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Abstract
Machine learning has immense novel but also disruptive potential for medicine. Numerous applications have already been 
suggested and evaluated concerning cardiovascular diseases. One important aspect is the detection and management of 
potentially thrombogenic arrhythmias such as atrial fibrillation. While atrial fibrillation is the most common arrhythmia with 
a lifetime risk of one in three persons and an increased risk of thromboembolic complications such as stroke, many atrial 
fibrillation episodes are asymptomatic and a first diagnosis is oftentimes only reached after an embolic event. Therefore, 
screening for atrial fibrillation represents an important part of clinical practice. Novel technologies such as machine learning 
have the potential to substantially improve patient care and clinical outcomes. Additionally, machine learning applications 
may aid cardiologists in the management of patients with already diagnosed atrial fibrillation, for example, by identifying 
patients at a high risk of recurrence after catheter ablation. We summarize the current state of evidence concerning machine 
learning and, in particular, artificial neural networks in the detection and management of atrial fibrillation and describe pos‑
sible future areas of development as well as pitfalls.
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Graphical abstract
Typical data flow in machine learning applications for atrial fibrillation detection.
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Introduction

Machine learning (ML) constitutes a subdiscipline of arti‑
ficial intelligence (AI) and is characterized by the auto‑
mated detection of patterns from data. Its use is particularly 
advantageous in the detection of non-linear associations and 
modern computational power allows for the analysis of large 
datasets. The use of artificial neural networks has already led 
to transformation of scientific studies and understanding of 
vastly different areas such as language processing, object 
recognition, and predictive analysis. One important aspect 
is the increasing availability of large standardized digitized 
datasets, for example, electronic health records or imaging 
and ECG databases.

Atrial fibrillation (AF) is the most common sustained 
arrhythmia in adults and characterized by unorganized 
electrical activation leading to ineffective mechanical 
contraction of the atria [1]. While a substantial number 
of patients describe symptoms such as palpitations or 

tachycardia, many episodes remain asymptomatic and 
therefore only lead to a medical diagnosis if complications 
arise. An especially severe complication is the occurrence 
of thromboembolic events and stroke, which results in sig‑
nificant morbidity and mortality worldwide [2]. This risk 
can be ameliorated if a diagnosis is reached early and anti‑
coagulation is established in patients with risk factors for 
thromboembolic events. Therefore, medical associations 
have stressed the importance of AF screening and current 
European guidelines recommend opportunistic screen‑
ing of all adults > 65 years of age [1]. Nonetheless, many 
patients are diagnosed with AF only after a thromboem‑
bolic event has occurred [3, 4]. Novel technologies such as 
machine learning may aid clinicians in identifying patients 
at a high risk of AF and may consequently improve patient 
outcome by reducing thromboembolic complications [5]. 
The aim of this review is to summarize currently available 
data and areas of potential future development as well as 
risks and pitfalls in the integration of machine learning 
into AF management.
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Overview of machine learning methods

Artificial intelligence describes the ability of technical 
constructs such as computers to independently process 
data and reach conclusions which typically require human 
cognitive function [6]. To this end, input data need to be 
machine-readable, most preferably in a highly structured 
form. Table 1 lists a selection of different machine learn‑
ing methods and their corresponding clinical applications 
in AF detection and management. Traditional methods of 
AI such as supervised machine learning have been used 
for decades and include algorithms such as random for‑
ests or support vector machines. For this type of model, 
a tabular data structure is required to detect patterns in 
parameters such as age, corrected QT time, or heart rate 
variability. Supervised machine learning can be utilized 
to detect both linear and non-linear relationships within 
data, but is dependent on a human operator labeling data 
and selecting input variables. According to the form of 
the labels, continuous values lead to a regression analy‑
sis, in contrast to fixed classes of a classification prob‑
lem. Conversely, unsupervised learning refers to analyses 
that detect clusters based on similarities in the absence of 
labeled data. After successful training of machine learning 
models, considerably less computational power is needed 
for their execution. Hence, previously trained and tested 
machine learning methods can be integrated into wear‑
able technology and smartphone applications (see Fig. 1, 
panels A and B).

