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ABSTRACT 

Objective 

This paper aims to synthesise the literature on machine learning (ML) and big data 

applications for mental health, highlighting current research and applications in practice.  

Materials and Methods 

Eight health and information technology research databases were searched using the 

terms “big data” or “machine learning” and “mental health”. Articles were assessed by two 

reviewers, and data were extracted on the article’s mental health application, ML technique, 

data type and size, and study results. Articles were then synthesised via narrative review. 

Results 

Three hundred papers focusing on the application of ML to mental health were 

identified. Four main application domains emerged in the literature, including: (i) detection 

and diagnosis; (ii) prognosis, treatment and support; (iii) public health; and, (iv) research and 

clinical administration. The most common mental health conditions addressed included 

depression, schizophrenia, and Alzheimer’s Disease. ML techniques used included support 

vector machines, decision trees, neural networks, latent dirichlet allocation, and clustering. 

Discussion and Conclusion 

Overall, the application of ML to mental health has demonstrated a range of benefits 

across the areas of diagnosis, treatment and support, research, and clinical administration. 

With the majority of studies identified focusing on the detection and diagnosis of mental 

health conditions, it is evident that there is significant room for the application of ML to 

improve other areas of psychological functioning. The challenges of using ML techniques are 

discussed, as well as opportunities to improve and advance the field. 



BACKGROUND AND SIGNIFICANCE 

Advances in technology, such as social media, smartphones, wearables and 

neuroimaging, have allowed mental health researchers and clinicians to collect a vast range of 

data at a rapidly growing rate [1]. A robust technique that has emerged to analyse this data is 

machine learning (ML), which aims to construct systems that can automatically improve 

through experience using advanced statistical and probabilistic techniques [2]. ML has 

provided significant benefits to a range of fields, including artificial intelligence, computer 

vision, speech recognition, and natural language processing, allowing researchers and 

developers to extract vital information from data, provide personalised experiences, and 

develop intelligent systems [2]. Within health fields such as bioinformatics, ML has led to 

significant advances by enabling speedy and scalable analysis of complex data [3]. Such 

analytic techniques are also being explored with mental health data, with the broad potential 

of both improving patient outcomes and enhancing understanding of psychological conditions 

and their management within the wider community.  

A literature review of ML and big data research applications in mental health is 

pertinent and timely given the rapid developments in technology in recent years. Two reviews 

have been completed on this topic to date; yet neither review systematically assessed all 

published research using ML in mental health applications. First, Luo et al [3] investigated 

big data applications in the field of biomedical research and health care, finding many novel 

applications in bioinformatics, clinical informatics, imaging informatics, and public health 

informatics. However examples and opportunities for ML in the mental health context were 

only briefly discussed (specifically detecting depression using social media and predictive 

models for classifying psychological conditions), due to the broader aim of this study beyond 

mental health. A more recent review by Bone et al [4] investigated signal processing and ML 

for mental health research and clinical applications, concluding that the collaboration of 



clinicians with data scientists is leading to important scientific breakthroughs not previously 

possible. However, as this review was not systematic in nature it did not cover the broad 

scope of applications that exist. Thus, we aim to broadly review the applications of ML to 

mental health data.  

 

OBJECTIVE 

This review aimed to provide a concise snapshot of the research to date investigating 

ML applications to mental health. Previous reviews have demonstrated ML techniques to be 

robust and scalable for mental health application, but no review has comprehensively mapped 

the clinical applications within mental health research and practice. Such a review would 

equip both data scientists and practitioners in the methods and applications of big data. It 

would also highlight the challenges of using ML techniques in this context, as well as identify 

gaps in the field and potential opportunities for further research. First, we outline the search 

strategies used to find relevant literature. Next, we conduct a synthesis of the literature, 

describing both the ML techniques and mental health applications of each article. Finally, the 

paper summarises the extant research and the implications for future work. 

 

MATERIALS AND METHODS 

Search strategy 

A systematic review was performed adhering to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines [5]. Searches were conducted 

to identify relevant literature using the keywords “big data”, “machine learning”, and “mental 

health”. First, a literature search was conducted through health-related research databases, 



including PsycInfo, the Cochrane Library, and PubMed. Next, Information Technology 

databases IEEE Xplore and the ACM Digital Library were searched. Lastly, databases that 

index both fields including Springer, Scopus and ScienceDirect were searched for relevant 

literature.  

Study selection 

Articles were included in the review if the following criteria were met: (i) the article 

reported on a method or application of ML to address mental health; (ii) the article evaluated 

the performance of the ML or big data technique used; (iii) the article was published in a peer-

reviewed publication; and, (iv) the article was available in English. Articles were excluded if 

the following criteria were met: (i) the article did not report an original contribution to ML 

applications in mental health (e.g., the paper commented on the future use of big data only, or 

reviewed other articles without contributing original research); (ii) the article did not focus on 

a mental health application; and, (iii) the full text of the article was not available (e.g. 

conference abstracts). Two reviewers independently reviewed all studies, reaching a 

consensus on all included studies. 

