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ABSTRACT

The nature of manufacturing systems faces ever more complex, 
dynamic and at times even chaotic behaviors. In order to being able 
to satisfy the demand for high-quality products in an e�cient manner, 
it is essential to utilize all means available. One area, which saw fast 
pace developments in terms of not only promising results but also 
usability, is machine learning. Promising an answer to many of the 
old and new challenges of manufacturing, machine learning is widely 
discussed by researchers and practitioners alike. However, the �eld 
is very broad and even confusing which presents a challenge and a 
barrier hindering wide application. Here, this paper contributes in 
presenting an overview of available machine learning techniques 
and structuring this rather complicated area. A special focus is laid 
on the potential bene�t, and examples of successful applications in 
a manufacturing environment.

1. Introduction

�e manufacturing industry today is experiencing a never seen increase in available data 
(Chand & Davis, 2010). �ese data compromise a variety of di�erent formats, seman-
tics, quality, e.g. sensor data from the production line, environmental data, machine tool 
parameters, etc. (Davis et al., 2015). Di�erent names are used for this phenomenon, e.g. 
Industrie 4.0 (Germany), Smart Manufacturing (USA), and Smart Factory (South Korea). 
�is increase and availability of large amounts of data is o�en referred to as Big Data (Lee, 
Lapira, Bagheri, & Kao, 2013). �e availability of, e.g. quality-related data o�ers potential to 
improve process and product quality sustainably (Elangovan, Sakthivel, Saravanamurugan, 
Nair, & Sugumaran, 2015). However, it has been recognized that much information can also 
propose a challenge and may have a negative impact as it can, e.g. distract from the main 
issues/causalities or lead to delayed or wrong conclusions about appropriate actions (Lang, 
2007). Overall, it can be safely concluded, the manufacturing industry has to accept that in 
order to bene�t from the increased data availability, e.g. for quality improvement initiatives, 
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manufacturing cost estimation and/or process optimization, better understanding of the 
customer’s requirements, etc., support is needed to handle the high dimensionality, com-
plexity, and dynamics involved (Davis et al., 2015; Loyer, Henriques, Fontul, & Wiseall, 
2016; Wuest, 2015).

New developments in certain domains like mathematics and computer science (e.g. sta-
tistical learning) and availability of easy-to-use, o�en freely available (so�ware) tools o�er 
great potential to transform the manufacturing domain and their grasp on the increased 
manufacturing data repositories sustainably. One of the most exciting developments is in 
the area of machine learning (incl. data mining (DM), arti�cial intelligence (AI), knowledge 
discovery (KD) from databases, etc.). However, the �eld of machine learning is very diverse 
and many di�erent algorithms, theories, and methods are available. For many manufactur-
ing practitioners, this represents a barrier regarding the adoption of these powerful tools 
and thus may hinder the utilization of the vast amounts of data increasingly being available.

In accordance to that, the paper aims to:

•  argue from a manufacturing perspective why machine learning is an appropriate and 
promising tool for today’s and future challenges;

•  introduce the terminology used in the respective �elds;
•  present an overview of the di�erent areas of machine learning and propose an overall 

structuring;
•  provide the reader with a high-level understanding of the advantages and disadvantages 

of certain methods with respect to manufacturing application.

In the following section, the current challenges manufacturing faces are illustrated. �is 
provides a basis for the later argumentation of machine learning being an appropriate tool 
to for manufacturers to face those challenges head on.

1.1. Challenges of the manufacturing domain

Manufacturing is a very established industry, however the importance of it cannot be rated 
high enough. Several mature economies experienced a reduction of the manufacturing 
contribution toward their GDP over the last decades. However, in the last years, several 
initiatives to revamp the manufacturing sector were started. Examples are the US through 
‘Executive Actions to Strengthen Advanced Manufacturing in America’ (White House, 
2014) and the European Union with their ‘Factories of the Future’ (European Commission, 
2016) initiative. �e challenges manufacturing faces today are di�erent from the challenges 
in the past.

�ere are several studies available proposing key challenges of manufacturing on a global 
level. �e key challenges most of the researchers agree upon (Dingli, 2012; Gordon & Sohal, 
2001; Shiang & Nagaraj, 2011; �omas, Byard, & Evans, 2012) are the following:

•  Adoption of advanced manufacturing technologies.
•  Growing importance of manufacturing of high value-added products.
•  Utilizing advanced knowledge, information management, and AI systems.
•  Sustainable manufacturing (processes) and products.
•  Agile and �exible enterprise capabilities and supply chains.
•  Innovation in products, services, and processes.
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•  Close collaboration between industry and research to adopt new technologies.
•  New manufacturing management paradigms.

�ese key challenges highlight the ongoing trend of the manufacturing domain to becom-
ing more complex and dynamic. �e apparent complexity is inherited not only in the 
manufacturing programs themselves but increasingly in the to-be-manufactured product as 
well as in the (business) processes of the companies and collaborative networks (Wiendahl 
& Scholtissek, 1994). Adding to the challenge is the fact that the dynamic business envi-
ronment of today’s manufacturing companies is a�ected by uncertainty (Monostori, 2003). 
Especially looking at domains most likely to being optimized, e.g. monitoring and control, 
scheduling and diagnostics, it becomes apparent that the increasing availability of data is 
adding another challenge: besides the large amounts of available date (e.g. sensor data), the 
high dimensionality and variety (e.g. due to di�erent sensors or connected processes) of 
data as well as the NP complete nature of manufacturing optimization problems (Wuest, 
2015) present a challenge.

To overcome some of today’s major challenges of complex manufacturing systems, valid 
candidates are machine learning techniques. �ese data-driven approaches are able to �nd 
highly complex and non-linear patterns in data of di�erent types and sources and trans-
form raw data to features spaces, so-called models, which are then applied for prediction, 
detection, classi�cation, regression, or forecasting.

In the following, �rst the main advantages and challenges of machine learning applica-
tions with regard to manufacturing, its challenges and requirements are illustrated. �en 
the current state of the art of machine learning, again with a focus on manufacturing 
applications is presented. Within that context, a structuring of di�erent machine learning 
techniques and algorithms is developed and presented.

