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ABSTRACT: Recent advances in machine learning (ML) offer new
tools to extract new insights from large data sets and to acquire small
data sets more effectively. Researchers in nanoscience are experimenting
with these tools to tackle challenges in many fields. In addition to ML’s
advancement of nanoscience, nanoscience provides the foundation for
neuromorphic computing hardware to expand the implementation of
ML algorithms. In this Mini Review, we highlight some recent efforts to
connect the ML and nanoscience communities by focusing on three
types of interaction: (1) using ML to analyze and extract new insights from large nanoscience data sets, (2) applying ML to
accelerate material discovery, including the use of active learning to guide experimental design, and (3) the nanoscience of
memristive devices to realize hardware tailored for ML. We conclude with a discussion of challenges and opportunities for
future interactions between nanoscience and ML researchers.
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I n nanoscience, high-throughput experimentation enabled by
the small size of nanoscale samples and rapid, high-

resolution imaging tools are becoming increasingly wide-
spread.1,2 For example, in nanophotonics3,4 and catalysis2,5

material properties have been varied systematically across the
same wafer-sized substrate and characterized locally using high-
resolution scanning probe and optical or electron micro-
spectroscopy techniques. These or similar methods can
generate data sets that are too vast and complex for researchers
to mentally parse without computational assistance; yet, these
data are rich in relationships that the researchers would like to
understand. Machine learning (ML) enables researchers to
analyze large data sets by training models that can be used to
classify observations into discrete groups, learn which features
determine a metric of performance, or predict the outcome of
new experiments. Furthermore, even in fields where such data-
intensive methods are not typical, ML can assist researchers in
designing experiments to optimize performance or test
hypotheses more effectively. From nano-optoelectronics, to
catalysis, to the bionano interface, ML is reshaping how
researchers collect, analyze, and interpret their data. These
methods will likely evolve into new standards tailored for each
field complementary to the role statistics currently plays in
scientific research.6 In return, nanoscience has the potential to
benefit ML by developing electronic or photonic hardware that
can implement algorithms more efficiently than conventional
computing architectures. Deepening this unique relationship
(Figure 1) has much to offer both research communities.

Broadly speaking, ML encompasses algorithmic approaches
for classifying data, identifying empirical correlations within
the data, and predicting the consequences of these correlations
in new data. These algorithms learn from the data itself to
refine the accuracy of their predictions, typically by minimizing
a mathematical error function. As learning can be defined as
modifying behavior based on past experience, which in the case

Received: October 3, 2019
Revised: November 27, 2019
Published: December 5, 2019

Figure 1. Scheme showing how the fields of nanoscience and machine
learning interact via data and hardware. On the left, nanoscience
generates data that, combined with machine learning, feeds back a
variety of functions to advance nanoscience research. On the right,
nanoscience contributes the nanoscale hardware components that can
advance the field of machine learning by enabling new processing
architectures.
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of ML is presented in the form of training data, ML is defined
very broadly from basic regression techniques to state-of-the-
art approaches. Algorithms are written to address classes of
problems and then trained for a specific task based on which
type of data is available. To train an algorithm by supervised
learning, the data must be labeled, which means that each piece
of data comprises an input (e.g., parameters of an experiment
or design of a material) and an output (e.g., outcome of an
experiment or material property of interest). The algorithm
takes in the input features of the data set and builds a model
(based on internal assumptions) that produces the output of
the data set with as little error as possible. This model, which is
just a mapping of input to output, can then be used to predict
the outputs when it is given inputs that are not included in the
training data. For supervised learning, the input features of the

data must be predetermined and are not selected by the
algorithm. Prediction and classification are two tasks
commonly performed by supervised ML. Alternatively, if
there is no information about output in the data, unsupervised
learning can still be used to uncover relationships. Clustering
and component analysis are tasks that are commonly
performed via unsupervised learning. Learning can also be
semisupervised, in which the model is initially produced by
supervised learning on labeled data and then refined by
unsupervised learning on unlabeled data. Through the
extensive work of mathematicians and computer scientists,
algorithms for classes of common problems can be rapidly
applied using off-the-shelf and often open-source platforms.
Even artificial neural networks (ANNs), a versatile and recently

