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Ayşegül Özen†1, Mehmet Gönen†2, Ethem Alpaydın*2 and 
Türkan Haliloğlu*1

Address: 1Department of Chemical Engineering, Polymer Research Center, Boğaziçi University, İstanbul, Turkey and 2Department of Computer 
Engineering, Boğaziçi University, İstanbul, Turkey
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Abstract

Background: Computational prediction of protein stability change due to single-site amino acid
substitutions is of interest in protein design and analysis. We consider the following four ways to
improve the performance of the currently available predictors: (1) We include additional sequence-
and structure-based features, namely, the amino acid substitution likelihoods, the equilibrium
fluctuations of the alpha- and beta-carbon atoms, and the packing density. (2) By implementing
different machine learning integration approaches, we combine information from different features
or representations. (3) We compare classification vs. regression methods to predict the sign vs.
the output of stability change. (4) We allow a reject option for doubtful cases where the risk of
misclassification is high.

Results: We investigate three different approaches: early, intermediate and late integration, which
respectively combine features, kernels over feature subsets, and decisions. We perform simulations
on two data sets: (1) S1615 is used in previous studies, (2) S2783 is the updated version (as of July
2, 2009) extracted also from ProTherm. For S1615 data set, our highest accuracy using both
sequence and structure information is 0.842 on cross-validation and 0.904 on testing using early
integration. Newly added features, namely, local compositional packing and the mobility extent of
the mutated residues, improve accuracy significantly with intermediate integration. For S2783 data
set, we also train regression methods to estimate not only the sign but also the amount of stability
change and apply risk-based classification to reject when the learner has low confidence and the
loss of misclassification is high. The highest accuracy is 0.835 on cross-validation and 0.832 on
testing using only sequence information. The percentage of false positives can be decreased to less
than 0.005 by rejecting 10 per cent using late integration.

Conclusion: We find that in both early and late integration, combining inputs or decisions is useful
in increasing accuracy. Intermediate integration allows assessing the contributions of individual
features by looking at the assigned weights. Overall accuracy of regression is not better than that
of classification but it has less false positives, especially when combined with the reject option. The
server for stability prediction for three integration approaches and the data sets are available at
http://www.prc.boun.edu.tr/appserv/prc/mlsta.
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Background
In protein design and analysis, understanding the stability
in sequence, structure, and function paradigms is of
importance [1] and hence there is a need for predicting
the protein stability change due to mutation. Single
amino acid mutations can significantly change the stabil-
ity of a protein structure [2]. To acquire a set of experimen-
tal annotations for every possible random mutation is
combinatorial and requires significant resources and
time. Thus, accurate computational prediction would be
of use for suggesting the destructive mutations as well as
the most favorable and stable novel protein sequences. To
this end, the prediction of protein stability change due to
amino acid substitutions remains a challenging task in the
field of molecular biology.

Recent approaches fall into two major types: energy-based
methods and machine learning approaches. Energy-based
methods using physical, statistical, or empirical force-
fields perform a direct computation of the magnitude of
the relative change in the free energy [3-8]. Average assign-
ment method [7] and different machine learning algo-
rithms, such as support vector machines [2], neural
networks [9], and decision trees [7] are trained on a data
set to predict protein stability change. There are also
hybrid approaches that combine energy-based and
machine learning methods [10-12]; they basically gener-
ate the input features fed into machine learning algo-
rithms using energy-based models.

One can predict the direction towards which the mutation
shifts the stability of the protein (namely the sign of ΔΔG).
It could be positive or negative, corresponding to an
increase or decrease in stability, respectively. From a
machine learning perspective, this is a binary classifica-
tion task, where given x, information about the single-site
amino acid substitution, the aim is to decide whether this
is a positive or negative example, depending on whether
the mutation is favorable or not. A third class of "doubt"
can be defined for small changes that may be considered
insignificant, and in such a case, one can train a three-class
classifier [13] or a two-class classifier with the reject
option.

Given a sample of n independent and identically distrib-
uted training instances, (x

1
, y1),(x

2
, y2), ...,(x

n
, yn), where x

i

is the d-dimensional input vector coding the relevant
information and yi ∈ {-1, +1} is its class label, i = 1, ..., n,
a classifier estimates P(+|x) and assigns the test instance to
the positive class if P(+|x) > 0.5, and to the negative class
otherwise. There can be different representations in cod-
ing x. Deciding on the best data representation used is as
important as selecting the classification algorithm.

Another possibility in solving this using machine learning
is to define it as a regression problem with ΔΔG directly as
the numeric output. One can then decide based on
whether the prediction is positive or negative, and again
predictions that are close to zero can be rejected if the risk
of misclassification is high. No single machine learning
algorithm nor representation, in classification or regres-
sion, induces always the most accurate learner in any
domain. The usual approach is to try many and choose
the one that performs the best on a separate validation set
unused during training. Recently, it has been shown that
accuracy may be improved by combining multiple learn-
ers [14,15]. There are three possible methods for combin-
ing multiple learners: early, late, and intermediate
integration [16].

In early integration, inputs are concatenated as one large
vector and a single learner (classifier or regressor) is used.
In late integration, multiple classifiers/regressors are
trained over different inputs and their decisions are com-
bined by a trained learner. These two approaches can be
applied with any classification/regression algorithm.

Late integration has been extensively used in bioinformat-
ics. Weighted voting was used in classifier combination
for protein fold recognition [17]. Majority voting was
used for prediction of the drug resistance of HIV protease
mutants [18], secondary structure prediction [19], detect-
ing rare events in human genomic DNA [20] and identifi-
cation of new tumor classes using gene expression profiles
[21]. A trained combiner was used for secondary structure
prediction [22,23]. A mixture of localized experts was
used for gene identification [24]. Cascading, which is a
multi-stage sequential combination method, was used for
secondary structure prediction [25].

Support vector machines allow combination in a third
way, using multiple kernels; this is also called intermedi-
ate integration [16]. Kernel functions basically measure
similarity between data instances and a single learner can
combine separate kernels for different data sources,
instead of combining data before training a single learner
(as in early integration) or combining decisions from
multiple learners (as in late integration).

Intermediate integration was used for protein location
prediction and protein function prediction tasks, respec-
tively, by combining kernels applied to different represen-
tations such as protein sequences, hydropathy profile,
protein interactions, and gene expressions [26,27]. This
method is also used in glycan classification by combining
different tree kernels [28].

Our work has four aspects: (1) Introduction of new pro-
tein residue features: The temperature factors of the back-
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bone and side-chain carbon atoms (B-factor) that reflect
the thermal mobility/flexibility of the mutated residue;
the local packing information in a higher resolution than
that has previously been incorporated by considering the
side-chain atoms as well; amino acid substitution likeli-
hoods from PAM250 matrix. (2) Implementation of three
different machine learning approaches (early, late, and
intermediate integration), two of which, namely late and
intermediate, have not been used before in the computa-
tional prediction of protein stability change. (3) Compar-
ison of classification and regression methods. (4) The use
of a reject option in both classification and regression to
check for cases where the learner has low confidence.