1.2. Suitability of machine learning application with regard to today’s 

manufacturing challenges

Before looking into the suitability of machine learning (ML) based on the previously derived 
requirements toward a future solution approach, the used terms are brie�y introduced. ML 
is known for its ability to handle many problems of NP-complete nature, which o�en appear 
in the domain of smart manufacturing (Monostori, Hornyák, Egresits, & Viharos, 1998).

�e application of ML techniques increased over the last two decades due to various 
factors, e.g. the availability of large amounts of complex data with little transparency (Smola 
& Vishwanathan, 2008) and the increased usability and power of available ML tools (Larose, 
2005). Nevertheless, the main de�nition of ML, allowing computers to solve problems 
without being speci�cally programmed to do so (Samuel, 1959) is still valid today. ML 
is connected to other terms, like DM, KD, AI, and others (Alpaydin, 2010). Today, ML is 
already widely applied in di�erent areas of manufacturing, e.g. optimization, control, and 
troubleshooting (Alpaydin, 2010; Pham & A�fy, 2005).

Many ML techniques (e.g. Support Vector Machine [SVM]) are designed to analyze large 
amounts of data and capable of handling high dimensionality (>1000) very well (Yang & 
Trewn, 2004). However, accompanying issues like possible over-�tting has to be considered 
(Widodo & Yang, 2007) during the application. If dimensionality proves to be an issue 
despite it being unlikely due to the power of the algorithms, there are methods available to 
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reduce the dimensions. �ese claim to reduce the impact of the reduction of the dimen-
sionality on the expected results (Kotsiantis, 2007; Manning, Raghavan, & Schütze, 2009). 
�e importance of using ML, in this case SVM is that dimensionality is not a practical 
problem and therefore the need for reducing dimensionality is reduced. �is implies the 
possibility of being more liberal in including seemingly irrelevant information available in 
the manufacturing data that may turn out to be relevant under certain circumstances. �is 
may have a direct e�ect on the existing knowledge gap described previously (Alpaydin, 
2010; Pham & A�fy, 2005).

Applying ML in manufacturing may result in deriving pattern from existing data-sets, 
which can provide a basis for the development of approximations about future behavior 
of the system (Alpaydin, 2010; Nilsson, 2005). �is new information (knowledge) may 
support process owners in their decision-making or be used automatically to improve the 
system directly. In the end, the goal of certain ML techniques is to detect certain patterns 
or regularities that describe relations (Alpaydin, 2010).

Given the challenge of a fast changing, dynamic manufacturing environment, ML, being 
part of AI and inherit the ability to learn and adapt to changes ‘the system designer need 
not foresee and provide solutions for all possible situations’ (Alpaydin, 2010). �erefore, 
ML provides a strong argument why its application in manufacturing may be bene�cial 
given the struggle of most �rst-principle models to cope with the adaptability. Learning 
from and adapting to changing environments automatically is a major strength of ML (Lu, 
1990; Simon, 1983).

ML techniques are designed to derive knowledge out of existing data (Alpaydin, 2010; 
Kwak & Kim, 2012). Alpaydin (2010) emphasizes that ‘stored data becomes useful only when 
it is analyzed and turned into information that we can make use of, for example, to make 
predictions’ (Alpaydin, 2010). �is is especially true for manufacturing, given the struggle 
of obtaining real-time data during a live manufacturing program run with the technical, 
�nancial, and knowledge restrictions. �is may also have an impact on issue of positioning 
of process checkpoints (Wuest, Liu, Lu, & �oben, 2014). Whereas, it makes sense to select 
carefully checkpoints under the perspective of what data are useful, it may be obsolete given 
the analytical power of ML techniques to derive information from formerly considered use-
less data. �is may result in the ability to determine more states, to capture data, along the 
overall manufacturing program. Whether this is bene�cial is an open question, which has 
to be researched. Given the ability of ML to handle high-dimensionality data, the technical 
side of analyzing the additional data provides no problem. However, in terms of capturing 
data it may still be a problem, speci�cally the ability to capture the data. Once the data are 
available, determining state drivers in very high-dimensionality situations is not considered 
problematic, nor is repeating it frequently.

In the following table, a summary of the theoretical ability of ML techniques to answer 
the main challenges of manufacturing applications (requirements) is presented (Table 1).

Overall, as Monostori, Márkus, Van Brussel, and Westkämper (1996) emphasize, ‘intel-
ligence is strongly connected with learning, and learning ability must be an indispensable 
feature of Intelligent Manufacturing Systems.’ ML provides strong arguments when it comes 
to the limitations and challenges the theoretical product state concept faces. Given the above-
stated analysis, ML techniques seem to provide a promising solution based on the derived 
requirements. Most of the identi�ed requirements are successfully addressed by ML.
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However, a more detailed analysis of available ML techniques as well as their strengths 
and limitations concerning the requirements has to be provided. Most of all, the possible 
compatibility with the theoretical product state concept and its perspective on the man-
ufacturing program has to be elaborated further before a �nal judgment can be given. 
Furthermore, there are many questions to be answered like how ML techniques may handle 
qualitative information.

In the next section, the advantages and challenges of machine learning application in 
manufacturing are introduced based on the previous presented requirements.

2. Advantages and challenges of machine learning application in 

manufacturing

ML has been successfully utilized in various process optimization, monitoring and control 
applications in manufacturing, and predictive maintenance in di�erent industries (Alpaydin, 
2010; Gardner & Bicker, 2000; Kwak & Kim, 2012; Pham & A�fy, 2005; Susto, Schirru, 
Pampuri, McLoone, & Beghi, 2015). ML techniques were found to provide promising poten-
tial for improved quality control optimization in manufacturing systems (Apte, Weiss, & 
Grout, 1993), especially in ‘complex manufacturing environments where detection of the 
causes of problems is di�cult’ (Harding, Shahbaz, & Kusiak, 2006). However, o�en ML 
applications are found to be limited focusing on speci�c processes instead of the whole 
manufacturing program or manufacturing system (Doltsinis, Ferreira, & Lohse, 2012).

�ere are many di�erent ML methods, tools, and techniques available, each with distinct 
advantages and disadvantages. �e domain of ML has grown to an independent research 

Table 1. Summary of suitability of ML techniques in manufacturing application.