Figure 2. Schematics and representative images showing the categories of interaction between machine learning and nanoscience. (A) Large sets of
data can be used to train models that facilitate analysis (top). Typical data sets include images (bottom right, reproduced from ref 7. Copyright
2018 American Chemical Society) and spectra (bottom left, reproduced from ref 8. Copyright 2016 American Chemical Society). (B) Learned
models can aide in the selection of new experiments via active learning (bottom, reproduced from ref 9. Copyright 2018 American Chemical
Society) or the design/discovery of novel materials or structures such as chiral metasurfaces (top, reproduced from ref 10. Copyright 2018
American Chemical Society). (C) Nanoscience-enabled hardware, such as memristor arrays (reproduced from ref 11. Copyright 2017 American
Chemical Society) can function as physical embodiments of machine learning algorithms such as artificial neural networks (ANN). Specifically, a
crossbar array of memristors connecting inputs A−D to output E−H has a strong analogy to a fully connected neural network (top). By allowing
one to tune electrically between a high resistance state (HRS) and a low resistance state (LRS), memristors can perform both storage and
computation functions (reproduced from ref 12. Copyright 2019 American Chemical Society).
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popular class of algorithms, are now available for researchers in
nanoscience to bring to bear on problems in their own fields.
In this Mini Review, which is not able to be comprehensive,

we explore the intersection between ML and nanoscience and
highlight three expanding classes of interactions (Figure 2):
(1) The use of ML tools in nanoscience to analyze data.
Manufacturing and metrology of nanoelectronics for integrated
circuits (ICs) are highlighted here as a case study. (2) The
discovery of new materials at the nanoscale using ML for inverse
design and design of experiments. Novel two-dimensional
materials are discussed as a case study. (3) How nanoscience
can empower ML through the development of novel hardware. In
particular, nanoscale memristors, along with other emerging
architectures including nanophotonics, have the potential to
provide a hardware platform tailored for ML. Finally, we
conclude by discussing challenges and opportunities arising at
the interface between nanoscience and ML.
1. Machine Learning to Analyze Large Data Sets.

When many simulations or measurements are available as
training data, ML can be used to identify features in data from
nanoscale systems. Commonly, scientists interpret these
features with physical models that suggest further experiments.
This interaction illustrates the most basic role that ML can play
in the scientific method.
Analysis of Spectra, Images, and Biological Outcomes.

Machine Learning is widely contributing to the recognition
and classification of key features in nanoscience data sets. For
example, in X-ray spectroscopy an ANN (Figure 3A) was
trained on simulated X-ray absorption fine structure (EXAFS)
spectra generated by molecular dynamics simulations. Then,
using this trained model, researchers extracted partial radial
distribution functions that yielded insight into the chemical
structure beyond the first atomic coordination shell.13 This
new analysis indicated that surface effects change the atomic
ordering of PdAu nanocrystals and therefore their catalytic
properties. In an example from photoluminescence spectros-
copy, supervised learning on experimental data was used to

extract the distribution of decay rates in CsPbBr3 nanocrystals
without being forced to assume a functional form of this
distribution. The resulting distribution was well explained by
three types of emissive species proposed to exist in these
nanocrystals.14

In the analysis of images, which have some degree of spatial
correlation, convolutional neural networks (CNNs) trained by
supervised learning have been very successful (Figure 3B).15,16

These are ANNs whose internal operations are restricted so
that they learn primarily local correlations within the data, and
their models are invariant to small translations. They are
therefore well suited to identify image features, which depend
on local spatial correlations. For example, skyrmions were
studied using labeled Lorentz transmission electron micro-
scope (TEM) images,7 and phases of matter were identified in
Monte Carlo simulations of Ising systems or square spin-ice
models.17 Although a fully connected ANN could identify
phases with a simple order parameter, a CNN was required to
correctly analyze more complex spin models that had no order
parameter.17 It is possible that the CNN’s constrained focus on
local spatial correlations allowed it to learn the distinguishing
features between the phases more efficiently than a fully
connected ANN; however, such a hypothesis still remains to
be validated. The image classification capabilities of CNNs and
their utility for pattern recognition have also been applied in
data storage. Information encoded in deep subwavelength
structures was recovered by training a CNN on the observed
color of the structures to achieve high-information density and
robustness against fabrication defects.18

