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Machine-learning informed prediction of high-entropy solid

solution formation: Beyond the Hume-Rothery rules
Zongrui Pei 1,2✉, Junqi Yin3✉, Jeffrey A. Hawk1, David E. Alman1 and Michael C. Gao 1,4✉

The empirical rules for the prediction of solid solution formation proposed so far in the literature usually have very compromised
predictability. Some rules with seemingly good predictability were, however, tested using small data sets. Based on an
unprecedented large dataset containing 1252 multicomponent alloys, machine-learning methods showed that the formation of
solid solutions can be very accurately predicted (93%). The machine-learning results help identify the most important features, such
as molar volume, bulk modulus, and melting temperature. As such a new thermodynamics-based rule was developed to predict
solid–solution alloys. The new rule is nonetheless slightly less accurate (73%) but has roots in the physical nature of the problem.
The new rule is employed to predict solid solutions existing in the three blocks, each of which consists of 9 elements. The
predictions encompass face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal closest packed (HCP) structures in a
high throughput manner. The validity of the prediction is further confirmed by CALculations of PHAse Diagram (CALPHAD)
calculations with high consistency (94%). Since the new thermodynamics-based rule employs only elemental properties,
applicability in screening for solid solution high-entropy alloys is straightforward and efficient.

npj Computational Materials            (2020) 6:50 ; https://doi.org/10.1038/s41524-020-0308-7

INTRODUCTION

Advanced materials with high performance are increasingly being
pursued to achieve enhanced operating efficiency and reduced
environmental pollution. Fortunately, the discovery of new
materials has been accelerated by replacing traditional trial-and-
error design strategies with high-throughput materials design,
aided by machine-learning (ML) techniques1–17. As promising new
class of structural materials with potential excellent mechanical,
functional, and environmental properties18–20, high-entropy alloys
(HEAs) were proposed 15 years ago as a way to unlock the
unlimited potential within materials design. Research has intensi-
fied in the intervening years21–26 as more resources have been
brought to bear. However, one of the more central issues in the
HEA design is how to effectively and efficiently identify new HEA
compositions with high reliability in an almost unlimited and
unexplored compositional space. Although the formation of solid
solutions can be determined from Gibbs free energies of the
multicomponent alloys and their subsystems in theory, accurately
computing the latter using only first-principle calculations is
impractical for these compositionally complex alloys over wide
ranges of temperature and composition in a high throughput
manner. Therefore, approximations, or empirical rules, have been
proposed for specific cases.
More than six decades before the term of HEA was coined,

Hume-Rothery proposed a set of rules to predict the formation
potential of solid solutions of binary alloys27–29. His original rules
included four basic requirements. Recently, as a result of the
emergence of HEAs, new empirical rules have been proposed to
predict solid–solution HEAs30–38. These rules were constructed
using very limited data sets of experimental information. There-
fore, it is not surprising that the predictability of these rules is
generally problematical.
In this study, an unbiased and complete ML screening of all

available physical properties has been performed for each

constituent element of an alloy. It is additionally assumed that
these properties play equally important roles in forming
solid–solution alloys. The ML exercise undertaken herein identifies
the most important physical properties. Of these physical proper-
ties, molar volume, bulk modulus, and melting point (tempera-
ture) are considered to be among the most important quantities
for the formation of solid solutions, in addition to Hume-Rothery
rules. For example, bulk modulus is a measure of the resistance of
a solid against compression and is defined as the volume times
the negative derivative of pressure with respect to volume. Its
importance to solid–solution formation is surprising, since it was
not considered previously by Hume-Rothery or by others as a
critical physical property for empirical rule development. In this
study, these elemental properties have been evaluated with a new
parameter proposed to more accurately predict the formation of
solid–solution alloys.
Generally, empirical rules applied to HEAs use some variants of

Gibbs free energy or fit the available experimental data in some
manner. These rules can be grouped into two classes: (i) rules that
use computationally expensive quantities from density functional
theory (DFT)39,40; and (ii) rules that use only concentration-
weighted elemental properties. One of the major driving forces for
the rules in group (i) is the development of more efficient and
accurate algorithms within the DFT approach and the increasing
availability of powerful supercomputers. A main objective of this
study was to identify additional parameters/relations beyond
Hume-Rothery rules by taking advantage of the simplicity and
high efficiency of component-weighted elemental properties. One
very interesting and important open question to be answered is:
How accurate can empirical rules (in the spirit of Hume-Rothery
rules, not the rules themselves) be if only the elemental properties
are used? The approach herein is to use ML to evaluate the
correlation of individual elemental properties pertaining to
solid–solution formation, based on a much more extensive set
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of alloys (i.e., 1252, see ref. 35 and Supplementary Information), in
contrast to previous work that utilized smaller, more limited data
sets. The results of the new rule show predictability of 73% and
over 80% if applied jointly with the atomic size misfit rule31.
The present paper consists of two major parts: (i) performing a

ML study based on unprecedented large dataset (1252) and their
85 × N elemental properties of N-component alloys, which gives
insights into the “upper boundary” of predictability of empirical
models and identifies physical properties that are critical for solid
solution formations; (ii) constructing a new empirical rule using
the critical physical properties (bulk modulus, melting tempera-
ture, etc.) identified by ML.