Manufacturing requirement Theoretical ability of ML to meet requirements

Ability to handle high-dimensional problems and data-sets 
with reasonable effort

Certain ML techniques (e.g. SVM) are capable of handling 
high dimensionality (>1000) very well. However, 
accompanying issues like possible over-fitting has to be 
considered (Widodo & Yang, 2007; Yang & Trewn, 2004)

Ability to reduce possibly complex nature of results and 
present transparent and concrete advice for practitioners 
(e.g. monitor XX and parameter YY at checkpoint ZZ)

ML may be able to derive pattern from existing data and 
derive approximations about future behavior (Alpaydin, 
2010). This new information (knowledge) may support 
process owners in their decision-making or used to 
automatically improve a system

Ability to adapt to changing environment with reasonable 
effort and cost. Ideally a degree auf ‘automated’ adapta-
tion to changing condition

As ML is part of AI, and thus be able to learn and adapt 
to changes, ‘the system designer need not foresee and 
provide solutions for all possible situations’ (Alpaydin, 
2010). Learning from and adapting to changing environ-
ments automatically is a major strength of ML (Lu, 1990; 
Simon, 1983)

Ability to further the existing knowledge by learning from 
results

ML can contribute to create new information and possibly 
knowledge by, e.g. identifying patters in existing data 
(Alpaydin, 2010; Pham & Afify, 2005)

Ability to work with the available manufacturing data 
without special requirements toward capturing of very 
specific information at the start

ML techniques are designed to derive knowledge out of 
existing data (Alpaydin, 2010; Kwak & Kim, 2012). ‘The 
stored data becomes useful only when it is analyzed and 
turned into information that we can make use of, for 
example, to make predictions’ (Alpaydin, 2010)

Ability to identify relevant process intra- and inter-relations 
& ideally correlation and/or causality

The goal of certain ML techniques is to detect certain 
patterns or regularities that describe relations (Alpaydin, 
2010)
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domain. �erefore, within this section, the goal is to �nd a suitable ML technique for 
application in manufacturing.

2.1. Advantages of machine learning application in manufacturing

�e general advantages of ML have been established in previous sections stating that ML 
techniques are able to handle NP complete problems which o�en occur when it comes to 
optimization problems of intelligent manufacturing systems (Monostori et al., 1998). In 
the following, the focus is on the ability of ML techniques to handle high-dimensional, 
multi-variate data, and the ability to extract implicit relationships within large data-sets in 
a complex and dynamic, o�en even chaotic environment (Köksal, Batmaz, & Testik, 2011; 
Yang & Trewn, 2004). ‘Since most engineering and manufacturing problems are data-rich 
but knowledge-sparse’ (Lu, 1990), ML provides a tool to increase the understanding of the 
domain. In this section, the advantages are presented in an attempt of generalization for 
ML in total. However, it has to be understood, that the peculiarity of the advantages may 
di�er depending on the chosen ML technique.

Overall it is agreed upon that ML allows to reduce cycle time and scrap, and improve 
resource utilization in certain NP-hard manufacturing problems. Furthermore, ML provides 
powerful tools for continuous quality improvement in a large and complex process such as 
semiconductor manufacturing (Monostori et al., 1998; Pham & A�fy, 2005).

An advantage of ML algorithms is the ability to handle high dimensional problems and 

data. Especially with regard to the increasing availability of complex data (Yu & Liu, 2003) 
with little transparency in manufacturing (Smola & Vishwanathan, 2008), this will most 
likely become even more important in the future. However, as is true for most advantages 
and disadvantages of ML algorithms, this cannot be generalized. Some algorithms (e.g. SVM; 
Distributed Hierarchical Decision Tree) can handle high dimensionality better than others 
(Bar-Or, Wol�, Schuster, & Keren, 2005; Do, Lenca, Lallich, & Pham, 2010). As was stated 
previously, in manufacturing mostly those ML algorithms are applicable that are capable 
of handling high-dimensional data. �erefore, the ability to cope with high dimensionality 
is considered an advantage of ML application in manufacturing.

Another advantage of ML techniques is the increased usability of application of algorithms 
due to (o�en source) programs like Rapidminer. �is allows (relatively) easy application in 
many cases and furthermore comfortable adjustment of parameters to increase the classi-
�cation performance.

As previously stated, a major advantage of ML algorithms is to discover formerly unknown 
(implicit) knowledge and to identify implicit relationships in data-sets. Depending on the 
characteristic of the ML algorithm (supervised/unsupervised or Reinforcement Learning 
[RL]), the requirements toward the available data may vary. However, the overall ability of 
ML algorithm to achieve results in a manufacturing environment was successfully proven 
(e.g. Alpaydin, 2010; Filipic & Junkar, 2000; Guo, Sun, Li, & Wang, 2008; Kim, Kang, Cho, 
Lee, & Doh, 2012; Nilsson, 2005).

Given the speci�c nature of manufacturing systems being dynamic, uncertain, and com-
plex. Here, ML algorithms provide the opportunity to learn from the dynamic system and 
adapt to the changing environment automatically to a certain extent (Lu, 1990; Simon, 
1983). �e adaptation is, depending on the ML algorithm, reasonably fast and in almost 
all cases faster than traditional methods.
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Applying ML in manufacturing may result in deriving pattern from existing data-sets, 
which can provide a basis for the development of approximations about future behavior 
of the system (Alpaydin, 2010; Nilsson, 2005). �is new information (knowledge) may 
support process owners in their decision-making or used to automatically improve the 
system directly. In the end, the goal of certain ML techniques is to detect certain patterns 
or regularities that describe relations (Alpaydin, 2010).

Kotsiantis (2007) compared several algorithms according to their speci�c performance 
in manufacturing application by di�erent attributes. Even so, this presents the opportunity 
to get a �rst impression, it is not suggested to base the decision for a suitable ML algorithm 
solely on comparisons as presented in such a table. Each problem is di�erent and the per-
formance of each algorithm also depends on the data available and data pre-processing as 
well as the parameter settings. �e best �tting algorithm has to be found in testing various 
ones in a realistic environment. �is is discussed further in the next section.