Data
Data Sets

The first data set (S1615) was compiled from the data
available online [29], originally extracted [9] from the
ProTherm database [30]. This data set has been used pre-
viously and provides a basis for comparison [2,9,31]. The
set originally contains 1615 single-site mutation data
from 42 different proteins. Each instance has the follow-
ing features: PDB code of the protein, mutated position
and mutation itself, solvent accessibility, pH value, tem-
perature (T), and the change in the free energy, ΔΔG, due
to a mutation in a single position. As there are instances
for the same mutation and position where ΔΔG differs
with T and pH values, T and pH are kept as features in our
data set. A subset (388 instances) of the training set (1615
instances) was previously used as a test set for comparison
between different predictors [2]. Though some studies
include the test set also in the training set, we remove it
from the training set to have disjoint training and test sets,
as done in [2].

We also extract an up-to-date version (as of July 2, 2009)
(S2783) that contains 2783 single-site mutations with
known PDB code of the protein and ΔΔG values also from
the ProTherm database. On this larger data set, we imple-
ment and compare both classification and regression inte-
gration methods and also their versions with the reject
option.

Added Features

The substitution frequency of an amino acid for another
is considered here as an additional feature with the Point
Accepted Mutation (PAM) matrix [32]. PAM250 is chosen
for the score of each amino acid substitution and is based
on the frequency of that substitution in closely related
proteins that have experienced a certain amount of evolu-
tionary divergence.

Another feature considered is the mobility/flexibility of
the amino acid position in a given structure. The B-factors
reported in the PDB file is a good and quick indicator of

this feature. Neighbors of the mutated residue in both
amino acid sequence and 3D structure are the two other
features that have been used recently [2,9]. A window size
of seven in the sequence [2] and a cutoff distance of 9Å in
space was previously used to find the neighbors of the
mutated position as the optimum sequence length and
distance, respectively [9]. In our implementation, in addi-
tion to alpha-carbon atoms (Cα), beta-carbon (Cβ) atoms
are also considered to reflect the packing at a relatively
higher resolution.

A mutation in a position of a protein sequence will change
the number of side-chain atoms of the residue in that
position. This may trigger a conformational change or
local readjustments that may result also in a change in the
atomic packing around that residue and the fluctuations
of the surrounding residues and the mutated residue itself.
Nevertheless, as in other studies [2,9,31], we neglect this
effect.

Removing the instances with non-available features and
the redundant instances from S1615 leaves us with train-
ing and test sets of 1122 and 383 instances with total of
31 and 14 proteins. Stabilizing mutations are 32.35 per
cent and 11.49 per cent, respectively. After removing the
instances with non-available features, S2783 reduces to
2471 instances from 68 different proteins and 755 of
them (30.55 per cent) are stabilizing mutations. Both data
sets are available online.

Table 1 gives a list of the representations, original features,
and the new features that we introduce. The information
coming only from the sequence (SO), and the topology of
the protein structure (TO), and both (ST) are encoded in
the same way as defined in previous studies [2]. An added
asterisk, for example, (SO*), denotes the representation
with newly added features. Neighbors of the mutated
position in the sequence, mutation, T, and pH are
encoded in SO/SO*. Sequence information is not used in
TO/TO*; instead, spatial neighbors and the solvent acces-
sibility of the mutated position are encoded. In ST/ST*, all
information are combined. The substitution likelihood of
an amino acid is added to the existing data as a new fea-
ture in all three representations. Crystallographic B-factors
of the Cα and Cβ atoms are used in TO* and ST*. For dis-
crete features like amino acid identities, 1-of-n encoding is
used, that is, if the variable can take one of n different val-
ues, one is set to 1 and all others to 0.

Methods
The Effect of Adding New Features to the Original Data 

Sets

To each of the three representations (SO, TO, or ST), the
new features are added one at a time and as combinations
of two and three (see Table 2). Since all the new features
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except PAM are structure-related, they are not added to SO.
All of the new features, including PAM, are added to both
TO and ST. We end up with (21 (PAM) for SO and 24 (PAM,
CB, BFA, BFB) for each of TO and ST combinations) a total
of 34 possible feature sets (all of which include the muta-
tion, T, and pH information).

Performance Assessment

Having already left 383 test instances out as the test set for
S1615, we use 20-fold cross-validation (cv) on the 1122
training instances using 19/20 = 95 per cent for training
proper and 5 per cent for validation. The best cross-valida-
tion strategy, that is, the number of folds, gets the best
trade-off between the total amount of computation and
training set size. With k folds, one needs k sets of training
and validation and uses (k - 1)/k of data for training. We
decided that the best is with k = 20; with higher k (or using
jackknife), there is too much computation and with
smaller k, training set gets small and variance increases.
Classes should be represented in the right proportions
when subsets of data are held out, not to disturb the class
prior probabilities and we fulfill this requirement by strat-
ification. Repeating training 20 times, we choose the
hyperparameter set that has the highest average validation
accuracy. The 20 classifiers trained on the 20 training folds
for that hyperparameter set are tested on the test set. If we
are required to perform classifier combination, we use the
same training and validation sets also for the combiner
due to the small size of the training set [33].

For all three integration methods, we use our own code;
MOSEK [34] is used for solving the optimization prob-
lems of support vector machines. We report averages over
20 test results obtained by testing the trained classifier of
each fold on the test set; for comparing classifiers, we use
the paired t-test over these 20 results.

We use a slightly different methodology for S2783
because we train both classification and regression meth-
ods. First, we determine 3 split points for both stabilizing
and destabilizing mutations as shown in Figure 1. Each
split contains approximately the same number of data
instances as the other two splits of the same class. This
splitting mechanism both maintains stratification and
ensures that we give the regressors training instances with
diverse output values. Then, we take one-third of each
split randomly to the test set and the remaining two-third
is reserved as the training set. We apply 20-fold cv on the
training set and obtain 20 folds. The learners (both classi-
fiers and regressors) are trained on the 20 training folds
and tested on the test set. The hyperparameter set that has
the highest average validation accuracy for classification
or the lowest mean square error for regression is selected
and tested on the test set 20 times with the trained learn-
ers. This whole process is replicated 10 times each time
using a different random test set. As a result, we obtain 10
× 20 test set results and report the average of these results.

The accuracies on the test set are calculated as given in
Table 3 where TP, FP, TN, and FN, respectively refer to the
number of true positives, false positives, true negatives,
and false negatives. Precision, recall, and FP rate are eval-
uation measures which give information about the relia-
bility of the predictor. The same measures are also
reported for regression methods after converting the out-
put of the regressor to a class prediction by looking at the
sign.

As we can see from Figure 1, ΔΔG values are clustered
around zero and small changes in the prediction of a
learner may change the predicted label for a test instance.
When the risk of misclassification is high, we can allow a
predictor to give a reject decision. We define a risk matrix
in Table 4 where r is the reject option, and the rows and

Table 1: Representations, original features, and the new features. 

Repr. Original Feat. New Repr. New Feat.

