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Abstract

Background: Following visible successes on a wide range of predictive tasks, machine learning techniques are

attracting substantial interest from medical researchers and clinicians. We address the need for capacity development

in this area by providing a conceptual introduction to machine learning alongside a practical guide to developing and

evaluating predictive algorithms using freely-available open source software and public domain data.

Methods: We demonstrate the use of machine learning techniques by developing three predictive models for

cancer diagnosis using descriptions of nuclei sampled from breast masses. These algorithms include regularized

General Linear Model regression (GLMs), Support Vector Machines (SVMs) with a radial basis function kernel, and

single-layer Artificial Neural Networks. The publicly-available dataset describing the breast mass samples (N = 683)

was randomly split into evaluation (n = 456) and validation (n = 227) samples.

We trained algorithms on data from the evaluation sample before they were used to predict the diagnostic outcome

in the validation dataset. We compared the predictions made on the validation datasets with the real-world

diagnostic decisions to calculate the accuracy, sensitivity, and specificity of the three models. We explored the use of

averaging and voting ensembles to improve predictive performance. We provide a step-by-step guide to developing

algorithms using the open-source R statistical programming environment.

Results: The trained algorithms were able to classify cell nuclei with high accuracy (.94 - .96), sensitivity (.97 - .99),

and specificity (.85 - .94). Maximum accuracy (.96) and area under the curve (.97) was achieved using the SVM

algorithm. Prediction performance increased marginally (accuracy=.97, sensitivity = .99, specificity = .95) when

algorithms were arranged into a voting ensemble.

Conclusions: We use a straightforward example to demonstrate the theory and practice of machine learning for

clinicians and medical researchers. The principals which we demonstrate here can be readily applied to other

complex tasks including natural language processing and image recognition.

Keywords: Medical informatics, Classification, Supervised machine learning, Programming languages, Diagnosis,

Computer-assisted, Decision making, Computer-assisted

Background
Driven by an increase in computational power, storage,

memory, and the generation of staggering volumes of data,

computers are being used to perform a wide-range of

complex tasks with impressive accuracy. Machine learn-

ing (ML) is the name given to both the academic discipline
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and collection of techniques which allow computers to

undertake complex tasks. As an academic discipline, ML

comprises elements of mathematics, statistics, and com-

puter science. Machine learning is the engine which is

helping to drive advances in the development of arti-

ficial intelligence. It is impressively employed in both

academia and industry to drive the development of ‘intel-

ligent products’ with the ability to make accurate pre-

dictions using diverse sources of data [1]. To date, the

key beneficiaries of the 21st century explosion in the

availability of big data, ML, and data science have been

industries which were able to collect these data and hire
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the necessary staff to transform their products. The learn-

ing methods developed in and for these industries offer

tremendous potential to enhance medical research and

clinical care, especially as providers increasingly employ

electronic health records.

Two areas whichmay benefit from the application ofML

techniques in the medical field are diagnosis and outcome

prediction. This includes a possibility for the identification

of high risk for medical emergencies such as relapse or

transition into another disease state. ML algorithms have

recently been successfully employed to classify skin can-

cer using images with comparable accuracy to a trained

dermatologist [2] and to predict the progression from

pre-diabetes to type 2 diabetes using routinely-collected

electronic health record data [3].

Machine learning will is increasingly employed in com-

bination withNatural Language Processing (NLP) tomake

sense of unstructured text data. By combining ML with

NLP techniques, researchers have been able to derive new

insights from comments from clinical incident reports [4],

social media activity [5, 6], doctor performance feedback

[7], and patient reports after successful cancer treatments

[8]. Automatically generated information from unstruc-

tured data could be exceptionally useful not only in

order to gain insight into quality, safety, and perfor-

mance, but also for early diagnosis. Recently, an auto-

mated analysis of free-speech collected during in-person

interviews resulted in the ability to predict transition to

psychosis with perfect accuracy in a group of high-risk

youths [9].

Machine learning will also play a fundamental role in

the development of learning healthcare systems. Learn-

ing healthcare systems describe environments which

align science, informatics, incentives, and culture for

continuous improvement and innovation. In a practi-

cal sense, these systems; which could occur on any

scale from small group practices to large national

providers, will combine diverse data sources with

complex ML algorithms. The result will be a continu-

ous source of data-driven insights to optimise biomed-

ical research, public health, and health care quality

improvement [10].

Machine learning

Machine learning techniques are based on algorithms –

sets of mathematical procedures which describe the rela-

tionships between variables. This paper will explain the

process of developing (known as training) and validat-

ing an algorithm to predict the malignancy of a sam-

ple of breast tissue based on its characteristics. Though

algorithms work in different ways depending on their

type there are notable commonalities in the way in

which they are developed. Though the complexities of

ML algorithms may appear esoteric, they often bear

more than a subtle resemblance to conventional statistical

analyses.

Given the commonalities shared between statistical and

ML techniques, the boundary between the two may seem

fuzzy or ill-defined. One way to delineate these bodies of

approaches is to consider their primary goals. The goal

of statistical methods is inference; to reach conclusions

about populations or derive scientific insights from data

which are collected from a representative sample of that

population. Though many statistical techniques, such as

linear and logistic regression, are capable of creating pre-

dictions about new data, the motivator of their use as a

statistical methodology is to make inferences about rela-

tionships between variables. For example, if we were to

create a model which described the relationship between

clinical variables and mortality following organ transplant

surgery for example, we would need to have insight into

the factors which distinguish low mortality risk from high

if we were to develop interventions to improve outcomes

and reduce mortality in the future. In statistical infer-

ence, therefore, the goal is to understand the relationships

between variables.

Conversely, in the field of ML, the primary concern is an

accurate prediction; the ‘what’ rather than the ‘how’. For

example, in image recognition, the relationship between

the individual features (pixels) and the outcome is of lit-

tle relevance if the prediction is accurate. This is a critical

facet of ML techniques as the relationship between many

inputs, such as pixels in image or video and geo-location,

are complex and usually non-linear. It is exceptionally

difficult to describe in a coherent way the relationships

between predictors and outcomes both when the relation-

ships are non-linear and when there are a large number of

predictors, each of which make a small individual contri-

bution to the model.

Fortunately for the medical field, many relationships

of interest are reasonably straightforward, such as those

between body mass index and diabetes risk or tobacco

use a lung cancer. Because of this, their interaction can

often be reasonably well explained using relatively simple

models. In many popular applications of ML, such a opti-

mizing navigation, translating documents, and identifying

objects in videos, understanding the relationship between

features and outcomes is of less importance. This allows

the use of complex non-linear algorithms. Given this

key difference, it might be useful for researchers to con-

sider that algorithms exist on a continuum between those

algorithms which are easily interpretable (i.e., Auditable

Algorithms) and those which are not (i.e., Black Boxes),

presented visually in Fig. 1.