As a powerful technology, deep learning utilizes artifi‑
cial neural networks to independently identify features in 
the input data and therefore to detect previously unknown 
patterns too. Artificial neural networks are computational 
structures modeled after biological neural systems such as 
the human brain [7]. In its most basic form, an artificial 
neural network connects input data directly to an output 

layer. More complex systems such as deep neural networks 
(DNN) contain multiple layers, which may perform dif‑
ferent tasks and whose strength of connection is deter‑
mined by trainable and adjustable weights, while not all 
nodes of neighboring layers may be connected (see Fig. 1, 
panel C) [8]. Depending on the input data, adapted net‑
work architectures indicate great predictive potential, e.g. 
convolutional neural networks for images, ECG or time 
series. This special type of network is characterized by 
convolutional layers using filters to identify data features 
such as edges or curves in images, which are combined 
into feature maps [9].

In supervised machine learning, data are commonly split 
into separate training and test sets. The learning algorithm is 
first trained using the training dataset including varied data 
with appropriate labels for its planned purpose. In addition 
to both sets, training of neural networks is usually monitored 
by a third set, the validation set. This is used to detect short‑
comings of the algorithm before the final evaluation of the 
neural network is conducted by assessing its predictive accu‑
racy in an analysis of the test set. Further literature details 
computational foundations outside the scope of this review 
as well as limitations in the implementation of individual 
machine learning methods [10–13].

Clinical applications

In recent years, medical research has been transformed 
using machine learning approaches. The applications 
can be divided into strategies for the detection of AF and 
approaches improving the care of patients with known AF.

Screening for atrial fibrillation

Atrial fibrillation detection plays an important role in the 
avoidance of mortality and morbidity associated with AF. 

Table 1   Machine learning methods and corresponding applications in the detection and management of atrial fibrillation

AF atrial fibrillation, HRV heart rate variability

Machine learning method Description Example application Reference

 Traditional machine learning
Cox regression Probability distribution estimating time to a pre-

specified event
Prediction of post-ablation AF recurrence [55]

 Support vector machine Utilizes hyperplane to separate two classes non-
linearly

AF detection through HRV analysis of photop‑
lethysmography readings

[23]

 Random forest Average of hierarchical decision trees’ interpre‑
tation

Locating re-entrant drivers in AF [56]

Deep learning
 Convolutional neural network Mimics biological neural networks by incorpo‑

rating nodes processing data in a hierarchical 
fashion

Detection of AF from a sinus-rhythm 12-lead 
ECG

[32]
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To this end, traditional machine learning methods have been 
used in clinical practice for decades and include, for exam‑
ple, automated ECG machine diagnoses. Novel approaches 
have included transferring this well-known technology to 
mobile devices such as smartphones and wearable technol‑
ogy. While smartphone-based ECG devices have been devel‑
oped by multiple companies [14], the AliveCor Kardia AF 
detection algorithm has been evaluated most frequently by 
scientific studies and was shown to have a high negative pre‑
dictive value for the presence of AF [15–22]. Alternatively, 
smartphone applications such as the Cardiio app utilize pho‑
toplethysmographic measurements obtained through a built-
in smartphone camera and was shown to be both sensitive 
and specific for the detection of AF in a recent publication 
by Yan et al. [23]. However, currently, only two large-scale 
prospective studies exist on the utility of smart-technology 
based AF screening [24, 25]. The Apple Heart study was 
conducted as a prospective, siteless study including 419,000 
participants with an Apple smartwatch residing in the United 
States. Study subjects monitored their heart rhythm with a 
photoplethysmographic sensor and if a recording was inter‑
preted by the automated algorithm as probable AF, a 7 day 
ECG screening was conducted by a mailed ECG patch [24]. 
Of the 2161 participants (0.52%) who received a notification 
of irregular heart rhythm, 450 participants (21%) returned 
their ECG patches for analysis and AF was present in 34% 
of returned recordings. Similarly, the Huawei heart study 
included almost 190,000 Chinese participants who moni‑
tored their heart rhythm with a Huawei smartwatch-based 
photoplethysmographic algorithm [25]. While 424 subjects 

(0.23%) received an automated algorithm interpretation of 
suspected AF, 262 (62%) were effectively followed up by 
either 12-lead or Holter ECG. Of those, 227 (87%) were 
confirmed to have a diagnosis of AF. These studies show the 
potential, but also the limitations of large population-based 
smart-technology screening programs, with an acceptable 
positive predictive value but also a significant loss of par‑
ticipants to clinical follow-up. Additionally, because of the 
study designs, the rate of false-negatives (i.e., persons with 
unknown AF and no photoplethysmographic recordings sus‑
pected to be AF) could not be reported.