The bio-nano interface has also been a major focus for the
application of ML. An early example was the training of an
ANN to study uptake of 109 types of nanoparticles into cells in
order to predict their toxicity by their chemical composition.19

More recently, a similar process was implemented where
nanoparticles were injected into a rat and then isolated to
determine the makeup of the proteins that decorate their
surface. This proteomic information, together with the fate of

Figure 3. Schematics showing simplified architectures of commonly applied neural networks. (A) An ANN in which yellow nodes depict nonlinear
operations on weighted sums of inputs to yield outputs. The nodes collectively form layers of computation within the ANN. (B) A CNN in which
pooling and convolution operations on local subsets of the data effectively prioritize spatial correlations within the model. Pooling replaces a local
region of the data by its maximum value (or other summarizing statistic) and therefore reduces the dimensionality of the data. (C) An autoencoder,
which is trained to match its output to its input and in the process, finds a lower-dimensional representation of the input data (purple layer). (D) A
GAN in which real data is used to train a discriminator network to differentiate between real and fake data. A generator therein produces fake data
from random inputs and tries to fool this discriminator. Both networks are trained jointly in opposition to each other to improve at their respective
tasks.
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the nanoparticles within the rat, was then used to train an
ANN to predict nanoparticle fate.20 In combination with a
nanofluidic chip that can detect a variety of biomarkers, ML
has been used to interpret gene expression data from exosomes
to classify the disease state of patients.21 More generally, ML-
enabled analysis of the content of liquid biopsies has
experienced a rapid acceleration in recent years powered by
the high degree of clinical relevance and inherent complexity of
the systems.22

Deconvoluting Components in Mixed Signals. Experi-
ments often measure the collective effect of many individual
components, so deconvoluting complex mixed signals given
little initial information is a common analytical task.
Approaches to this problem, known as blind source separation
(BSS), are based on statistics of the data, such as the
covariance matrix. For example, principal component analysis
(PCA) identifies the eigenvectors of the covariance matrix to
determine which linear combinations of input variables encode
the most unique information. Such processes have been used
in scanning probe microscopy to rapidly denoise and compress
data using all available data channels.23 In addition to PCA,
which does not explicitly classify data, linear discriminant
analysis (LDA) identifies linear combinations of parameters
that optimally classify data. LDA has been used with a
nanofluidic system to interpret gene expression data from
exosomes to classify the disease state of pateints.21 A related
technique, independent component analysis (ICA), identifies
nonorthogonal basis vectors that best account for the
correlations in the data, including higher order statistics than
covariances. For instance, electron microscopy-based energy-
dispersive X-ray spectroscopy (EDS) has long been used to
determine elemental maps and recently been expanded to
identify phases. In nanoscience, ICA has been used interpret
EDS data and identify multielemental phases such as Fe2O3

and a PtFe alloy24 in core−shell nanoparticles and to identify
AuI2 nanowires grown on an InSb substrate.25 Similar
techniques have also been applied to interpret electron energy
loss spectra of iron oxide nanocubes to achieve three-
dimensional chemical mapping of iron oxidation states.8

While PCA, LDA, and ICA are relatively simple forms of
unsupervised learning,26 their increasingly widespread use
constitutes an important step of popularizing advanced
statistics in nanoscience research. A deeper comparison of
PCA, LDA, and ICA, along with the mathematical formalism
for these approaches, can be found in textbooks on statistical
learning26 and has been recently provided in the literature
related to their use in electroencephalogram classification.27

Case Study: Machine Learning for Metrology of Nano-
electronics. Recently, ML has been applied to address major
challenges in the large-scale manufacturing of nanoscale
devices for integrated circuits (ICs). Miniaturization still drives
the evolution of IC technology with transistor density
consistently increasing as the technology continues to mature.
However, transistor fabrication is currently facing some of the
most intense challenges yet in the area of photolithography,
new materials, defects analysis, and device architectures.28