2.2. Challenges of machine learning application in manufacturing

A very common challenge of ML application in manufacturing is the acquisition of relevant 
data. �is is also a limitation as the availability, quality, and composition (e.g. are meta-data 
included? are data labeled?) of the manufacturing data at hand have a strong in�uence on the 
performance of ML algorithms. Some challenges the data-set can contain are, e.g. high-di-
mensional data can represent for some ML algorithms, that is, it can contain a high degree 
of irrelevant and redundant information which may impact the performance of learning 
algorithms (Yu & Liu, 2003). Today, most machine learning techniques handle only data 
with continuous and nominal values (Pham & A�fy, 2005). How signi�cant the in�uence 
is, depends on various factors including the algorithm itself and the parameter settings. It 
can be considered a general challenge for most research in manufacturing and not only ML 
application, to get hold of any data due to, e.g. security concerns or a basic lack of data cap-
turing during the process. Even though in most cases ML allows the extracting of knowledge 
and generates better results than most traditional methods with less requirements toward 
available data, certain aspects concerning the available data that can prevent the successful 
application still have to be considered. Together with the next point, this highlights the 
increased need to understand the data in order to apply ML. Ho�mann (1990) highlights 
that compared to traditional methods where a lot of time is spent to extract information, 
in ML a lot of time is spent on preparing the data.

A�er the available data are secured, the data o�en have to be pre-processed depending 
on the requirements of the algorithm of choice. Pre-processing of data has a critical impact 
on the results. However, there are many standardized tools available which support the 
most common pre-processing processes like normalizing and �ltering the data. Also it has 
to be checked whether the training data are unbalanced. �is can present a challenge for 
the training of certain algorithms. In manufacturing practice, it is a common problem that 
values of certain attributes are not available or missing in the data-set (Pham & A�fy, 2005). 
�ese so-called missing values present a challenge for the application of ML algorithms. 
�ere are certain practical induction systems available which may �ll the gap (Pham & A�fy, 
2005). However, each problem and later applied ML algorithm have speci�c requirements 
when it comes to replacing missing values. By replacing missing values, the original data-set 
is in�uenced. �e goal is to reduce the bias and other negative in�uence as much as possible 
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in respect to the analysis goal. As this issue represents a very common challenge, there is a 
large amount of literature and practical solutions (e.g. in R) available (e.g. Graham, 2012; 
Kabaco�, 2011; Kwak & Kim, 2012; Li & Huang, 2009).

A major challenge of increasing importance is the question what ML technique and 
algorithm to choose (selection of ML algorithm). Even so, there were attempts to pursue the 
de�nition of ‘general ML techniques,’ the diverse problems and their requirements highlight 
the need for specialized algorithms with certain strength and weaknesses (Ho�mann, 1990). 
Especially due to the increased attention of practitioners and researchers for the �eld of 
ML in manufacturing, a large number of di�erent ML algorithms or at least variations of 
ML algorithms is available. Adding to this already existing complexity, combinations of 
di�erent algorithms, so-called ‘hybrid approaches,’ are becoming more and more common 
promising better results than ‘individual’ single algorithm application (e.g. Lee & Ha, 2009). 
Many studies are available highlighting a successful application of ML techniques for speci�c 
problems. At the same time the test data are not publically available in many cases. �is 
makes a neutral and unbiased assessment of the results and therefore a �nal comparison 
challenging. As of today, the generally accepted approach to select a suitable ML algorithm 
for a certain problem is as follows:

•  First, one looks at the available data and how it is described (labeled, unlabeled, avail-
able expert knowledge, etc.) to choose between a supervised, unsupervised, or RL 
approach.

•  Secondly, the general applicability of available algorithms with regard to the research 
problem requirements (e.g. able to handle high dimensionality) has to be analyzed. 
A speci�c focus has to be laid on the structure, the data types, and overall amount of 
the available data, which can be used for training and evaluation.

•  �irdly, previous applications of the algorithms on similar problems are to be inves-
tigated in order to identify a suitable algorithm. �e term ‘similar’ in this case means, 
research problems with comparable requirements e.g. in other disciplines or domains.

Another challenge is the interpretation of the results. It has to be taken into account that 
not only the format or illustration of the output is relevant for the interpretation but also the 
speci�cations of the chosen algorithm itself, the parameter settings, the ‘planed outcome’ 
and also the data including its pre-processing. Within the interpretation of the results, cer-
tain more distinct limitations (again depending on the chosen algorithm) can have a large 
impact. Among those are, e.g. immune to over-�tting (Widodo & Yang, 2007), bias, and 
variance (therefore bias–variance tradeo�) (Quadrianto & Buntine, 2011).

3. Structuring of machine leaning techniques and algorithms

As previously stated, ML has developed into a wide and divers �eld of research over the 
past decades. �is has led to a variety of di�erent sub-domains, algorithms, theories, and 
application areas, etc. �e relationship and structure between the di�erent elements are not 
commonly agreed upon. Di�erent researchers choose di�erent approaches to structure the 
�eld. In Figure 1, the authors try to structure the ML domain of DM according to tasks on 
the one side and available algorithms on the other (Corne, Dhaenens, & Jourdan, 2012). 
�is structure highlights the importance of di�erentiation of task (what is the goal) and 
algorithm (how can that goal be reached) within the ML �eld.
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However, the presented overview in Figure 1 is falling short by not re�ecting the com-
monly accepted di�erentiation of ML methods by the available feedback in supervised, 
unsupervised, and RL (Monostori, 1993; Kotsiantis, 2007; Monostori, 2003; Pham & A�fy, 
2005). Monostori (2003) described the three classes as follows:

•  ‘reinforcement learning: less feedback is given, since not the proper action, but only 
an evaluation of the chosen action is given by the teacher;

•  unsupervised learning: no evaluation [label] of the action is provided, since there is 
no teacher;

•  supervised learning: the correct response [label] is provided by a teacher.’

�is structure is widely accepted, however, there are still di�erences with regard to what 
falls under them or what these three classes fall under. For example, Pham and A�fy (2005) 
map supervised, unsupervised, and RL as part of Neural Networks (NN) (see Figure 2). 
However, Pham and A�fy (2005) also state that they only focus on supervised classi�cation 
learning methods. �is would correspond with Lu (1990) who states that inductive learning 

Figure 1. An overview of tasks and main algorithms in DM (Corne et al., 2012).

