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We introduce a machine-learning interatomic potential for tungsten using the Gaussian Approxi-
mation Potential framework. We specifically focus on properties relevant for simulations of radiation-
induced collision cascades and the damage they produce, including a realistic repulsive potential for
the short-range many-body cascade dynamics and a good description of the liquid phase. Fur-
thermore, the potential accurately reproduces surface properties and the energetics of vacancy and
self-interstitial clusters, which have been long-standing deficiencies of existing potentials. The po-
tential enables molecular dynamics simulations of radiation damage in tungsten with unprecedented
accuracy.

I. INTRODUCTION

Tungsten is considered to be the only viable material
for the highest heat load parts of an energy-producing
fusion reactor. High-energy neutrons emitted from the
fusion plasma initiate collision cascades in the wall ma-
terial, leading to permanent damage. Understanding the
radiation-induced microstructural changes and evolution
is therefore a topic of active research [1–3]. Achieving a
comprehensive understanding of the radiation damage re-
quires a combined effort of experimental measurements
and theoretical modelling. Atomistic simulations using
classical molecular dynamics (MD) have been a fruit-
ful tool for understanding the atom-level damage pro-
duction that is beyond reach of experimental time and
length scales, such as the formation and morphology of
radiation-induced defects [4, 5]. The accuracy of MD
relies, however, completely on the accuracy of the inter-
atomic potential, which is typically a relatively simple
analytical function fitted to reproduce a selected set of
material properties.
Simulating collision cascades and the damage they pro-

duce is a particularly challenging task for the interatomic
potential. The material experiences a number of atom-
level changes during the evolution of a cascade, includ-
ing many-body atom collisions, localised melting, rapid
recrystallisation with extreme temperature and pressure
gradients, and defect clustering. Describing all these as-
pects pushes the interatomic potential to (and often be-
yond) its limits, and different potentials can give widely
different results [6–9]. For radiation damage in tungsten
and other metals, the embedded atom method poten-
tials [10], and to a lesser extent Tersoff-like bond-order
potentials [11], have been particularly successful [12–18].
Nevertheless, several key properties of tungsten have re-
mained challenging to capture. For example, many po-
tentials fail to reproduce the relative stability of dislo-
cation loops [5, 16, 19], which leads to large differences
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especially in the damage produced by overlapping cas-
cades [5, 20]. Most existing potentials suitable for radia-
tion damage in tungsten also fail to reproduce the bind-
ing of small vacancy clusters, such as the peculiar repul-
sion of the di-vacancy [21, 22]. Furthermore, the major-
ity of tungsten potentials consistently underestimate the
surface energy by up to 30–40%, and struggle to repro-
duce the order of stability of different surfaces [15, 23].
All of these deficiencies can be attributed to the limited
flexibility of the fixed functional form of the potentials,
whereby some properties often can be impossible to re-
produce without sacrificing more important properties.

In the past decade, various forms of machine-learning
interatomic potentials have become increasingly popu-
lar [24–30]. The main advantage of using machine learn-
ing to construct potentials is that a fixed analytical form
is not assumed, which results in flexible potentials that
can describe virtually any material and their properties.
Additionally, machine-learning potentials can be system-
atically improved towards the accuracy of the training
data by increasing the degrees of freedom of the model.
The main practical limitation of machine-learning po-
tentials is the computational speed, which is typically
several orders of magnitude lower than analytical po-
tentials [31]. However, more efficient implementations
and optimisations will likely reduce the computational
cost of machine-learning potentials significantly, as re-
cently demonstrated in Ref. [32]. In this work, we employ
the Gaussian Approximation Potential (GAP) frame-
work [25, 33, 34] to develop a potential for tungsten, with
particular focus on radiation damage. The rest of the ar-
ticle is structured as follows. In section II we introduce
the mathematical structure of the potential. Computa-
tional details are summarised in section III. In section IV
we describe in detail the training strategy along with the
contents of the training database. We subject the trained
potential to extensive benchmarking for validation in sec-
tion V, followed by an outlook and concluding remarks
in section VI.

https://doi.org/10.1103/PhysRevB.100.144105
mailto:jesper.byggmastar@helsinki.fi


2

II. POTENTIAL DETAILS

The total energy of an atom i in the GAP formalism is
evaluated using Gaussian process regression [25, 35], and
can be written as a sum over basis (kernel) functions

Ei = δ2
M
∑

s

αsK(qi,qs), (1)

where s loops over a set of M representative atoms from
the training database. δ sets the scale and range of en-
ergies to be trained. K is the kernel function, which
acts as a measure of similarity between the atomic en-
vironment of the known atom s and the desired atom
i. The local atomic environments are quantified by the
descriptor q. The keys to achieving good accuracy lie in
the choices of kernel functions and descriptors, as well
as in a clever construction of the training database. The
energies (along with forces and possibly virial stresses)
from the training database are learned by optimising the
coefficients αs given by the solution of a regularised least-
squares problem [36]. Regularisation is applied by sup-
plying weights in proportion to the expected errors of the
training data, σν (which should include both the uncer-
tainties of the training data and errors due to assuming
a finite range of the GAP). For a more detailed descrip-
tion of the mathematical framework of GAP, we refer to
Refs. [34, 36].