Semiconductor ICs are based on increasingly complex
manufacturing processes realized at the nanoscale by many
interconnected tools that generate enormous sets of data,
particularly metrology data related to the properties and
performance of fabricated structures.
Given the high-dimensional and vast nature of this data,

optimally acting on the available data in a timely fashion is a

major challenge with profound implications to device cost.28

For example, the front-end of the line (FEOL) represents
when the finest features on a wafer are manufactured and
metrology at this stage is employed in order to inspect
indicators of a successful execution. Here, uncertainty
requirements for fault detection and classification are beyond
the capability of inline metrology techniques. ANNs trained on
the readout of inline inspection tools can offer predictive
modeling of complex measurements when the metrology
system does not have sufficient resolution. For example, ANN-
based accurate prediction of critical dimensions (CD) has been
demonstrated in the sub-40 nm trenches for extreme
ultraviolet resist, where an ANN was used to predict the CD
error, resist shrinkage, and metal line resistance in the early
process pipeline.29,30 Taking advantage of spatial correlations
inherent to images, CNNs have been successfully applied to
improve the accuracy in the classification of wafer maps31 and
fault detection during growth of thin films made using
chemical vapor deposition.32 Rather than inspecting every
location on a sample, a recent trend in semiconductor
processing is virtual metrology (VM) in which a selection of
wafers are sampled and used to train models that correlate
process sensor data to the performance metric of interest.
Since process sensor data are always available, this trend
potentially represents a rapid acceleration in manufacturing of
complex nanostructures if such relationships can be rapidly and
accurately learned.33 Such metrology using ML algorithms can
pinpoint defects and measure structures in advanced chips. As
the technology advances, inspection and metrology based on
ML will become even more important for correlation of
process flows, predictive metrology, and yield analysis.

2. Machine Learning for Design and Discovery.
Predicting the properties of a material is a central challenge
in materials science and chemistry.34 Nanomaterials are even
more complex: structuring materials on the nanoscale leads
them to adopt different properties than their bulk counterparts
and allows the construction of heterostructures or metamate-
rials that include multiple materials. In the face of this vast
parameter space, ML can help predict novel materials, optimize
structures, and even plan experiments.35 A particularly
impactful area of design and discovery is inverse design or
finding a set of parameters that produces a desired outcome.

Inverse Design and Adversarial Networks in Nano-
photonics. Optical metamaterials and nanophotonics are fields
in which the experimental design space is vast due to the
availability of high-resolution lithographic tools to construct
intricate structures. Although a conventional approach of
measuring the optical properties of a given nanostructure is
conceptually straightforward, inverse design is made extremely
difficult because the existence or uniqueness of an acceptable
design cannot be guaranteed.
One approach to address this challenge is to train an ANN

in a supervised fashion using known input/output combina-
tions and then to use the ANN to iterate through unknown
input parameters until a desired outcome is predicted. Such a
trial-and-error approach was applied to design tailored optical
responses of multilayer nanoparticles.4 This approach takes
advantage of the fact that evaluating a trained ANN is typically
much faster than running a brute-force optimization algorithm
that evaluates possible combinations of parameters using a
physics-based process. Here, this acceleration was achieved
because the gradient can be found analytically for ANN’s
whereas it must be computed numerically for the optimization

Nano Letters Mini Review

DOI: 10.1021/acs.nanolett.9b04090
Nano Lett. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/acs.nanolett.9b04090


algorithm. However, as this study notes, agreement between
the ANN and the numerical solution, calculated here using the
transfer matrix method, must always be verified. While this
approach can be construed as relying heavily on regression to
produce inverse design solutions, other approaches that rely
more strongly upon physical principles to simplify or explore
parameter space are also being used to great effect.36