RESULTS

ML solution

The input dataset for the ML exercise consists of 1252 observa-
tions with 625 single-phase and 627 multi-phase alloys, covering
binaries and multi-component systems. The features under
consideration for these alloys are their elemental properties. The
flow chart for the ML exercise is shown in Fig. 1. The available
elemental properties for each element (or component), i.e., 85,
were collected from ref. 41. There are 170–425 features for a single
N-component alloy (where N= 2, 3, 4, 5). Applying as many
features as this in a ML training exercise is not only computa-
tionally expensive but also diminishes possible physical insight
into the problem.
This occurs because the features belonging to each element are

correlated and it is problematic to assess which feature is more
important relative to the others. To address this problem, a
weight-average of properties for each alloy based on its
constituent elements and corresponding concentration is used.
As an exploratory analysis, the pair correlation of properties and
alloy phases has been plotted and is shown in Fig. 2a. For
example, properties such as bulk modulus, valence, vaporization
heat, etc., have relatively strong correlation (<0.6). However, since
those elemental properties are also strongly correlated with each
other, it is not possible to build a general linear model to best
predict alloy phases due to collinearity. Simple pair correlation is
not sufficient in capturing the mapping from elemental properties
to alloy phases and a form of nonlinear modeling is needed.
Gaussian processes are a powerful learning method for both

regression and classification tasks. It finds a distribution over the

possible covariance functions (also known as kernels) that are
consistent (quantified by marginal likelihood p(y|x, M), a condition
probability of observing y on given data x and model M) with the
observed data, where the kernels measure the similarities
between a pair of data points (x, x′) assuming data points close
to the observed data (HEAs with similar elemental properties, in
our case) produce similar outputs (single-phase or multi-phase).
Without embedding physics knowledge (e.g., the function form
governing (x, x′) is not clear), the selection of kernels is usually
determined by the goodness of fit on the data. One common
choice is the so-called radial basis function (RBF),

ðx; x0Þ � exp �P

i

ðxi�x0
i
Þ2

2l2
i

� �

, where the length scale li indicates

the importance of feature xi. Gaussian processes are well suited for
moderate-sized (computational complexity O(N3), N is the number
of data points) structural input data where features are well
defined. Due to its Bayesian nature, the prediction is probabilistic,
and the resulting model is generally interpretable.
To build a Gaussian process classification (GPC) model, a

procedure as outlined for a Mg alloy model8 was followed, i.e.,
(1) down-select the physical properties to obtain a smaller feature
set (~10) based on various metrics that measure the relevance of
features in making the prediction, such as chi-square (a statistics
test on whether the input is independent of the output), mutual
information (how much information the presence of a feature
contributes to making the classification), etc.; (2) iterate through all
feature combinations and train a GPC model with RBF as the kernel
for each combination, then select the top performers based on
model’s marginal likelihood, i.e., a metric for model goodness; and
(3) cross-validate the candidate models and identify the best one.
There are 1252 HEAs in the dataset, and the model accuracy is

evaluated via the standard 10-fold cross-validation procedure, in
which the dataset is randomly split into 10 smaller sets (folds) and
for each of the 10 folds, a model is trained on the 9 folds and
validated on the remaining 1 fold. The entire procedure is
repeated for different random splits, and the resulted model
accuracy 93(2)% is the average of validation accuracies. In fact, the
model prediction is quite robust and five-fold cross-validation
produces consistent results. The model performance is also
consistent with respect to several choices of kernel functions,
i.e., RBF, Mart’ern covariance kernel (a generalization of RBF), and
rational quadratic kernel (equivalent to combining RBF with
different length scales) for GPC. Features of interest in descending
order of importance (based on length scale parameter) were
molar volume, bulk modulus, electronegativity, melting tempera-
ture, valence, vaporization heat, and thermal conductivity. The
corresponding length scales for RBF are shown in Table 1. The
receiver operating characteristic (ROC) is a more descriptive metric
than accuracy for classification. The ROC curves are plotted in
Fig. 2b, c for both single versus multi-phase and FCC versus BCC
versus HCP within single-phase classification. Similar cross-
validation procedure has been applied to the evaluation of ROC
curves in order to obtain confidence bands (gray areas in the plot).
The only difference is for the case of single phases (Fig. 2c), a
stratified sampling is used to split training and validation data in
order to preserve the percentage of samples for each class. The
area under the ROC curve (AUC), which is a measure of the
goodness-of-fit for the model, is above 0.95 in all cases. This
demonstrates the high predictability of the ML models.
The atomic size difference δ provides a well-recognized upper

bound (6%) for single-phase solid solution, which results from a
summary and evaluation of experimental data. The GPC prob-
ability of an alloy is plotted in terms of single-phase against δ in
Fig. 2d. It is natural to consider a probability of 0.5 as the dividing
line with alloys probability >0.5 as solid solutions and otherwise
multi-phases. By this criterion our GPC method correctly separates
almost all solid–solution and multi-phase alloys42.