Interesting questions remain as to when a convention-

ally statistical technique becomes a ML technique. In

this work, we will introduce some that computational

enhancements to traditional statistical techniques, such as
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Fig. 1 The complexity/interpretability trade-off in machine learning tools

elastic net regression, make these algorithms performed

well with big data. However, a fuller discussion of the

similarities and differences betweenML and conventional

statistics is beyond the purview of the current paper. Inter-

ested readers are directed to materials which develop the

ideas discussed here [11]. It should also be acknowledged

that whilst the ’Black Box’ concept does generally apply to

models which utilize non-linear transformations, such as

the neural networks, work is being carried out to facilitate

feature identification in complex algorithms [12].

The majority of ML methods can be categorised into

two types learning techniques: those which are supervised

and those which are unsupervised. Both are introduced in

the following sections.

Supervised learning

Supervised ML refers to techniques in which a model is

trained on a range of inputs (or features) which are asso-

ciated with a known outcome. In medicine, this might

represent training a model to relate a person’s character-

istics (e.g., height, weight, smoking status) to a certain

outcome (onset of diabetes within five years, for example).

Once the algorithm is successfully trained, it will be capa-

ble of making outcome predictions when applied to new

data. Predictions which are made by models trained using

supervised learning can be either discrete (e.g., positive or

negative, benign or malignant) or continuous (e.g., a score

from 0 to 100).

Amodel which produces discrete categories (sometimes

referred to as classes) is referred to as a classification algo-

rithm. Examples of classification algorithms include those

which, predict if a tumour is benign or malignant, or to

establish whether comments written by a patient convey

a positive or negative sentiment [2, 6, 13]. In practice,

classification algorithms return the probability of a class

(between 0 for impossible and 1 for definite). Typically,

we would transform any probability greater than .50 into

a class of 1, but this threshold may be altered to improve

algorithm performance as required. This paper provides

an example of a classification algorithm in which a diag-

nosis is predicted.

A model which returns a prediction of a continuous

value is known as a regression algorithm. The use of the

term regression in ML varies from its use in statistics,

where regression is often used to refer to both binary

outcomes (i.e., logistic regression) and continuous out-

comes (i.e., linear regression). In ML, an algorithm which

is referred to as a regression algorithm might be used to

predict an individual’s life expectancy or tolerable dose of

chemotherapy.

SupervisedML algorithms are typically developed using

a dataset which contains a number of variables and a rele-

vant outcome. For some tasks, such as image recognition

or language processing, the variables (which would be

pixels or words) must be processed by a feature selector.

A feature selector picks identifiable characteristics from

the dataset which then can be represented in a numerical

matrix and understood by the algorithm. In the examples

above, a feature may be the colour of a pixel in an image

or the number of times that a word appears in a given text.

Using the same examples, outcomes may be whether an

image shows a malignant or benign tumour or whether

transcribed interview responses indicate predisposition to

a mental health condition.

Once a dataset has been organised into features and

outcomes, a ML algorithm may be applied to it. The

algorithm is iteratively improved to reduce the error of

prediction using an optimization technique.

Note that, when training ML algorithms, it is possi-

ble to over-fit the algorithm to the nuances of a specific

dataset, resulting in a prediction model that does not

generalise well to new data. The risk of over-fitting can
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be mitigated using various techniques. Perhaps the most

straight-forward approach, which will be employed in this

work, is to split our dataset into two segments; a training

segment and a testing segment to ensure that the trained

model can generalize to predictions beyond the train-

ing sample. Each segment contains a randomly-selected

proportion of the features and their related outcomes.

This allows the algorithm to associate certain features,

or characteristics, with a specific outcome, and is known

as training the algorithm. Once training is completed,

the algorithm is applied to the features in the testing

dataset without their associated outcomes. The predic-

tions made by the algorithm are then compared to the

known outcomes of the testing dataset to establish model

performance. This is a necessary step to increase the like-

lihood that the algorithm will generalise well to new data.

This process is illustrated graphically in Fig. 2.

UnsupervisedMachine Learning

In contrast with supervised learning, unsupervised learn-

ing does not involve a predefined outcome. In unsuper-

vised learning, patterns are sought by algorithms without

any input from the user. Unsupervised techniques are thus

exploratory and used to find undefined patterns or clus-

ters which occur within datasets. These techniques are

often referred to as dimension reduction techniques and

include processes such as principal component analysis,

latent Dirichlet analysis and t-Distributed Stochastic

Neighbour Embedding (t-SNE) [14–16]. Unsupervised

learning techniques are not discussed at length in this

work, which focusses primarily on supervised ML. How-

ever, unsupervised methods are sometimes employed in

conjunction with the methods used in this paper to

reduce the number of features in an analysis, and are

thereby worth mention. By compressing the information

in a dataset into fewer features, or dimensions, issues

includingmultiple-collinearity or high computational cost

may be avoided. A visual illustration of an unsupervised

dimension reduction technique is given in Fig. 3. In this

figure, the raw data (represented by various shapes in

the left panel) are presented to the algorithm which then

groups the data into clusters of similar data points (rep-

resented in the right panel) . Note that data which do not

have sufficient commonality to the clustered data are typ-

ically excluded, thereby reducing the number of features

within of the dataset.

In a similar way to the supervised learning algorithms

described earlier, also share many similarities to statistical

techniques which will be familiar to medical researchers.

Unsupervised learning techniques make use of similar

algorithms used for clustering and dimension reduction in

traditional statistics. Those familiar with Principal Com-

ponent Analysis and factor analysis will already be familiar

withmanyof the techniques used in unsupervised learning.

Fig. 2 Overview of supervised learning. a Training b Validation c Application of algorithm to new data
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Fig. 3 A visual illustration of an unsupervised dimension reduction technique

What this paper will achieve

This paper provides a pragmatic example using supervised

ML techniques to derive classifications from a dataset

containing multiple inputs. The first algorithm we intro-

duce, the regularized logistic regression, is very closely

related to multivariate logistic regression. It is distin-

guished primarily by the use of a regularization function

which both reduces the number of features in the model

and attenuates the magnitude of their coefficients. Regu-

larization is, therefore, suitable for datasets which contain

many variables and missing data (known as high sparsity

datasets), such as the term-document matrices which are

used to represent text in text mining studies.

The second algorithm, a Support Vector Machine

(SVM), gained popularity among the ML community for

its high performance deriving accurate predictions in sit-

uations where the relationship between features and the

outcome is non-linear. It uses a mathematical transforma-

tion known as the kernel trick, which we describe in more

detail below.

