
Machine Learning in Python for Weather Forecast based on Freely

Available Weather Data

E. B. Abrahamsen, O. M. Brastein, B. Lie∗

Department of Electrical Engineering, Information Technology and Cybernetics

University of South-Eastern Norway, N-3918 Porsgrunn,

*(Bernt.Lie@usn.no)

Abstract

Forecasting weather conditions is important for, e.g., op-

eration of hydro power plants and for flood management.

Mechanistic models are known to be computationally

demanding. Hence, it is of interest to develop models

that can predict weather conditions faster than traditional

meteorological models. The field of machine learning

has received much interest from the scientific community.

Due to its applicability in a variety of fields, it is of

interest to study whether an artificial neural network can

be a good candidate for prediction of weather conditions

in combination with large data sets. The availability

of meteorological data from multiple online sources

is an advantage. In order to simplify the retrieval of

data, a Python API to read meteorological data has been

developed, and ANN models have been developed using

TensorFlow.

Keywords: Weather prediction, Auto-regressive neural

networks, Meteorological data

1 Introduction

1.1 Background

The forecasting of weather conditions and in particular the

prediction of precipitation is important for hydro-power

operation and flood management. Mechanistic meteorol-

ogy prediction models based on 3D CFD/Navier Stokes

equations (Thibault and Senocak, 2009) is extremely de-

manding wrt. computing power. Generating a 14 day

weather forecast can easily take 12 hours even on fast

computers. Machine Learning (ML), Big Data, and use

of Internet of Things (IoT) are receiving increased interest

from the industry. It is well known that large amounts of

data coupled with novel ML methods can produce results

on par with traditional physics based models.

Due to an interest in weather monitoring in the gen-

eral public, today a large number of weather stations are

connected to the internet, and are thus available as cheap,

distributed sensors. Additionally, several organizations

that are involved in collection of meteorological data offer

online data servers with accessible Application Program-

ming Interfaces (API) such as the HTTP based GET/REST

protocols. In order to simplify experimentation with sev-

eral sources of meteorological data it is of interest to de-

velop a unified API, hence facilitating the extraction of

data from different sources. With large quantities of data,

both historical and current measurements, it is an attrac-

tive solution to use machine learning in order to predict

weather conditions based on these relatively simple data

sources. Using a large amount of data together with novel

machine learning algorithms can then compensate for lack

of complex meteorological models and yield usable fore-

casts with less computing time.

Simple ML models would base predictions on auto re-

gressive (AR) structures, where, say the current temper-

ature in a location is correlated with several past temper-

atures in the same location. In a slightly more advanced

auto regressive structure, a set of properties, e.g., the tuple

(temperature, humidity, and precipitation) could be corre-

lated with several past values of the same tuple. An even

more advanced structure is the auto regressive structure

with exogenous input (ARX). In such a model, the current

(local) set of properties is correlated with both past values

of the same (local) set, but also with other values from the

same location or values of the same properties from other

locations at current time. Finally, in ARMAX structures,

exogenous inputs at different times (= moving average) are

used in the correlation.

1.2 Previous Work

(Hayati and Mohebi, 2007) studied multi layer perceptron

(MLP) neural networks trained and tested on ten years of

meteorological data (1996-2006). The network structure

consisted of three layers with a logistic sigmoid activation

function in hidden layers and linear functions in the output

layer. Seven weather variables were used in the study: dry

temperature, wet temperature, wind speed, humidity, pres-

sure, sunshine, and radiation. The inputs were normalized

and used to predict dry air temperature in intervals of 3

hours for a total of 8 predictions pr day. The error was

calculated using mean absolute error (MAE). In (Smith

et al., 2006), the authors focused on developing artificial

neural network (ANN) models to forecast air temperature

at hourly intervals from one to 12 hours ahead. Thirty

models were calibrated for each interval, in order to study

the effect of randomized initial weights on test set predic-

tion accuracy. The network structure consisted of three

https://doi.org/10.3384/ecp18153169 169 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

fully connected hidden layers that used Gaussian, Gaus-

sian complement, and hyperbolic tangent activation func-

tions. The input data was linearly transformed to the range

[0.1,0.9] and consisted of five weather variables: temper-

ature, relative humidity, wind speed, solar radiation and

rainfall. Later, seasonal variables were introduced as in-

puts which improved model accuracy. A recent machine

learning (ML) approach, based on a hybrid model includ-

ing both ANNs, decision trees (DT), and Gaussian process

modeling (GP) is presented in (Grover et al., 2015). They

concluded that while previous attempts at weather model-

ing using ML have had limited success, their hybrid model

approach surpasses the NOAA1 benchmarks. A review on

the use of machine learning methods for weather predic-

tion is presented in (Chauhan and Thakur, 2014).