Fig. 1 The flow chart of data processing for machine-learning
exercise (Gaussian process classification). Three key physical
properties considered for the construction of new rules are melting
point (temperature), bulk modulus, and volume. In the present
study, N-component alloys are considered with N= 2, 3, 4, 5.
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New thermodynamics-based rule to predict the single phase of
HEA

To ensure accurate ML predictability, obtaining high-affinity
dataset is crucial. The ML knowledge can provide deeper insight
into the problem. Consequently, the most significant features
derived from the ML exercise will be used to construct a new
thermodynamics-based rule for predicting the formation of single-
phase solid solution alloys.
The rules can have many mathematical forms, such as the ones

defined in Zhang et al. 31 and Troparevsky et al. 34. It is natural to
take a variant of Gibbs free energy, which allows the important
entropic contributions to be considered. The important role of
entropies in phase stability has been previously recognized and
recently confirmed by Manzoor et al. 43 using DFT calculations. In
the following, the details of the newly developed methods to
calculate the enthalpy and entropy are provided, using only the
key features (bulk modulus, volume, melting temperature, and
constitutions) identified by the ML exercise.

Configurational entropy. A number of previous studies have
demonstrated that the ideal configurational entropy is not an
accurate approximation43–48. The configurational entropy in real
materials is only a fraction of the ideal one, i.e., Sconf: ¼
�R

PN
i ci lnðciÞ for N-component alloys with concentrations.

Mathematically, the real configurational entropy can be expressed
by Sre= α1Sconf, for 0 < α1 ≤ 1, for an N-component system. The
value of parameter α1 is system specific. For some systems, α1 can
be much smaller than 1.
A solid solution phase starts to form at solidus temperature and

will decompose as the temperature decreases. A wider tempera-
ture range signifies greater stability of the solid solution phase. The
term α2Tm with 0 < α2 < 1 is used to represent the temperature at
which the solid solution phase is stable. Based on the arguments
above, the Gibbs free energy for a system can be written as

ΔG ¼ ΔH � α2Tmα1Sconf: ¼ ΔH � αTmSconf:; α ¼ α1α2: (1)

For an alloy, the melting temperature is taken as the average of
all melting temperatures of its constituent elements weighted by
the concentrations, i.e., Tm ¼ Tm ¼

PN
i ciTm;i . The introduction of

the empirical parameter α is an important contribution of the
model. A value of 0.2−0.25 gives satisfactory consistency (i.e.,
∼73%) with experiment, and >80% if applied jointly with the δ
parameter (see subsequent discussion).

Enthalpy. The formation enthalpy is calculated based on the

Lennard-Jones potential, VL�J rð Þ ¼ �ϵ
re
r

� �6� re
r

� �12
� �

, where ϵ is

Fig. 2 The machine-learning results for the prediction of solid solutions. a The correlation matrix of elemental properties and alloy phase.
The matrix shows that simple pair correlation is not enough to well capture the mapping from elemental properties to alloy phases. b Gaussian
process classification receiver operating characteristic (ROC) with confidence band for single-phase versus multi-phase (top) and face-centered
cubic (FCC) versus body-centered cubic (BCC) versus hexagonal closest packed (HCP) single-phase (bottom) classification, respectively. c The
area under curve (AUC) is calculated for each ROC curve. d Gaussian process classification (GPC) probability as a single-phase alloy versus
atomic size difference. The symbols (triangle, square, hexagon, and circle) represent the experimentally measured phase states.
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the depth of the potential well and re is the equilibrium distance
between atoms, corresponding to the lowest point of the
potential well. From a different perspective, ϵ can be considered
as the energy cost in bringing two atoms from infinite distance to
re. Typically, ϵ is considered to be the energy of one bond. For
example, for a BCC crystal, the total energy of formation per atom

within the nearest-neighbor approximation is: E rij
� �� �

¼ 1
2N

PN
i¼1

PN
j¼1 VL�JðrijÞδ0ij , where δ0ij ¼ 1 when j is the nearest neighbor of

i, and δ0ij ¼ 0 otherwise. At equilibrium, Ecoh ¼ E rij ¼ r0
� �� �

¼
�zϵ=2, where z is the number of nearest neighbor and r0 is the
equilibrium atomic distance. The values for these parameters
are given in Table 2 for the common structures. In order to
calculate the parameter ϵ, the bulk modulus B and the equilibrium
volume V0 must be considered.
The definitions of pressure P and bulk modulus B allow the

determination of unknown parameters re and ϵ:

P ¼ � ∂E

∂V
¼ � ∂E

∂r

∂r

∂V
; (2)

B ¼ � ∂P

∂ ln Vð Þ ¼ �V
∂
2E

∂r2
∂r

∂V

� 	2

�V
∂E

∂r

∂
2r

∂V2
: (3)

When P= 0, the equilibrium distance is connected with volume:

V0 ¼ re
c

� �3
, the constant c ¼ f�1ðV0Þ=V1=3. The second equation

connects bulk modulus with the energy parameter ϵ: B ¼ �8V�1
0 ϵ,

or ϵ ¼ �BV0=8. The parameters can be found in Table 2. Therefore,
the cohesive energy, or the formation energy, of a pure metal
without local distortion is

Ecoh ¼ �zBV0=16: (4)

For a N-component alloy, the formation energy can be
calculated by taking the cohesive energies of each constituting
component as energy reference,

Efi ¼ �zhBihVi=16þ zhBVi=16; (5)

where hBi ¼ PN
i ciBi , hVi ¼

PN
i ciVi , hBVi ¼

PN
i ciBiVi .

Efi represents the amount of energy needed to bring atoms
from infinite distance to ideal lattice sites with the same spacing,
r0. It is only one part of the total formation energy. Since different
species can have different atomic sizes, the energy can be further
lowered by releasing the strain energy. When the strain is not
large, the strain energy can be calculated by the Kanzaki force49.
Here the harmonic approximation and oscillator model are

adopted to calculate the contribution to the strain-induced
energy of species i:

Esi;i ¼ �
Z Vi

hVi
hBi V � hVi

hVi dV ¼ � hBi
2hVi Vi � hVið Þ2: (6)

The total strain energy Esi ¼
PN

i ciEsi;i , having the following
explicit form:

Esi ¼ � hBi
2hVi hV2i � hVi2

� �

: (7)

Combining the unrelaxed cohesive energy and strain-induced
energy can describe the total enthalpy of formation described as
follows:

ΔH ¼ Efi þ Esi: (8)

These two constituent contributions of the total formation
enthalpy for the alloys considered in this work are plotted in Fig. 3.
A 45◦ dashed line is used as a guide through the data. As is shown
in the figure, most of the data points are situated close to the
dashed line, indicating that both contributions are almost equally
important to the formation enthalpy.
The above procedure is employed to calculate the formation

enthalpy for the same alloy (with same components and
concentrations). There are three viable crystal structures for
structural metals/alloys (i.e., FCC, BCC, and HCP). The simple cubic
crystal structure can also be considered. Subsequently, the
formation enthalpy with respect to the four crystal structures
can be minimized (see Table 2):

ΔH ¼ min ΔHðzÞf g: (9)

The minimum formation enthalpy can be used in Eq. (1) to
calculate the Gibbs free energy.

Model predictability. The procedure described above allows ΔGN

to be calculated for any N-component system and ΔG2 for its

Table 1. Features and corresponding length scales (normalized) for radial basis function (RBF) kernel of the Gaussian process classification (GPC).

Molar volume Bulk modulus Electronegativity Melting temperature Valence Vaporization

0.478 0.977 1.25 1.70 1.72 2.15

Table 2. The parameters for the four different crystal structures

considered in this study.

Structure Function V0= f(r0) Function r0= f−1 (V0) z

Simple cubic V0 ¼ 1r30 r0 ¼ 1V
1=3
0 6

FCC V0 ¼
ffiffiffi

2
p

=2r30 r0 ¼ 21=6V
1=3
0 12

BCC V0 ¼ 4=33=2r30 r0 ¼ 31=2V
1=3
0 8

HCP (idea c/a) V0 ¼
ffiffiffi

2
p

=2r30 r0 ¼ 21=6V
1=3
0 12

The four parameters include atomic volume V0, lattic spacing r0, and the

first-neighbor coordinate number z.
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Fig. 3 The formation energy in ideal lattice (without relaxation)
Efi and the local strain-induced energy reduction (by relaxation)
Esi. Both contributions are almost equally important for the
formation enthalpy ΔH.
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binaries. The values of ΔG can be compared to find the lowest
one. If ΔGN is the lowest, the system is considered as a single-
phase alloy. Otherwise, the system is considered as a multi-phase
alloy. For convenience, an equivalent new parameter γ is defined
to replace ΔGN:

γ :¼
ΔGN=min ΔG2ð Þif minðΔG2Þ< 0;

