learning algorithms are Deep 
Neural Networks (DNN), Convolutionary Neural Network (CNN), Deep Belief Network 
(DBN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN, including 
Simple Recurrent Unit and Bi-directional Recurrent Unit), Stacked Autoencoder (StAE) 
and Gated Recurrent Units (GRU).

Table 1  Search query keywords

Item Keywords / Formula

Keyword 1 “Industrial Control System” OR “industrial control system” OR “ICS”
Keyword 2 “cybersecurity” OR “cyber” OR “security” OR “internet” OR “network”
Keyword 3 “detection” OR “detect” OR “detecting“
Keyword 4 “automating” OR “auto” OR “automatic” OR “automate”
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Ensemble Learning approaches learn from a single ML algorithm multiple times. At each 
time, a different parameter setting will be used. The results are then combined to form a 
single ML model. This approach is used to enhance existing models and provide better 
detection results. Commonly used ensemble learning algorithms for attack detection are 
Random Forest (RF), Bagging, Boosting (Adaptive Boosting, Gradient Boosting), ensem-
ble deep learning, and ensemble neural network.

Table 2 presents a list of contemporary ML algorithms we reviewed under the four main 
categories mentioned above. We show the types of attacks each algorithm could detect; 
false data injection (FDI), denial of service (DoS), reconnaissance (Recon) and Spoofing 
(Spo) attacks. These algorithms can potentially detect other types of attacks, however, only 
the former four attacks have been evaluated in the papers we reviewed. This is partly due to 
the dataset limitations that will be explained in more detail in Section 4.2.

As shown in Table 2, existing approaches mostly focus on supervised learning methods 
such as Support Vector Machines and Decision Trees. However, supervised learning meth-
ods might not be suitable for real-world implementation in ICS due to the heavy reliance 
on labelled datasets for training. Generating labelled datasets is very expensive due to the 
need for human expertise to analyse and determine the label of each data.

Alternatively, unsupervised learning-based approaches seem to trump other approaches 
such as deep learning and supervised learning. Also, unsupervised learning-based 
approaches do not require labelled datasets for training and could identify cyber attacks 
by clustering data into groups. Data that does not belong to normal groups are considered 
anomalies or attacks. However, not many papers provide an evaluation of such approaches.

4.2  An overview of commonly‑used ICS datasets with the best ML performance

Datasets are collections of past data that are used to train and build ML models. These 
datasets are normally collected from small-scale physical testbeds with processes mim-
icking the real-world environment. These datasets are also used to test and evaluate the 
performance of ML models. We provide a brief description of the commonly used, pub-
licly available datasets. Table 3, presents a comparison of different ICS datasets used in 
evaluating ML-based approaches with their reported performance. From our review, we 
observed that most papers show the performance efficacy of their ML-based approaches 
through accuracy or F1-score. For simplicity, we only present the accuracy score of these 
approaches. However, not all of the surveyed papers have included accuracy in their evalu-
ation results. In such cases, we reported their F1 score.

Secure Water Treatment (SWaT) (Goh et al., 2016) is a collection of data from a scaled-
down real-world industrial treatment plant testbed implemented at the Singapore Univer-
sity of Technology and Design (SUTD). The dataset consists of 11-days of normal opera-
tional data from both physical properties and network traffic, and cyber and physical attack 
data recorded once every second. The normal operational data was collected in the first 
7-days where the plant was running six stages of the filtration process normally without 
any deliberate interruption and attacks. In the last 4-days, 36 attacks, lasting between a few 
minutes to an hour were launched from multiple points in the plant.

Gas Pipeline (GP) (Turnipseed, 2015) is collected from the GP system provided by the 
Mississippi State University. It contains 274,627 instances of network communication 
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between a Remote Terminal Unit (RTU) and a Master Control Unit (MTU) through the 
Modbus RTU protocol. Figure 4 shows the GP system and process framework. Based on 
the framework, network packet data is collected via a logger. The attacks are randomly 
executed from 35 cyber-attacks comprised of recon, FDI (respond injection(resp inj), com-
mand injection (cmd Inj)) and DoS attacks. These attacks constitute 21.9% of the total 
instances in the dataset.