A different approach that has been explored in the design of
metasurfaces utilizes a cascading deep neural network (DNN)
in which two networks are trained, one that maps each design
to an outcome and one that maps the outcome to designs,3 in a
manner that mirrors the use of a encoder-decoder pairs in
DNNs for parameter reduction.37 This architecture is
commonly known as an autoencoder and is used to reduce
the dimensionality of the data (Figure 3C).38 These networks
produced candidate patterns that matched the desired spectra
with high fidelity, expediting the discovery of metasurfaces
with tailored optical responses.3 In addition, a deep-learning-
based model, comprising two bidirectional neural networks
assembled by a partial stacking strategy, was used to optimize
three-dimensional chiral metamaterials with strong chiroptical
responses at predesignated wavelengths.10 In principle, this
type of model can help provide insight into the physical
underpinnings that connect structures and their properties by
elucidating the intricate relationships between metamaterial
structures and their optical response.10

Another way to address inverse problems is through the use
of generative adversarial networks (GANs), which is a recently
invented unsupervised learning strategy (Figure 3D).39 The
GAN comprises two networks, a generator that guesses
distributions of parameters and a discriminator that evaluates
the quality of each guess by comparing it to existing unlabeled
data. GANs have been used to design nanophotonic structures
that have precise user-defined spectral responses.40 In this case,
the use of a GAN was motivated by the desire to allow the
designed structures to not require input from an expert
scientist. The rapid application of GANs after their invention
signals that the nanoscience community is motivated to adopt
novel learning approaches to rapidly meet pressing challenges
such as inverse design. However, there is a need to benchmark
ML-based approaches to inverse design against existing
methods in order to elucidate the acceleration and improve-
ments that are possible using ML.
Active Learning, Automated Experimentation, and

Autonomous Researchers. There have been a number of
innovations that allow researchers to conduct experiments
more efficiently and to explore more of parameter space. For
example, ML has been used to aid researchers in selecting
combinations of experimental parameters that reduce the
number of total experiments necessary to optimize multilayer
organic solar cells.9 Further, experiments can be selected
without input from humans based on insight from ML.
Specifically, active learning describes the use of ML to select
experiments to most efficiently achieve a goal. For example, by
iteratively performing density functional theory (DFT)
calculations that had been selected by machine learning,
promising intermetallic surfaces for catalysis were identified.5

This approach bears some similarity to directed evolution,
which is often applied in the space of protein design. Here,
candidate protein structures are selected, modified, and tested
in sequential generations. Directed evolution has been highly
successful because structurally similar proteins often share
similar properties.41

Perhaps most exciting are systems in which active learning is
combined with automated experimentation to realize fully
autonomous researchers or robot scientists (i.e., research
systems that select and carry out experiments without a human
in the loop).42 In the first example of this paradigm in
nanoscience, a system was built that allowed for the automated
growth and characterization of carbon nanotubes on the
surface of micropillars by locally heating them with laser
illumination. In addition to this automated experimental
system, logical regression analysis was used to autonomously
pick the next experimental conditions (in terms of temperature
and precursor partial pressure) to offer the best chance of
achieving the experimental goal. This analysis is a form of
stepwise regression in which linear terms connecting inputs
(e.g., synthesis conditions) and growth outcomes were
sequentially tested to see if they improved the regression
quality. By realizing a fully autonomous research system
(ARES), the pace of information generation and analysis was
accelerated substanially.43 Autonomy has also been realized in
scanning tunneling microscopy where a learning system was
constructed to determine the state of the tip using CNN of
images and recondition the tip when needed to maintain high
imaging performance.44

Case Study: Prediction of new 2D Materials and
Heterostructures. An important driving force for innovations
in materials discovery has been the isolation of van der Waals
bonded layered materials into atomically thin, two-dimensional
(2D) sheets.45 The stacking of 2D materials with various
compositions and rotational orientations has led to hetero-
structures with novel properties.46 The number of possible
combinations has become experimentally intractable and hence
ML techniques have been critical in identifying new
compounds and structures and classifying them by properties.
Pairing first-principles models with active learning in a
Bayesian framework, van der Waals heterostructures with
desired electronic band gaps and thermoelectric properties
have been proposed.47 Further, vast material databases with
functional descriptors such as bonding directionality, packing
factor, and interlayer gap, have enabled new van der Waals 2D
and 1D (chainlike) compounds to be identified.48,49 These
physics-based ML models can be further improved with
additional descriptors such as structure and composition50 to
predict unknown magnetic phases in known materials.51