Various studies have evaluated the utility of deep neural 
networks in AF screening. At least two working groups inde‑
pendently evaluated a DNN in the interpretation of smart‑
watch plethysmographic data und were able to document a 
significantly increased sensitivity and specificity compared 
to previously presented studies utilizing traditional machine 
learning methodology [26, 27]. Concerning diagnosis from 
a one-lead ECG recording, Hannun et al. showed a superior 
accuracy of a DNN compared with board-certified cardiolo‑
gists [28], which furthermore extended to other arrhythmias 
such as regular supraventricular tachycardia and atrioventric‑
ular block. Unifying applications across different diagnostic 
modalities, Ramesh et al. recently reported the development 
of a DNN able to detect AF with a high diagnostic accu‑
racy in both ECG and photoplethysmographic recordings 
[29]. Importantly, neural networks can also aid the screening 
for AF even when it is absent at the time of presentation. 
For example, different groups were able to improve previ‑
ous classical risk stratification models by utilizing DNNs 

Fig. 1   Panels A and B: Illustration of a smartphone-based ECG 
device (A) with an automated rhythm classification based on tradi‑
tional machine-learning algorithms (B). Panel C: schematic depic‑

tion of a simple neural network designed with one hidden layer. The 
width of connecting arrows signifies differently weighted connections 
between layers
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to estimate the likelihood of AF occurrence in high-risk 
populations such as patients with chronic kidney disease 
[30] or patients with a history of ischemic stroke [31]. In a 
landmark publication, Attia et al. recently described a DNN 
trained on almost 650,000 ECG of 180,000 patients capa‑
ble of detecting patients with AF from a sinus rhythm ECG 
[32]. The DNN was trained on ECG obtained at the Mayo 
Clinic Rochester between 1993 and 2017 and sinus rhythm 
recordings were deemed to show a patient with AF if it was 
first documented within 31 days of the sinus rhythm record‑
ing. The authors were able to show a sensitivity of 79% and 
a specificity of 79.5% of the DNN in the detection of AF-
patients from the sinus rhythm ECG, which further increased 
to 82.3% and 83.4%, respectively, when multiple ECG from 
the same patient were analyzed. A similar recent publication 
was able to considerably increase the diagnostic window by 
evaluating a DNN capable of detecting AF onset within one 
year of the recording of an index sinus rhythm ECG [33].

Management of patients with atrial fibrillation

Concerning the management of patients with known AF, 
multiple studies have evaluated the utility of both traditional 
machine learning algorithms and neural networks for the 
improvement of patient care. Handheld cardiac devices were 
shown to have a comparable diagnostic accuracy to tradi‑
tional Holter monitors in the detection of AF recurrences 
after catheter ablation [34] and a deep neural network was 
able to estimate the plasma concentration of a class III anti‑
arrhythmic drug from the analysis of a 12-lead ECG [35]. 
Various working groups developed neural networks with 
accuracy higher than previous risk scores and traditional 
linear or logistic algorithms in the risk assessment of AF 
recurrence after either catheter ablation [36, 37] or thoraco‑
scopic ablation for AF [38], possibly allowing for the iden‑
tification of patients with a higher need for close follow-up. 
Concerning procedural aspects of catheter ablation, two 
separate working groups were able to train and evaluate 
DNNs for identification of nonpulmonary AF triggers from 
intracardiac electrograms obtained during an ablation pro‑
cedure [39, 40], which may be targeted by ablation in AF 
cases refractory to pulmonary vein isolation. Interestingly, 
Li et al. recently published a study evaluating an algorithm 
developed to detect AF episodes associated with rapid ven‑
tricular rate and low physical activity, which may include the 
most symptomatic AF episodes [41]. The authors were able 
to show that the developed algorithm was able to detect AF 
episodes up to 4.5 min before onset, possibly allowing for 
the development of algorithm-guided interventions before 
the onset of an AF episode, such as the intake of antiar‑
rhythmic medication. Additionally, DNNs were shown to 
improve the estimation of AF-associated risks with working 
groups being able to show an improvement of estimation 