IUNO datasets (Anton et al., 2019) are OPC UA based batch processing traffic. The data 
is generated with a Festo Didactic model representing a water pump environment, empty-
ing and filling in the water tank. Three datasets were created where each dataset contains a 
specific approach of the false data injection attack.

BATtle of the Attack Detection Algorithms (BATADAL) datasets (Taormina et al., 2018) 
consist of three different simulated datasets based on a fictional C-Town water distribution 
system. These datasets were created for a cyber attack detection competition, where seven 
teams took part to develop solutions based on the simulated datasets. The datasets include 
two training datasets and a testing dataset. The first training dataset consists of 365 days of 
hourly normal data whereas the second training dataset consists of seven attacks spanned 
across 497 hourly records. The testing dataset consists of 407 hourly records with addi-
tional seven types of attacks. All of the 14 attacks were some form of False Data Injection 
attack such as replay, man in the middle and modification attacks.

Water Storage Tank and Gas Pipeline SCADA systems (WST) dataset (Morris & Gao, 
2014) was collected from the laboratory-scale SCADA systems at Mississippi State Uni-
versity. Both datasets contain normal data and four types of attacks (two types of false data 
injection attacks, Denial of Service attack, and reconnaissance attack).

Power System Attack Datasets (Power) The Power System Attack datasets are three data-
sets made from one initial dataset created by Mississippi State University and Oak Ridge 
National Laboratory. The initial dataset was made from 15 sets of data containing 37 power 
systems scenarios that can be divided into three types of events: natural events, no events, 
and attack events. The attack events are false data injection attacks including remote com-
mand injection, and relay setting change attacks.

Water Distribution Testbed (WADI) WADI dataset (Ahmed et al., 2017) is collected from 
a scaled-down water distribution network in a city.

Fig. 4  Gas pipeline system and process framework for GP dataset from Turnipseed (2015)
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Festo MPA Process Control Rig (Festo) A clean water supply system was implemented 
using the Festo MPA process control rig at the Edinburgh Napier University (Robles-
Durazno et al., 2018). It generated three datasets with false data injection attack to reduce 
the amount of water in the reservoir tank. The data is collected using the INA219 sensors 
via the I2C protocol.

Tennessee Eastman Process (TEP) simulation This is the oldest publicly available dataset 
in the ICS environment (Downs & Vogel, 1993). It involves simulating an actual industrial 
process plant in the chemical industry. Researchers have re-generated new datasets (Rieth 
et al., 2017) which include more examples for both training and testing data. The datasets 
contains 21 preprogrammed process faults that could simply be categorised as false data 
injection attacks.

Traffic Light Control System (TLIGHT) The dataset is based on an experimental setup 
using the Siemens S7 PLCs loaded with TLIGHT traffic light control program (Yau & 
Chow, 2017). Two set of datasets were created. The datasets contain seven types of normal 
operations that caused variation in the timers and output values of the traffic light control 
system. Attack data was created by altering some of the values using an open source pro-
gram called Snap7.

HIL‑based Augmented ICS Security (HAI) 1.0 This dataset (Shin et al., 2020) is collected 
from a simulated testbed which combines three physical systems; GE turbine, Emerson 
boiler and FESTO water treatment.

There are also recent datasets generated by the community that have not yet been widely 
used for evaluating ML-based approaches but are worth mentioning such as ELECTRA 
(Gómez et al., 2019).