Finally, we introduce an Artificial Neural Network

(ANN), in which complex architecture and heavily mod-

ifiable parameters have led to it’s widespread use in

many challenging applications, including image and video

recognition. The addition of speciality neural networks,

such as recurrent or convolutional networks, to ANNs has

resulted in impressive performance on a range of tasks.

Being highly parametrized models, ANNs are prone to

over-fitting. Their performance may be improved using a

regularization technique, such as DropConnect.

The ultimate goal of this manuscript is to imbue clin-

icians and medical researchers with both a foundational

understanding of what ML is, how it may be used, as

well as the practical skills to develop, evaluate, and com-

pare their own algorithms to solve prediction problems in

medicine.

How to follow this paper

We provide a conceptual introduction alongside practical

instructions using code written for the R Statistical

Programming Environment, whichmay be easilymodified

and applied to other classification or regression tasks. This

code will act as a framework upon which researchers can

develop their ownML studies. The models presented here

may be fitted to diverse types of data and are, with minor

modifications, suitable for analysing text and images.

This paper is divided into sections which describe the

typical stages of a ML analysis: preparing data, train-

ing algorithms, validating algorithms, assessing algorithm

performance, and applying new data to the trainedmodels.

Throughout the paper, examples of R code used to the

run the analyses are presented. The code is given in full

in Additional file 1. The data which was used for these

analyses are available in Addition file 2.

Methods
The dataset used in this work is the Breast Cancer

Wisconsin Diagnostic Data Set. This dataset is publicly

available from the University of California Irvine (UCI)

Machine Learning Repository [17]. It consists of char-

acteristics, or features, of cell nuclei taken from breast

masses which were sampled using fine-needle aspiration

(FNA), a common diagnostic procedure in oncology. The

clinical samples used to form this dataset were collected

from January 1989 to November 1991. Relevant features

from digitised images of the FNA samples were extracted

through the methods described in Refs. [13, 18, 19]. An

example of one of the digitised images from an FNA

sample is given in Fig. 4.

Fig. 4 An example of an image of a breast mass from which dataset

features were extracted
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A total of 699 samples were used to create this dataset.

This number will be referred to as the number of instances.

Each instance has an I.D. number, diagnosis, and set of

features attributed to it.While the Sample I.D. is unique to

that instance, the diagnosis, listed as class in the dataset,

can either be malignant or benign, depending if the FNA

was found to be cancerous or not. In this dataset, 241

instances were diagnosed as malignant, and 458 instances

were found to be benign. Malignant cases have a class of

four, and benign cases have a class of two. This class, or

diagnosis, is the outcome of the instance.

The features of the dataset are characteristics identified

or calculated from each FNA image. There are nine fea-

tures in this dataset, and each is valued on a scale of 1 to

10 for a particular instance, 1 being the closest to benign

and 10 being themost malignant [18]. Features range from

descriptors of cell characteristics, such as Uniformity of

Cell Size and Uniformity of Cell Shape, to more com-

plex cytological characteristics such as Clump Thickness

and Marginal Adhesion. All nine features, along with the

Instance No., Sample I.D., and Class are listed in Table 1.

The full dataset is a matrix of 699 × 12 (one identification

number, nine features, and one outcome per instance).

This dataset is simple and therefore computationally

efficient. The relatively low number of features and

instances means that the analysis provided in this paper

can be conducted using most modern PCs without long

computing times. Although the principals are the same as

those described throughout the rest of this paper, using

large datasets to train Machine learning algorithms can

be computationally intensive and, in some cases, require

many days to complete. The principals illustrated here

apply to datasets of any size.

Using R
The R Statistical Programming Language is an open-

source tool for statistics and programming which was

developed as an extension of the S language. R is sup-

ported by a large community of active users and hosts

several excellent packages for ML which are both flexible

and easy to use. R is a computationally efficient language

which is readily comprehensible without special training

in computer science. The R language is similar to many

other statistical programming languages, including MAT-

LAB, SAS, and STATA. Packages for R are arranged into

different task views on the Comprehensive RArchive Net-

work. TheMachine Learning and Statistical Learning task

view currently lists almost 100 packages dedicated to ML.

Many, if not most, R users access the R environment

using RStudio, an open-source integrated developer envi-

ronment (IDE) which is designed to make working in R

more straightforward. We recommend that readers of the

current paper download the latest version of both R and

RStudio and access the environment through the RStu-

dio application. Both R and RStudio are free to use and

available for use under an open-source license.

Conducting amachine learning analysis
The following section will take you through the necessary

steps of aML analysis using theWisconsin Cancer dataset.

1 Importing and preparing the dataset.

2 Training the ML algorithms.

3 Testing the ML algorithms.

4 Assessing sensitivity, specificity and accuracy of the

algorithms.

5 Plotting receiver operating characteristic curves.

6 Applying new data to the trained models.

1. Importing and preparing the dataset.

The dataset can be downloaded directly from the UCI

repository using the code in Fig. 5.

We first modify the data by re-scoringmissing data from

‘?’ to NA, removing any rows with missing data and re-

scoring the class variables from 2 and 4 to 0 and 1, where

0 indicates the tumour was benign and 1 indicates that

it was malignant. Recall that a dataset with many miss-

ing data points is referred to as a sparse dataset. In this

Table 1 Attributes of the dataset

Features Outcome

Instance Sample Cell Cell Epithelial Bare Bland Normal Class

No. I.D. Thickness Size Shape Adhesion Size Nuclei Chromatin Nucleoli Mitoses (Diagnosis)

1 1000025 5 1 1 1 2 1 3 1 1 2

2 1002945 5 4 4 5 7 10 3 2 1 2

3 1015425 3 1 1 1 2 2 3 1 1 2

.

.

.

699 897471 4 8 8 5 4 5 10 4 1 4
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Fig. 5 Import the data and label the columns

dataset there are small number of cases (n=16) with at

least one missing value. To simplify the analytical steps,

we will remove these cases, using the code in Fig. 6.

Datasets used for supervised ML are most easily repre-

sented in a matrix similar to the way Table 1 is presented.

The n columns are populated with the n − 1 features,

with the single remaining column containing the outcome.

Each row contains an individual instance. The features

which make up the training dataset may also be described

as inputs or variables and are denoted in code as x. The

outcomes may be referred to as the label or the class and

are denoted using y.

Recall that it is necessary to train a supervised algorithm

on a training dataset in order to ensure it generalises well

to new data. The code in Fig. 7 will divide the dataset into

two required segments, one which contains 67% of the

dataset, to be used for training; and the other, to be used

for evaluation, which contains the remaining 33%.

2. Training the ML algorithms

Now that we have arranged our dataset into a suitable

format, we may begin training our algorithms. These ML

algorithms which we will use are listed below and detailed

in the following section.