Data extraction and analysis plan 

For each article, data was extracted regarding: (i) the aim of research; (ii) area of 

mental health focus; (iii) data type; (iv) sample size; (v) ML methods used; (vi) results; (vii) 

the country of the author group; and, (viii) the discipline area of authors (e.g., health fields, 

data science fields, or both). To analyse the data, a narrative review synthesis method was 

selected to capture the large range of research investigating ML and big data for mental 

health. It should be noted that a meta-analysis was not appropriate for this review given the 

broad range of mental health conditions, ML techniques, and types of data used in the studies 

identified.  



 

RESULTS 

Overview of Article Characteristics 

The search strategies identified 1,942 articles, with 300 of these articles meeting the 

criteria for inclusion in this review (see Figure 1). The mean publication year for articles was 

2015 (SD=2.2), with a range of 2004 to 2018. Most articles were authored by 

multidisciplinary teams (n = 143), including experts from both health (e.g., medicine, 

psychiatry, and/or psychology) and engineering fields (e.g., information technology, computer 

science, and/or data science), with the remaining articles authored by either health (n=95) or 

engineering (n=62) experts only.  

 The ML techniques and mental health applications reported varied considerably. Most 

articles (n=170) implemented one technique only, though some authors combined the use of 

classification, unsupervised learning, and other novel techniques. ML techniques included: 

supervised learning and classification approaches (n=267) (e.g., support vector machines 

(SVM), naive Bayes (NB), decision trees (DT)); unsupervised and clustering approaches 

(n=23) (e.g., k-nearest neighbors (kNN), k-means clustering); text analysis (n=20) (e.g., latent 

dirichlet allocation (LDA), sentiment analysis); and novel techniques (n=11), including 

techniques based on deep learning and a range of custom ML methods devised for specific 

domains. ML applications were also evident across a range of mental health conditions, 

including depression (n=88), Alzheimer’s disease and other cognitive decline (n=46), 

schizophrenia (n=37), stress (n=30), and suicide (n=20). The data types used to develop ML 

models included imaging data (n=102), survey data (n=40), mobile and wearable sensor data 

(n=29), and social media data (n=28), with a mean sample size of 28,754 (SD=174,426.91). 

 



Figure 1 

PRISMA procedural flow chart 

 

 

ML Application Domains in Mental Health 

Through synthesis of the data four domains of mental health applications were 

identified: (i) detection and diagnosis (n=190); (ii) prognosis, treatment and support (n=67); 

(iii) public health applications (n=26); and, (iv) research and clinical administration (n=17). 



Detection and diagnosis includes articles that aimed to identify or diagnose mental health 

conditions in individuals. Prognosis, treatment and support includes articles that aimed to 

predict the progression of mental health conditions, or explore treatment or support 

opportunities for such conditions. Public health articles used large epidemiological or public 

datasets (e.g., social media data) to monitor mental health conditions and estimate prevalence. 

Research and clinical administration includes articles that aimed to improve administrative 

processes in clinical work, mental health research, and health-care organisations. Articles 

were allocated into these categories based on consensus by the two article reviewers. The four 

categories are discussed in detail below. 

 

Detection and Diagnosis 

 Two themes emerged in the detection category: (i) the development of pre-diagnosis 

screening tools; and (ii) the development of risk models to identify an individual’s 

predisposition for, or risk of, progressing to a mental health condition (see Table 1). For 

example, several papers focused on the use of ML with neuroimaging data to differentiate 

Alzheimer’s disease from normal ageing [6,7], to improve early diagnosis of psychosis [8], 

and to predict vulnerability to depression [9]. A novel approach identified for detection of 

conditions is the use of unstructured text, including detection of suicide ideation from 

counselling transcripts [10], detection of schizophrenia from written texts [11], and analysis 

of social media data to detect depressive symptoms [12]. ML has also been applied to 

wearable sensor data to assess general wellbeing [13], and to ambient, in-home sensors to 

detect psychiatric emergencies [14]. Finally, speech data has been used with ML to detect 

underlying mental states indicative of schizophrenia and depression [15], to assess the effects 

of drugs on mental state [16], and to classify at-risk patients of Alzheimer’s disease based on 

speech patterns [17].  