of all-cause mortality [42] and neurological outcome after 
an AF-related stroke [43]. A recent DNN-based analysis of 
pooled data from nine double-blinded, randomized, placebo-
controlled trials evaluating betablockers in heart failure was 
also able to detect a mortality benefit in young patients with 
reduced LVEF and AF [44].

Pitfalls and risks in the application 
of machine learning

Mobile health devices and wearable technology includ‑
ing traditional machine learning algorithms are currently 
being integrated into clinical practice across different health 
systems throughout the world. In contrast, multiple issues 
impede the widespread implementation of deep neural net‑
works into routine clinical care.

Since most algorithms developed for the detection of AF 
rely on the recognition of absolutely irregular R-R intervals, 
these have a high likelihood of missing cases of atrial flutter. 
In contrast to AF, atrial flutter is commonly symptomatic 
because of a rapid ventricular response and is therefore 
more likely diagnosed through conventional clinical path‑
ways. Nonetheless, both arrhythmias confer a similar risk 
of thromboembolism and their possible underdiagnosis by 
automated algorithms may undermine confidence in their 
reliability. To this end, a recent publication was able to train 
a DNN to correctly identify both AF and cavotricuspid isth‑
mus-dependent atrial flutter [45].

Additionally, major concerns persist about the intranspar‑
ency of DNN models in clinical practice, which may provide 
physicians with highly relevant information but little to no 
explanation about how a conclusion was reached. Different 
working groups have attempted to ameliorate this problem. 
For example, Tison et al. combined different machine learn‑
ing methods to create a personalized ECG vector profile able 
to estimate values such as LV mass and e’ velocity while 
simultaneously annotating the ECG sections most impor‑
tant for the individual value, therefore enabling clinicians 
to check the results for plausibility [46]. Similarly, Mousavi 
et al. recently described a DNN able to distinguish AF from 
sinus rhythm while simultaneously highlighting the most 
relevant areas of the respective ECG for rhythm discrimina‑
tion [47]. However, easily interpretable DNN models may 
offer only a reduced clinical benefit when directly compared 
to more complex models which lack transparency [48].

Concerning algorithm-based screening for AF, doubts 
persist about the transferal of previous findings of throm‑
boembolic risk onto these patients with often short-lasting, 
asymptomatic episodes. Importantly, a recent large study 
evaluating loop-recorder based AF screening in patients with 
risk factors for stroke was unable to find an improvement 
in the prevention of thromboembolic events even though 
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patients with a loop-recorder were three times as likely as 
a control group to be diagnosed with AF [49]. Similarly, 
patients who are found to have AF through photoplethys‑
mographic continuous rhythm monitoring or during screen‑
ing advised by an automated DNN-based risk assessment 
may conceivably have a lower thromboembolic risk than 
patients diagnosed with AF through a traditional clinical 
pathway and indications for anticoagulation may have to be 
re-evaluated.

Future developments

While diverse applications for machine learning and artifi‑
cial neural networks have been described, no large prospec‑
tive studies have evaluated an impact of these technologies 
on hard clinical endpoints such as thromboembolic events 
or mortality. Although the question of direct clinical impact, 
especially concerning anticoagulation in newly diagnosed 
AF patients, should warrant further investigation, no pro‑
spective study on this subject has been registered at clini‑
caltrials.gov as of January 4, 2022. However, both artificial 
neural networks and mobile health applications have the 
potential to change clinical practice in the near future and 
a recent position paper by EHRA and ESC working groups 
was the first to specifically comment on these novel tech‑
nologies [50]. One further application specific to DNNs may 
be the optimization of health-system wide workflows and 
generalized risk assessment at the primary care level [51].