Figure 2. Classification of main ML techniques according to Pham and Afify (2005).
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can be grouped in supervised and unsupervised learning. Other researchers di�erentiate 
between active and passive learning, stating that ‘active learning is generally used to refer 
to a learning problem or system where the learner has some role in determining on what 
data it will be trained’ (Cohn, 2011) whereas passive learning describes a situation where 
the learner has no control over the training set. Apparently, active learning is o�en used for 
problems where it is di�cult (expensive and/or time-consuming) to obtain labeled training 
data. �e advantage is to being able to achieve good performance needing less training data 
than other learners due to the sequentially identi�ed useful examples by the active learner 
(Cohn, 2011). Active learning is mostly applied within supervised ML scenarios but was 
also found to be of valuable within certain RL problems (Cohn, 2011).

Some researchers like Kotsiantis (2007) focus only on supervised classi�cation techniques 
and group NN as a learning algorithm as part of supervised learning. However, NN algo-
rithms can also be applied in unsupervised learning and RL (Carpenter & Grossberg, 1988; 
Pham & A�fy, 2005). �is corresponds basically with Pham and A�fy (2005), when the 
notion on top of the hierarchy is seen as ‘Supervised ML’ instead of the ‘Machine learning’ 
they originally stated.

An adapted and extended structuring of ML techniques and algorithms may be illus-
trated as follows:

Figure 3 does not include all available algorithms and algorithm variations. �e purpose is 
to show the complex structure and the diverse nature of currently available and common ML 
techniques. Whereas the �rst selection of the main di�erentiation, supervised, unsupervised, 
and RL, suitable for the presented problem is in most cases possible, this is not necessarily 
the case when going further down the hierarchy. Additionally, it has to be kept in mind, 
that the di�erent algorithms can be combined to maximize the classi�cation power (Bishop, 
2006). Pham and A�fy (2005) state that ‘most of the existing machine-learning methods 
for generating multiple models can improve signi�cantly on the accuracy of single models’ 
(Pham & A�fy, 2005). �at increases the complexity one has to face when in the process 
of selecting a suitable ML algorithm for a given problem, and thus the comprehensibility 
is hindered (Pham & A�fy, 2005). Another interesting aspect is that many algorithms are 
applicable in both supervised and unsupervised learning (in adapted form).

�e di�erent algorithms and combinatory approaches o�en tend to be adapted to spe-
cial problems. �is makes it hard to compare them especially against their classi�cation 
power for the given problem. A �rst indication can be comparing charts as can be found 

Figure 3. Structuring of ML techniques and algorithms.
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in Kotsiantis (2007). However, a more promising approach to select a suitable algorithm is 
to look for problems of similar nature and analyze what ML algorithm was used to solve it 
and what where the results. �is is a good starting point. Once the algorithm is applied to 
the problem and �rst results are available, di�erent methods can be applied and the results 
for the given problem can be compared. Modern computer tools support di�erent kernels 
and make the switch (relatively) comfortable.

In the following, unsupervised machine learning, RL, and supervised machine learn-
ing are brie�y described to being able to di�erentiate them from one another. Supervised 
machine learning later described in greater detail as it was found to have the best �t for 
challenges and problems faced in manufacturing applications and as manufacturing data 
is o�en labeled, meaning expert feedback is available (Lu, 1990).

3.1. Unsupervised machine learning

Unsupervised machine learning is another large area of research. �e de�ning attribute is 
that within unsupervised learning, there is no feedback from an external teacher/knowl-
edgeable expert. �e algorithm itself is supposed to identify clusters from existing data based 
on, e.g. conceptual cohesiveness of attributes (Lu, 1990). Kotsiantis (2007) introduced the 
rule that if instances are unlabeled (no known labels and corresponding correct outputs), 
it is most likely unsupervised learning. �e goal is to discover unknown classes of items by 
clustering (Jain, Murty, & Flynn, 1999) whereas supervised learning is focused on classi�-
cation (known labels). Basically, unsupervised ML describes any ML process that tries to 
learn ‘structure in the absence of either an identi�ed output [e.g. supervised ML] or feedback 
[e.g. RL]. �ree typical examples of unsupervised learning are clustering, association rules, 
and self-organizing maps’ (Sammut & Webb, 2011).

Especially in the Big Data context, unsupervised methods are becoming increasingly 
important. However, as in manufacturing application, the main assumption is that knowl-
edgeable experts can provide feedback on the classi�cation of states to identify the learning 
set in order to train the algorithm (Lu, 1990; Monostori, 2003). �us, the focus will be laid 
on supervised methods. However, some aspects of unsupervised learning may be bene�-
cial in manufacturing application a�er all. First, there is the possibility that in some cases 
there might be no expert feedback available or, in the future, desirable. Another aspect is to 
realize hybrid approaches, combing the ‘best of both worlds’ which gain importance due to 
the fast increase in unlabeled data especially in manufacturing (Kang, Kim, & Cho, 2016). 
And �nally, unsupervised methods can be and are being used to, e.g. identify outliers in 
manufacturing data (Hansson, Yella, Dougherty, & Fleyeh, 2016).

3.2. Reinforcement learning

RL is de�ned by the provision of the training information by the environment. �e infor-
mation on how well the system performed in the respective turn is provided by a numerical 
reinforcement signal (Kotsiantis, 2007). Another de�ning characteristic is that the learner 
has to uncover which actions generate the best results (numerical reinforcement signal) 
by trying instead of being told. �is distinguishes RL from most of the other ML methods 
(Sutton & Barto, 2012). However, RL is seen by some researchers as ‘a special form of 
supervised learning’ (Pham & A�fy, 2005). However, di�erent from supervised learning 
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problems, RL problems can be described by the absence of labeled examples of ‘good’ and 
‘bad’ behavior (Stone, 2011). RL, based on sequential environmental response, emulates the 
process of learning of humans (Wiering & Van Otterlo, 2012). �is ‘reward signal,’ which 
can be perceived in RL di�erentiates it from unsupervised ML (Stone, 2011). Di�erent 
from supervised learning, RL is most adequate in situation where there is no knowledgea-
ble supervisor. In such uncharted territory, an agent is needed to being able to learn from 
interaction and its own experience – this is where RL can utilize its advantages (Sutton & 
Barto, 2012).

As RL is based on feedback of actions, one interesting and also challenging issue is that 
certain actions have not or not only an immediate impact, but certain e�ects might show 
at a later time and/or during a following additional trial. Overall, RL ‘is de�ned not by 
characterizing learning methods, but by characterizing a learning problem. Any method 
that is well suited to solving that problem, [might be considered] to be a reinforcement 
learning method’ (Sutton & Barto, 2012).