Two themes were identified in the diagnosis category: (i) predicting the diagnosis of a 

new patient based on a training dataset of prior diagnoses, e.g.[18–20]; and (ii) differentiating 

between mental health conditions with similar symptomatology, e.g.[21,22]. The majority of 

studies considered neuroimaging data (e.g., magnetic resonance imaging (MRI), 

electroencephalography (EEG), and positron emission tomography (PET)). For example, 

fMRI data has been used with ML to improve the diagnosis of schizophrenia [19]. Further, 

MRI data was used to diagnose patients with Alzheimer’s disease and cognitive impairment, 

achieving reasonable accuracy [20]. In addition, ML has also been applied to the diagnosis of 

mental health conditions with similar symptomatology, for example differentiation of autism 

spectrum disorders and epilepsy using EEG data [21]. Research has also investigated the 

application of ML techniques to sensor, speech and video data to improve diagnosis of 

Alzheimer’s disease [23], schizophrenia [24], and suicide ideation [25], achieving high 

accuracy. Finally, ML with wearable sensor data from actigraph monitors, has been 

demonstrated to differentiate between children with ADHD and bipolar disorder [22]. 

Overall, there has been a wide range of research published that focuses on diagnosis of MH 

conditions using ML techniques. Models developed using imaging data demonstrate 

promising results; however a major issue is the lack of consistency in accuracy of techniques 

and datasets used. More research is needed to synthesise results and provide standard 

techniques that can be adopted by mental health clinicians. In addition, the majority of studies 

investigating the detection and diagnosis of mental health conditions used neuroimaging data.  

Yet diagnosis of mental health conditions are commonly made using standardised assessment 

tools (i.e., questionnaires) across both clinical and research settings. Future ML research 

should focus on improving diagnostic outcomes using a range of data types, especially for 

individuals who may not have access to imaging services. Further research is also required to 



ensure that the techniques proposed in a research context can be translated into diagnosis 

options for the public. 

 

 



Table 1 

Summary of ML techniques and data types for the detection and diagnosis of mental health conditions 

Mental Health Application ML Technique(s) Data Type 

Alzheimer's Disease Active learning [26], BN [27], Ensemble Learning [27], Genetic 

Algorithm [28,29], Regression [6,17,29–31], kNN [32], SVM [23,32–

38], DT [32,37,38], NN [39], RF [20,37,38,40], Similarity 

Discriminative Dictionary Learning algorithm [41], NB [34] 

Electronic Health Records [26], Imaging 

[6,20,27,30,31,33–36,39–42], Clinical Assessment 

[28,29,32,37,38], Survey [29], Audio [17,23], 

Biological [35,37] 

Anxiety DT [43], Multivariate classification [44], NN [45], Regression [46], 

SVM [46], SVM [47] 

Clinical Assessment [43], Imaging [44,47], Clinical 

Notes [45], Video [46], Mobile/Wearable Sensors [46] 

Attention Deficit Hyperactivity 

Disorder 

Genetic algorithm [48], SVM [48,49], Linear discriminant analysis 

[50], NN [45,51] 

Imaging [48–51], Clinical Notes [45] 

Autism Spectrum Disorder Authors developed their own classifier [52], DT [21,53–55], k-means 

[56], RF [57], SVM [21,53,56,58–63], kNN [63], L2LR [60], NN [53] 

Imaging [21,52,53,57,58,60], Clinical Assessment 

[59,61,62], Biological [54,63], Electronic Health 

Records [55], Video/Photo [56] 

Behaviour and Emotional Problems Gaussian Processes [64], Regression [64], NN [65], DT [65], RF [65], 

SVM [65], JRIP [65], FURIA [65] 

Imaging [64,65] 

Borderline Personality Disorder SVM [66] Imaging [66] 

Coping NB [67] Social Media [67], Survey [67] 

Decision Support System Genetic Algorithm [68], k-means clustering [68] Clinical Assessment [68] 



Dementia BN [69], ensemble learning [69], Jrip [70], NB [70], RF [70], DT [70–

72], NN [7,72,73], SVM [71,72,74,75], Regression [71] 

Imaging [7,69,73–75], Clinical Assessment [71,72], 

Survey [70], Biological [75] 

Depression AdaBoost [76], Bayes [77], BN [78–80], Classification [81], 

Clustering [82], Deep Learning [83], DT [77,79,84–88], epistasis 

network centrality analysis [89], Evaporative cooling feature selection 

[89], FURIA [88], Gaussian Processes [86,90,91], Genetic Algorithm 

[18,92], GLM [93], Gradient Boosting [79,94], hierarchical clustering 

[95], JRIP [88], k-means clustering [85,96,97], kNN [79,93,98,99], 

LDA [100], Linear Discriminant Analysis [9,18,92], Multivariate 

classification [44], NB [99,101,102], NN [45,88,95,98,103,104], PCA 

[105], Regression [46,82,85,86,95,99,101,102,106–112], RF 

[87,88,111], Searchlight [105], Semi-supervised Topic Modeling Over 

Time [100], Sentiment analysis [77], SVM 

[15,37,46,66,75,79,87,88,90,97,99,102,107,111,113–126] 