• Logistic regression using Generalised Linear Models

(GLMs) with L1 Least Absolute Selection and

Shrinkage Operator (LASSO) regularisation.
• Support Vector Machines (SVMs) with a radial basis

function (RBF) kernel.
• Artificial Neural Networks (ANNs) with a single

hidden layer.

Regularised regression using Generalised Linear Models

(GLMs)

Regularised General Linear Models (GLMs) have demon-

strated excellent performance in some complex learning

problems, including predicting individual traits from on-

line digital footprints [20], classifying open-text reports of

doctors’ performance [7], and identifying prostate cancer

by desorption electro-spray ionization mass spectromet-

ric imaging of small metabolites and lipids [21].

When fitting GLMs using datasets which have a large

number of features and substantial sparsity, model per-

formance may be increased when the contribution of

each of the included features to the model is reduced

(or penalised) using regularisation, a process which also

reduces the risk of over-fitting. Regularisation effectively

reduces both the number of coefficients in the model

and their magnitudes, making especially it suitable for

big datasets that may have more features than instances.

In this example, feature selection is guided by the Least

Absolute Shrinkage and Selection Operator (LASSO).

Other forms of regularisation are available, including

Ridge Regression and the Elastic Net (which is a lin-

ear blend of both Ridge and LASSO regularisation) [22].

An accessible, up-to-date summary of LASSO and other

regularisation techniques is given in Ref [23].

Regularised GLMs are operationalised in R using the

glmnet package [24]. The code below demonstrates how

the GLM algorithm is fitted to the training dataset. In

the glmnet package, the regularistion parameter is cho-

sen using the numerical value referred to as alpha. In

this package, a alpha value of 1 selects LASSO regularisa-

tion where as alpha 0 selects Ridge regularization, a value

between between 0 and 1 selects a linear blend of the two

techniques known as the Elastic Net [22].

nFold cross-validation is used to ascertain the optimal

value of lambda (λ), the regularisation parameter. The

value of (λ) which minimizes prediction error is stored in

the glm_model$lambda.min object. The smaller the

λ value, the greater the effect of regularisation upon the

number of features in the model and their respective coef-

ficients. Figure 8 shows the effect of different levels of

Fig. 6 Remove missing items and restore the outcome data
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Fig. 7 Split the data into training and testing datasets

log(λ). The optimal value of log(λ) is indicated using the

vertical broken line (shown here at x = -5.75). The right-

most dotted line indicates the most parsimonious value of

log(λ) which is within 1 standard deviation of the absolute

minimum value. Note that the random nature of cross-

validation means that values of log(λ) may differ slightly

between analyses. The integers are given above Fig. 8

(0-9) relate to the number of features included in the

model. The code shown in Fig. 9 fits the GLM algorithm

to the data and extracts the minimum value of λ and the

weights of the coefficients.

Figure 10 shows the cross-validation curves for different

levels of log(λ). This figure can be plotted using the code

in Fig. 11.

Figure 8 shows magnitude of the coefficients for each

of the variables within the model for different values of

log(λ). The vertical dotted line indicates the value of log(λ)

Fig. 8 Regression coefficients for the GLM model. The figure shows

the coefficients for the 9 model features for different values of log(λ).

log(λ) values are given on the lower x-axis and number of features in

the model are displayed above the figure. As the size of log(λ)

decreases the number of variables in the model (i.e. those with a

nonzero coefficient) increases as does the magnitude of each feature.

The vertical dotted line indicates the value of log(λ) at which the

accuracy of the predictions is maximized

which minimises the mean squared error established dur-

ing cross-validation. This figure can be augmented with a

dotted vertical line indicating the value of log(λ) using the

abline() function, shown in Fig. 12.

Support Vector Machines (SVMs)

Support VectorMachine (SVM) classifiers operate by sep-

arating the two classes using a linear decision boundary

called the hyperplane. The hyperplane is placed at a loca-

tion that maximises the distance between the hyperplane

and instances [25].

Fig. 13 depicts an example of a linear hyperplane that

perfectly separates between two classes. In real-world

examples, it may not be possible to adequately separate

the two classes using a linear hyperplane. By maximising

the width of the decision boundary then the generalisabil-

ity of the model to new data is optimised. Rather than

employ a non-linear separator such as a high-order poly-

nomial, SVM techniques use a method to transform the

feature space such that the classes do become linearly

separable. This technique, known as the kernel trick, is

demonstrated in Fig. 14.

Fig. 14 shows an example of a two classes that are

not separable using a linear separator. By projecting the

data to X2, they become linearly separable using the

y = 5 hyperplane. A popular method for kernel trans-

formation in high-dimensional space is the radial basis

function (RBF).

The SVM algorithm is fitted to the data using a function,

given in Fig. 15, which is arranged in a similar way to the

regularised regression shown above.

Further exploration of SVM which attempt to fit sepa-

rating hyperplanes following different feature space trans-

formations is possible by altering the kernel argument

to “linear”, “radial”, “polynomial”, or “sigmoid”.

Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are algorithms which

are loosely modelled on the neuronal structure observed

in the mammalian cortex. Neural networks are arranged
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Fig. 9 Fit the GLM model to the data and extract the coefficients and minimum value of lambda

Fig. 10 Cross-validation curves for the GLM model. The figure shows the cross-validation curves as the red dots with upper and lower standard

deviation shown as error bars

Fig. 11 Plot the cross-validation curves for the GLM algorithm
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Fig. 12 Plot the coefficients and their magnitudes

with a number of input neurons, which represent the

information taken from each of the features in the dataset.

which feed into any number of hidden layers before pass-

ing to an output layer in which the final decision is

presented. As information passes through the ’neurons’, or

nodes, where is is multiplied by the weight of the neuron

(plus a constant bias term) and transformed by an activa-

tion function. The activation function applies a non-linear

transformation using a simple equation shown in Eq. 1.

In recurrent ANNs, a process is undertaken in which

the prediction errors are fed back through the network

before modifying the weights of each neural connection is

altered until error level is minimised, a process known as

backpropagation [26].

y = activation(�(weight × input) + bias) (1)

Deep Neural Networks (DNNs) refers to neural net-

works which have many hidden layers. Deep learning,

which may utilise DNNs, has produced impressive results

when employed in complex tasks using very high dimen-

sional data, such as image recognition [27] and computer-

assisted diagnosis of melanoma [2].

DNNs are heavily parametrised and, resultantly, can be

prone to over-fitting models to data. Regularisation can,

like the GLM algorithm described above, be used prevent

Fig. 13 A SVM Hyperplane The hyperplane maximises the width of

the decision boundary between the two classes

this. Other strategies to improve performance can include

dropout regularisation, where some number of randomly-

selected units are omitted from the hidden layers during

training [28].