Furthermore, by tuning the weights attributed to different
features of these physics-based models, these algorithms can
even predict the “synthesizability” of new 2D materials from
their bulk counterparts, as has been demonstrated for the
MXene family of 2D materials.52

3. Nanoscience To Advance Hardware for Machine
Learning. The technological revolution enabled by computa-
tion relies on devices made by nanoscience and, correspond-
ingly, a tremendous amount of basic science and engineering in
nanoscience has emerged from the study of ICs or related
systems. However, the von Neumann architecture of
computing is not the most efficient for implementing the
myriad ML algorithms that have been developed.53 The lack of
efficiency of the von Neumann architecture stems from the
time and energy required to transfer data between spatially
separated memory and processing units,54 as well as its failure
to take advantage of analog operations that arise naturally from
the physics of hardware components.53 The result is that a von
Neumann computer requires many thousands of transistors
and memory elements to compute the action of a single
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artificial neuron.53 This observation raises the question of
whether novel nanoscale architectures could provide a new
neuromorphic hardware platform for advanced machine
learning algorithms.
Novel Materials for Memristors. While neuromorphic

architectures can be approximated using digital logic in
ANNs, neuromorphic computing is an emerging field in
which the hardware-level system is designed to more closely
represent the architecture of the brain. A memristor, which is
defined to be a two-terminal device in which conductance is a
function of the prior voltages experienced by the device, is
often considered to be the fundamental unit of such
neuromorphic computation. These devices have been only
recently (2008) experimentally realized through the observa-
tion that many nanoscale materials exhibit memristive
properties through ionic motion.55 For example, tantalum
oxide films exhibit a conductivity that is tunable based upon
the local density of oxygen vacancies, leading to complex and
useful memristive dynamics.11 Such devices can be as small as a
single conductive filament.56,57 Sheets of MoS2 have been
found to exhibit a frequency-dependent memristive effect due
to Joule heating, making them amenable to tasks such as
localizing sound while dissipating exceptionally low power.58

Such 2D materials can also be directly used as memristors, as
was recently shown by diffusing copper atoms vertically
between a MoS2 bilayer.

12 Conductance modulation has also
been achieved using ferroelectric thin-film transistors, which
are three-terminal analogues of memristors,59 as well as by
engineering defects such as grain boundaries60 and disloca-
tions61 in 2D and 3D semiconductors, respectively. Finally,
nanophotonic systems have also recently been explored as
candidates for neuromorphic computing with successes
including the realization of deep learning networks62 and
adsorption-based photonic neural networks.63

Design and Realization of Arrays of Memristors.
Memristors are commonly fabricated in crossbar arrays so
that the number of devices scales favorably with the number of
electrical connections. For example, an 18-memristor array was
used to realize a PCA algorithm that analyzed nine metrics of
cell geometry to determine whether a cell was benign or
malignant.11 More recently, a 30-memristor array with a
tantalum oxide active layer was utilized to implement a k-
means analysis to accurately categorize flowers according to
their geometry.64 Nanoscale films of poly(1,3,5-trivinyl-1,3,5-
trimethyl cyclotrisiloxane) (pV3D3) have been used to form
arrays with 64 independent memristors.65 Simulations of larger
arrays of these devices were shown to be able to perform
common image processing tasks including facial recognition.65

Memristor arrays can be very compact: a recent work showed a
functioning 3 × 3 array that was constructed with a 6 nm
pitch.66 Although making high density arrays has been a major
push in the nanoscience community, efforts to realize arrays
with larger dimensions have been very successful as well with
128 × 64 member arrays of microscale components.67