Audio [15,86,103], Biological [37,75,89,106,121], 

Clinical Assessment [15,37,76,80,112], Clinical Notes 

[45], Electronic Health Records [79,94,96], Imaging 

[9,18,44,66,75,81,90–93,98,105,113,114,117–126], 

Mobile/Wearable Sensors [46,93,97,107], Social 

Media [77,99–102,110,111,115,116], Survey 

[78,82,84,85,87,88,95,99,108,109], Video/Photo 

[46,83,86,104] 

Epilepsy DT [21,37], RF [37], SVM [21,127] Imaging [21,127], Clinical Assessment [37], 

Biological [37] 

Hyperactivity SVM [22] Mobile/Wearable Sensors [22] 

Mania NLP [128], NB [128], NN [128] Letters [128] 

Mild Cognitive Impairment BN [27,69], ensemble learning [27,69], Regression [30], RF [20], 

Similarity Discriminative Dictionary Learning (SCDDL) algorithm 

[41], SVM [23] 

Imaging [20,27,30,41,69], Audio [23] 

Obsessive Compulsive Disorder NN [129], kNN [129], NB [129], Searchlight Based Feature Extraction 

(SBFE) [130], SLR algorithm [131], L1-SCCA algorithm [131], SVM 

[129,132] 

Imaging [129–132] 

Parkinson's Disease SVM [38], RF [38], DT [38], Regression [38] Clinical Assessment [38] 



Play Therapy Binary valence classification [133] Clinical Assessment [133], Audio [133] 

Post-traumatic Stress Disorder k-means clustering [96], Multivariate pattern analysis [134], SVM 

[134–137] 

Electronic Health Records [96], Imaging 

[134,136,137], Survey [135] 

Postnatal Depression NB [138], Regression [138], SVM [138], NN [138] Clinical Assessment [138], Survey [138] 

Psychiatric Emergency HMM [14], Stochastic Variational Inference [14] Mobile/Wearable Sensors [14], Clinical Notes [14], 

Survey [14] 

Psychosis Bayes Rule [139], Gradient boosting [140], PCA [141], DT [141], 

linear discriminant analysis [141], quadratic discriminant analysis 

[141], RF [142], Regression [141,142], NN [142], SVM [8,141,143–

145] 

Clinical Assessment [140], Imaging [8,139,141–145] 

Schizophrenia AdaBoost [76], Classification (exact method not reported) [81], 

Gaussian Process [146], Genetic Algorithm [92], k-means clustering 

[147], linear discriminant analysis [19,148,149], Multivariate analysis 

[19], NN [150], PCA [105], Regression [11,112,151–154], RF [151–

153,155], Searchlight [105,130], SVM 

[11,15,24,66,113,117,146,147,150,152,153,156–164] 

Audio [15], Biological [151,152], Clinical Assessment 

[15,76,112,153], Imaging 

[11,19,66,81,92,105,113,117,130,146–

149,151,152,154–164], Survey [150], Video/Photo 

[24,150] 

Stress AdaBoost [165], BN [166], Classification (exact method not reported) 

[167], DT [165,166,168], k-means clustering [169], kNN [170], NB 

[168,171,172], NN [169,173], Regression [166,173,174], RF 

[165,166,174], SVM [165,166,168–170,175,176] 

Clinical Assessment [172,176], Imaging [171], 

Mobile/Wearable Sensors [165–168,172,174–176], 

Physiological Sensors [169,170], Social Media [173], 

Survey [169,172,174,176] 

Substance Use Regression [177,178], SVM [16,178,179], RF [178], DT [178], 

Extreme Learning Machine (ELM) [179] 

Imaging [177–179], Survey [178], Audio [16] 



Suicide/Self Harm AdaBoost [180], Conditional random fields [181], DT 

[10,180,182,183], GLM [184], HMM [185], kNN [10,184], LDA 

[186], linear discriminant analysis [10], LIWC [186], NB [10], NLP 

[25,180], Regression [10,46,153,180,182,183,186], RF [153,187], 

SVM [10,25,46,153,180,182,183,187,188] 

Audio [25], Clinical Assessment [153,187], Clinical 

Notes [10], Electronic Health Records [183,184], 

Letters [180,182], Mobile/Wearable Sensors [46,185], 

Social Media [181,186], Survey [187,188], Video [46] 

Traumatic Brain Injury DT [189], Linear Discriminant Analysis [189], RF [190,191], 

LogitBoost [192], Regression [192], SVM [189,191,192] 

Imaging [189–192], Biological [192], Survey [192] 