The code in Fig. 16 demonstrates the code for fitting a

neural network. This is straightforward, requiring the x

and y datasets to be defined, as well as the number of units

in the hidden layer using the size argument.

3. Testing the ML algorithms

In order to test the performance of the trained algo-

rithms, it is necessary to compare the predictions which

the algorithm has made on data other than the data upon

which it was trained with the true outcomes for that

data which we have known but we did not expose the

algorithm to. To accomplish this in he R programming

environment, we would create a vector of model predic-

tions using the x_test matrix, which can be compared

to the y_test vector to establish performance metrics.

This is easily achievable using the predict() function,

which is included in the stats package in the R distri-

bution. The nnet package contains a minor modification

to the predict() function, and as such the type argu-

ment is set to ‘raw’, rather than ‘response’ for the neural

network. This code is given in Fig. 17.

4. Assessing the sensitivity, specificity and accuracy of the

algorithms

Machine learning algorithms for classification are typ-

ically evaluated using simple methodologies that will

be familiar to many medical researchers and clinicians.

In the current study, we will use sensitivity, specificity,

and accuracy to evaluate the performance of the three

algorithms. Sensitivity is the proportion of true positives

that are correctly identified by the test, specificity is the

proportion of true negatives that are correctly identified

by the test and the accuracy is the proportion of the

times which the classifier is correct [29]. Equations used

to calculate sensitivity, specificity, and accuracy are given

below.

Sensitivity =true positives/actual positives (2)

Specificity =true negatives/actual negatives (3)

Accuracy =(true positives + true negatives)/total

predictions (4)
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Fig. 14 The kernel trick The kernel trick modifies the feature space allowing separation of the classes with a linear hyperplane

Fig. 15 Fit the SVM algorithm to the data

Fig. 16 Fit the ANN algorithm to the data
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Fig. 17 Extract predictions from the trained models on the new data

Confusionmatrices

Data from classifiers are often represented in a confusion

matrix in which the classifications made by the algorithm

(e.g., pred_y_svm) are compared to the true classifica-

tions (which the algorithms were blinded to) in the dataset

(i.e., y_test). Once populated, the confusionmatrix pro-

vides all of the information needed to calculate sensitiv-

ity, specificity, and accuracy manually. An example of an

unpopulated confusion matrix is demonstrated in Table 2.

Confusion matrices can be easily created in R using the

caret package. The confusionMatrix() function cre-

ates a confusion matrix and calculates sensitivity, speci-

ficity, and accuracy. The confusionMatrix() func-

tion requires a binary input for the predictors whereas the

pred() functions used earlier produce a vector of con-

tinuous values between 0 and 1, in which a larger value

reflects greater certainty that the sample was positive.

Before evaluating a binary classifier, a cut-off thresh-

old must be decided upon. The round() function used

in the code shown in Fig. 18 effectively sets a thresh-

old of >.50 for a positive prediction by rounding val-

ues ≤.50 down to 0 and values >.50 up to 1. While

this is sufficient for this teaching example, users may

wish to evaluate the optimal threshold for a positive

prediction as this may differ from .50. The populated

confusion matrix for this example is shown in Table 3

and is displayed alongside sensitivity, specificity, and

accuracy.

5. Plotting receiver operating characteristic curves

Receiver operating characteristics curves are useful and

are shown in the code in Fig. 19 using the pROC pack-

age. An example output is given in Fig. 20. These curves

illustrate the relationship between the model’s sensitiv-

ity (plotted on the y-axis) and specificity (plotted on the

x-axis). The grey diagonal line is reflective of as-good-as-

Table 2 Example confusion matrix

Actual Outcome

Negative Positive

Predicted Negative True Negative (TN) False Negative (TN)

Out come Positive False Positive (FP) True Positive (TP)

chance performance and any curves which are plotted to

the left of that line are performing better than chance.

Interpretation of ROC curves is facilitated by calculat-

ing the area under each curve (AUC) [30]. The AUC

gives a single value which explains the probability that

a random sample would be correctly classified by each

algorithm. In this example all models perform very well

but the SVM algorithm shows the best performance, with

AUC = .97 compared to the ANN (AUC = .95) and the

LASSO-regularized regression (AUC = .94).

6. Applying new data to the trained models

Despite many similarities, ML is differentiated from sta-

tistical inference by its focus on predicting real-life out-

comes from new data. As such, we develop models not

to infer the relationships between variables but rather to

produce reliable predictions from new data (though, as

we have demonstrated, prediction and inference are not

mutually exclusive).

In order to use the trained models to make predic-

tions from data we need to construct either a vector (if

there is a single new case) or a matrix (if there are multi-

ple new cases). We need to ensure that the new data are

entered into the model in the same order as the x_train

and x_test matrices. In this case, we need to enter

new data in the order of thickness, cell size, cell shape,

adhesion, epithelial size, bare nuclei, bland cromatin, nor-

mal nucleoli, and mitoses. The code in Fig. 21 demon-

strates how these data are represented in a manner that

allows them to be processed by the trained model. Note

that all three algorithms return predictions that suggest

there is a near-certainty that this particular sample is

malignant.

Additional ML techniques
Reducing prediction error; the case for ensembles.

When working to maximise the performance of a

predictive model, it can be beneficial to group different

algorithms together to create a more robust prediction in

a process known as ensemble learning [24]. There are too

many ensemble techniques to adequately summarize here,

but more information can be found in Ref. [23].

The principal of ensemble learning can be demon-

strated using a un-weighted voting algorithm with R code.

The code in Fig. 22 can be used to demonstrate the
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Fig. 18 Create confusion matrices for the three algorithms

process of developing both an averaging and and voting

algorithm.

Natural language processing

Another common use for classification algorithms is in

Natural Language Processing (NLP), the branch of ML in

which computers are taught to interpret linguistic data.

One popular example of NLP is in sentiment analysis,

which involvesML algorithms trained to classify texts into

different categories relating to the sentiment they con-

vey; usually positive, negative, or neutral. We will give

an overview of how features can be extracted from text

and then used in the framework we have introduced

above.

A linguistic dataset (also known as a corpus) comprises

a number of distinct documents. The documents can be

broken down into smaller tokens of text, such as the indi-

vidual words contained within. These tokens can be used

as the features in a ML analysis as demonstrated above.

In such an analysis, we arrange the x_trainmatrix such

that the rows represent the individual documents and

the tokenized features are represented in the columns.

This arrangement for linguistic analysis is known as a

term-document matrix (TDM).

In its most basic form, each row of the TDM represents

a simple count of the words which were used in a doc-

ument. In this case, the width of a TDM is equal to the

number of unique words in the entire corpus and, for each

document, the value any given cell will either be 0 if the

word does not appear in that comment or 1 if it does.