Our review shows that existing datasets cover only a range of critical infrastructure sec-
tors such as water and waste water, chemical, transportation system, and energy (gas pipe-
lines), which allows approaches to be developed across different infrastructures. According 
to the Cybersecurity & Infrastructure Security Agency (CISA) of the United State govern-
ment, there are 16 CI sectors. Unfortunately, most papers we reviewed were focused on 
evaluating their approaches in the water and waste water, and energy sectors and neglects 
14 other equally important sectors. Moreover, these datasets contain only specific attacks 
which limit early detection capabilities. We also observed that the most common attack 
used for evaluation is the false data injection attack. However, this type of attack often 
caused an immediate impact on the critical infrastructure. For example, one of the attacks 
in SWaT dataset is ‘manually turning off the water tank’. The immediate result of this 
attack when any water tank (i.e. raw water tank, UF Feed tank) is switched off would natu-
rally trigger an alarm and would require ML approaches for detection. Also, most datasets 
released publicly are using attack time as the indicator when labelling the data. Some of 
the normal data could be incorrectly labelled and impact the performance measure Fig. 5.

Based on our review, SWaT and GP are the most commonly used datasets. Due to the 
nature of the SWaT dataset, we can only evaluate ML approaches on a single type of attack 
(i.e., FDI) on this dataset. Conversely, on the GP dataset, we are able to perform the evalu-
ation on several types of cyber attacks (i.e., DoS, FDI and Recon). However, these repre-
sent a small portion of the types cyber attacks found in the real-world environment.

As shown in Table 3, the best ML algorithms for most of the datasets are either Random 
Forest (RF), Decision Trees (DT) and Deep Neural Networks (DNN). These ML algorithms 
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are able to achieve near perfect detection accuracy — over 99% accuracy in most datasets. 
However, to our best knowledge, the ML algorithms applied to the datasets have not been 
adopted into real-world online scenarios, mostly due to the fact these datasets only covered 
a small subset of cyber attacks, particularly only FDI attacks. In addition, most datasets are 
built from either a scaled down version of a real-world environment or through simulation, 
which can be different from the actual real-world environment. Also, in some datasets such 
as WADI and TEP, the best ML algorithms have lower accuracy than the other datasets, 
which suggests that certain variations of FDI attacks might not be detected as successfully 
as other variations using the same base contemporary ML algorithms.

4.3  Performance evaluation metrics

Evaluation is an important component in determining the success of the ML-based 
approaches. In attack detection tasks, performance metrics are used to measure how well a 
particular approach can identify attacks correctly. The choice of metrics used is important 
because incorrect metrics can lead to biased evaluation and directly impact the reliabil-
ity and generalisability of the approach (Juba & Le, 2019). We include the performance 
metrics that have been used to measure the performance of ML-based approaches in your 
reviewed papers as shown in Table 4.

Fig. 5  16 Critical Infrastructure Sectors defined by CISA. We found that only four sectors (coloured in 
blue) have publicly available datasets that are used for developing ML-based approaches for ICS cyber 
attack detection from our review
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Generally, the performance metrics are calculated using four base statistics. They are 
True Positive (TP) which represents the number of correctly detected attack instances, 
True Negative (TN) which represents the number of correctly detected normal instances, 
False Positive (FP) which defines the number of incorrectly detected attack instances, and 
False Negative (FN) which defines the number of incorrectly detected normal instances.

Accuracy (Acc) is the simplest and most widely used performance metric (Juba & Le, 
2019). It measures the state of correctness where it measures the proportion of correctly 
detected attacks and normal instances. However, it does not take into account the propor-
tion of incorrectly detected instances which renders it unsuitable for imbalanced datasets. 
For example, an accuracy of 90% can be achieved when all attack instances are incorrectly 
identified in a dataset with only 10% attack instances.

Precision (Pre) measures the proportion of attack (positive) instances identified was actu-
ally correct. A low value of precision indicates that the approach generates high amount of 
false positives. For example, a score of 30% means that only 30% of the attack instances 
identified are actual attack instances. The remaining 70% are actually normal instances.