Wellbeing ADABoost [193], Fast Fourier Transform (FFT) [194], Gaussian 

Processes [194], HMM [195], DT [195], NB [193], NN [193], RF 

[193,196], Regression [194,196], kNN [196], SVM [13,193,196] 

Survey [13,193,194], Clinical Assessment [194], 

Audio [195],  

Mobile/Wearable Sensors [13,195,196] 

 

NOTES: RF=Random Forest; SVM = Support Vector Machine = SVM; NB = Naive Bayes; NN = Neural Networks; LDA = Latent Dirichlet Allocation; kNN = k-Nearest 

Neighbors; HMM = Hidden Markov Model; BN = Bayesian Network; ARM = Association Rule Mining, Principal Component Analysis = PCA 

 

 



Prognosis, Treatment and Support 

Research investigating mental health prognosis focused predominantly on the use of 

ML to make predictions about the long term outcomes of a patient with a condition or prior to 

diagnosis (see Table 2). Conditions that researchers have focused on include schizophrenia 

[197], Alzheimer’s disease [198–200], posttraumatic stress disorder [201], depression [202–

205], and psychosis [206–208]. For example, ML was demonstrated to identify treatment 

responders and non-responders to a drug for Parkinson’s disease, subsequently leading to 

improved treatment outcomes [209]. Further, natural language processing and text analysis 

techniques have been used to predict suicide ideation and psychiatric symptoms amongst 

recently discharged patients, finding that accurate results that could improve prognosis [210]. 

In addition, researchers have applied ML to social media and online community data to 

determine the individual and psycholinguistic features most predictive for successful alcohol 

abstinence [211] and smoking cessation [212].  

Three themes were identified among studies examining treatment and support: (i) ML 

with mobile and sensor data to detect changes in behaviour indicative of mental health 

conditions [213,214]; (ii) ML to provide personalised and timely treatment or interventions 

[215–218]; and, (iii) analysis of online support groups for mental health communities [219–

224]. The studies identified in this category demonstrate several benefits of ML for treatment 

and support. For example, ML has achieved positive results using smart meter data to detect 

changes in sleep behaviour indicative of depression of Alzheimer’s disease [214], and with 

wearable sensors (i.e., heart rate, galvanic skin response and temperature) to predict stress 

[213]. Further, ML techniques were used with mobile sensor and survey data to provide 

personalised and timely intervention for depression [216], gambling addiction [217] and 

alcohol dependency [218] with positive results. Additional benefits have been demonstrated 

when using ML with data from online communities, such as matching patients to suitable 



support communities [219] and automatic moderation of helpful comments in suicide and 

autism support groups [223,224]. 

While the studies identified in this category demonstrate the potential for ML to 

improve outcomes for patients with mental health conditions, there are areas that require 

further investigation. First, the use of social media data for prognosis has to date only been 

applied to addiction research; such approaches have considerable potential for application to a 

range of other mental health conditions. Second, despite promising early results on sensor 

data for personalised and timely intervention, some studies have indicated that sensors such as 

GPS do not accurately predict behaviour [225]. It is evident that more research on sensor data 

with ML is needed to improve the automatic classification of mental health conditions. 

Finally, much of the work on online community assessment has focused on behaviour and/or 

the characteristics of such communities; scant work to date has focused on providing direct 

benefit to participants through these online communities. Furthermore, many studies in this 

area are pilot or proof-of-concept studies; as such, these techniques warrant further 

investigation by both researchers and clinicians.  

 

  



Table 2 

Summary of ML techniques and data types for the prognosis, treatment and support of mental health conditions 

Mental Health Application ML Technique(s) Data Type 

Alzheimer's Disease COMPASS [200], SVM [198,200], DT [200], Genetic Algorithm 

[199], NN [214] 

Imaging [198,200], Biological [199], Smart Meter 

[214] 

Anxiety BN [226], ARM [226], DT [227,228], Regression [228], RF [228], k-

means clustering [229], NB [230], SVM [231] 

Electronic Health Records [226], Survey [227,230], 

Letters [228], Social Media [229], Imaging [227,231] 

Attention Deficit Hyperactivity 

Disorder 

Regression [232] Clinical Assessment [232] 

Autism Spectrum Disorder Bayesian classification [233], ConceptNet [219], DT [224], NLP [234], 

NB [224,234], RF [224], Regression [234], Sentiment analysis [221], 

SVM [219,224] 

Social Media [219,221,224,233,234] 

Cyberbullying NB [235] Social Media [235] 

Dementia SVM [236], BN [236], PCA [236] Mobile/Wearable Sensors [236] 