SO ± 3 neighbors (± 3 NE)
Mutation (MUT)

T/pH

SO* PAM250 (PAM)

TO Mutation (MUT)
Cα contacts (CA)

SA/T/pH

TO* PAM250 (PAM)
Cα B-factor (BFA)
Cα B-factor (BFB)

Cα and Cβ contacts (CB)

ST ± 3 neighbors (± 3 NE)
Mutation (MUT)
Cα contacts (CA)

SA/T/pH

ST* PAM250 (PAM)
Cα B-factor (BFA)
Cα B-factor (BFB)

Cα and Cβ contacts (CB)

In all three representations, amino acid substitution likelihood is used as a feature. B-factors of the Cα and Cβ  atoms and spatial neighbor 
determined using both Cα and Cβ  atoms are features introduced into TO and ST. The abbreviations are given only for the features that we add.
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columns correspond to the true and predicted class labels,
respectively.

Predicting the class label correctly does not incur any cost
at all. If the learner rejects, a unit cost incurs. If the learner
makes a prediction error, it pays a misclassification cost λ
for FN and αλ for FP where α is the trade-off parameter for
FP and usually depends on the application. These misclas-
sification costs should be larger than 1 in order to make
the learner reject when it is not confident about its predic-
tion. Given a risk matrix and P(+|x), we can calculate the
risks of three possible actions as follows:

and the best action is selected as the action with mini-
mum risk. One can then solve for the rejection thresholds
based on the values of λ and α. For example, if λ = 2 and
α = 2, then we choose

R P P P

R P P

( | ) ( | ) ( ( | )) ( | )

( | ) ( | ) ( (

+ = + + − + = −

− = + + − +

x x x x

x x

0 1

0 1

αλ αλ
λ || )) ( | )

( | ) ( | ) ( ( | ))

x x

x x x

= +

= + + − + =

λP

R r P P1 1 1 1

Table 2: The list of 34 possible input feature sets. 

# Representation PAM CB BFA BFB

1 SO - - - -
2 SO + - - -

3 TO - - - -
4 TO + - - -
5 TO - + - -
6 TO - - + -
7 TO - - - +
8 TO + + - -
9 TO + - + -
10 TO + - - +
11 TO - + + -
12 TO - + - +
13 TO - - + +
14 TO + + + -
15 TO + + - +
16 TO + - + +
17 TO - + + +
18 TO + + + +

19 ST - - - -
20 ST + - - -
21 ST - + - -
22 ST - - + -
23 ST - - - +
24 ST + + - -
25 ST + - + -
26 ST + - - +
27 ST - + + -
28 ST - + - +
29 ST - - + +
30 ST + + + -
31 ST + + - +
32 ST + - + +
33 ST - + + +
34 ST + + + +

The new features to each of the three representations (SO, TO or ST) 
are added one at a time and as combinations of two and more. The 
original features are already given in Table 1 and are not shown here.

Distribution of S2783 data over the free energy change due to single-site mutation, ΔΔGFigure 1
Distribution of S2783 data over the free energy 
change due to single-site mutation, ΔΔG. The regions 
separated by dashed lines are used to obtain similar training 
and test splits. Random one-third of the instances in each 
region is reserved for testing and the remaining two-third is 
used in training.
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Table 3: Performance evaluation measures.

Accuracy

Error Rate

Precision

Recall

FP Rate

TP TN
TP FN FP TN

+
+ + +

FP FN
TP FN FP TN

+
+ + +

TP
TP FP+

TP
TP FN+

FP
FP TN+
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We experiment with different λ (2, 5, 10) and α (1, 2, 5)
values. If α = 1, this means that FP and FN have equal mis-
classification costs assigned to them. In our case, by taking
α > 1, we say that predicting a destabilizing mutation as a
stabilizing one is costlier than the other way around.

For regression where the output is not a probability but a
number, we can not analytically solve for the two thresh-
olds but need to do an exhaustive search. We search for
two thresholds θ1 (< 0) and θ2 (> 0) on the validation sets
given the values of λ and α that minimize the total classi-
fication risk. We choose the negative class if the regression
output, y, for a specific test instance is less than θ1, reject
if θ1 < y <θ2, and choose the positive class if y >θ2.

Early Integration

Different classifiers make different assumptions about the
data and may fail in different instances [14]. We train
three classifiers, namely k-nearest neighbor estimator,
decision tree, and support vector machine, using SO/SO*,
TO/TO*, and ST/ST* representations. We use a single
regression method, namely support vector regression, on
all representations.

k-Nearest Neighbor (k-NN) Classifier 
The k-NN classifier assigns the input to the class by taking
a majority vote among its k neighbors. The best value of k
is chosen from the set of 1, 3, 5, 7, 9, and 11 using 20-fold
cv.

Decision Tree (DT)

A DT is a hierarchical model whereby the local region is
identified in a sequence of recursive splits. When there is
noise, growing the tree until it is purest, we may grow a
very large tree. To alleviate such overfitting, tree construc-
tion ends when nodes contain few examples; this thresh-
old, τ, is the hyperparameter to be tuned. τ parameter is
selected from the trial values of 56 (5 per cent of the train-
ing set), 28, and 14 for S1615 (80, 40, and 20 for S2783).

Support Vector Machine (SVM)

SVM finds the linear discriminant in the feature space with
the maximum margin [35]. SVM uses the training data in
the form of dot products and allows embedding another
feature space via kernel functions. The RBF (radial basis
function) kernel was recently reported to work best for
stability prediction [2]. The regularization parameter, C, is
chosen from (0.01, 0.1, 1, 10, 100) and the kernel width,
γ, is chosen from (0.25r, 0.5r, r, 2r, and 4r) where r is the
average nearest neighbor distance over the training set.

Support Vector Regression (SVR)

SVR is an extension to SVM for regression problems [36].
The regularization parameter, C, is chosen from (0.01,
0.1, 1, 10, 100) and the width parameter of the RBF ker-
nel, γ, is chosen from (0.25r, 0.5r, r, 2r, and 4r) where r is
the average nearest neighbor distance over the training set,
the regression tube width, , is selected from (0.05, 0.10,
0.15).

Late Integration

It is possible to learn to combine the decisions of classifi-
ers by a combiner classifier. By training the three classifiers
described above with 34 data sets (see Table 2), we get 102
different combination triplets of (R.D.B) outputs where R,
D, and B stand for Representation, Data set, and Base-
learner. The output of the combiner is the best subset com-
bination of these 102 triplets. The two criteria to select the
best combination are accuracy and diversity, in that, we
want (R.D.B) triplets that fail in different regions of the
input space. In order to see to what extent any two classi-
fiers are correlated, McNemar's test is used [15]. The same
procedure can also be applied to combine regressors. We
obtain 34 different regressors and the combiner chooses a
subset from those. The correlation coefficient between the
output of two regressors can be used to check the diversity
between these regressors; a small correlation coefficient
means that the two regressors are diverse.

The algorithm for selecting the most accurate and most
diverse (R.D.B) triplets is a greedy, forward algorithm for
subset selection. We start with an initial (R.D.B) that is the
most accurate and search through the rest of the (R.D.B)
triplets for those that are different from the initial one at
significance level of α = 0.05 by McNemar's test. We add
the most accurate one among those and iterate until there
is no further improvement. The posterior probability out-
puts of the selected classifiers are then used to train a com-
biner that is an SVM with the linear kernel. The
pseudocode of the algorithm is given in Table 5. The algo-
rithm for combining regressors is very similar to Table 5
except three basic differences: (1) We select the regressor
with the minimum mean squared error among candidate
regressors. (2) We use correlation coefficient as the diver-
sity measure between regressors. (3) We combine the out-

positive if 

reject if 

negative if 

0 75

0 50 0 75

. ( | )

. ( | ) .