A very speci�c challenge for RL is the tradeo� between exploration and exploitation. 
In order to achieve the goal, the agent has to ‘exploit’ the actions it learned to prefer and 
to identify those it has to ‘explore’ by actively trying new ways (Sutton & Barto, 2012). In 
manufacturing, RL is not widely applied and just a few examples of successful application 
exist as of today (Doltsinis et al., 2012; Günther, Pilarski, Helfrich, Shen, & Diepold, 2015). 
In the majority of manufacturing applications today, expert feedback is available. �erefore, 
even though RL is applicable in manufacturing applications, the focus in the following is 
on supervised techniques.

3.3. Supervised machine learning

In manufacturing application, supervised ML techniques are mostly applied due to the 
data-rich but knowledge-sparse nature of the problems (Lu, 1990). In addition, supervised 
ML may bene�t from the established data collection in manufacturing for statistical pro-
cess control purposes (Harding et al., 2006) and the fact that these data are mostly labeled. 
Basically, supervised ML ‘is learning from examples provided by a knowledgeable external 
supervisor’ (Sutton & Barto, 2012). �is is partly due to the availability of (a) expert feedback 
(e.g. quality) and (b) the labeled instances. Supervised ML is applied in di�erent domains 
of manufacturing, monitoring, and control being a very prominent one among them (e.g. 
Alpaydin, 2010; Apte et al., 1993; Harding et al., 2006; Kwak & Kim, 2012; Pham & A�fy, 
2005).

�e general process of supervised ML contains several steps handling the data and setting 
up the training and test data-set by the teacher, hence supervised (Kotsiantis, 2007). Based 
on a given problem, the required data are identi�ed and (if needed) pre-processed. An 
important aspect is the de�nition of the training set, as it in�uences the later classi�cation 
results to a large extent. Even so it o�en appears as if the algorithm selection is always fol-
lowing the de�nition of the training data-set, the de�nition of the training data also has to 
take the requirements of the algorithm selection into account. Some algorithms allow for a 
so-called ‘kernel selection’ to adapt the algorithm to the speci�c nature of the problem. �is 
highlights the adaptability of ML application and the variety of problems that can be tackled.

Similar requirements stand to some extent also true for the identi�cation and pre- processing 
of the data as di�erent algorithms have certain strength and weaknesses concerning the 
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handling of di�erent data-sets (e.g. format, dimensions, etc.). A�er an algorithm is selected, 
it is trained using the training data-set. In order to judge the ability to perform the targeted 
task, the trained algorithm is then evaluated using the evaluations data-set. Depending on 
the performance of the trained algorithm with the evaluation data-set, the parameters can 
be adjusted to optimize the performance in the case the performance is already good. In 
case the performance is not satisfying, the process has to be started over at an earlier stage, 
depending on the actual performance.

A rule of thumb is that 70% of the data-set is used as a training data-set, 20% as an evalu-
ation data-set (in order to adjust the parameters – e.g. bias) and �nal 10% as a test data-set.

In the following section, supervised learning algorithms are illustrated in more detail as 
they are the most commonly used algorithms in manufacturing application today. A major 
reason being the availability of ‘labels’ based on quality inspections in many manufacturing 
application.

4. Supervised machine learning algorithms in manufacturing application

As can be seen in the previously presented �gures, there are several supervised ML algo-
rithms available. Each of these algorithms has speci�c advantages and limitations concerning 
the application in manufacturing. A major challenge is to select a suitable algorithm for the 
requirements of the manufacturing research problem at hand. First, the general applicability 
of a ML algorithm with the requirements may be derived from more general comparisons 
(e.g. presented by Kotsiantis (2007)). However, due to the individual nature, most research 
problems represent the speci�c characteristics of ML algorithms as well as their adapted 
‘siblings,’ it is not advisable to base the decision for a ML algorithm solely on such a theo-
retical and general selection. In order to being able to identify a suitable ML algorithm for 
the problem at hand, the next step involves a careful analysis of previous applications of ML 
algorithms on research problems with similar requirements. �e research problems do not 
have to be located within the same domain, the major issue in this selection is the matching 
of the identi�ed requirements, in this case the ability to handle multi-variate, high-dimen-
sional data-sets and the ability to continuously adapt to changing environments (updating 
the learning set). A brief presentation of the main advantages and limitations of the di�erent 
ML algorithms is presented in order to pre-select a group of potentially suitable techniques.

A very promising and �tting supervised ML algorithm for manufacturing research prob-
lem is Statistical Learning �eory (SLT). Within the theory of supervised learning, meaning 
the training of a machine to enable it (without being explicitly programmed) to choose 
a (performing) function describing the relation between inputs and output (Evgeniou, 
Pontil, & Poggio, 2000). SLT focuses on the question of ‘how well the chosen function 
generalizes, or how well it estimates the output for previously unseen inputs’ (Evgeniou 
et al., 2000). Several more practical algorithms are based on the theoretical background of 
SLT, e.g. NNs, SVMs, and Bayesian modeling (Brunato & Battiti, 2005). A major advantage 
of SLT algorithms is the variety of possible application scenarios and possible application 
strategies (Evgeniou, Poggio, Pontil, & Verri, 2002). SLT allows to reduce the number of 
needed samples in certain cases (Koltchinskii, Abdallah, Ariola, & Dorato, 2001). SLT is 
also able to overcome issues like observer variability better than other methods (Margolis, 
Land, Gottlieb, & Qiao, 2011). In some other cases, SLT still needs a large number of 
samples to perform (Cherkassky & Ma, 2009; Koltchinskii et al., 2001). Another challenge 
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for the application of SLT is the likelihood of over-�tting in some realizations (Evgeniou 
et al., 2002). However, Steel (2011) found that the Vapnik–Chernovnenkis dimension is a 
good predictor for the chance of over-�tting using STL. Furthermore, the computational 
complexity is not eliminated using SLT but rather avoided by relaxing design questions 
(Koltchinskii et al., 2001).