Depression Bayesian classification [233], Clustering [237], DT 

[203,205,216,227,238,239], Gradient boosting [239], k-means 

clustering [229], LDA [240–242], LIWC [241], NB [230,243], NLP 

[244], NN [205,214,239], Regression [203,204,220,239–241,243,245], 

RF [239,243,246,247], Semi-supervised Topic Modeling Over Time 

(ssToT) [242], Sentiment analysis [220], SVM 

[202,205,216,243,246,247] 

Biological [202,239], Clinical Assessment [204,243], 

Imaging [205,227], Mobile/Wearable Sensors 

[238,246], Smart Meter [214], Social Media 

[220,229,233,237,240–242,244,245], Survey 

[203,216,227,230,238,247] 

Gambling DT [217] Survey [217] 



Mental Health Service Usage RF [248], NLP [248] Electronic Health Records [248] 

Obsessive Compulsive Disorder SVM [249], Regression [249], RF [249] Clinical Assessment [249] 

Parkinson's Disease SVM [209] Imaging [209], Clinical Assessment [209] 

Post-traumatic Stress Disorder k-means clustering [229], kNN [250], NN [250], NLP [251], RF [201], 

Regression [201], SVM [201,250] 

Audio [250], Biological [201], Clinical Notes [251], 

Clinical Assessment [201], Social Media [229] 

Psychosis Gaussian Processes [206], SVM [207,208] Biological [206], Clinical Assessment [206], Survey 

[207,208] 

Schizophrenia Reverse Engineering and Forward Simulation (REFS) [252], SVM 

[197,253] 

Clinical Assessment [197,252], Imaging [197,253] 

Social Support Bayesian classification [222], LDA [254] Social Media [222,254] 

Stress NB [255], SVM [255], NB [256], SVM [256], NN [256], RF [256], 

Gaussian Processes [256], RF [257], SVM [213], k-means clustering 

[213] 

Mobile/Wearable Sensors [213,257], Social Media 

[255,256], Survey [257] 

Substance Use Regression [211,212,258], RF [211] Social Media [211,212,258], Mobile/Wearable 

Sensors [211] 

Suicide/Self-Harm NLP [210], Regression [210], SVM [223] Survey [210], Social Media [223] 

Traumatic Brain Injury NN [259], Regression [260] Clinical Assessment [259], Imaging [260] 

Wellbeing AdaBoost [215], BN [215], Gaussian Mixture Models [261], kNN 

[215], DT [215,262], RF [215,225], Regression [215,225,263], SVM 

[225,261] 

Interview [262], Mobile/Wearable Sensors [225,261], 

Social Media [263], Survey [215] 

NOTES: RF=Random Forest; SVM = Support Vector Machine = SVM; NB = Naive Bayes; NN = Neural Networks; LDA = Latent Dirichlet Allocation; kNN = k-Nearest 

Neighbors; HMM = Hidden Markov Model; BN = Bayesian Network; ARM = Association Rule Mining, PCA = Principal Component Analysis  



Public Health 

Public health applications included: assessing the mental health of both specific and 

broader populations (e.g.[264,265]); monitoring mental health following an event or disaster 

(e.g.[266,267]); and creating models of risk to improve health system delivery (e.g.[268,269]) 

(see Table 3). Public health applications typically used social media data (n=11), electronic 

health records (n=6), and clinical data (e.g., diagnostic surveys and tools; n=9). Social media 

data was found to be a particularly useful epidemiological resource, with examples including 

assessments of the mental health status of over 60,000 college students in China [264] and 

prescription opioid misuse in an estimated sample of over 1.3 million Twitter users [265]. 

Social media data also enables researchers to assess the impact of an incident on population 

mental health (e.g., stress levels of college students after experiencing gun violence [270]), 

and to track public response to disaster situations to inform the allocation of support resources 

[266,267,269]. ML applied to electronic health records was demonstrated to predict suicide 

risk with an accuracy similar to clinician assessment [268,271], as well as predict dementia 

and its risk factors with high accuracy [272]. Research has also investigated the use of ML 

with clinical data to improve variable selection in epidemiological data analysis [273], and to 

better understand the relationship between complex risk factors for mental health conditions 

such as depression [274]. 

Overall, ML appears to be a promising tool for public health. Social media data and 

electronic health records are enabling researchers to monitor the wellbeing of large groups of 

people in a cost-efficient manner. Social media data in particular is providing an ecologically 

valid assessment of mental health in the population in real-time, enabling assessment of 

groups that have typically been challenging to monitor through traditional research methods 

(e.g., opioid misuse [265]). With only minimal research conducted in this area to date, there is 

considerable scope for future research to consider refinements of ML techniques and 



indicators in both social media and electronic health record data. To realise these benefits, 

researchers and health clinicians must consider sharing their datasets and improving data 

harmonisation techniques [275].   