≤ +

< + <

P

P

x

x

PP( | ) .+ ≤

⎧

⎨
⎪

⎩
⎪

x 0 50

Table 4: Risk matrix.
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+ - r

Truth + 0 λ 1

- αλ 0 1



BMC Structural Biology 2009, 9:66 http://www.biomedcentral.com/1472-6807/9/66

Page 7 of 17

(page number not for citation purposes)

puts of selected regressors with a combiner that is an SVR

with the linear kernel.

Intermediate Integration

When using multiple kernels in support vector machines,
there are two different possibilities [16]: We can calculate
kernel functions on different representations or calculate
different kernel functions on the same representation.

One can take a sum over different kernels and summation
rule is applied successfully in computational biology [37]
where heterogeneous data sets exist by the nature of the
biological problems. 

Replacing the kernel function with a weighted summation
of p kernel functions was proposed [38,39]:

where the combination weights (ηm) are new parameters
optimized in training. In addition to the flexibility of con-
structing weighted combination rules, using multikernel
SVMs provides two important advantages: (1) Information
can be extracted about the classification task at hand. The
feature sets used in kernel functions with larger weights
are understood to give more relevant information in terms
of classification. For example, obtaining information
about important features in biological problems such as
disease diagnosis and drug development is as important
as classification accuracy. (2) Kernel functions with zero
weights can be eliminated. If such feature sets are
obtained by using costly and time consuming experimen-
tal procedures, this decreases the overall complexity and
cost.

For regression using intermediate integration, we use a
variant of the localized multiple kernel learning model

[40]. Kernel combination weights can be modeled by
using the softmax function as follows:

where the softmax guarantees that ηm ≥ 0 and

, and um are the kernel-specific parameters

we need to learn. These parameters are optimized during
training in an iterative manner.

In intermediate integration, we combine RBF kernels over
feature subsets that form SO/SO*, TO/TO*, and ST/ST*.
Their width parameters are selected as the average nearest
neighbor distances in the corresponding feature subsets.

Results
S1615 Data Set

Early Integration

We finetune the hyperparameters by inspecting the 20-
fold cv misclassification error. For k-NN, k = 1 gives the
most accurate cv results. The best parameter values for
SVMs are (C = 100, γ = r), (C = 100, γ = r), and (C = 1, γ =
r) for SO/SO*, TO/TO*, and ST/ST*, respectively. Decision
tree parameter, τ, is validated to be 14 in all representa-
tions.

Accuracies of the best (R.D.B) triplets for each representa-
tion of the data are given in Figure 2. The effect of adding
each extra feature is observed by adding one at a time and
in combinations of two or more. SVM yields the most
accurate predictions in all three representations. The
introduction of PAM into SO has no effect on accuracy,
which is 0.904. The average testing accuracy for TO

increases from 0.904 to 0.909 with the help of new fea-
tures, which is not statistically significant. Our results
show that adding extra features to ST does not improve the
accuracy of 0.904. The best accuracies with original and

ηm m i j

m

p

K ( , )x x

=
∑

1

ηm
um

uk
k

p
=

=
∑

exp( )

exp( )
1
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p
=
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1

Table 5: The algorithm to select the classifiers to be combined. 

1: Initialize the subset Z as empty set
2: Initialize the subset R as all possible 102 (R.D.B) groups
3: Remove the most accurate (R.D.B) from R and add to Z
4: Perform McNemar's test for all pairs between Z and R
5: Decrease the degree of confidence, α, for McNemar's test
6: if There is at least one diverse (R.D.B) in R then

7: Select the most accurate and most diverse (R.D.B) from R and add it to Z
8: Go to Step 4

9: else

10: Use the (R.D.B) triplets in Z as the current base-learners to be combined
11: end if

The aim is to select the most accurate and at the same time the most diverse classifiers.
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extra features for early integration are given in Table 6.
Table 7 lists the precision, recall, and FP rate values on the
test set for the best classifiers for all three representations.

Late Integration

For k-NN, we choose k = 5 to give more informative poste-
rior probabilities, rather than 0/1 decisions, to the com-
biner in late integration.

The most accurate (R.D.B) triplet among all 102 classifier
triplets is (ST.PAMCB.SVM) that denotes a support vector
machine (B) trained with ST* (R) with the additional new
features, PAM and packing density from Cα and Cβ (D). The
best complements turn out to be (TO.BFA.SVM),
(ST.CBBFB.DT), and (TO.CBBFABFB.k-NN) using the selec-
tion method of Table 5. When the outputs of the (R.D.B)
triplets are given to the SVM Combiner, the average accu-
racy is 0.903 on the test set and 0.847 on the validation set
(see Table 8). This accuracy is comparable to the reported
values in previous studies [2,7,31]. Similarities between
selected (R.D.B) triplets calculated by McNemar's test are
given in Table 9.

Intermediate Integration

The test results for all data representations are given in
Table 10. We can see that adding PAM to SO does not
change the accuracy because PAM is assigned zero weight;
but adding extra features to TO and ST increase the average

accuracy by 4.6 per cent and 6.0 per cent, respectively;
both improvements are statistically significant. The high-
est accuracy is obtained with TO* (0.879), which however
is significantly less than 0.909 of early integration.

The kernel weights can be used to assess the relative
importance of features (see Table 11). In all three repre-

Table 6: Early integration results for S1615 data set. 

k-NN DT SVM

cv test cv test cv test

SO 0.814 0.778 0.752 0.703 0.838 0.904
SO* 0.812 0.781 0.766 0.702 0.839 0.904

TO 0.812 0.819 0.770 0.739 0.822 0.905
TO* 0.817 0.844 0.788 0.756 0.825 0.909

ST 0.814 0.777 0.771 0.734 0.838 0.904
ST* 0.817 0.775 0.800 0.729 0.842 0.904

The accuracy of each base-learner trained with original data and with 
extra features added in SO/SO*, TO/TO* or ST/ST*. The values 
reported for each classifier are respectively the validation and test 
accuracies of the original representation and the new representation.

Table 7: The precision, recall, and FP rates of the most accurate 

classifiers on the test set in early integration for S1615 data set.