Arranging a document this way leads to two issues: firstly,

that the majority of the matrix likely contains null val-

ues (an issue known as sparsity); and secondly, that many

of the documents contain the most common words in a

language (e.g., “the”, “a”, or “and”) which are not very infor-

mative in analysis. Refining the TDM using a technique

known as a term-frequency-inverse document frequency

(TF-IDF) weighting can reduce the value of certain com-

mon words in the matrix which may be less informative

and increase the value of less common words, which may

be more informative. It is also possible to remove uninfor-

mative words using a pre-defined dictionary known as a

stop words dictionary.

In a TDM, words can be tokenized individually, known

as unigrams, or as groups of sequential words, known a

nGrams where n is the number of words extracted in the

token (i.e, bi-gram or tri-gram extraction). Such extraction

can mitigate issues caused by grammatical nuances such

as negation (e.g., “I never said she stole mymoney.”). Some

nuances are more difficult to analyse robustly, especially

those used commonly in spoken language, such as empha-

sis or sarcasm. For example, the sentence above about

the stolen money could have at least 7 different meanings

depending on where the emphasis was placed.

A TDM can be easily developed in R using the tools

provided in the tm package. In Table 4, we demonstrate

a simple uniGram (single word) TDM without TF-IDF

weighting.

The code in Fig. 23 demonstrates the process for

creating a term document management for a vector

of open-text comments called ’comments’. modifications

are made to the open text comments including the

Table 3 Confusion matrix shown alongside sensitivity, specificity, and accuracy for each algorithm described here

Actual outcome

Benign (0) Malignant (1) Sensitivity Specificity Accuracy

Predicted Outcomes GLM Benign (0) 148 10 .99 .87 .95

Malignant (1) 2 67

SVM Benign (0) 146 5 .97 .94 .96

Malignant (1) 4 72

ANN Benign (0) 148 11 .99 .86 .94

Malignant (1) 2 66
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Fig. 19 Draw received operating curves and calculate the area under them

removal of punctuation and weighting using the TF-

DF technique. The final matrix which is saved to an

objects names ’x’ could The linked to a vector of out-

comes ‘y’ and used to train and validate machine learn-

ing algorithms using the process described above listings

3 to 11.

Once created, documents in the TDM can be combined

with a vector of outcomes using the cbind() function,

as shown in Table 4, and processed in the same way as

demonstrated in Fig. 7. Interested readers can explore

the informative tm package documentation to learn more

about term-document matrices [31].

Fig. 20 Receiver Operating Characteristics curves
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Fig. 21 Apply new data to the trained and validated algorithm

Results
When trained on a proportion of the dataset, the three

algorithms were able to classify cell nuclei in the remain-

der of the dataset with high accuracy (.94 - .96), sensitivity

(.97 - .99), and specificity (.85 - .94). Though each algo-

rithm performed well individually, maximum accuracy

(.96) and area under the curve (.97) was achieved using the

SVM algorithm (see Table 3).

Model performance was marginally increased when the

three algorithms were arranged into a voting ensemble,

with an overall accuracy of .97, sensitivity of .99 and

specificity of .95 (see the attached R Code for further

details.).

Discussion
Machine learning has the potential to transform the way

that medicine works [32], however, increased enthusiasm

has hitherto not been met by increased access to training

materials aimed at the knowledge and skill sets of medical

practitioners.

In this paper, we introduce basic ML concepts within a

context which medical researchers and clinicians will find

Fig. 22 Create predictions from the ensemble
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Table 4 Example of an unweighted term-document matrix (TDM) with outcomes

Features Outcome

documentID service a bad doctor great kind satisfied service unhappy Class

1 001312 1 0 0 1 0 1 1 0 1

2 001345 1 1 0 0 0 0 1 1 0

3 001312 0 0 1 1 0 0 0 0 1

.

.

.

699 001345 1 1 0 0 0 1 0 0 0

familiar and accessible.We demonstrate three commonly-

used algorithms; a regularized general linear model, sup-

port vector machines (SVM), and an artificial neural

network to classify tumour biopsies with high accuracy

as either benign or malignant. Our results show that all

algorithms can perform with high accuracy, sensitivity,

and specificity despite substantial differences in the way

that the algorithms work. The best-performing algorithm,

the SVM, is very similar to the method demonstrated

by Wolberg and Mangasarian who used different ver-

sions of the same dataset with fewer observations to

achieve similar results [18, 33]. It is noteworthy that

the LASSO-regularized linear regression also performed

exceptionally well whilst preserving the ability to under-

stand which features were guiding the predictions (see

Table 5). In contrast, the archetypal ’black box’ of the

heavily-parametrized neural network could not improve

classification accuracy.

In parallel to our analysis, we demonstrate techniques

which can be applied with a commonly-used and open-

source programming software (the R environment) which

does not require prior experience with command-line

computing. The presented code is designed to be re-

usable and easily adaptable, so that readers may apply

these techniques to their own datasets. With some modi-

fication, the same code may be used to develop linguistic

classifiers or object recognition algorithms using open-

text or image-based data respectively. Though the R envi-

ronment now provides many options for advanced ML

analyses, including deep learning, the framework of the

code can be easily translated to other programming lan-

guages, such as Python, if desired. After working through

examples in this paper we suggest that user apply their

knowledge to problems within their own datasets. Doing

so will elucidate specific issue which need to be over-

come and will form a foundation for continued learning

in this area. Further information can be from any num-

ber of excellent textbooks, websites, and online courses.

Additional practice data sets can be obtained from the

University of California Irvine Machine learning data

sets repository which at the time of writing, includes an

additional 334 datasets suitable for classification tasks,

including 35 which contain open-text data [17].

Further, this paper acts to demystifyML and endow clin-

icians and researchers without a previous ML experience

with the ability to critically evaluate these techniques.

This is particularly important because without a clear

understanding of the way in which algorithms are trained,

medical practitioners are at risk of relying too heavily on

these tools which might not always perform as expected.

In their paper demonstrating a multi-surface pattern sep-

aration technique using a similar dataset, Wolberg and

Mangasarian stress the importance of training algorithms

on data which does not itself contain errors; their model

was unable to achieve perfect performance as the sample

in the dataset appeared to have been incorrectly extracted

from an area beyond the tumour. The oft-told parable of

the failure of the Google Flu Trends model offers an acces-

sible example of the risks and consequences posed by a

lack of understanding of ML models deployed ostensibly

Fig. 23 Create a term document matrix
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Table 5 Example features and coefficients from the GLM algorithm

Feature Thickness Cell Size . . . Epithelial Size . . . Bland Chromatin . . . Mitoses

Coefficient 0.49 0.11 0.02 0.48 0.36

to improve health [34]. In short, the Google Flu Trends

model was not generalizable over time as the Google

Search data it was trained on was temporally sensitive.