 

Table 3 

Summary of ML techniques and data types for public health of mental health conditions 

Mental Health 

Application 

ML Technique(s) Data Type 

Anxiety SVM [276], Linear discriminant analysis 

[276], RF [276] 

Electronic Health Records [276] 

Cognitive Distortions DT [277], Regression [277], NB [277], NN 

[277], kNN [277], RELIEF [277] 

Social Media [277] 

Dementia SVM [272] Electronic Health Records [272] 

Depression DT [278], Gradient boosting [279], kNN 

[278], LIWC [280], LDA [280], Linear 

discriminant analysis [276], NB [278], NN 

[274], RF [276], Regression [274], SVM 

[276,278] 

Electronic Health Records [276], 

Social Media [278,280], Survey 

[274,279] 

Grief LIWC [266], SVM [266] Social Media [266] 

Mental Health Service 

Usage 

Regression [273] Survey [273] 

Post-traumatic Stress 

Disorder 

Regression [281,282], DT [282], SVM [282], 

RF [281], Super Learner [281] 

Interview [282], Survey [281] 

Psychiatric Emergency BN [269], DT [269], SVM [269] Social Media [269] 

Psychiatric Stressors NLP [283], Named-entity recognition [283] Clinical Notes [283] 

Psychosis Regression [284], RF [285] Clinical Assessment [285], 

Electronic Health Records [284] 

Social Support LIWC [267], SVM [267] Social Media [267] 

Stress Cluster analysis [286], Sentiment Analysis 

[270], SVM [270] 

Clinical Assessment [286], Social 

Media [270] 

Substance Use PCA [265], NLP [265], RF [285] Social Media [265], Clinical 

Assessment [285] 



Suicide/Self-Harm ARM [271], DT [271], Genetic Algorithm 

[287], NB [268,271], RF [268,271], 

Regression [268,271,288–290], SVM 

[268,271,289], TFIDF [289] 

Clinical Notes [287], Clinical 

Assessment [288], Electronic 

Health Records [268,271,290], 

Social Media [289] 

Wellbeing Semantic analysis [264] Social Media [264] 

 

NOTES: RF=Random Forest; SVM = Support Vector Machine = SVM; NB = Naive Bayes; NN = Neural 

Networks; LDA = Latent Dirichlet Allocation; kNN = k-Nearest Neighbors; HMM = Hidden Markov Model; 

BN = Bayesian Network; ARM = Association Rule Mining, PCA = Principal Component Analysis 

 

Research and Clinical Administration 

 

Three themes were identified in the research and clinical administration category,: (i) 

improving resource allocation methods (e.g., via patient risk status [291,292]); (ii) improving 

research methodologies (e.g., data sharing [293,294], participant selection [295], and analysis 

[134,296–298]); and, (iii) extracting mental health symptoms from existing sources (e.g., 

research publications, clinical notes and databases [299–304]) (see Table 4). The studies 

identified in this category demonstrate several benefits of ML for mental health 

administration. For example, predicting future, high-cost patients using ML can ensure that 

resources are allocated more efficiently to cope with the need [291]. Further, distributed ML 

techniques that build models using meta-analytic data have demonstrated improved predictive 

models while maintaining patient privacy [293,294]. Additional benefits have been 

demonstrated for mental health researchers, including the use of ML techniques to match 

research participants to studies which can save time and money in recruitment [295]. 

While these studies demonstrate the potential for ML to improve mental health 

administration, it is clear that there is room for further research. In particular, the techniques 

used to predict high-cost patients may also provide benefits for researchers in improving 



retention by identifying participants at greatest risk of drop-out [305]. Finally, future research 

may also focus on using patient histories to improve triaging and tailored treatment plans. 

 

Table 4 

Summary of ML techniques and data types for the research and clinical administration of 

mental health conditions 

Mental Health 

Application 

ML Technique(s) Data Type 

Alzheimer's Disease RF, SVM, Linear Discriminant Analysis, 

kNN [134] 

Imaging, Biological [134] 

Attention Deficit 

Hyperactivity Disorder 

RF, SVM, Linear Discriminant Analysis, 

kNN [134] 

Imaging, Biological [134] 

Children in Care Regression, NB [292] Clinical Notes [292] 

Decision Support 

System 

Deep Learning (word2vec) [299] Research Articles [299] 

Depression DT [303], kNN [134,298], NN [295], 

Regression [294,296], RF [134], SVM [134], 

Linear Discriminant Analysis [134] 

Survey [296,303,304], Social 

Media [298], Electronic Health 

Records [295], Imaging [134,294], 

Biological [134,296] 

Healthy Ageing RF [304] Survey [304] 

Psychosis SVM, Multiple Kernel Learning [297] Imaging [297] 