SVM

SO TO* ST*

Precision 0.711 0.800 0.702
Recall 0.284 0.282 0.284
FP rate 0.015 0.009 0.016

Accuracy of the best (R.D.B) triplets in early integration for each representation of the S1615 data setFigure 2
Accuracy of the best (R.D.B) triplets in early integra-
tion for each representation of the S1615 data set. 
Effect of adding each extra feature to the set of original fea-
tures is observed by adding each, one at a time, and combina-
tions of two or more. SVM is the best classifier for all 
representations.
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Table 8: Performance of late integration of the four triplets 

(ST.PAMCB.SVM), (TO.BFA.SVM), (ST.CBBFB.DT), and 

(TO.CBBFABFB.k-NN) for S1615 data set.

cv test

Accuracy 0.847 0.903
Precision 0.819 0.694
Recall 0.677 0.284
FP rate 0.071 0.017
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sentations, each feature subset except PAM has a combina-
tion weight (ηm) greater than zero. The original
representations have meaningful features for classifica-
tion. The weights also show that ± 3 neighbors in the
sequence carry as much information as ± 1 and ± 2 neigh-
bors. In the modified representations (SO*, TO*, and
ST*), the new weights indicate that the added features,
except PAM, carry information for the stability of a protein.
Local spatial composition with Cα and Cβ (CB) has larger
weight than Cα (CA), which highlights the contribution of
side-chain packing to stability. Also, the information that
reflects the extent of mobility/flexibility of each Cα (BFA)
and Cβ (BFB) have nonzero weights, implying that they are
informative.

Overall Comparison of Integration Methods

To be able to compare the three integration methods, in
all three representations, we chose the version that has the
highest average validation accuracy and compared the
three. The ones chosen are given in Table 12 that shows
the averages and standard deviations of validation and
test accuracies. According to 20-fold paired t-test on the
test results, there is no significant difference between early
and late integration; both are significantly more accurate
than intermediate integration.

S2783 Data Set

Early Integration

We finetune the hyperparameters by inspecting the 20-
fold cv misclassification error and mean squared error for

classifiers and regressors, respectively. For k-NN, k = 1 gives
the most accurate cv results. Decision tree parameter, τ, is
validated to be 20 in all representations. The best param-
eter values for SVMs are (C = 100, γ = r), (C = 10, γ = r), and
(C = 100, γ = r) for SO/SO*, TO/TO*, and ST/ST*, respec-
tively. (C = 10, γ = r) set works best for all SVR simulations
but the tube width, , is selected as 0.05 or 0.10. The cv and
test accuracies for each representation with different learn-
ers are given in Table 13. We see that SVM and SVR clearly
outperform k-NN and DT by improving accuracy more
than 1.5 per cent in all three representations. When we
look at the effect of adding the new features to the original
representations for SVM and SVR, we see that the new fea-
tures do not change the test accuracy very much. The pre-
cision, recall, and FP rate values on the test set are also
listed for SVM and SVR in Table 14, where we see that
though SVM and SVR have comparable accuracies, SVR

almost halves the FP rate, for example on ST*, it reduces
from 0.078 to 0.040.

Late Integration

First, 102 classifiers trained on S2873 data set are com-
bined with the procedure explained in Table 5. We obtain
the average accuracy as 0.832 on the test set and 0.830 on
the validation set (see Table 15). Then, we combine 34
regressors trained, the average test set accuracy is 0.827
and the average validation accuracy is 0.819. Again, we see

Table 9: McNemar's test results for the triplets (ST.PAMCB.SVM), 

(TO.BFA.SVM), (ST.CBBFB.DT), and (TO.CBBFABFB.k-NN) for 

S1615 data set.

(2) (3) (4)

(1) ST.PAMCB.SVM 11.72 66.61 154.10
(2) TO.BFA.SVM 42.12 135.64
(3) ST.CBBFB.DT 41.32
(4) TO.CBBFABFB.k-NN

Table 10: Multikernel SVM test results as intermediate 

integration for S1615 data set.

Accuracy Precision Recall FP Rate

SO 0.872 0.381 0.176 0.038
SO* 0.872 0.381 0.176 0.038

TO 0.833 0.343 0.485 0.122
TO* 0.879 0.459 0.258 0.040

ST 0.818 0.311 0.470 0.137
ST* 0.878 0.448 0.252 0.041

Table 11: The combination weights obtained for the original and modified features for S1615 data set.

SO (0.19)1NE + (0.15)2NE + (0.31)3NE + (0.30)MUT + (0.03)T + (0.03)pH

SO* (0.19)1NE + (0.15)2NE + (0.31)3NE + (0.30)MUT + (0.03)T + (0.03)pH + (0.00)PAM

TO (0.36)MUT + (0.40)CA + (0.15)SA + (0.04)T + (0.04)pH

TO* (0.21)MUT + (0.21)CA + (0.10)SA + (0.01)T + (0.01)pH + (0.00)PAM + (0.30)CB + (0.09)BFA + (0.07)BFB

ST (0.04)1NE + (0.04)2NE + (0.09)3NE + (0.38)MUT + (0.25)CA + (0.11)SA + (0.04)T + (0.04)pH

ST* (0.03)1NE + (0.02)2NE + (0.06)3NE + (0.20)MUT + (0.18)CA + (0.09)SA + (0.01)T + (0.01)pH + (0.00)PAM + (0.26)CB + (0.08)BFA + (0.06)BFB
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that in terms of accuracy, SVM and SVR are comparable,
though the latter has higher precision and lower FP rate.

Intermediate Integration

The test results for all data representations using multiker-
nel SVM and SVR are given in Table 16. When we use mul-
tikernel SVM, we can see that adding extra features does
not change accuracy. The highest accuracy is obtained
with ST (0.806), which however is less than 0.832 of early
integration. Using extra features in multikernel SVR does
not help increase the accuracy either. The best accuracy
performance is obtained with TO as 0.797.

When we look at Tables 17 and 18, we can say that the
added features carry information for predicting the energy
change for single-site mutations even though they do not
improve the average testing accuracy. As in S1615 data set,
local spatial composition with Cα and Cβ (CB) has larger
weight than Cα (CA) and the information that reflects the
extent of mobility/flexibility of each Cα (BFA) and Cβ (BFB)
has nonzero weights.

Classification with Reject Option

We also perform simulations with reject option both for
classification and regression, and give the performance
measures obtained with early integration using SO (see
Tables 19 and 20), late integration (see Tables 21 and 22),

and intermediate integration using TO* (see Tables 23
and 24), respectively. We see that increasing λ and α val-
ues increases the accuracy of predictors and decreases FP
rate at the cost of rejecting some instances. The selection
of λ and α values is of crucial importance and depends on
the loss incurred for making wrong decisions. Figures 3
and 4 show FP rate and rejection rate values for all integra-
tion approaches using SVM and SVR with the tried (λ, α)
pairs. We see that using late integration for SVM case gen-
erally gives lower rejection rate than early and intermedi-
ate integration for a given FP rate; SVR can attain much
lower FP rate but needs to reject more.

Discussion
We focus on the protein stability change prediction by
adding new features and implementing the three different
integration approaches, classification vs. regression, the
effect of the reject option.