Bayesian Networks (BNs) may be de�ned as a graphical model describing the probability 
relationship among several variables (Kotsiantis, 2007). BNs are among the most well-known 
applications of SLT (Brunato & Battiti, 2005). Naïve Bayesian Networks represent a rather 
simple form of BNs, being composed of directed acyclic graphs (one parent, multiple chil-
dren) (Kotsiantis, 2007). Among the advantages of BN are the limited storage requirements, 
the possibility to use it as an incremental learner, its robustness to missing values, and the 
easiness to grasp output. However, the tolerance toward redundant and interdependent 
attributes is understood to be very limited (Kotsiantis, 2007).

Instance-Based Learning (IBL) (Kang & Cho, 2008; Okamoto & Yugami, 2003) or 
Memory-Based Reasoning (MBR) (Kang & Cho, 2008) are mostly based on k-nearest neigh-
bor (k-NN) classi�ers and applied in, e.g. regression and classi�cation (Kang & Cho, 2008). 
Even though IBL/MBR techniques have proven to achieve high accuracy of classi�cation 
in some cases (Akay, 2011), a stable and good performance (Gagliardi, 2011; Zheng, Li, & 
Wang, 2010) and were found to be applicable in many di�erent domains (Dutt & Gonzalez, 
2012), when looking at the previously identi�ed requirements they seem not to be the best 
match. Reasons why IBL/MBR are excluded from further investigation are, among other 
things, their di�culty to set the attribute weight vector in little known domains (Hickey & 
Martin, 2001), the complicated calculations needed if large numbers of training instances/
test patterns and attributes are involved (Kang & Cho, 2008; Okamoto & Yugami, 2003), 
less adaptable learning procedures (tends to over-�tting with noisy data) (Gagliardi, 2011), 
task-dependency (Dutt & Gonzalez, 2012; Gonzalez, Dutt, & Lebiere, 2013), and time-sen-
sitive to complexity (Gonzalez et al., 2013).

NN or Arti�cial Neural Networks are inspired by the functionality of the brain. �e 
brain is capable of performing impressive tasks (e.g. vision, speech recognition), tasks that 
may proof bene�cial in engineering application when transferred to a machine/arti�cial 
system (Alpaydin, 2010). NN simulate the decentralized ‘computation’ of the central nerv-
ous system by parallel processing (in reality or simulated) and allow an arti�cial system 
to perform unsupervised, reinforcement, and supervised learning tasks (e.g. pattern rec-
ognition) (Corne et al., 2012; Pham & A�fy, 2005). Decentralization makes use of a high 
‘number of simple, highly interconnected processing elements or nodes and incorporates 
the ability to process information by a dynamic response of these nodes and their connec-
tions to external inputs’ (Cook, Zobel, & Wolfe, 2006). �ese NN play an important role 
in today’s ML research (Nilsson, 2005). Today’s application of NN can be seen as being on 
the representation and algorithm level (Alpaydin, 2010). NN are applied in various �elds 
of manufacturing (e.g. semiconductor manufacturing) and diverse problems (e.g. process 
control) (Harding et al., 2006; Lee & Ha, 2009; Wang, Chen, & Lin, 2005) which highlights 
their main advantage: their wide applicability (Pham & A�fy, 2005). Besides the wide appli-
cability, NN are capable of handling high-dimensional and multi-variate data on a similar 
rate to the later introduced SVM (Kotsiantis, 2007). Manallack and Livingstone (1999) 
found NN to ‘o�er high accuracy in most cases but can su�er from over-fitting the training 
data’ (Manallack & Livingstone, 1999). However, in order to achieve the high accuracy, a 
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large sample size is required by NN (similar to SVM) (Kotsiantis, 2007). Over-�tting, con-
nected to the high-variance algorithms is commonly accepted as a drawback of NN (again 
partly similar to SVMs) (Kotsiantis, 2007). Other challenges of applying NN include the 
complexity of the models they produce, the intolerance concerning missing values and the 
(o�en) time-consuming training (Kotsiantis, 2007; Pham & A�fy, 2005).

�e previously described SLT builds the theoretical foundation of a rather new and very 
promising ML algorithm that attracts increasing attention in recent years due to its generally 
high performance, ability to achieve high accuracy, and ability to handle high-dimensional, 
multi-variate data-sets – SVM. SVMs were introduced by Cortes and Vapnik (1995) as a 
new machine learning technique for two-group classi�cation problems. Burbidge, Trotter, 
Buxton, and Holden (2001) found SVM to be a ‘robust and highly accurate intelligent 
classi�cation technique well suited for structure–activity relationship analysis.’ SVM can be 
understood as a practical methodology of the theoretical framework of STL (Cherkassky 
& Ma, 2009). SVMs have a proven track record for successfully dealing with non-linear 
problems (Li, Liang, & Xu, 2009). �e idea behind it is that input vectors are non-linearly 
mapped to a very high-dimensional feature space (Cortes & Vapnik, 1995). SVM can be 
combined with di�erent kernels and thus adapt to di�erent circumstances/requirements 
(e.g. NNs; Gaussian) (Keerthi & Lin, 2003). SVM as a classi�cation technique has its roots 
in SLT (Khemchandani & Chandra, 2009; Salahshoor, Kordestani, & Khoshro, 2010) and 
has shown promising empirical results in a number of practical manufacturing applications 
(Chinnam, 2002; Widodo & Yang, 2007) and works very well with high-dimensional data 
(Azadeh et al., 2013; Ben-hur & Weston, 2010; Salahshoor et al., 2010; Sun, Rahman, Wong, 
& Hong, 2004; Wu, 2010; Wuest, Irgens, & �oben, 2014). Current literature suggests that 
the performance of SVM compared to other ML methods is still very competitive (Jurkovic, 
Cukor, Brezocnik, & Brajkovic, 2016).Another aspect of this approach is that it represents 
the decision boundary using a subset of the training examples, known as the support vectors.

Ensemble Methods are a class of machine learning algorithms that combine a weighted 
committee of learners to solve a classi�cation or regression problem. �e committee or 
ensemble contains a number of base learners like NNs, trees, or nearest neighbor (Dietterich, 
2000; Opitz & Maclin, 1999). In many cases, the base learners are from the same algorithm 
family, which is called a homogeneous ensemble. In contrast to that, a heterogeneous exam-
ple is constructed by combining base learners of di�erent types. For many machine learn-
ing problems, it is demonstrated that the ensemble leads to a better model generalization 
compared to a single base classi�er (Zhou, 2012).