A perspective on the future of artificial intelligence in the 
diagnosis and treatment of atrial fibrillation may be obtained 
by looking at recent advances in cardiac imaging. While 
echocardiography and magnetic resonance images have tra‑
ditionally been manually acquired and interpreted, studies 
have recently been able to show the feasibility of AI-guided 
image acquisition [52] and automated interpretation [53] 
with a quality at least equal to that of human investigators 
and much improved speed [54]. In light of these advances, 
completely automated image acquisition and especially 
interpretation with a physician only supervising and vali‑
dating results seems likely.

Conclusion

Machine learning has the potential to transform medi‑
cal practice in general and the screening for and manage‑
ment of patients with AF in particular in the near future. In 
this regard, novel technologies such as mobile, automated 
screening for AF and the utilization of artificial neural net‑
works allow for approaches to AF care not possible with 
traditional technologies. Obstacles in the application of 
machine learning into routine clinical practice which should 

be addressed by future studies include the intransparency 
of neural networks and the lack of evidence showing an 
improvement in clinical outcomes.

Funding  Open Access funding enabled and organized by Projekt 
DEAL. No funding was used for this manuscript.

Declarations 

Conflict of interest  There are no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attri‑
bution 4.0 International License, which permits use, sharing, adapta‑
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-
Lundqvist C et al (2021) 2020 ESC Guidelines for the diagnosis 
and management of atrial fibrillation developed in collabora‑
tion with the European Association of Cardio-Thoracic Surgery 
(EACTS). Eur Heart J 42(5):373–498

	 2.	 Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, 
Benjamin EJ et  al (2014) Worldwide epidemiology of atrial 
fibrillation: a global burden of disease 2010 study. Circulation 
129(8):837–847

	 3.	 Sposato LA, Cipriano LE, Saposnik G, Vargas ER, Riccio PM, 
Hachinski V (2015) Diagnosis of atrial fibrillation after stroke and 
transient ischaemic attack: a systematic review and meta-analysis. 
The Lancet Neurology 14(4):377–387

	 4.	 Bahit MC, Sacco RL, Easton JD, Meyerhoff J, Cronin L, Kleine E 
et al (2021) Predictors of atrial fibrillation development in patients 
with embolic stroke of undetermined source: an analysis of the 
RE-SPECT ESUS trial. Circulation 144(22):1738–1746

	 5.	 Kashou AH, Adedinsewo DA, Noseworthy PA (2021) Subclinical 
atrial fibrillation: a silent threat with uncertain implications. Annu 
Rev Med 73:355 

	 6.	 Koza JR, Bennett FH, Andre D, Keane MA (1996) Automated 
design of both the topology and sizing of analog electrical circuits 
using genetic programming. In: Gero JS, Sudweeks F (eds) Artifi‑
cial intelligence in design ’96. Springer, Netherlands, Dordrecht, 
pp 151–170

	 7.	 Kleene SC (1956) Representation of events in nerve nets and finite 
automata. In: Shannon CE, McCarthy J (eds) Automata studies 
(AM-34). Princeton University Press, Princeton, pp 3–42 

	 8.	 Schmidhuber J (2015) Deep learning in neural networks: an over‑
view. Neural Netw 61:85–117

	 9.	 Valueva MV, Nagornov NN, Lyakhov PA, Valuev GV, Chervya‑
kov NI (2020) Application of the residue number system to reduce 
hardware costs of the convolutional neural network implementa‑
tion. Math Comput Simul 177:232–243

http://creativecommons.org/licenses/by/4.0/


1016	 Clinical Research in Cardiology (2022) 111:1010–1017

1 3

	10.	 Emmert-Streib F, Yang Z, Feng H, Tripathi S, Dehmer M (2020) 
An introductory review of deep learning for prediction models 
with big data. Front Artif Intell 3:4

	11.	 Greener JG, Kandathil SM, Moffat L, Jones DT (2022) A guide 
to machine learning for biologists. Nat Rev Mol Cell Biol 
23(1):40–55

	12.	 Varghese J (2020) Artificial intelligence in medicine: chances and 
challenges for wide clinical adoption. Visc Med 36(6):443–449