Sufficiency of the Data Sets

Training any classifier with an unbalanced data set in
favor of negative instances makes it difficult to learn the
positive instances. The unbalanced distribution in prior
probabilities of the two classes in both training and test
sets affects the reliability of the predictor in all integration
approaches. Nevertheless, the abundance of one class
remains with the nature of the stability problem. Stabiliz-
ing mutations are far less than destabilizing mutations.
Higher accuracies might be achieved with balanced train-
ing and test tests. For example, the test sets of S1615 and
S2783 data sets have 88.51 per cent and 69.45 per cent
destabilizing mutations, respectively. S1615 data set does
not have balanced training and test sets whereas we evenly
distribute stabilizing and destabilizing mutations to train-
ing and test sets for S2783 data set. For S1615 dataset, we

Table 12: Comparison of best of three integration methods for S1615 data set.

early late intermediate

(ST.PAMCB.SVM) (ST.PAMCB.SVM) + (TO.BFA.SVM) + (ST.CBBFB.DT) + (TO.CBBFABFB.k-NN) (TO.PAMCBBFABFB.SVM)
cv 0.842 ± 0.047 0.847 ± 0.046 0.826 ± 0.044
test 0.904 ± 0.004 0.903 ± 0.005 0.879 ± 0.006

early = late > intermediate according to paired t-test

Table 13: Early integration results for S2783 data set. 

k-NN DT SVM SVR

cv test cv test cv test cv test

SO 0.795 0.794 0.748 0.762 0.829 0.832 0.825 0.828
SO* 0.793 0.794 0.751 0.756 0.829 0.829 0.824 0.827

TO 0.804 0.803 0.762 0.769 0.821 0.824 0.813 0.818
TO* 0.806 0.799 0.770 0.780 0.826 0.829 0.818 0.824

ST 0.797 0.797 0.758 0.766 0.829 0.831 0.825 0.828
ST* 0.798 0.797 0.766 0.782 0.829 0.830 0.825 0.828

The accuracy of each base-learner trained with original data and with 
extra features added in SO/SO*, TO/TO* or ST/ST*. The values 
reported for each classifier and regressor are respectively the 
validation and test accuracies of the original representation and the 
new representation.

Table 14: The precision, recall, and FP rates of the most accurate 

classifiers and regressors on the test set in early integration for 

S2783 data set.

SVM SVR

SO TO* ST* SO TO* ST*

Precision 0.790 0.807 0.784 0.854 0.868 0.855
Recall 0.612 0.579 0.614 0.527 0.501 0.529
FP rate 0.072 0.061 0.075 0.040 0.034 0.040
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achieve 0.904 the average test accuracy which is 1.90 per
cent higher than the percentage of destabilizing muta-
tions. For S2783 data set, this improvement is around
14.05 per cent. ΔΔG values for the majority of both train-
ing and test data are in the interval {-1, 1}. We would
expect the predictor to learn the pattern in this region bet-
ter than the other regions in the data space. However, Fig-
ure 5 suggests that it is not the case, and this is in
agreement with previous studies [9]. Even though the ΔΔG
values are not provided to the classification algorithm
numerically, the error rate is higher for smaller changes
and lower for larger ones. This may be due to two reasons:
Either our predictor works best at dramatic stability
changes; or possible experimental errors, being more sig-
nificant for smaller ΔΔG values than the larger ones, con-
fused our predictor. In separating the mutations into two
distinct classes as positive and negative, the prediction
may be ambiguous for data points close to zero. If we test
our best classifier for S1615 data set with the test instances
outside of this interval (230 of 383 instances), we obtain
0.948 test accuracy. This last result shows the advantage of
introducing a reject option and the approach we use by
taking into account the losses of rejects and wrong deci-
sions is the systematic way to choose the optimal thresh-
olds.

Furthermore, the mutations in the test set of S1615 data
set were conducted in physiological conditions [2], hav-
ing T in the range 20-30°C and pH in the range 6-8
whereas for the training set, the ranges are 0-86°C and 1-
11 respectively. It is not ideal to train a learner with data
within a wide range and test it only in a limited region; it

is normally expected that the training and test sets follow
the same probability distribution. In S2783 data set, the
test data and the training data are split randomly to allevi-
ate this problem. Because we do the splitting ten times
and take the average, our results are more robust on S2783
data set.

Integration Approaches

The most accurate predictor in early integration for S1615
(S2783) data set is SVM (SVM) classifier trained with ST*
(SO) achieving a validation set accuracy of 0.842 (0.829)
and a test accuracy of 0.904 (0.832). We see in Tables 6
and 13 that using structural information is useful with k-
NN and DT; adding new features such as PAM and CB

improve cv accuracy, and in the case of TO*, also improves
test accuracy using SVM, though not significantly. It may
be said that TO does not have enough packing informa-
tion intrinsically and using B-factors and Cβ may help.

In late integration for S1615 data set, of the four triplets
combined, two are SVM, one is DT and one is k-NN. The fact
that four different learners are chosen show that the learn-
ing algorithm is a good source of diversity. Of the four,
two use ST* and SO*, showing again that in terms of rep-
resentations, there is also diversity for higher accuracy.
Note that this diverse set is found automatically by the
selection algorithm we use.

The most accurate intermediate integration version for
S1615 data set uses TO* with all new features; its test accu-
racy is 0.879, which is significantly more accurate than the
version with old features only (TO) with test accuracy
0.833. Though it is not as accurate as the other integration
methods, intermediate integration has the advantage of
knowledge extraction through weights assigned to fea-
tures. The kernel weights (see Tables 11, 13, 17, and 18)
show that when the protein structure is available, CA and
CB are always preferred as a more valuable information
source than any other features including sequence neigh-
bors. Based on the kernel weights, we can say that stability
change is mostly a structure-driven phenomenon: For
example, when we sum up the weights of structural fea-

Table 15: Performance of late integration for S2783 data set.

SVM SVR

cv test cv Test

Accuracy 0.830 0.832 0.819 0.827
Precision 0.795 0.790 0.853 0.858
Recall 0.604 0.615 0.495 0.520
FP rate 0.071 0.073 0.038 0.038

Table 16: Multikernel SVM and SVR test results as intermediate integration for S2783 data set.

SVM SVR

Accuracy Precision Recall FP Rate Accuracy Precision Recall FP Rate

SO 0.800 0.716 0.589 0.107 0.789 0.688 0.570 0.115
SO* 0.799 0.708 0.604 0.114 0.790 0.692 0.569 0.113

TO 0.805 0.710 0.621 0.113 0.797 0.705 0.580 0.107
TO* 0.802 0.697 0.629 0.122 0.792 0.677 0.611 0.129

ST 0.806 0.705 0.636 0.119 0.793 0.681 0.607 0.126
ST* 0.804 0.700 0.633 0.121 0.789 0.671 0.610 0.132
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Table 17: The combination weights obtained with SVM for the original and modified features for S2783 data set.

SO (0.19)1NE + (0.20)2NE + (0.23)3NE + (0.27)MUT + (0.09)T + (0.03)pH

SO* (0.19)1NE + (0.20)2NE + (0.22)3NE + (0.27)MUT + (0.09)T + (0.03)pH + (0.00)PAM

TO (0.19)MUT + (0.56)CA + (0.17)SA + (0.05)T + (0.02)pH

TO* (0.21)MUT + (0.23)CA + (0.12)SA + (0.06)T + (0.02)pH + (0.00)PAM + (0.23)CB + (0.07)BFA + (0.06)BFB

ST (0.04)1NE + (0.03)2NE + (0.04)3NE + (0.21)MUT + (0.45)CA + (0.15)SA + (0.06)T + (0.02)pH

ST* (0.02)1NE + (0.02)2NE + (0.03)3NE + (0.21)MUT + (0.21)CA + (0.11)SA + (0.06)T + (0.02)pH + (0.00)PAM + (0.19)CB + (0.06)BFA + (0.06)BFB

Table 18: The combination weights obtained with SVR for the original and modified features for S2783 data set.