Meteorological data from a number of sources are avail-

able today, e.g., from the Norwegian Meteorological In-

stitute data service frost.met.no, and from Netatmo2.

These and others are potential “Big Data” sources.

A number of high quality ML tools have become avail-

able the last decade, also as packages in free computer

languages such as Python. One possible ML tool which

runs in Python is Google’s TensorFlow. AR, ARX, and

ARMAX models for linear systems are routinely used in

system identification, e.g. (Ljung, 2002, 1999; Johansson,

1993).

1.3 Overview of Paper

Weather prediction is a convenient case for studying

machine learning. By developing APIs for accessing

available data from meteorological institutes and other

weather stations, this gives access to an abundance of data.

Weather data is something that most people can relate to

in their daily life, but is also important for energy systems,

flood prediction, etc. Good physical based meteorologi-

cal models are available, which makes it easy to compare

the quality of machine learning models. In this paper, we

have focused on a new Python API for collecting weather

data, and given simple, introductory examples of how such

data can be used in machine learning. Weather data from

frost.met.no have been collected using a newly de-

veloped Python API. These data have been used to train

and tune several auto-regressive artificial neural networks

(AR-ANN) by using TensorFlow from Python. The re-

sulting models have been used to predict the temperature

in Porsgrunn with prediction horizons of 1, 3, 6, and 12

hours. The example ANN is then extended with precipita-

tion data and compared to the initial AR-ANN..

This paper is organized as follows; Section 1 provides

the necessary background information, and a short review

of previous work relevant to the project. Section 2 gives

some theoretical details regarding ANNs and the devel-

oped APIs for collection of weather data. Section 3 dis-

cusses the obtained results, before the work is concluded

1National Oceanic and Atmospheric Administration, http://
www.noaa.gov

2https://www.netatmo.com

Figure 1. Illustration of a single neuron (left) and an example of

an artificial neural network (right).

in Section 4 together with suggestions for future work.

2 Materials and Methods

2.1 Artificial Neural Networks

Artificial neural networks (ANN) have existed in various

forms since the 1940s (McCulloch and Pitts, 1943; Good-

fellow et al., 2016), but have received renewed interest in

recent years (Goodfellow et al., 2016). An ANN is a col-

lection of neurons, which are small computational units

that superficially mimic the way neurons work in nature.

A single neuron is simply a weighted sum of a set of in-

puts, plus a bias, with an applied activation function, Fig.

1 (left).

A non-linear activation function fact (·) is important for

success in applying ANNs, otherwise the resulting model

output is simply a linear combination of the inputs. The

equation for a single neuron can be written as:

yk = fact (b+ xiwi) (1)

The power of ANNs comes from connecting many neu-

rons together in a network. The simplest network structure

is a feed forward network, as shown in Figure 1 (right).

Neurons are connected in simple layered structures where

the inputs of each neuron are connected to all the outputs

of the previous layer. If we describe the inputs xi and

weights wi in matrix form, we can write a whole layer

of neurons as:

y = fact (Wx) (2)

where the bias is included as w0 = b by adding an artificial

constant input x0 = 1,.

A feed forward ANN is built by connecting multiple

layers together. The inputs to the network are connected to

the inputs of the first hidden layer. The first hidden layer

can then be connected to more hidden layers. The last

hidden layer connects to the output layer. The output of

the ANN is given by this output layer. We can then write a

single non-linear matrix equation for the whole network.

An example equation for an ANN with three hidden layers

is:

https://doi.org/10.3384/ecp18153169 170 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 2. Typical activation functions used in ANNs.

yout = f out
act

(

W out f
(2)
act

(

W (2) f
(1)
act

(

W (1)x
)))

(3)

Equation (3) shows that an ANN is simply a non-linear

matrix equation with a large number of coefficients. Each

W (j) matrix can be large, thus allowing the ANN model

to fit complex non-linear systems. The descriptive power

that comes from this complexity is the reason why ANN

models is able to adapt to such a large variety of systems.