	13.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 
521(7553):436–444

	14.	 Desteghe L, Raymaekers Z, Lutin M, Vijgen J, Dilling-Boer D, 
Koopman P et al (2017) Performance of handheld electrocardio‑
gram devices to detect atrial fibrillation in a cardiology and geri‑
atric ward setting. Europace 19(1):29–39

	15.	 William AD, Kanbour M, Callahan T, Bhargava M, Varma N, 
Rickard J et al (2018) Assessing the accuracy of an automated 
atrial fibrillation detection algorithm using smartphone technol‑
ogy: the iREAD study. Heart Rhythm 15(10):1561–1565

	16.	 Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Bara‑
nowski B, Wolski K et  al (2018) Smartwatch algorithm for 
automated detection of atrial fibrillation. J Am Coll Cardiol 
71(21):2381–2388

	17.	 Wegner FK, Kochhäuser S, Ellermann C, Lange PS, Frommeyer 
G, Leitz P et al (2020) Prospective blinded Evaluation of the 
smartphone-based AliveCor Kardia ECG monitor for atrial fibril‑
lation detection: the PEAK-AF study. Eur J Intern Med 73:72–75

	18.	 Lau JK, Lowres N, Neubeck L, Brieger DB, Sy RW, Galloway 
CD et al (2013) iPhone ECG application for community screening 
to detect silent atrial fibrillation: a novel technology to prevent 
stroke. Int J Cardiol 165(1):193–194

	19.	 Lowres N, Neubeck L, Salkeld G, Krass I, McLachlan AJ, Redfern 
J et al (2014) Feasibility and cost-effectiveness of stroke preven‑
tion through community screening for atrial fibrillation using 
iPhone ECG in pharmacies. The SEARCH-AF study. Thromb 
Haemost 111(6):1167–1176

	20.	 Haberman ZC, Jahn RT, Bose R, Tun H, Shinbane JS, Doshi 
RN et al (2015) Wireless smartphone ECG enables large-scale 
screening in diverse populations. J Cardiovasc Electrophysiol 
26(5):520–526

	21.	 Chan PH, Wong CK, Pun L, Wong YF, Wong MM, Chu DW et al 
(2017) Head-to-head comparison of the alivecor heart monitor and 
microlife WatchBP office AFIB for atrial fibrillation screening in 
a primary care setting. Circulation 135(1):110–112

	22.	 Halcox JPJ, Wareham K, Cardew A, Gilmore M, Barry JP, Phil‑
lips C et al (2017) Assessment of remote heart rhythm sampling 
using the AliveCor heart monitor to screen for atrial fibrillation: 
the REHEARSE-AF study. Circulation 136(19):1784–1794

	23.	 Yan BP, Lai WHS, Chan CKY, Chan SC-H, Chan L-H, Lam K-M 
et al (2018) Contact-free screening of atrial fibrillation by a smart‑
phone using facial pulsatile photoplethysmographic signals. J Am 
Heart Assoc. https://​doi.​org/​10.​1161/​JAHA.​118.​008585 

	24.	 Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Fer‑
ris T et al (2019) Large-scale assessment of a smartwatch to iden‑
tify atrial fibrillation. N Engl J Med 381(20):1909–1917

	25.	 Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y et al (2019) 
Mobile photoplethysmographic technology to detect atrial fibril‑
lation. J Am Coll Cardiol 74(19):2365–2375

	26.	 Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher 
MJ et al (2018) Passive detection of atrial fibrillation using a com‑
mercially available smartwatch. JAMA Cardiol 3(5):409–416

	27.	 Wasserlauf J, You C, Patel R, Valys A, Albert D, Passman R 
(2019) Smartwatch performance for the detection and quan‑
tification of atrial fibrillation. Circ Arrhythm Electrophysiol 
12(6):e006834

	28.	 Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, 
Turakhia MP et al (2019) Cardiologist-level arrhythmia detection 

and classification in ambulatory electrocardiograms using a deep 
neural network. Nat Med 25(1):65–69

	29.	 Ramesh J, Solatidehkordi Z, Aburukba R, Sagahyroon A (2021) 
Atrial fibrillation classification with smart wearables using short-
term heart rate variability and deep convolutional neural networks. 
Sensors (Basel) 21(21):7233 