When training the GAP, we use a combination of
two descriptors with associated kernels. A simple two-
body descriptor (i.e. the interatomic distance) with the
Gaussian-like squared exponential kernel is used to cap-
ture the majority of the interatomic bond energies. As
is typical for GAP models, the many-body interactions
are described by the Smooth Overlap of Atomic Positions
(SOAP) kernel [33]. We tried including a three-body de-
scriptor, but found that the accuracy was only marginally
increased and therefore rely on SOAP for capturing all
many-body effects. The mathematical background of
SOAP has been extensively described in Ref. [33] and
will not be repeated in detail here. Shortly, SOAP com-
pares two atomic environments by integrating the overlap
of their smeared atomic densities, as obtained by placing
Gaussian functions centred on each atom position within
the cutoff radius. In addition to the GAP, we use an
external pair potential to take care of the extreme repul-
sion at short interatomic distances, as discussed in detail
below. The total energy of a system of N atoms then

reads

Etot =

N
∑

i<j

Vpair(rij) +

N
∑

i

EGAP

=

N
∑

i<j

Vpair(rij)

+ δ22b

N
∑

i

M2b
∑

s

αs,2bK2b(qi,2b,qs,2b)

+ δ2mb

N
∑

i

Mmb
∑

s

αs,mbKmb(qi,mb,qs,mb),

(2)

where the 2b and mb subscripts are used to separate the
two-body and many-body (SOAP) terms. The hyperpa-
rameters associated with the two descriptor terms used
when training the GAP are listed in Tab. I, along with
short descriptions for each parameter. The interaction
range of both descriptor terms is limited by a 5 Å cut-
off radius. We tested several cutoff values in the 3–7 Å
range, and found 5 Å to be a reasonable choice. The val-
ues for Nsparse, nmax, lmax and δ were chosen following
systematic convergence tests. Nevertheless, we note that
the accuracy of the GAP is not particularly sensitive to
the exact hyperparameter values listed in Tab. I.
The internuclear repulsion at extremely short distances

is accounted for by the external pair potential in the form
of a screened Coulomb potential

Vpair(rij) =
1

4πε0

ZiZje
2

rij
φ(rij/a)fcut(rij), (3)

where

a =
0.46848

Z0.23
i + Z0.23

j

. (4)

The function is identical to the universal Ziegler-
Biersack-Littmarck (ZBL) potential [37], but the screen-
ing function φ(x) is refitted specifically for W-W repul-
sion using the all-electron DFT-DMol data from Ref. [38].
The DFT-DMol calculations were optimised for the high-
energy repulsive part and recently found to show ex-
cellent agreement with experiments [39]. We refit the
screening function for two reasons. First, we found that
the ZBL potential for W-W is noticeably different than
both the all-electron DFT-DMol data and our vasp data.
Second, it is useful to have some freedom for tuning
the pair potential, in order to ensure a smooth connec-
tion with the near-equilibrium energies and forces to be
learned by the GAP. We accomplish this by making sure
that the screened Coulomb potential smoothly joins and
closely matches the repulsive energy and forces corre-
sponding to the closest interatomic distances present in
the training structures (see Fig. 1). Only the differences
in energies and forces between the external pair potential
and the training data need to be reproduced by the GAP.
Hence, the GAP is taught to predict energies and forces
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TABLE I: Input parameters used when training the
GAP. Rcut: cutoff radius, R∆cut: width of cutoff region,

δ: energy scale, Nsparse: number of sparse points
(representative environments picked from the training

structures), nmax and lmax: limits of spherical
harmonics used in SOAP, σatom: width of atomic

Gaussians in SOAP, ζ: exponent of SOAP kernel. For
more details, see Ref. [34].