Many choices for activation function are possible, as

shown in Figure 2. Initially in the history of ANNs, a

simple sign operator y = sgn(x) was often used as the ac-

tivation function. These simple neurons were called per-

ceptrons. The perceptron term survives to this day in the

ANN community; indeed, a deep learning network is of-

ten referred to as a Multi Layer Perceptron (MLP). In this

work, both tanh and logistic sigmoid 1
1+exp(−x) activation

functions (Goodfellow et al., 2016) are used. Training of

an ANN is essentially a parameter optimization of the net-

work weights such that the output of the network mini-

mizes a chosen loss function. However, since an ANN

model has a high number of parameters to optimize, there

are a large number of local solutions. The optimization of

the training weights is performed iteratively, where each

training iteration is called an epoch (Goodfellow et al.,

2016).

Globally optimal solutions for ANN training are in gen-

eral considered very hard to find (Goodfellow et al., 2016;

Bishop, 2013). Instead, the focus is on finding a solution

that is “good enough”. During training, there is always a

risk that a particular training session can get stuck in a lo-

cal minimum which is far from optimal. If the same ANN

hyper-parameter configuration is trained multiple times, it

is usually clear if one or more iterations are indeed giving

sub-optimal performance due to this local minima prob-

lem. It is also important to note that there has been much

research in improving training performance in the pres-

ence of local minima. Hence, there exists a large number

of training algorithms which seek to improve ANN train-

ing performance. For more details on the development of

ANNs see, e.g., (Goodfellow et al., 2016).

A model with high descriptive power is prone to over-

fitting. The term over-fitting is used in empirical mod-

eling to describe what happens when a model adapts to

random variations in the training set which does not gen-

eralize well to new data. This effect is apparent in all

forms of empirical modeling, from simple curve fitting to

complex ANNs. Since the ANNs have such a large num-

ber of coefficients, the over-fitting problem is particularly

important. The simplest way to reduce the risk of over-

fitting is to increase the amount of training data, either by

collecting more data or artificially creating more training

data through some form of transformation on the origi-

nal data (Ciresan et al., 2010). Another way to reduce

the risk of over-fitting is to apply a regularization method

(Goodfellow et al., 2016; Kuhn and Johnson, 2013). The

subject of regularization is a research field in itself, which

involves methods that prevents the training algorithms for

ANNs from adapting to random variations in the training

data. The simplest form of regularization is to have a large

amount of data. Since this work is based on retrieving

weather data from online databases, the cost of obtaining

data is relatively low, hence a large amount of training data

is readily available. One common regularization method is

the use of weight decay (Goodfellow et al., 2016). Weight

decay adds a penalty to the loss function which is propor-

tional to the training weights wi themselves. This forces

the weights to stay “small” (Goodfellow et al., 2016):

Jmin = α
1

N

N

∑
i=1

(ŷi − yi)
2 +(1−α)

M

∑
i=1

wT
i wi (4)

In Eq. (4) the loss measure is the mean square error

(mse) between the predictions ŷi and the references/obser-

vations yi. The L2 (2-norm) weight decay penalty is the

last term in the Jmin loss function. A hyper parameter α is

used to decide how strong the weight decay regularization

should be.

2.2 Timeseries modeling

A common method for modeling discrete timeseries data

is the use of auto-regressive models with exogenous in-

puts (ARX). Using the time-shift operator q−k to indicate

a quantity being shifted k time-steps back in time, these

models can be expressed on the form

yk

(

1+a1q−1 + · · ·+anq−n
)

= uk

(

b1q−1 + · · ·+bmq−m
)

(5)

That is, the output at time k is a function of both the in-

puts and the output at previous times. If all bi coefficients

are zero, e.g., there are no exogenous inputs, the model

is called an AR model (Ljung, 1999). A nonlinear ARX

model can be formulated as

yk = f (yk−1, . . . ,yk−n,uk−1, . . . ,uk−m) (6)

Traditional ARX models are linear models as illustrated

in Eq. (5) , thus f (·) in Eq. (6) forms a linear combination

of past inputs and outputs. When ANNs are applied to

timeseries modeling, function f (·) in Eq. (6) is replaced

by the ANN, such that:

yk = ANN(yk−1, . . . ,yk−n,uk−1, . . . ,uk−m) (7)

https://doi.org/10.3384/ecp18153169 171 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Hence, the term auto-regressive neural network (AR-

ANN) is used to denote an ANN which predicts a time-

series variable based on previous measurements of the

same variable, e.g. the inputs and outputs to the network

are the same variables but at different times. Similarly,

an ARX-NN is a network which in addition to previous

measurements of the output variable also has additional

measurements as its inputs.