Looking to applications of ML beyond the medical field

offers further insight into some risks that these algorithms

might engender. For example, concerns have been raised

about predictive policing algorithms and, in particular,

the risk of entrenching certain prejudices in an algorithm

which may be apparent in police practice. Though the evi-

dence of whether predictive policing algorithms leads to

biases in practice is unclear [35], it stands to reason that

if biases exist in routine police work then models taught

to recognize patterns in routinely collected data would

have no means to exclude these biases when making pre-

dictions about future crime risk. Similar bias-based risks

have been identified in some areas ofmedical practice and,

if left unchecked, threaten the ethical use of data-driven

automation in those areas [36]. An understanding of the

way ML algorithms are trained is essential to minimize

and mitigate the risks of entrenching biases in predictive

algorithms in medicine.

Conclusions
The approach which we have taken in this paper entails

some notable strengths and weaknesses. We have cho-

sen to use a publicly-available dataset which contains a

relatively small number of inputs and cases. The data is

arranged in such a way that will allow those trained in

medical disciplines to easily draw parallels between famil-

iar statistical and novel ML techniques. Additionally, the

compact dataset enables short computational times on

almost all modern computers. A caveat of this approach is

thatmany of the nuances and complexities ofML analyses,

such as sparsity or high dimensionality, are not well repre-

sented in the data. Despite the omission of these common

features of a ML dataset, we are confident that users

who have worked through the examples given here with

the code provided in the appendix will be well-placed

to further develop their skills working on more complex

datasets using the scalable code framework which we pro-

vide. In addition, this data also usefully demonstrates an

important principle of ML: more complex algorithms do

not necessarily beget more useful predictions.

We look toward a future of medical research and prac-

tice greatly enhanced by the power ofML. In the provision

of this paper, we hope that the enthusiasm for new and

transformative ML techniques is tempered by a critical

appreciation for the way in which they work and the risks

that they could pose.
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Abbreviations

ANN: Artificial neural network; AUC: Area under the curve; FNA: Fine needle

aspiration; GLM: Generalized linear model; IDE: Integrated developer

environment; LASSO: Least absolute shrinkage and selection operator; ML:

Machine learning; NLP: Natural language processing; RBF: Radial basis

function; ROC: Received operating characteristics; SVM: Support vector

machine; TD-IDF: Term document - inverse document frequency; TDM: Term

document matrix; t-SNE: t-embedded stochastic neighbor embedding; UCI:

University of California, Irvine

Acknowledgments

We acknowledge and thank the investigators, scientists, and developers who

have contributed to the scientific community by making their data, code, and

software freely available. We thank our colleagues in Cambridge, Boston, and

beyond who provided critical insight into this work.

Funding

CSG was funded by National Institute for Health Research Trainees

Coordinating Centre Fellowships (NIHR-PDF-2014-07-028 and

NIHR-CDF-2017-10-19). The funders had no role in the design or execution of

this study.

Availability of data andmaterials

In this manuscript we use de-identified data from a public repository [17]. The

data are included on the BMCMed Res Method website. As such, ethical

approval was not required.

Authors’ contributions

JSG contributed to the conception and design of the work, interpretation of

data and presentation of results, and drafted the manuscript. CSG contributed

to the conception and design of the work, conducted the analyses, and

drafted the manuscript. Both JSG and CSG approve of the final versions and

agree to be accountable for their own contributions. Both authors read and

approved the final manuscript.

Ethics approval and consent to participate

In this manuscript we use de-identified data from a public repository [17]. The

data are included on the BMCMed Res Method website. As such, ethical

approval was not required.

Consent for publication

All contributing parties consent for the publication of this work.

Competing interests

The authors report no competing interests relating to this work.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Department of Engineering, University of Cambridge, Trumpington Street,

CB2 1PZ Cambridge, UK. 2Department of Surgery, Harvard Medical School, 25

Shattuck Street, Boston 01225, Massachusetts USA. 3Department of Surgery,

Brigham and Women’s Hospital, 75 Francis Street, Boston 01225,

Massachusetts, USA. 4University of Cambridge Psychometrics Centre,

Trumpington Street, CB2 1AG Cambridge, UK.

https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1186/s12874-019-0681-4


Sidey-Gibbons and Sidey-Gibbons BMCMedical ResearchMethodology           (2019) 19:64 Page 18 of 18

Received: 11 June 2018 Accepted: 14 February 2019

References
1. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and

prospects. Sci (NY). 2015;349(6245):255–60. https://doi.org/10.1126/

science.aaa8415.
2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S.

Dermatologist-level classification of skin cancer with deep neural

networks. Nature. 2017;542(7639):115–8. https://doi.org/10.1038/

nature21056.
3. Anderson J, Parikh J, Shenfeld D. Reverse Engineering and Evaluation of

Prediction Models for Progression to Type 2 Diabetes: Application of

Machine Learning Using Electronic Health Records. J Diabetes. 2016.
4. Ong M-S, Magrabi F, Coiera E. Automated identification of extreme-risk

events in clinical incident reports. J Am Med Inform Assoc. 2012;19(e1):

e110–e18.

5. Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L. Use of

sentiment analysis for capturing patient experience from free-text

comments posted online,. J Med Internet Res. 2013;15(11):239. https://

doi.org/10.2196/jmir.2721.

6. Hawkins JB, Brownstein JS, Tuli G, Runels T, Broecker K, Nsoesie EO,

McIver DJ, Rozenblum R, Wright A, Bourgeois FT, Greaves F. Measuring

patient-perceived quality of care in US hospitals using Twitter,. BMJ Qual

Saf. 2016;25(6):404–13. https://doi.org/10.1136/bmjqs-2015-004309.

7. Gibbons C, Richards S, Valderas JM, Campbell J. Supervised Machine

Learning Algorithms Can Classify Open-Text Feedback of Doctor

Performance With Human-Level Accuracy,. J Med Internet Res. 2017;19(3):

65. https://doi.org/10.2196/jmir.6533.

8. Wagland R, Recio-Saucedo A, Simon M, Bracher M, Hunt K, Foster C,

Downing A, Glaser A, Corner J. Development and testing of a

text-mining approach to analyse patients’ comments on their

experiences of colorectal cancer care. Qual Saf BMJ. 20152015–004063.

https://doi.org/10.1136/bmjqs-2015-004063.

9. Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, Ribeiro S,

Javitt DC, Copelli M, Corcoran CM. Automated analysis of free speech

predicts psychosis onset in high-risk youths. npj Schizophr. 2015;1(1):

15030. https://doi.org/10.1038/npjschz.2015.30.