�ΔGN=min ΔG2ð Þ if ΔGN < 0 andminðΔG2Þ> 0

�

(10)

The criterion now becomes γ ≥ 1 for forming a single-phase
solid solution.
The parameter γ for all multicomponent alloys has been

calculated. The results are shown in Fig. 4 and Tables 3 and 4.
The new criterion gives much better predictability than do
previous criteria. It correctly predicts not only the majority of
single-phase alloys but also correctly predicts the majority of
multi-phase ones. More specifically, the new model correctly
predicts 88% of FCC, 80% of BCC, and 100% of HCP single-phase
alloys. The average consistency of the model is 64%.
Among the proposed rules so far, a frequently used one is

based on lattice misfit δ, i.e., δ ≤ ~6%. The criterion is necessary
but not sufficient for single phase HEAs to form since many multi-
phase alloys also meet the requirement. If the δ parameter is
combined with the one developed herein, i.e., γ ≥ 1, then 75% of
the alloys are correctly predicted to be consistent with experi-
ment.
In the methodology part, an empirical parameter, α, was used to

tune the contribution of the configurational entropy and melting
temperature. The optimal value of α is alloy specific. For simplicity,
α equal to 0.25 was used for the predictions previously presented.

This value gave good separation between single-phase (i.e., solid
solutions) and multi-phase alloys. If α is varied (i.e., tuned), a small
change can give significantly better division between single-phase
and multi-phase alloys. Based on the specific dataset in this study,
α= 0.2 is optimum. With this value for α, the new rule gives a
consistency of 73%, but when used with the atomic size misfit rule
(δ ≤ 6%), the consistency increases to 81%.

Prediction and validation of new solid solution HEAs

To test the predictability of the new rule, γ ≥ 1 (α= 0.2), three 9-
element blocks in the periodic table are tested (see Fig. 5). Each 9-
element block is selected to be stable in FCC, BCC, or HCP
structure. The elements are assumed to form solid-solution HEAs
of the same structure as the major components. Only single-phase
HEAs are considered, i.e., equimolar HEAs with 4–9 components,
respectively, totaling 382 combinations/compositions for each
block. The predicted single-phase solid solutions are summarized
in Table 5 and shown in Fig. 5. Of these HEAs, 47 are FCC, 74 are
BCC and the remaining 145 are HCP. Applying an additional
criterion, i.e., δ ≤ ~6%, does not significantly alter these results. In
all cases, the solid solution HEAs are the absolute minority, which
is consistent with existing knowledge that it is more difficult to
form solid solutions than alloys with multiple phases. With
increasing the number of components of the alloy system, there

Fig. 4 The predictability of the new rule. The upper subfigure: New
rule gives an accuracy of 64%, but together with the lattice misfit
rule, slightly increases to 75%. The lower subfigure: If we tune the
parameter α down to 0.2 from 0.25, the new rule alone gives an
accuracy of 73%, but together with the lattice misfit rule, slightly
increases to 81%. For better visualization the values of γ ≥ 3 are
changed to 3.

Table 3. The predictability of our new rule γ ≥ 1 with α= 0.25 only (a)

and jointly with the emprical rule of lattice misfit δ ≤ 6% (b).

Structure #Single-phase #Total Consistency (%)

(a) The new rule ≥1 with α= 0.25

FCC 21 24 88

BCC 33 41 80

HCP 14 14 100

Multi-phase 96 217 56

Average 64

(b) The new rule ≥1 with α= 0.25 jointly with the empirical rule δ ≤ 6%

FCC 21 24 88

BCC 35 41 85

HCP 14 14 100

Multi-phase 65 217 70

Average 75

Table 4. The predictability of our new rule γ ≥ 1 with α= 0.2 only (a)

and jointly with the emprical rule of lattice misfit δ ≤ 6% (b).

Structure #Single-phase #Total Consistency (%)

(a) The new rule ≥1 with α= 0.2

FCC 21 24 88

BCC 27 41 66

HCP 13 14 93

Multi-phase 63 217 71

Average 73

(b) The new rule ≥1 with α= 0.2 jointly with the empirical rule δ ≤ 6%

FCC 21 24 88

BCC 27 41 66

HCP 13 14 93

Multi-phase 38 217 82

Average 81
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will be more intermetallic compound phases competing against
the solid solution HEA phase for thermodynamic stability, and
hence the ratio of solid solution alloys over multi-phase ones
decreases. The similar trend was predicted by the model of
Troparevsky et al. 34.
CALculations of PHAse Diagram (CALPHAD) calculations are

carried out using TCNI8 thermodynamic database provided by
ThermoCalcTM50. The database covers the entire composition
ranges of the constituent binaries and limited ternaries. The TCNI8
database does not contain elements Os, Tc, Rh, Ir, Au, and Ag, and
hence, only HEA compositions that do not contain these six
elements are considered. This limits validation to 77 equimolar
solid solution HEAs, comprised of 4, 5, or 6 elements. Among these
77 HEAs, 72 are successfully validated by CALPHAD calculations
comprising 5 FCC and 67 BCC HEAs, with consistency as high as
94% (see Table 6). While some are validated by experiment,
among these 72 HEAs, others are new alloys previously
unreported in the literature. A detailed list of results is supplied
in the Supplementary Information. The high consistency between
CALPHAD and the rule developed herein indicates that the new
rule can act as a guide to experiment and the predicted HEAs are
worth being synthesized.