2.3 Python API for Data Collection

A Python API wrapper is an easy way to obtain free

weather data from APIs and open data. A wrapper was

designed to support multiple weather data suppliers, so it

is possible to add more suppliers in the future. The API

does not support the use of multiple suppliers at the same

time. Currently the Norwegian Meteorological Institute

data service frost.met.no and Netatmo are supported.

The API will request hourly data for a given date, either at

the station nearest to the specified latitude and longitude

coordinate or within a specified rectangle as specified in

kilometers centered on a given latitude and longitude co-

ordinate. The wrapper uses HTTP GET requests to obtain

the data from the data suppliers and returns a list where

each element is a 3 item list with stationID, timestamp,

and measured value. The returned data can then be saved

to a file or database.

2.4 Experimental Data

The data used in this work was collected from

frost.met.no using the mentioned Python API. The

data consists of hourly temperature and precipitation

measurements in the period 01.01.2016 T00:00 to

31.12.2017 T23:00 from weather station SN30255 at

latitude: 59.091 and longitude: 9.66 in Porsgrunn, Nor-

way. Due to downtime on the station the first month of

2017, data starts at 01.02 in the 2017 part of the data set,

hence for consistency the first month of 2016 was also re-

moved. For the first experiment only temperature data was

used. In the second experiment, temperature data and pre-

cipitation data was used. For all experiments, the data was

split into three independent sets: 60% used for training,

20% for hyper parameter tuning (validation), and 20% for

testing the prediction accuracy of the models.

3 Results and Discussion

The goal of this work is to predict the temperature using

an artificial neural network (ANN). Four cases have been

studied in both experiments, using prediction horizons of

1, 3, 6 and 12 hours. In each experiment, four separate

models were created, one for each case. The input data

was normalized, and the output was denormalized to get

predictions in degrees Celsius. To test the different mod-

els, 48 consecutive hours is set to be predicted by the dif-

ferent models.

All ANNs use rectified linear unit (ReLU) as the acti-

vation function in the hidden layers and a linear activation

function in the output layer.

3.1 Experiment 1 - AR Neural Network

The first experiment used only temperature data. This

constitutes an auto-regressive neural network (AR-NN)

model. Figure 3 shows the results of predicting the test

set using each of the four models, together with the refer-

ence measurements.

There is a sudden change in measured temperature in

the time interval 36 to 42 in the test set. The models with

prediction horizons 1 and 3 hours show an oscillating re-

sponse to this rapid change. However, they are still closer

to measured data than the models with longer prediction

horizons. At time 8 to 20, the 12 hour model is signifi-

cantly poorer than the 1, 3, and 6 hour models. A plau-

sible reason for this might be that the models respond to

data given and the 12 hour model uses data that is 12 hours

prior to the measurement. So, at time 7 the 12 hour model

started increasing, and at time 15 it flattens out, probably

because the algorithm used the data at time 3 and mea-

sured that the data started to turn, thus a prediction model

should “slow down”. All the models show significant de-

terioration in predictions when the temperature changes

rapidly.

Table 1 shows the hyper-parameters with test error sum-

marized. The error is calculated from normalized test data,

hence the error is not presented in units of Celsius. The

number of layers for the 12 hour prediction model is two

times that in the other models. Further, the regression

horizon (i.e., the amount of past data points used in the

predictions) is 169 hours (7 days) for the 12 hour model.

Compared to a regression horizon of 48 hours for the 6

hour prediction model, this is a significant difference. The

learning rate is also significantly lower for the 12 hour pre-

diction model. The low number of epochs and low learn-

ing rate was found necessary for the 6 and 12 hour predic-

tion models to generalize properly and avoid over-fitting.

With these hyper-parameters, training is slowed down.

Figure 4 shows the errors in degree Celsius for the pre-

dictions on the test set. These results are calculated as the

difference between measured value and predicted value.

Hence, the error that is negative is overshooting and error

that is positive is undershooting. Observe from Figure 4,

that due to the rapid change in measured data in time in-

terval 36 to 42, the error is significantly higher for all the

models.