10. Friedman CP, Wong AK, Blumenthal D. Achieving a Nationwide Learning

Health System. Sci Transl Med. 2010;2(57):57–29.

11. Beam A, Kohane I. Big Data and Machine Learning in Health Care. J Am

Med Assoc. 2018;319(13):1317–8.

12. Lei T, Barzilay R, Jaakkola T. Rationalizing Neural Predictions. In:

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - KDD ’16; 2016. p. 1135–1144.

https://doi.org/10.1145/2939672.2939778.

13. Mangasarian OL, Street WN, Wolberg WH. Breast Cancer Diagnosis and

Prognosis via Linear Programming: AAAI; 1994, pp. 83 - 86.

14. Jolliffe I, Jolliffe I. Principal Component Analysis. In: Wiley StatsRef:

Statistics Reference Online. Chichester: John Wiley & Sons, Ltd; 2014.

15. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res.

2003;3(Jan):993–1022.

16. Maaten Lvd, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res.

2008;9(Nov):2579–605.

17. Lichman M. UCI Machine Learning Repository: Breast Cancer Wisconsin

(Diagnostic) Data Set. 2014. http://archive.ics.uci.edu/ml. Accessed 8 Aug

2017.

18. Wolberg WH, Mangasariant OL. Multisurface method of pattern

separation for medical diagnosis applied to breast cytology. Proc Natl

Acad Sci USA. 1990;87:9193–6.

19. Bennett KP. Decision tree construction via linear programming: University

of Wisconsin-Madison Department of Computer Sciences; 1992,

pp. 97–101.

20. Kosinski M, Stillwell D, Graepel T. Private traits and attributes are

predictable from digital records of human behavior. Proc Natl Acad Sci.

2013;110(15):5802–5. https://doi.org/10.1073/pnas.1218772110.

21. Banerjee S, Zare RN, Tibshirani RJ, Kunder CA, Nolley R, Fan R, Brooks

JD, Sonn GA. Diagnosis of prostate cancer by desorption electrospray

ionization mass spectrometric imaging of small metabolites and lipids.

Proc Natl Acad Sci U S A. 2017;114(13):3334–9. https://doi.org/10.1073/

pnas.1700677114.

22. Zou H, Zou H, Hastie T. Regularization and variable selection via the

Elastic Net. J R Stat Soc Ser B. 2005;67:301–20.

23. Efron B, Hastie T. Computer Age Statistical Inference, 1st edn. Cambridge:

Cambridge University Press; 2016.

24. Hastie T, Tibshirani R, Friedman J. Elements of statistical learning.

2001;1(10). New York: Springer series in statistics.

25. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):

273–97. https://doi.org/10.1007/BF00994018.

26. Hecht-Nielsen. Theory of the backpropagation neural network.

1989593–605. https://doi.org/10.1109/IJCNN.1989.118638.

27. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep

Convolutional Neural Networks. In: Advances in neural information

processing systems; 2012. p. 1097–1105.

28. Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for

LVCSR using rectified linear units and dropout. 20138609–8613. https://

doi.org/10.1109/ICASSP.2013.6639346.

29. Martin Bland J, Altman D. Statistical methods for assessing agreement

between two methods of clinical measurement. Lancet. 1986;327(8476):

307–10. https://doi.org/10.1016/S0140-6736(86)90837-8.

30. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver

operating characteristic (ROC) curve,. Radiology. 1982;143(1):29–36.

https://doi.org/10.1148/radiology.143.1.7063747.

31. Meyer D, Hornik K, Fienerer I. Text mining infrastructure in R. J Stat Softw.

2008;25(5):1–54.

32. Darcy AM, Louie AK, Roberts LW. Machine Learning and the Profession of

Medicine. J Am Med Assoc. 2016;315(6):551. https://doi.org/10.1001/

jama.2015.18421.

33. Wolberg WH, Street WN, Mangasarian OL. Machine learning techniques

to diagnose breast cancer from image-processed nuclear features of fine

needle aspirates. Cancer Lett. 1994;77(2-3):163–71. https://doi.org/10.

1016/0304-3835(94)90099-X.

34. Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu:

Traps in Big Data Analysis. Science. 2014;343(6176):1203–5. https://doi.

org/10.1126/science.1248506.

35. Brantingham PJ, Valasik M, Mohler GO. Does Predictive Policing Lead to

Biased Arrests? Results From a Randomized Controlled Trial. Stat Public

Policy. 2018;5(1):1–6. https://doi.org/10.1080/2330443X.2018.1438940.

36. Haider AH, Chang DC, Efron DT, Haut ER, Crandall M, Cornwell EE. Race

and Insurance Status as Risk Factors for Trauma Mortality. Arch Surg.

2008;143(10):945. https://doi.org/10.1001/archsurg.143.10.945.

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.2196/jmir.2721
https://doi.org/10.2196/jmir.2721
https://doi.org/10.1136/bmjqs-2015-004309
https://doi.org/10.2196/jmir.6533
https://doi.org/10.1136/bmjqs-2015-004063
https://doi.org/10.1038/npjschz.2015.30
https://doi.org/10.1145/2939672.2939778
http://archive.ics.uci.edu/ml
https://doi.org/10.1073/pnas.1218772110
https://doi.org/10.1073/pnas.1700677114
https://doi.org/10.1073/pnas.1700677114
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/IJCNN.1989.118638
https://doi.org/10.1109/ICASSP.2013.6639346
https://doi.org/10.1109/ICASSP.2013.6639346
https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1001/jama.2015.18421
https://doi.org/10.1001/jama.2015.18421
https://doi.org/10.1016/0304-3835(94)90099-X
https://doi.org/10.1016/0304-3835(94)90099-X
https://doi.org/10.1126/science.1248506
https://doi.org/10.1126/science.1248506
https://doi.org/10.1080/2330443X.2018.1438940
https://doi.org/10.1001/archsurg.143.10.945

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Machine learning
	Supervised learning
	Unsupervised Machine Learning

	What this paper will achieve
	How to follow this paper

	Methods
	Using R
	Conducting a machine learning analysis
	1. Importing and preparing the dataset.
	2. Training the ML algorithms
	Regularised regression using Generalised Linear Models (GLMs)
	Support Vector Machines (SVMs)
	Artificial Neural Networks (ANNs)
	3. Testing the ML algorithms
	4. Assessing the sensitivity, specificity and accuracy of the algorithms
	Confusion matrices

	5. Plotting receiver operating characteristic curves
	6. Applying new data to the trained models

	Additional ML techniques
	Reducing prediction error; the case for ensembles.
	Natural language processing

	Results
	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