	30.	 Zelnick LR, Shlipak MG, Soliman EZ, Anderson A, Christenson 
R, Lash J et al (2021) Prediction of incident atrial fibrillation 
in chronic kidney disease: the chronic renal insufficiency cohort 
study. Clin J Am Soc Nephrol 16(7):1015–1024

	31.	 Zheng X, Wang F, Zhang J, Cui X, Jiang F, Chen N et al (2022) 
Using machine learning to predict atrial fibrillation diagnosed 
after ischemic stroke. Int J Cardiol 347:21–27

	32.	 Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, 
Deshmukh AJ, Gersh BJ et al (2019) An artificial intelligence-
enabled ECG algorithm for the identification of patients with 
atrial fibrillation during sinus rhythm: a retrospective analysis 
of outcome prediction. The Lancet 394(10201):861–867

	33.	 Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati 
T, Jing L et al (2021) Deep neural networks can predict new-
onset atrial fibrillation from the 12-Lead ECG and help iden‑
tify those at risk of atrial fibrillation-related stroke. Circulation 
143(13):1287–1298

	34.	 Tarakji KG, Wazni OM, Callahan T, Kanj M, Hakim AH, Wol‑
ski K et al (2015) Using a novel wireless system for monitor‑
ing patients after the atrial fibrillation ablation procedure: the 
iTransmit study. Heart Rhythm 12(3):554–559

	35.	 Attia ZI, Sugrue A, Asirvatham SJ, Ackerman MJ, Kapa S, 
Friedman PA et al (2018) Noninvasive assessment of dofetilide 
plasma concentration using a deep learning (neural network) 
analysis of the surface electrocardiogram: a proof of concept 
study. PLoS One 13(8):e0201059

	36.	 Zhou X, Nakamura K, Sahara N, Takagi T, Toyoda Y, Enomoto 
Y et al (2021) Deep learning-based recurrence prediction of 
atrial fibrillation after catheter ablation. Circ J. https://​doi.​org/​
10.​1253/​circj.​CJ-​21-​0622

	37.	 Hwang Y-T, Lee H-L, Lu C-H, Chang P-C, Wo H-T, Liu H-T 
et al (2021) A novel approach for predicting atrial fibrillation 
recurrence after ablation using deep convolutional neural net‑
works by assessing left atrial curved m-mode speckle-tracking 
images. Front Cardiovasc Med 7:605642

	38.	 Baalman SWE, Lopes RR, Ramos LA, Neefs J, Driessen AHG, 
van Boven WP et al (2021) Prediction of atrial fibrillation recur‑
rence after thoracoscopic surgical ablation using machine learn‑
ing techniques. Diagnostics (Basel) 11(10):1787

	39.	 Liao S, Ragot D, Nayyar S, Suszko A, Zhang Z, Wang B et al 
(2021) Deep learning classification of unipolar electrograms in 
human atrial fibrillation: application in focal source mapping. 
Front Physiol. https://​doi.​org/​10.​3389/​fphys.​2021.​704122

	40.	 Liu C-M, Chang S-L, Chen H-H, Chen W-S, Lin Y-J, Lo L-W 
et al (2020) The clinical application of the deep learning tech‑
nique for predicting trigger origins in patients with paroxysmal 
atrial fibrillation with catheter ablation. Circ: Arrhythm Elec‑
trophysiol 13(11):e008518

	41.	 Li Z, Wheelock KM, Lathkar-Pradhan S, Oral H, Clauw DJ, 
Gunaratne P et al (2021) Predicting atrial fibrillation episodes 
with rapid ventricular rates associated with low levels of activ‑
ity. BMC Med Inform Decis Mak 21(1):364

	42.	 Chen Y, Wu S, Ye J, Wu M, Xiao Z, Ni X et al (2021) Predict‑
ing all-cause mortality risk in atrial fibrillation patients: a novel 
LASSO-Cox model generated from a prospective dataset. Front 
Cardiovasc Med 8:730453