Table 2 shows a selection of tuning of the ANN hyper-

parameters for 1 hour prediction. At first, a 3 hour regres-

sion horizon was used on the assumption that a human ob-

server would likely be able to predict the temperature one

hour ahead of time based on a small amount of data. Later,

a 24 hour regression horizon was tested against the same

structure. The longer regression horizon was found to im-

prove prediction performance on the validation set. Se-

lecting a good neural network structure is important. The

choice of network structure depends on the type of appli-

cation. According to (Heaton, 2017), one hidden layer can

approximate any continuous function, while two hidden

https://doi.org/10.3384/ecp18153169 172 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 3. Shows the measurements and outputs of the 4 different models.

Table 1. Hyper-parameters for each model.

Model Test error Epochs Layer structure Regression horizon Learning rate

1 hour 0.0101 810 17, 12 24 0.01

3 hour 0.0318 150 30, 20 48 0.01

6 hour 0.0608 1000 38, 24 48 0.001

12 hour 0.0894 500 112, 75, 50, 34 169 0.0001

Figure 4. Deviation in degrees Celsius each point for each AR model was off for the 48 hours predicted. The deviation is calculated

as the difference between measured value and predicted value, thus a negative error implies overshooting and a positive error implies

undershooting.

https://doi.org/10.3384/ecp18153169 173 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

layers can approximate any arbitrary function. Due to hav-

ing more descriptive power, the two layer networks also

tends to adapt faster to the patterns in the training data,

thus learning the input-output relationships faster. Hence,

from one to three hidden layers were tested as shown in

Table 2. Three layers give approximately the same loss as

two layers, hence a two-layer model is chosen. The width

of each layer was chosen according to the following three

rules suggested by (Heaton, 2017):

1. The number of hidden units in each layer should be

between the number of inputs and number of outputs.

2. The number of hidden units in each layer should be
2
3
×(number of inputs + number of outputs).

3. The total number of hidden neurons in all layers

should be less than 2× (number of inputs).

3.2 Experiment 2 - ARX Neural Network

In Experiment 2, the neural network input is extended to

include precipitation data. Observe that the error in the

time interval 36 to 42 is reduced for the shorter models (1

and 3 hour). The 1 hour model predicts the test set with

satisfactory accuracy. However the 3 hour model still has

significant prediction errors, in particular at higher tem-

peratures. Observe that, as expected, the prediction ac-

curacy of each model deteriorates with longer prediction

horizons. This is particularly apparent in the time interval

8 to 20.

Table 3 shows the hyper-parameters with test set predic-

tion errors. The test errors on the ARX models are higher

than on the AR models. This is unexpected and the rea-

son is most likely poor tuning of the models. Two hid-

den layers were used for all four models, as suggested by

(Heaton, 2017). The hidden structures depend largely on

the choice of regression horizon, hence the structures for

each model is similar, except for the 6 hour model, which

achieved better tuning with hidden layer structure (33,12)

instead of (17,12).

The error for each model predicted on the 48 hour test

set is shown in Figure 5. Observe that the error due to the

mentioned rapid change in measured data at time 36 to 42

in the 1 hour prediction model is reduced.

4 Conclusions and Future Work

In this work, artificial neural networks are used to predict

temperature. Four separate models were trained to pre-

dict the temperature 1, 3, 6, and 12 hours ahead. In the

first experiment, only temperature was used as input to the

networks. This constitutes an auto-regressive neural net-

work (AR-NN). In the second experiment, precipitation

data was introduced into the network, forming an auto-

regressive neural network with exogenous input (ARX-

NN). After extensive tuning of hyper parameters for all

eight models, the prediction results of the models were

compared. Introducing precipitation as an input in the

ARX model was shown to slightly improve the predic-

tion performance. Hence, it may be interesting to extend

the model with other inputs. Mainly, it is of interest to

study whether introduction of data from other geographi-

cal locations can improve the prediction results. Based on

knowledge of how the jet stream moves and influences the

weather, together with local pressure variations, it would

be natural to add weather information from, e.g., Kris-

tiansand, Oslo, etc. as exogenous inputs. This will be a

topic for future research.

References

C.M. Bishop. Pattern Recognition and Machine Learning: All

"just the Facts 101" Material. Information science and statis-

tics. Springer, 2013. ISBN 9788132209065. URL https:

//books.google.no/books?id=HL4HrgEACAAJ.

Divya Chauhan and Jawahar Thakur. Data mining techniques

for weather prediction: A review. International Journal on

Recent and Innovation Trends in Computing and Communi-

cation, 2(8):2184–2189, 2014.

Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and

Jürgen Schmidhuber. Deep big simple neural nets excel on

handwritten digit recognition, 2010. Cited on, 80, 2010.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua

Bengio. Deep learning, volume 1. MIT press Cambridge,

2016.

Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hy-

brid model for weather forecasting. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 379–386. ACM, 2015.

Mohsen Hayati and Zahra Mohebi. Application of artificial neu-

ral networks for temperature forecasting. World Academy of

Science, Engineering and Technology, 28(2):275–279, 2007.

Jeff Heaton. The number of hidden layers, 2017. URL

http://www.heatonresearch.com/2017/06/

01/hidden-layers.html.

R. Johansson. System Modeling and Identification. Informa-

tion and system sciences series. Prentice Hall, 1993. ISBN

9780134823089. URL https://books.google.no/

books?id=FZ7gAAAAMAAJ.

Max Kuhn and Kjell Johnson. Applied predictive modeling, vol-

ume 26. Springer, 2013.

L. Ljung. System Identification: Theory for the User. Pren-

tice Hall information and system sciences series. Prentice

Hall PTR, 1999. ISBN 9780136566953. URL https:

//books.google.no/books?id=nHFoQgAACAAJ.

Lennart Ljung. Prediction error estimation methods. Cir-

cuits, Systems and Signal Processing, 21(1):11–21, Jan 2002.

ISSN 1531-5878. doi:10.1007/BF01211648. URL https:

//doi.org/10.1007/BF01211648.

Warren S McCulloch and Walter Pitts. A logical calculus of the

ideas immanent in nervous activity. The bulletin of mathe-

matical biophysics, 5(4):115–133, 1943.

https://doi.org/10.3384/ecp18153169 174 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

https://books.google.no/books?id=HL4HrgEACAAJ
https://books.google.no/books?id=HL4HrgEACAAJ
http://www.heatonresearch.com/2017/06/01/hidden-layers.html
http://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://books.google.no/books?id=FZ7gAAAAMAAJ
https://books.google.no/books?id=FZ7gAAAAMAAJ
https://books.google.no/books?id=nHFoQgAACAAJ
https://books.google.no/books?id=nHFoQgAACAAJ
http://dx.doi.org/10.1007/BF01211648
https://doi.org/10.1007/BF01211648
https://doi.org/10.1007/BF01211648

Table 2. 1 hour prediction, selected hyper-parameter search.

Exp. No. Epochs Regression horizon Layer structure Learning rate Training set loss Validation set loss

1 1000 3 3 0.001 0.0144 0.0109

2 1000 24 3 0.001 0.0125 0.0105

3 1000 24 17 0.01 0.0116 0.0101

4 1000 24 17,12 0.01 0.0113 0.0100

5 1000 24 17,12,9 0.01 0.0113 0.0101

6 810 24 17,12 0.01 0.0113 0.0100

Figure 5. Measured value and the outputs of 4 different ARX models.

Table 3. Hyper-parameters for each ARX model.

Model Test error Epochs Layer structure Regression horizon Learning rate

1 hour 0.0133 500 17, 12 24 0.01

3 hour 0.0653 500 33, 23 48 0.001

6 hour 0.0946 500 17, 12 48 0.01

12 hour 0.0991 500 17, 12 24 0.001

https://doi.org/10.3384/ecp18153169 175 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

Figure 6. Error in Celsius for the ARX model over the 48 hour test set. The error is calculated as the difference between measured

value and predicted value.

Brian A Smith, Ronald W McClendon, and Gerrit Hoogen-

boom. Improving air temperature prediction with artificial

neural networks. International Journal of Computational In-

telligence, 3(3):179–186, 2006.

Julien Thibault and Inanc Senocak. Cuda implementation of a

navier-stokes solver on multi-gpu desktop platforms for in-

compressible flows. In 47th AIAA aerospace sciences meet-

ing including the new horizons forum and aerospace exposi-

tion, page 758, 2009.

https://doi.org/10.3384/ecp18153169 176 Proceedings of The 59th Conference on Simulation

and Modelling (SIMS 59), 26-28 September 2018,

Oslo Metropolitan University, Norway

	Introduction
	Background
	Previous Work
	Overview of Paper

	Materials and Methods
	Artificial Neural Networks
	Timeseries modeling
	Python API for Data Collection
	Experimental Data

	Results and Discussion
	Experiment 1 - AR Neural Network
	Experiment 2 - ARX Neural Network

	Conclusions and Future Work