To construct the base classi�ers, two main paradigms have demonstrated their predictive 
power. On the one hand, sequential ensemble methods use the output from a base classi�er 
as an input of the following base classi�er and therefore boost the output in a sequential 
way. AdaBoost, introduced by Freund and Schapire (1995), is a well-known example, where 
simple decision stumps are combined toward a complex boosting cascade. On the other 
hand, parallel adjustment of base classi�ers leads to independent models, which is also 
named Bagging. One famous example of bagging methods is Random Forest (Breiman, 
2001), which is a combination of randomly sampled tree predictors. In a �rst step, Random 
forest randomly selects a subset of the features space, and then performs a conventional 
split selection procedure within the selected feature subset.

Deep Machine Learning is a new area of machine learning that allows the processing of data 
in multiple processing layers toward highly non-linear and complex feature representations. 
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�e �eld is mainly driven by the computer vision and language processing domain (LeCun, 
Bengio, & Hinton, 2015) but o�ers great potential to also boost data-driven manufactur-
ing applications. Deep Convolutional Neural Networks (ConvNets) have demonstrated 
outstanding prediction performance in various �elds of computer vision and won several 
contests, e.g. (Krizhevsky, Sutskever, & Hinton, 2012). In contrast to standard NNs, where 
each neuron from layer n is connected to all neurons in layer (n − 1), a ConvNet is con-
structed by multiple �lter stages with a restricted view and therefore well suited for image, 
video, and volumetric data (LeCun et al., 1989). From layer to layer, a ConvNet transforms 
the output of the previous layer in a higher abstraction by applying non-linear activation.

In manufacturing scenarios, data streams or data with temporal behavior are of major 
importance. Especially deep recurrent neural nets have demonstrated the ability to model 
temporal patterns, e.g. in time series data. Here, an important concept is the Long–Short-
Term Memory Model which is a more general architecture of deep NNs (Hochreiter & 
Schmidhuber, 1997).

5. Application areas of supervised machine learning in manufacturing

As was illustrated in the previous section, there is a wide variety of di�erent ML algorithms 
available. Each of them has speci�c advantages and disadvantages. In order to give an over-
view of successful applications of ML in manufacturing systems, selected applications of an 
exemplary supervised machine learning algorithm, SVMs, are illustrated.

A major application area of SVM in manufacturing is monitoring (Chinnam, 2002). 
Especially tool/machine condition monitoring, fault diagnosis, and tool wear are domains 
where SVM is continuously and successfully applied (Azadeh et al., 2013; Salahshoor et al., 
2010; Sun et al., 2004; Widodo & Yang, 2007). Also quality monitoring in manufacturing 
is a �eld where SVMs were successfully applied (Ribeiro, 2005).

An application area of SVM with an overlap to manufacturing application is image recog-

nition (e.g. character and face recognition) (Salahshoor et al., 2010; Widodo & Yang, 2007; 
Wu, 2010). In manufacturing, this can be utilized to identify (classify) damaged products 
(e.g. surface roughness) (Çaydaş & Ekici, 2010). Other application areas are, e.g. handwrit-
ing classi�cation (Scheidat, Leich, Alexander, & Vielhauer, 2009). Time series forecasting is 
also a domain where SVM optimization is o�en applied (Guo et al., 2008; Salahshoor et al., 
2010; Tay & Cao, 2002).

Besides manufacturing and image recognition, SVMs are o�en used within the med-
icine domain. Among the many areas of application within this domain, the use of SVM 
in cancer research is standing out (Furey et al., 2000; Guyon, Weston, Barnhill, & Vapnik, 
2002; Rejani & Selvi, 2009). Other medical application areas are, e.g. drug design (Burbidge 
et al., 2001) and detection of microcalci�cations (El-naqa, Yang, Wernick, Galatsanos, & 
Nishikawa, 2002).

Further application areas include but are not limited to credit rating (Huang, Chen, Hsu, 
Chen, & Wu, 2004), food quality control (Borin, Ferrão, Mello, Maretto, & Poppi, 2006), 
classi�cation of polymers (Li et al., 2009), and rule extraction (Martens, Baesens, Van Gestel, 
& Vanthienen, 2007). �ese examples from various industries and optimization problems 
highlight the wide applicability and adaptability of the SVM algorithm.
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As it was shown exemplarily for the SVM algorithm, there are several successful appli-
cations of ML in manufacturing available and many are already in daily use in industrial 
applications worldwide.

6. Conclusion and outlook

In this paper, �rst the challenges of modern manufacturing systems, e.g. increasing com-
plexity, dynamic, high dimensionality, and chaotic structures are highlighted. Following, 
machine learning limitations and advantages from a manufacturing perspective were dis-
cussed before a structuring of the diverse �eld of machine learning is proposed and an 
overview of the basic terminology of this inter-disciplinary �eld is presented. �e structure 
is distinguishing unsupervised machine learning, RL, and supervised machine learning 
as a possible way to group the available algorithms and applications. It was argued that 
supervised learning is a good �t for most manufacturing applications due to the fact that 
the majority of manufacturing applications can provide labeled data. Based on this dis-
tinction, the most commonly used supervised machine learning algorithms are presented. 
�erea�er, an exemplary illustration of successful application in manufacturing of the 
supervised machine learning algorithm SVMs is presented. �is overview highlights the 
adaptability and variety of usage opportunities in the �eld.

With fast paced developments in the area of algorithms and increasing availability of 
data (e.g. due to low cost sensors and the shi� toward smart manufacturing) and comput-
ing power, the applications for machine learning especially in manufacturing will increase 
further at a rapid pace. As of today, supervised algorithms have the upper hand in most 
application in the manufacturing domain. However, with the fast increase in available data, 
thanks to more and better sensor technologies and increased awareness, unsupervised 
methods (including RL) may increase in importance in the future. Already today, hybrid 
approaches are being used that o�er ‘the best of both worlds.’ �is corresponds with the 
attention the Big Data developments received in recent years. Concluding, it can be said with 
con�dence, ML is already a powerful tool for many applications within (intelligent) manu-
facturing systems and smart manufacturing and its importance will increase further in the 
future. Its interdisciplinary nature presents a big opportunity but also a signi�cant risk at the 
same time as collaboration between di�erent disciplines, like Computer Science, Industrial 
Engineering, Mathematics, and Electrical Engineering is necessary to drive progress.
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