Recall (Rec) measures the proportion of attack (positive) instances identified correctly. It is 
also known as the sensitivity metric or a measure of completeness. A low recall value indi-
cates many missed identification (false negative). For example, a 20% recall value shows 
that only 20% of the attack instances in the dataset has been correctly identified.

F1 −score (F1) measures the accuracy of the approach by combining precision and recall. It 
is also known as the harmonic mean of accuracy which is highly recommended for meas-
uring imbalanced datasets (Jeni et al., 2013).

Receiver Operating Curve (ROC) is a metric to examine the trade offs between TP and FP 
rates, where the X-axis represents true positive rate (TPR) and Y-axis represents false posi-
tive rate (FPR). A good ROC curve should be higher than the chance level (> 50%) .

Area under Curve (AUC) measures area under the ROC curve which represents the sepa-
rability between attack and normal instances. The higher the AUC score, the better the 
approach’s ability to distinguish between the two instances.

Testing Time is the time taken for an ML model or ML-based approach to perform detec-
tion. In some papers, it is also known as detection time.

Training Time is the time taken for an ML model or ML-based approach to learn the pat-
terns and build the ML model for detection.

Matthew Correlation Coefficient (MCC) takes into account all four base statistics (TP, TN, 
FP, FN). A positive MCC value indicates good prediction, a zero value indicates random 
prediction and a negative value indicates adverse prediction.

Cohen’s Kappa (Kappa) is used to measure the reliability of the detection results. It can 
also be seen as the measure of agreement with the positive (attack) label. For example, 
a Kappa score of 1 signifies complete agreement (highly reliable) whereas − 1 signifies 
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complete disagreement (highly unreliable). This measure is useful in determining the qual-
ity of the ML model especially when the data is highly imbalanced.

From Table  4, we observed that most papers show the efficacy of their ML-based 
approaches through accuracy accompanied by precision, recall, and F1-score. However, 
they are insufficient to determine the practicality of implementing their approaches to 
the real-world environment. To achieve effective research translation, time-based metrics 
need to be provided such as testing time and training time to show the time efficiency. It is 
unlikely for a ML-model that achieves a high F1 score (high TP, low FP) to be an effective 
detection tool if it has a high detection time.

4.4  Current advancement of ML in a nutshell

In this section, we have presented our findings based on our survey of the current advance-
ment in ML and we found that state-of-the-art ML approaches for ICS still focus on par-
ticular cyber attacks, only have been evaluated on a small set of datasets, and their perfor-
mance results can be biased due to the lack of coherent metrics used. We found that almost 
all of the ML algorithms listed have been evaluated on FDI attack, which is one of the most 
common cyber attacks in ICS. Among these ML algorithms, DT-based algorithms (includ-
ing DT-based ensembles) followed by DNN-based algorithms provide the best results in 
detecting cyber attacks. However, these results are only based on a limited selection of 
available datasets and mostly measured according to the accuracy, precision, recall, and F1 
score of the algorithms. Time-based measurements (e.g. Training time) are hardly used as 
part of the evaluation, but these measurements are important to determine their suitability 
for real-time detection in critical infrastructure. Therefore, more comprehensive evalua-
tion across different types of ICS environment and scenarios would be required to develop 
robust ML algorithms that can be put into production in the real-world environment.

5  Challenges in ML for ICS security

We have identified four critical challenges facing ML research for ICS security:

Limited attack scenarios for evaluation Despite cyber attacks on ICS in critical infra-
structure being extremely damaging, highly targeted and specific attacks on them are not 
that common. The best-known attacks tend to be varieties of the Stuxnet, BlackEnergy, 
Trisis, Havex or Crashoverride malware families. These malware were highly targeted to 
specific environments, such as the Iranian uranium enrichment plant in the case of Stuxnet, 
or the Ukrainian power grid in the case of BlackEnergy. Besides these targeted attacks, 
some attacks can be classified as opportunistic such as ransomware. At the time of writing, 
most opportunistic ransomware has a variety of specific ‘kill lists’ added for ICS processes. 
While these attacks may be less targeted, they are nonetheless equally damaging to the crit-
ical infrastructure. This situation is in stark contrast to common IT infrastructures, where 
cyber attacks (e.g. malware) samples tend to be large and have a significant variety.