DISCUSSION

Troparevsky et al. proposed a successful model to screen for high-
entropy solid solutions based on enthalpies of formation of binary
alloys from DFT data and a limited experimental dataset34.
Although their model has a similar form for the entropy term
with the present study, the arguments are different. In their
model, the total ideal entropy of mixing was used for the
calculations, while in our model only a fraction of the entropy
(α2Sconf.) is considered to play a role. The latter argument is more
realistic, considering that the configurational entropy is a
continuous function of temperature for a real system. Theoreti-
cally, the parameter α is material specific and varies in different
ranges for different materials. Fortunately, as a reduced parameter
(product of the percentages of the melting temperature and
configurational entropy), most of the alloys have overlaps in
certain ranges of the parameter. This is the underlying reason that
both models identified respective empirical values for α, based on
different datasets with our data size being orders of magnitude
larger. Compared with previous models or parameters30–33,35,36,
the present model has much improved predictability and is tested
on a more extensive data set. The prediction of multi-phase alloys

(a) 

(b) (c) (d) 

Fig. 5 Application of the new rule to predict the possible single-phase HEAs for the FCC, BCC, and HCP groups. Here all combinations of
≥4 elements are considered. As shown by these figures, the ratio of single-phase alloys over multi-phase ones decreases with increasing
number of components. The more components, the stronger competition between the HEA with its subsystem, and thus the lower possibility
for the HEA being the most stable.

Table 5. Summarization of predicting single-phase HEAs for the FCC,

BCC, and HCP groups.

Group New rule γ ≥ 1 γ ≥ 1 and δ ≤ 6%

FCC 47/382 41/382

BCC 74/382 68/382

HCP 145/382 145/382

The numbers are all ratios of single-phase over the total number of

combinations.

Table 6. Validation of the γ ≥ 1 (a= 0.2) rule by CALPHAD method.

Group New rule γ ≥ 1 CALPHAD Consistency (%)

FCC 5 5 100

BCC 71 67 94

HCP 1 0 0

Summary 77 72 94

Among the total 77 HEAs that are predicted to be single phase and

validated by CALPHAD method. There are only five exceptions, i.e.,

MnFeCoRu, TiCrNbTa, TiCrTaW, MnFeRuRe, and RuMnCoFeRe. These five

HEAs have more than one phases in the whole temperature range below

the melting temperature.
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is usually even more difficult31, but is also much improved by the
present model and the γ parameter (71–82%).
The present model is ML informed, which is its most significant

feature. ML effectively helps extract the most important elemental
properties for the construction of this model. The key elemental
properties lay the foundation for its high predictability. In addition,
the high predictability of our ML model (93%) can be deemed as
the likely upper boundary of empirical parameters/models for the
same data used here. Therefore, it serves as a guide for the best
possible predictability of our model. The ML model itself can also
be used to predict the formation of solute solution, albeit less
transparent than the γ parameter.
In constructing the new rule, only the easily accessible

elemental properties are adopted. By doing so, the efficiency in
predicting single-phase HEAs is maximized. This work aims at
addressing a long-standing open question of broad interest: What
is the role of the empirical rule (based on only elemental
properties) with increasingly accessible first-principles calcula-
tions? This work shows that new rules with good accuracy can be
indeed devised based on a better understanding of the physical
nature of the problem utilizing ML solutions. This study is an
example to show how ML contributes to understand physics in
materials science, different from most previous studies that use
ML only as a black box to obtain mathematical solutions.
Previously proposed rules to predict single-phase, HEAs using

very small datasets with very limited predictability were not
encouraging. As such this ML study used 1252 alloys, including
substantial number of HEAs, and explored the upper boundary of
empirical rules’ predictability. Using a large training dataset of
multicomponent alloys, single-phase alloys could be accurately
predicted (i.e., 93%) by ML methods. The high predictability of the
ML results is surprising, considering that of the previous studies.
The ML results also identify the most important features (such as
the bulk modulus), some of which are not considered in the
Hume-Rothery rules. This ML insight and its high predictability
lead to a new thermodynamics-based rule for predicting
solid–solution alloys. The new rule is nonetheless slightly less
accurate (73%) but has roots in the physical nature of the problem.
The new rule is further employed to predict solid solutions for
three 9-element blocks, and the predictions are of 94%
consistency with Calphad calculations. Since the new
thermodynamics-based rule employs only elemental properties,
which is in line with the spirit of the Hume-Rothery rule, these
results will encourage researchers to use our rule to search for new
high-entropy solid–solution alloys. Our study also demonstrates a
pathway to find more predictive rules that maximize simplicity
and efficiency in application.