SO (0.15)1NE+ (0.25)2NE+ (0.22)3NE+ (0.31)MUT + (0.04)T + (0.02)pH

SO* (0.16)1NE+ (0.26)2NE+ (0.22)3NE+ (0.29)MUT + (0.05)T + (0.01)pH + (0.01)PAM

TO (0.25)MUT + (0.72)CA + (0.02)SA + (0.01)T + (0.00)pH

TO* (0.28)MUT + (0.10)CA + (0.05)SA + (0.08)T + (0.03)pH + (0.01)PAM + (0.43)CB + (0.01)BFA + (0.01)BFB

ST (0.02)1NE+ (0.02)2NE+ (0.02)3NE+ (0.26)MUT + (0.57)CA + (0.04)SA + (0.07)T + (0.03)pH

ST* (0.01)1NE+ (0.01)2NE+ (0.01)3NE+ (0.30)MUT + (0.10)CA + (0.06)SA + (0.07)T + (0.01)pH + (0.00)PAM + (0.43)CB + (0.01)BFA + (0.01)BFB

Table 19: Performance measures of SVM early integration (SO) for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.829 0.793 0.602 0.071 0.000 0.831 0.788 0.615 0.073 0.000
2 2 0.834 0.813 0.582 0.059 0.024 0.839 0.816 0.596 0.058 0.025
2 5 0.840 0.839 0.544 0.043 0.059 0.845 0.844 0.560 0.042 0.060
5 1 0.842 0.815 0.599 0.058 0.064 0.847 0.821 0.615 0.057 0.066
5 2 0.848 0.839 0.569 0.044 0.092 0.852 0.844 0.587 0.044 0.094
5 5 0.854 0.871 0.531 0.029 0.122 0.857 0.874 0.545 0.030 0.127
10 1 0.884 0.839 0.735 0.058 0.298 0.884 0.844 0.743 0.058 0.303
10 2 0.891 0.863 0.712 0.043 0.322 0.892 0.870 0.717 0.042 0.329
10 5 0.897 0.863 0.621 0.028 0.364 0.894 0.885 0.620 0.031 0.371

Table 20: Performance measures of SVR early integration (SO) for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.835 0.862 0.538 0.038 0.020 0.836 0.859 0.544 0.039 0.019
2 2 0.838 0.883 0.519 0.030 0.038 0.839 0.878 0.526 0.031 0.036
2 5 0.839 0.947 0.280 0.003 0.147 0.839 0.963 0.278 0.004 0.149
5 1 0.931 0.894 0.887 0.051 0.513 0.926 0.886 0.880 0.054 0.516
5 2 0.952 0.947 0.750 0.007 0.608 0.947 0.963 0.743 0.010 0.612
5 5 0.954 0.857 0.571 0.001 0.640 0.949 0.997 0.530 0.000 0.646
10 1 0.966 0.947 0.827 0.008 0.656 0.961 0.963 0.826 0.010 0.658
10 2 0.968 0.913 0.749 0.003 0.677 0.963 0.976 0.749 0.006 0.678
10 5 0.969 0.775 0.586 0.000 0.695 0.965 0.999 0.566 0.000 0.699
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Table 21: Performance measures of SVM late integration for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.829 0.792 0.606 0.072 0.000 0.831 0.787 0.617 0.074 0.000
2 2 0.833 0.806 0.597 0.064 0.012 0.836 0.804 0.609 0.065 0.013
2 5 0.838 0.825 0.581 0.054 0.031 0.840 0.820 0.594 0.056 0.030
5 1 0.839 0.812 0.609 0.062 0.032 0.841 0.808 0.621 0.064 0.035
5 2 0.842 0.825 0.595 0.055 0.048 0.844 0.820 0.610 0.057 0.049
5 5 0.847 0.845 0.566 0.043 0.073 0.849 0.844 0.582 0.045 0.076
10 1 0.849 0.825 0.618 0.056 0.072 0.851 0.820 0.634 0.058 0.075
10 2 0.852 0.837 0.599 0.048 0.089 0.856 0.837 0.617 0.049 0.094
10 5 0.859 0.836 0.492 0.027 0.147 0.861 0.866 0.507 0.029 0.154

Table 22: Performance measures of SVR late integration for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.828 0.862 0.512 0.036 0.021 0.834 0.862 0.532 0.037 0.019
2 2 0.834 0.907 0.472 0.021 0.053 0.837 0.897 0.484 0.023 0.056
2 5 0.833 0.961 0.327 0.005 0.123 0.838 0.963 0.328 0.005 0.130
5 1 0.938 0.916 0.856 0.032 0.474 0.940 0.909 0.865 0.033 0.477
5 2 0.949 0.961 0.770 0.009 0.535 0.952 0.963 0.779 0.009 0.541
5 5 0.952 0.937 0.620 0.001 0.570 0.953 0.979 0.630 0.003 0.575
10 1 0.966 0.961 0.872 0.010 0.604 0.965 0.963 0.860 0.010 0.606
10 2 0.970 0.936 0.757 0.001 0.638 0.966 0.977 0.748 0.004 0.638
10 5 0.970 0.860 0.660 0.000 0.652 0.967 0.984 0.675 0.002 0.652

Table 23: Performance measures of SVM intermediate integration (TO*) for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.807 0.712 0.632 0.116 0.000 0.802 0.693 0.636 0.124 0.000
2 2 0.823 0.755 0.598 0.083 0.051 0.822 0.749 0.603 0.086 0.055
2 5 0.836 0.802 0.540 0.053 0.108 0.837 0.804 0.548 0.052 0.112
5 1 0.851 0.769 0.678 0.082 0.165 0.849 0.765 0.679 0.084 0.168
5 2 0.862 0.802 0.636 0.058 0.207 0.862 0.804 0.639 0.058 0.211
5 5 0.874 0.725 0.357 0.022 0.309 0.872 0.796 0.351 0.021 0.318
10 1 0.878 0.802 0.717 0.066 0.300 0.879 0.804 0.728 0.065 0.308
10 2 0.891 0.787 0.550 0.034 0.372 0.892 0.813 0.562 0.034 0.383
10 5 0.898 0.399 0.224 0.013 0.436 0.899 0.579 0.244 0.012 0.445

Table 24: Performance measures of SVR intermediate integration (TO) for S2783 data set with reject option.

cv test

λ α Acc. Prec. Recall FP Rate Reject Acc. Prec. Recall FP Rate Reject

2 1 0.810 0.723 0.595 0.099 0.035 0.808 0.715 0.596 0.102 0.037
2 2 0.839 0.843 0.405 0.026 0.177 0.840 0.855 0.393 0.024 0.185
2 5 0.843 0.589 0.101 0.001 0.258 0.841 0.946 0.103 0.003 0.260
5 1 0.918 0.887 0.629 0.021 0.505 0.917 0.889 0.615 0.022 0.515
5 2 0.926 0.589 0.275 0.002 0.555 0.924 0.946 0.268 0.004 0.562
5 5 0.926 0.310 0.127 0.000 0.565 0.925 0.877 0.125 0.001 0.573
10 1 0.961 0.589 0.436 0.003 0.698 0.952 0.946 0.458 0.005 0.697
10 2 0.963 0.310 0.200 0.000 0.708 0.953 0.877 0.256 0.001 0.708
10 5 0.963 0.310 0.200 0.000 0.708 0.953 0.877 0.256 0.001 0.708
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tures for S1615 data set, using ST*, we get (0.18)CA +
(0.09)SA + (0.26)CB + (0.08)BFA + (0.06)BFB = 0.67 of
1.00.