Limited good quality, realistic datasets Apart from having limited attack scenarios, avail-
able datasets used for training, testing and evaluations of ML-based approaches in ICS are 
outdated, unrealistic and may only reflect specific cyber attacks such as the KDDCup’99 

397Journal of Intelligent Information Systems (2023) 60:377–405



1 3

(Hettich, 1999) and NSL-KDD (Tavallaee et  al., 2009) datasets. Both datasets are still 
being used despite their weaknesses (Begli et al., 2019; Raman et al., 2019; Muna et al., 
2018). For example, the KDD dataset has been criticised for having redundant records, 
missing values and outdated attacks (McHugh, 2000). Although the NSL-KDD removed 
the redundant records and missing values, it still contains the same outdated attacks as 
its predecessor. Newer datasets have been introduced for ICS research such as the Missis-
sippi State University (MSU) Power, Gas, and Water datasets (Morris, 2018) and Singa-
pore University of Technology and Design’s Secure Water Treatment (SWaT) dataset (Goh 
et al., 2016). These datasets, however, capture data from specific components or protocols 
in their ICS environment which restricts the types of cyber attacks that are available for 
detection. Moreover, most of the cyber attacks in these datasets heavily rely on the assump-
tion that attackers have gained access and control into the system or network which limits 
how early a cyber attack can be detected. The main issue for limited good quality datasets, 
especially real-world datasets is the risk of exposing sensitive information in the datasets 
even after the data is anonymised. Therefore, almost no one would share their dataset from 
real systems publicly.

Risk of adversarial attacks ML approaches rely heavily on the correctness and accu-
racy of training data and pre-trained models to be effective. However, a major weakness 
of such approach is that it provides opportunities for attackers to exploit these train-
ing data and pre-trained models to evade detection and reduces the effectiveness of the 
approaches. While adversarial attack in cybersecurity has been a well-known problem 
for over a decade (Biggio & Roli, 2018), it has only become more prominent in the 
recent years due to the rise of ML approaches for cybersecurity. Adversarial attacks 
are different from cyber attacks because they aim to confuse ML models into mak-
ing incorrect classification rather than attacking cyber infrastructures (Kurakin et  al., 
2016). Several recent papers have presented or demonstrated new attack vectors and 
potential adversarial attacks on target ML models including the impact to ICS sys-
tems (Gómez et al., 2021; Umer et al., 2021; Zizzo et al., 2020; Erba et al., 2020). For 
example, Gómez et  al. proposed a new method called Selective and Iterative Gradi-
ent Sign Method (SIGM) that selectively modify the data of certain features in ICS 
devices to fool the DNN model into miss-classification. At the same time, researchers 
have also came up with solutions and suggestions to addressing the issue, such as adver-
sarial learning (Anthi et  al., 2021), image transformation (Agarwal et  al., 2020) and 
neural activation (Pawlicki et al., 2020). However, these methods are either specific to 
a particular attack (Anthi et al., 2021) or have not been specifically tested on ICS sys-
tems (Agarwal et al., 2020; Pawlicki et al., 2020). Hence, it is unknown if current ML 
approaches are resilient against adversarial attacks and are able to effectively detect all 
types of actual cyber attacks in ICS.