DATA AVAILABILITY

All data generated or analyzed in this study are included in this published article.

Received: 28 October 2019; Accepted: 3 March 2020;

REFERENCES

1. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to

accelerating materials innovation. Appl. Mater. 1, 011002 (2013).

2. Curtarolo, S. et al. The high-throughput highway to computational materials

design. Nat. Mater. 12, 191–201 (2013).

3. Pei, Z. et al. Rapid theory-guided prototyping of ductile Mg alloys: from binary to

multi-component materials. New J. Phys. 17, 093009 (2015).

4. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of

materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503

(2015).

5. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine

learning framework for predicting properties of inorganic materials. npj Comput.

Mater. 2, 16028 (2016).

6. Thygesen, K. S. & Jacobsen, K. W. Making the most of materials computations.

Science 354, 180–181 (2016).

7. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine

learning in materials informatics: recent applications and prospects. npj Comput.

Mater. 3, 1–13 (2017).

8. Pei, Z. & Yin, J. Machine learning as a contributor to physics: understanding Mg

alloys. Mater. Des. 172, 107759 (2019).

9. Pei, Z. & Yin, J. The relation between two ductility mechanisms for Mg alloys

revealed by high-throughput simulations. Mater. Des. 186, 108286 (2019).

10. Kostiuchenko, T., Körmann, F., Neugebauer, J. & Shapeev, A. Impact of lattice

relaxations on phase transitions in a high-entropy alloy studied by machine-

learning potentials. npj Comput. Mater. 5, 55 (2019).

11. Islam, N., Huang, W. & Zhuang, H. L. Machine learning for phase selection in

multi-principal element alloys. Comput. Mater. Sci. 150, 230–235 (2018).

12. Wen, C. et al. Machine learning assisted design of high entropy alloys with

desired property. Acta Mater. 170, 109–117 (2019).

13. Abu-Odeh, A. et al. Efficient exploration of the high entropy alloy composition-

phase space. Acta Mater. 152, 41–57 (2018).

14. Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-

entropy alloys. Acta Mater. 169, 225–236 (2019).

15. Kim, G. et al. First-principles and machine learning predictions of elasticity in

severely lattice-distorted high-entropy alloys with experimental validation. Acta

Mater. 181, 124–138 (2019).

16. Gubernatis, J. & Lookman, T. Machine learning in materials design and discovery:

examples from the present and suggestions for the future. Phys. Rev. Mater. 2,

120301 (2018).

17. Li, Y. & Guo, W. Machine-learning model for predicting phase formations of high-

entropy alloys. Phys. Rev. Mater. 3, 095005 (2019).

18. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applica-

tions. Science 345, 1153–1158 (2014).

19. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechan-

ical behaviors of complex alloys. Science 362, 933–937 (2018).

20. Löffler, T. et al. Discovery of a multinary noble metal–free oxygen reduction

catalyst. Adv. Energy Mater. 8, 1802269 (2018).

21. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal ele-

ments: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303

(2004).

22. Cantor, B., Chang, I., Knight, P. & Vincent, A. Microstructural development in

equiatomic multicomponent alloys. Mater. Sci. Eng.: A 375, 213–218 (2004).

23. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater.

Sci. 61, 1–93 (2014).

24. Gao, M. C., Yeh, J.-W., Liaw, P. K. & Zhang, Y. High-entropy Alloys: Fundamentals

and Applications (Springer, 2016).

25. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related

concepts. Acta Mater. 122, 448–511 (2017).

26. Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio ther-

modynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy

contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).

27. Hume-Rothery, W. & Powell, H. M. On the theory of super-lattice structures in

alloys. Z. Kristallogr.-Crystalline Mater. 91, 23–47 (1935).

28. Hume-Rothery, W. Atomic Theory for Students of Metallurgy (Institute of Metals,

1952).

29. Hume-Rothery, W., Smallman, R. W. & Haworth, C. W. The Structure of Metals and

Alloys, 5th edn (Institute of Metals and the Institution of Metallurgists, 1969).

30. Zhang, Y., Yang, S. & Evans, J. Revisiting Hume–Rothery’s Rules with artificial

neural networks. Acta Mater. 56, 1094–1105 (2008).

31. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid–solution phase

formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

32. Tian, F., Varga, L. K., Chen, N., Shen, J. & Vitos, L. Empirical design of single phase

high-entropy alloys with high hardness. Intermetallics 58, 1–6 (2015).