Prediction Using Only the Amino Acid Sequence

We analyze simulation results to see how accuracy
changes if we have only the sequence information. For
both data sets, the best performance in early integration is
obtained with (SO. ORIGINAL.SVM). The average test accu-
racies are 0.904 and 0.832 for S1615 and S2783 data sets,
respectively. Intermediate integration for S1615 data set
achieves 0.872 average testing accuracy with SO, which is
higher than those of TO and ST (0.833 and 0.818, respec-
tively). With the extra features, the accuracies are 0.872,
0.879, and 0.878 for SO*, TO*, and ST*, respectively (see
Table 10). The improvement with additional information
in TO* and ST* is not significant when compared with SO.
For S2783 data set, intermediate integration achieves
0.800 test accuracy with SO. All feature representations
achieve statistically similar test set accuracies for both
multikernel SVM and SVR.

Prediction from only the sequence information could be
considered more valuable at present as sequence-based
data are more readily available. Even if the average accu-
racy is increased by extra structural features, these features
are obtained through costly experimental procedures like
x-ray crystallography or NMR spectroscopy. Spending
more effort on making better use of sequence-only fea-
tures with different learning methods might be more ben-
eficial.

Classification with Reject Option

When we compare the results of classification with reject
option, we see that early and late integration methods
tends to reject fewer test instances than intermediate inte-
gration with late rejects the least. For example, in order to
achieve 0.850 test set accuracy, early and late integration
need to reject around 10 per cent of the test instances

FP rate vs. rejection rate for each integration method using SVM as the base learner with changing λ and α valuesFigure 3
FP rate vs. rejection rate for each integration method 
using SVM as the base learner with changing λ and α 
values.
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FP rate vs. rejection rate for each integration method using SVR as the base learner with changing λ and α valuesFigure 4
FP rate vs. rejection rate for each integration method 
using SVR as the base learner with changing λ and α 
values.
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Distribution of the correctly classified (grey) and misclassified (black) instances of S1615 data set after the SVM combiner over the free energy change due to single-site mutation, ΔΔGFigure 5
Distribution of the correctly classified (grey) and mis-
classified (black) instances of S1615 data set after the 
SVM combiner over the free energy change due to 
single-site mutation, ΔΔG. Misclassified instances are clus-
tered mainly around zero. In the regions {-∞, -4} and {3, ∞} 
all instances are correctly classified.
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whereas intermediate integration rejects around 15 per
cent of the test instances (see Tables 19, 21, and 23).
Another target can be achieving a specific FP rate. In this
case, for example, early and late integration reject 10 per
cent of the test instances and intermediate integration
rejects 35 per cent of the test instances to get a FP rate less
than 0.05. The same behavior can also be observed for
regression (see Tables 20, 22, and 24).

Comparison with Other Studies

Our methodology using 20-fold cv has comparable accu-
racy to previous studies [2,7,9,41]. S1615 data set is based
on Protherm that has been also used by those studies.
Nevertheless, it is not exactly the same data set as we
remove the test set from the training set, thus we represent
our comparison with this caveat in Table 25. Early integra-
tion approach is used in all referred works. They all report
the performance of their predictors based on k-fold cv,
also including the test set in cross-validation. The highest
accuracy reported so far is 0.930 evaluated on a subset of
the training data [9]; our early integration has the accuracy
of 0.904 on the independent test set. In those studies,
higher accuracies are reported in the presence of structural
information, which is in agreement with our findings
though the difference is not significant in our case. Ours is
the first study that compares early, intermediate, and late
integration to incorporate knowledge from different data
sources for the problem of predicting protein stability,
also analyzing the effect of different types of sequence and
structural information.

Conclusion
In protein stability prediction, we investigate three
approaches for combining multiple representations/
learners, namely, early, intermediate, and late integration.
These approaches can be used in both classification and
regression. Early integration uses a single learner to com-
bine multiple inputs whereas late integration combines
the decisions of learners using different inputs. Intermedi-
ate integration combines inputs at the kernel level. We
find that early and late integration are significantly more
accurate than intermediate integration and intermediate
integration allows knowledge extraction in the sense that
it can pinpoint the features that are useful and how much
they contribute. One advantage of combination is that if
a new feature set, a kernel or a method for learning is pro-
posed (using machine learning or some other approach),
it is always possible to include it among the set we use and
thereby improve accuracy even further.

In general, we would expect early integration to suffer
more from the curse of dimensionality when many input
sources are concatenated. Late integration combines deci-
sions and therefore is expected to be more robust; the dis-
advantage would be the need to train/store/use multiple
learners. Intermediate integration is in between these two
extremes where separate features are not used in a raw
manner (as in early integration) nor are decisions
extracted from them (as in late integration) but are con-
verted to similarities (using kernels) and fed to a single
learner. The relative weights of features can be measured
using intermediate integration. Of course, ours is a single

Table 25: Comparison of our results for S1615 data set with previously published studies. 

Ref. Method Data Set Size Accuracy Information

[41] SVM 2048 0.77 (20-fold cv) Seq

[42] SVM 1383 * 0.73 (20-fold cv) Seq

[9] NN
NN+FOLDX

1615 0.79 (20-fold cv)
0.87 (test set†)
0.93 (test set†)

Seq+Str

[2] SVM 1496‡ SO: 0.84, TO: 0.85, ST: 0.85 (20-fold cv)
SO: 0.86, TO: 0.86, ST: 0.86 (test set)

Seq+Str

[31] iPTREE 1615 0.87 (10-fold cv) Seq+Str

Ours Early
Late
Intermediate

1122 (training)
383 (test)

0.842 (20-fold cv), 0.904 (test set)
0.847 (20-fold cv), 0.903 (test set)
0.826 (20-fold cv), 0.879 (test set)

Seq+Str

*Filtered from the set of 2048 mutations [41].
† A subset of the training set that was previously used in training.
‡ Filtered from the set of 1615 mutations [9].
Machine learning method, data set, performance assessment are the main features to be compared. (Seq: Sequence-based information, Seq+Str: 
Sequence- and structure-based information)
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study and further research is needed before one can
explain with enough confidence where and why each inte-
gration method works the best. Of the three which one
should be chosen depends on the application and other
criteria, such as how much time and space can be
afforded.

We see that in terms of accuracy there is no significant dif-
ference between interpreting this as a classification or
regression problem except that a regressor tends to have a
lower FP rate. We also conclude that introducing a reject
option is useful to reject cases where a classifier or a regres-
sor is not confident; it allows achieving a much lower FP
rate taking into account the loss incurred for rejections
and misclassifications.

As a future direction, we can add features, for example, to
reflect the side chain conformation change due to a single-
site mutation by a simple modeling.
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