	43.	 Kim S-H, Jeon E-T, Yu S, Oh K, Kim CK, Song T-J et al (2021) 
Interpretable machine learning for early neurological deterio‑
ration prediction in atrial fibrillation-related stroke. Sci Rep 
11(1):20610

https://doi.org/10.1161/JAHA.118.008585
https://doi.org/10.1253/circj.CJ-21-0622
https://doi.org/10.1253/circj.CJ-21-0622
https://doi.org/10.3389/fphys.2021.704122


1017Clinical Research in Cardiology (2022) 111:1010–1017	

1 3

	44.	 Karwath A, Bunting KV, Gill SK, Tica O, Pendleton S, Aziz F 
et al (2021) Redefining β-blocker response in heart failure patients 
with sinus rhythm and atrial fibrillation: a machine learning clus‑
ter analysis. The Lancet 398(10309):1427–1435

	45.	 Sager S, Bernhardt F, Kehrle F, Merkert M, Potschka A, Meder 
B et al (2021) Expert-enhanced machine learning for cardiac 
arrhythmia classification. PLoS One 16(12):e0261571

	46.	 Tison GH, Zhang J, Delling FN, Deo RC (2019) Automated and 
interpretable patient ECG profiles for disease detection, tracking, 
and discovery. Circ Cardiovasc Qual Outcomes 12(9):e005289

	47.	 Mousavi S, Afghah F, Acharya UR (2020) HAN-ECG: An inter‑
pretable atrial fibrillation detection model using hierarchical atten‑
tion networks. Comput Biol Med 127:104057

	48.	 Kim RS, Simon S, Powers B, Sandhu A, Sanchez J, Borne RT 
et al (2021) Machine learning methodologies for prediction of 
rhythm-control strategy in patients diagnosed with atrial fibrilla‑
tion: observational, retrospective, case-control study. JMIR Med 
Inform 9(12):e29225

	49.	 Svendsen JH, Diederichsen SZ, Højberg S, Krieger DW, Graff 
C, Kronborg C et al (2021) Implantable loop recorder detection 
of atrial fibrillation to prevent stroke (The LOOP Study): a ran‑
domised controlled trial. The Lancet 398:1507

	50.	 Groot NMS de, Shah D, Boyle PM, Anter E, Clifford GD, Deisen‑
hofer I et al (2021) Critical appraisal of technologies to assess 
electrical activity during atrial fibrillation: a position paper from 
the European Heart Rhythm Association and European Society of 
Cardiology Working Group on eCardiology in collaboration with 
the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, 

Latin American Heart Rhythm Society and Computing in Cardiol‑
ogy. Europace.

	51.	 Nadarajah R, Wu J, Frangi AF, Hogg D, Cowan C, Gale C (2021) 
Predicting patient-level new-onset atrial fibrillation from pop‑
ulation-based nationwide electronic health records: protocol of 
FIND-AF for developing a precision medicine prediction model 
using artificial intelligence. BMJ Open 11(11):e052887

	52.	 Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C et al 
(2021) Utility of a deep-learning algorithm to guide novices to 
acquire echocardiograms for limited diagnostic use. JAMA Car‑
diol 6(6):624–632

	53.	 Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP 
et al (2020) Video-based AI for beat-to-beat assessment of cardiac 
function. Nature 580(7802):252–256

	54.	 Knackstedt C, Bekkers SCAM, Schummers G, Schreckenberg 
M, Muraru D, Badano LP et al (2015) Fully automated versus 
standard tracking of left ventricular ejection fraction and longitu‑
dinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 
66(13):1456–1466

	55.	 Bieging ET, Morris A, Wilson BD, McGann CJ, Marrouche 
NF, Cates J (2018) Left atrial shape predicts recurrence after 
atrial fibrillation catheter ablation. J Cardiovasc Electrophysiol 
29(7):966–972

	56.	 McGillivray MF, Cheng W, Peters NS, Christensen K (2018) 
Machine learning methods for locating re-entrant drivers from 
electrograms in a model of atrial fibrillation. R Soc Open Sci 
5(4):172434


	Machine learning in the detection and management of atrial fibrillation
	Abstract
	Graphical abstract

	Introduction
	Overview of machine learning methods
	Clinical applications
	Screening for atrial fibrillation
	Management of patients with atrial fibrillation

	Pitfalls and risks in the application of machine learning
	Future developments
	Conclusion
	References