In summary, the combinations of these four challenges led to one of the biggest chal-
lenges in developing ML based approaches which is the evaluation of realistic attacks. The 
performance of these approaches could never truly be evaluated due to the limitation in 
realistic attacks and datasets. Moreover, there is not a standardised set of performance met-
rics to measure these approaches with. Because of this, it is hard for the industry to adopt 
these approaches to their systems especially in CI. Clearly, there is a strong need to address 
these challenges, not only to develop a more effective and scalable ML-based cyber attack 
detector, but to increase the trustworthiness of these new tools in the real-world.
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6  Recommendations

To overcome the above challenges, we have the following recommendations:

More research focusing on unsupervised, deep, and ensemble learning methods A 
large volume of literature has evaluated supervised learning algorithms. However, these 
types of approaches relies heavily on labelled datasets. In the context of ICS security, more 
consideration is required to research other approaches, especially unsupervised learning or 
semi-supervised learning to reduce the reliance on labelled datasets (Wang et al., 2016).

More consideration towards practical application of the approach rather than focus‑
ing on accuracy alone There is currently a strong focus on building accurate ML models 
but a relative lack of consideration for the actual implementation of the approach itself. 
Researchers currently evaluate the approaches in an offline mode, using publicly availa-
ble or private datasets where the data collection method varies from dataset to dataset. In 
some datasets, data from multiple sources are combined manually to become a single data-
set. In real-world environments, attack detection needs to be online (real-time) to provide 
timely mitigation (Keliris et al., 2016) and better computational resource management (Li 
et al., 2019). Therefore, we should also consider where and how to implement such ML 
approaches so that data can be collected in an online mode to ensure similar performance 
can be achieved.

Attack coverage should be widened to include higher diversity of cyber attacks Our 
study has shown that the current attack coverage used for developing and evaluating detec-
tion tools is small, and might not reflect current real-world situations. While the MITRE 
ATT&CK framework (which describes recent attack types and related tactics, techniques 
and procedures) is becoming a standard in both industry and academia, there is room for 
more ML research applications into attacks described in the framework. However, the 
MITRE ATT&CK framework is still static in nature. Future research would require more 
types of attacks to be considered in both the development and evaluation of detection tools 
to enhance the attack coverage and detection performance in a dynamic environment.

Evaluation should include scalability, time and processing costs, and reliability, not just 
accuracy measures Researchers mostly evaluate their approaches using only accuracy 
based metrics such as accuracy, F1-score, precision, recall, etc, which may not be suffi-
cient to determine the suitability in ICS. This is because these approaches might be slow or 
require high processing capabilities when processing the data. Including other factors such 
as scalability, time and processing costs will provide a better understanding of the overall 
performance of the approach.

ML‑based approaches should include explainability to better understand classifica‑
tion results and make informed decisions Some existing ML algorithms, especially deep 
learning, behave like a black-box where the algorithm’s internal workings are unknown. 
This hinders real-world applicability due to the ’unknown’ nature of these approaches 
where there are possibility that the ML model could be bias and not work correctly during 
certain situation. Future development of ML-based approaches should consider including 
explainability via Explainable AI (XAI) methods (Holzinger et al., 2022).
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In summary, the recommendations we have provided are based on the gaps we found 
in the literature and the findings we found in this paper. We believe that these recommen-
dations could be a promising direction to address the challenges mentioned in Section 5. 
Also, these recommendations can help illuminate the priority areas and research directions 
for future research in ICS security, which may lead to the development of scalable and 
effective ML-based approaches in detecting ICS attacks.

7  Concluding remarks

This paper presented a review of the current advances in machine learning for detecting 
ICS cyber attacks. We described the current vulnerability landscape and the security issues 
and challenges faced in ICS. We also surveyed recent machine learning approaches and 
analysed their performance with respect to different datasets, base classifiers and attack 
variety to gather insights on the current advancement in the field. Our finding shows that 
only a handful of types of cyber attacks are included in the datasets, which only cover a 
small portion of the type of actual ICS cyber attacks. It was also shown that there was no 
clear one-size-fits-all type of machine learning algorithm which is suitable for all types. It 
is hence critical that ICS attack solutions adopt a cocktail of ML approaches for the variety 
of attacks faced by ICS. It is our hope that this paper will illuminate new research direc-
tions in ML approaches for scalable and effective ICS attack detection.
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