33. Calvo-Dahlborg, M. & Brown, S. G. Hume–Rothery for HEA classification and self-

organizing map for phases and properties prediction. J. Alloy. Compd. 724,

353–364 (2017).

34. Troparevsky, M. C., Morris, J. R., Kent, P. R., Lupini, A. R. & Stocks, G. M. Criteria for

predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5,

011041 (2015).

35. Gao, M. C. et al. Thermodynamics of concentrated solid solution alloys. Curr. Opin.

Solid State Mater. Sci. 21, 238–251 (2017).

36. Zheng, M., Ding, W., Cao, W., Hu, S. & Huang, Q. A quick screening approach for

design of multi-principal element alloy with solid solution phase. Mater. Des. 179,

107882 (2019).

37. Zhang, C., Zhang, F., Chen, S. & Cao, W. Computational thermodynamics aided

high-entropy alloy design. JOM 64, 839–845 (2012).

38. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4,

515–534 (2019).

Z. Pei et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2020)    50 



39. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864

(1964).

40. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and corre-

lation effects. Phys. Rev. 140, A1133 (1965).

41. Periodic Table (created by Theodore Gray, with assistance from Nick Mann, and in

partnership with Max Whitby of RGB Research). http://periodictable.com.

Accessed Mar 2018.

42. Chen, D., Gu, X., An, Q., Goddard, W. III & Greer, J. Ductility and work hardening in

nano-sized metallic glasses. Appl. Phys. Lett. 106, 061903 (2015).

43. Manzoor, A., Pandey, S., Chakraborty, D., Phillpot, S. R. & Aidhy, D. S. Entropy con-

tributions to phase stability in binary random solid solutions. npj Comput. Mater. 4, 47

(2018).

44. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy

on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61,

2628–2638 (2013).

45. Wu, Z., Bei, H., Otto, F., Pharr, G. M. & George, E. P. Recovery, recrystallization,

grain growth and phase stability of a family of FCC-structured multi-component

equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014).

46. Pei, Z., Eisenbach, M., Mu, S. & Stocks, G. M. Error controlling of the combined

cluster-expansion and Wang–Landau Monte-Carlo method and its application to

FeCo. Comput. Phys. Commun. 235, 95–101 (2019).

47. Pei, Z. Theory of the energy fluctuation of multicomponent alloys. Scr. Mater. 162,

503–506 (2019).

48. Khan, S. N. & Eisenbach, M. Density-functional Monte-Carlo simulation of CuZn

order–disorder transition. Phys. Rev. B 93, 024203 (2016).

49. Kanzaki, H. Point defects in face-centred cubic lattice—I distortion around

defects. J. Phys. Chem. Solids 2, 24–36 (1957).

50. Sundman, B., Jansson, B. & Andersson, J.-O. The thermo-calc databank system.

Calphad 9, 153–190 (1985).

ACKNOWLEDGEMENTS

This work was performed in support of the US Department of Energy’s Fossil Energy

Crosscutting Technology Research Program. The Research was executed through the

NETL Research and Innovation Centers Advanced Alloy Development Field Work

Proposal. Research performed by Leidos Research Support Team staff was conducted

under the RSS contract 89243318CFE000003. This research was supported in part by

an appointment to the U.S. Department of Energy (DOE) Postgraduate Research

Program at the National Energy Technology Laboratory (NETL) administered by the

Oak Ridge Institute for Science and Education. This research used resources of Oak

Ridge National Laboratory’s Compute and Data Environment for Science (CADES) and

the Oak Ridge Leadership Computing Facility, which is supported by the Office of

Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Neither the United States Government nor any agency thereof, nor any of their

employees, nor Leidos Research Support Team (LRST), nor any of their employees,

makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights.

AUTHOR CONTRIBUTIONS

Z.P., J.Y., and M.C.G. designed the project, performed the calculations, and analyzed

the results. J.Y. performed the machine-learning calculations, Z.P. derived the new

rule and applied it to the alloy systems, and M.C.G. performed the Calphad

calculations to validate the new rule. Z.P. wrote the manuscript, which was revised by

J.Y., M.C.G., D.E.A., and J.A.H. All the authors together finalized the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41524-020-0308-7.

Correspondence and requests for materials should be addressed to Z.P., J.Y. or M. C.G.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign

copyright protection may apply 2020

Z. Pei et al.

8

npj Computational Materials (2020)    50 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

http://periodictable.com
https://doi.org/10.1038/s41524-020-0308-7
https://doi.org/10.1038/s41524-020-0308-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules
	Introduction
	Results
	ML solution
	New thermodynamics-based rule to predict the single phase of HEA
	Configurational entropy
	Enthalpy
	Model predictability

	Prediction and validation of new solid solution HEAs

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