Schizophrenia RF [291], SVM [291,293], Linear 

Discriminant Analysis [291], kNN [291] 

Insurance [291], Imaging [293] 

Substance Use Topic modelling [306] Interview [306] 

Symptom Severity NN [301] Clinical Notes [301] 

Wellbeing BN [302], SVM [302], Deep Learning 

(paragraph2vec) [300], NN [307] 

Clinical Notes [300,302], Research 

Articles [300], Electronic Health 

Records [307] 

 

NOTES: RF=Random Forest; SVM = Support Vector Machine = SVM; NB = Naive Bayes; NN = Neural 



Networks; LDA = Latent Dirichlet Allocation; kNN = k-Nearest Neighbors; HMM = Hidden Markov Model; 

BN = Bayesian Network; ARM = Association Rule Mining, PCA = Principal Component Analysis 

 

DISCUSSION 

This paper aimed to synthesise the literature on ML and big data applications for 

mental health, highlighting current research and applications in practice. Mental health 

applications for ML techniques were identified in four key domains: (i) detection and 

diagnosis of mental health conditions; (ii) prognosis, treatment and support; (iii) public 

health; and, (iv) research and clinical administration. Predominantly, research has focused on 

the benefits of ML to improve detection and diagnosis of mental health conditions including 

depression, Alzheimer’s disease, and schizophrenia. There has also been a growing interest in 

the application of ML to other areas of mental health research, including the use of ML to 

improve administration and research methods, treatment and support of mental health 

conditions, studies of public health trends, and investigations into the behaviours of online 

communities and support groups. Overall, ML demonstrates the potential to improve the 

efficiency of mental health clinical and research processes and to assist in generating new 

insights into health and wellbeing.  

As an emerging field, there are understandably significant gaps for future research to 

address. It is evident that the majority of papers focus on diagnosis and detection, particularly 

on depression, suicide risk and cognitive decline. There is significant scope to explore 

whether ML can have similar accuracy in the detection and diagnosis of other mental health 

conditions, such as anxiety disorders, eating disorders, personality disorders, and 

neurodevelopmental disorders. Comparatively less research has explored applications in 

domains such as public health, treatment and support, and within research and clinical 

administration. Social media data and electronic health records both hold promise of 



innovating in these domains, particularly when leveraged by ML techniques. Across domains, 

very little research was identified that investigated ML techniques applied to positive mental 

health outcomes (e.g., resilience, identity formation, personal growth), perhaps partly 

reflective of a lack of available data in this area.  

It is also clear that the majority of studies identified in the literature utilised supervised 

classification techniques rather than other ML techniques. This is perhaps indicative of the 

large focus on detection and diagnosis in the literature, which is typically designed using 

large, retrospective, labelled datasets ideal for classification tasks. Mental health researchers 

could consider the possibility of using less structured, prospective data for real-time ML 

analysis. Such analytic techniques, combined with supervised techniques, may allow 

researchers and clinicians to provide personalised and context-sensitive information for 

assessment and intervention. Organisations such as Netflix use similar recommendation 

algorithms to tailor and personalise user experiences [308], which could perhaps be applied to 

personalised mental health assessment and intervention [309,310]. While there were some 

studies identified that proposed ML to provide adaptive, just-in-time interventions (e.g., 

[310]), these studies are limited and have only focused on a small subset of mental health 

conditions.   

Finally, there are some challenges for consideration when using ML techniques in 

mental health applications. ML models are inevitably limited by the quality of the data used to 

develop any given model. As such, ML does not replace other research or analytic 

approaches; rather, it has the potential to value-add to the toolkit for mental health research. 

Many ML techniques require access to training data sets, which may require greater 

collaboration between researchers and clinicians to share and harmonise data. Greater 

collaboration is also required between mental health and data science experts to maximise the 

usefulness of the models developed. Very little research was found that demonstrated the use 



of ML techniques in real-world settings, suggesting that further research is required to test the 

clinical utility of such models. While a tool may appear promising in lab settings, deploying 

tools into mental health settings is likely to present new challenges, particularly if applied 

across different contexts. All of these challenges also raise important ethical issues, including 

the ethics of collecting, storing and sharing mental health data, as well as and the level of 

autonomy and privacy afforded to ML systems.  

 

CONCLUSION 

To conclude, research in the field of ML for mental health has revealed exciting 

advances, particularly in recent years. Overall, it is clear that ML can significantly improve 

the detection and diagnosis of mental health conditions. Research into other applications of 

ML, including public health, treatment and support, and research and clinical administration, 

has demonstrated initial positive results. However, this work is currently limited and further 

research is required to identify additional benefits of ML to these areas. With ML tools 

becoming more accessible for researchers and clinicians, it is expected that the field will 

continue to grow and that novel applications for mental health will follow.  
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