4. Challenges and Opportunities for Machine
Learning and Nanoscience. As this is a Mini Review, we
are unable to cover all of the ways in which ML and
nanoscience enrich each other. Both disciplines will benefit
from closer interactions between data scientists and nano-
science researchers. For example, discussions of the quantity,
quality, and labeling of data that is realistically available can
inform the development of new algorithms. Also, incorporating
data scientists into the review process will ensure that sound

technical practices from ML make their way into nanoscience.
Although this Mini Review has principally focused on the
advantages of using ML in nanoscience, there are pitfalls that
practitioners can encounter such as overtraining that warrant
caution.22

The following six areas deserve special mention as challenges
and opportunities for the future:
(1) For many applications, efficient, and confident use of

ML requires large data sets that sample broadly from the target
problem’s parameter space. A key avenue for transformatively
increasing the data available to researchers is enabling cross-
study comparison through standardization of data format and
conventions for metadata. Metadata is critical for nanomaterial
research because it is unclear which of the numerous structural
or compositional descriptors are most valuable for a given
property. Although there are significant practical hurdles to be
overcome, such standardization could lead to a “nanomaterials
genome” that could be utilized to springboard diverse research
initiatives.68

(2) Simulation is often used to generate training data for ML
algorithms because calculations are typically faster than
experiments and can be performed with total control over
the initial conditions. However, when a ML model is trained
using simulated data, its accuracy depends on the ability of
simulation to reproduce experiment, which can vary dramat-
ically from field to field. How to assign uncertainty to
simulated data and use it for multifidelity learning approaches,
which try to account for differences in the accuracy of subsets
of training data, is a rich and unsolved problem.
(3) Forefront ML algorithms must continue to be rapidly

applied in nanoscience research to fully realize their impact.
These types of collaborations are often difficult as they require
nuanced communication across disciplines and go beyond
widely utilized open source tools. Advances in these areas are
expected to range from advanced generative algorithms for
inverse design to new processes for learning how the structure
of ANN provides deeper insights into the physical system. For
example, recent studies from biology use “visible” neural
networks, where existing knowledge of the hierarchical
biological system is used to generate a structured neural
network. Its substructures can be directly interpreted because
they were designed to mimic the connectivity in a real cell.69

Along similar lines, ML approaches that have physics and other
domain knowledge built into them could provide a rapid
approach to reducing the volume of training data and
increasing the physical intuition that can be drawn from the
outcome.70

(4) Autonomous research systems have been demonstrated
to be powerful tools for accelerating discoveries but the
hardware infrastructure is highly application specific, which
often makes investing in the development of such systems
difficult to justify. As a field, combinatorial chemistry has
overcome this by producing a unified set of tools and form
factors (namely microtiter plates) that allow standardized
experiments to be carried out without human intervention.
Similar hardware standardization would lower the barrier to
apply automation to address any given system. Candidates for
such massive parallelization include inkjet printing and
scanning probe lithography.71,72

(5) While memristors and neuromorphic computing are
progressing toward the level of a scalable practical technology,
several challenges remain in terms of large area uniformity,
reproducibility of the components, switching speed/efficiency,
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and total lifetime in terms of cycles.73 These challenges can be
addressed through either the development of novel memristive
systems or improvements to existing systems. However, in all
cases, integration with existing CMOS platforms and
competitive performance advantage over CMOS neurons
must be realized to have a long-term technological impact.
Lastly, although such analog networks have the potential to be
highly efficient once they are trained, training such networks is
not yet as flexible or efficient as digital logic. Thus, integrating
such systems with traditional digital logic is still of high
importance.
(6) Finally, integration of ML techniques and quantum

computing has the potential to address currently untenable
problems.74,75 Recently, quantum algorithms that can solve a
problem of supervised learning, such as constructing a
classifier, were proposed.76 It was also recently demonstrated
that superconducting quantum circuits can be used to realize
quantum generative adversarial learning.77 These successes
indicate that systems that combine quantum science and
machine learning might have applications that extend far
beyond classification. In this context, the role of nanoscience is
2-fold. First, the performance of ML will be boosted beyond
the current limits through the implementation of quantum
algorithms, and this might have a huge impact on how we
approach quantum chemistry problems. Second, nanoscience
will play a crucial role in developing hardware components that
can be used to build quantum computers capable of
implementing such quantum machine learning algorithms.78,79
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