SOAP Two-body

Rcut 5 Å 5 Å
R∆cut 1 Å 1 Å
δ 2 eV 10 eV
Nsparse 4000 20
Sparse method CUR Uniform
nmax 8 -
lmax 8 -
σatom 0.5 Å -
ζ 4 -

close to zero for short interatomic distances, so that the
screened Coulomb potential fully dictates the short-range
dynamics, as desired. The fitted screening function is

φ(x) = 0.32825 exp(−2.54931x)

+ 0.09219 exp(−0.29182x)

+ 0.58110 exp(−0.59231x).

(5)

The screened Coulomb potential is forced to zero by the
cutoff function

fcut(r) =











1, r ≤ r1
1− χ3(6χ2 − 15χ+ 10), r1 < r < r2
0, r ≥ r2,

(6)

where χ = (r − r1)/(r2 − r1). The cutoff range is chosen
as r1 = 1 Å and r2 = 2.2 Å, leaving the near-equilibrium
bond energies to be fully machine-learned. The cutoff
function is the same as in [40], and is continuous at the
end-points up to the second derivative. In practice, Vpair

is tabulated and provided as input when training the
GAP.

III. COMPUTATIONAL DETAILS

The DFT training structures were calculated using
vasp [41–44] and the PBE GGA exchange-correlation
functional [45]. The 14 5s25p65d46s2 electrons were
treated as valence electrons with the core electrons ac-
counted for by the Projector-Augmented Wave (PAW)
method [46, 47] (the W sv PAW potential in vasp

5.4.4). The plane-wave cutoff energy was 500 eV and
the Brillouin zone was integrated using Monkhorst-Pack
grids [48] with a consistent spacing between k-points for
all cell sizes (using KSPACING=0.15 Å−1 in vasp, result-
ing in e.g. a 5×5×5 grid for a 54-atom conventional bcc

TABLE II: Structures included in the training database.
Ns is the number of each structure type, Natoms is the
number of atoms in each structure, N tot

atoms is the total
number of atoms of a given structure type, and Nrep.

the number of representative atoms picked for the
SOAP descriptor.

Structure type Ns Natoms N tot
atoms Nrep.

Isolated atom 1 1 1 1
Dimer 13 2 26 13
Distorted bcc unit cells 2496 1–2 2996 69
Distorted other crystals:

fcc 100 1 100 35
hcp 100 2 200 24
A15 100 8 800 141
C15 100 6 600 142
dia 100 2 200 66
sc 100 1 100 59

High-T bcc 20 54 1080 23
Vacancies:

single vacancy 200 53 10600 201
di-vacancies 10 118 1180 25
tri-vacancies 15 117 1755 46

Self-interstitials (SIAs):
single SIAs 32 121 3872 113
di-SIAs 15 122, 252 2350 93

bcc surfaces
(1 0 0) 45 12 540 27
(1 1 0) 45 12 540 9
(1 1 1) 43 12 516 50
(1 1 2) 45 12 540 34

Liquids 46 128 5760 1937
Disordered surfaces 24 128, 144 3264 461
Short-range 100 53–55 5390 431

All 3749 42410 4000

cell). A smearing of 0.1 eV by the first-order Methfessel-
Paxton method [49] was applied to help the convergence.
The same settings were used for both the training and
validation data.
The GAP was trained using quip [50]. All molecular

dynamics simulations were performed using lammps [51]
compiled with quip for GAP support [50]. Phonon dis-
persion, nudged elastic band (NEB), and molecular stat-
ics calculations were performed within the Atomic Simu-
lation Environment (ASE) framework [52]. For calcula-
tions within the quasi-harmonic approximation, we used
the phonopy code [53].

IV. TRAINING

Fitting an interatomic potential suitable for all aspects
of radiation damage is a challenging task. The potential
must be able to reproduce a wealth of properties and
atomic geometries that might be encountered during the
evolution of a collision cascade and the subsequent re-
crystallisation of the molten cascade core. Among the
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most important properties are the energy landscape and
relative stability of various defects, from single vacan-
cies and self-interstitial atoms (SIAs) to defect clusters.
The potential must also reproduce realistic short-range
dynamics defined by the repulsive part of the potential.
Additionally, melting and recrystallisation as well as the
structure of the liquid phase at various densities should
be well described, in order to reproduce a realistic atomic
mixing during the heat spike of a collision cascade. Fur-
thermore, if surface irradiation is of interest, the energet-
ics of perfect and damaged surfaces must be considered.
No single existing potential is able to capture all of these
aspects, and it is our goal to construct a training database
of structures that captures all of the above-mentioned
properties. Previously, Szlachta et al. trained a GAP for
tungsten [54] that excellently reproduces the properties
of screw dislocations and vacancies. It was not, how-
ever, trained to self-interstitial atoms or the liquid phase
and did not include a realistic repulsive potential, and is
therefore not applicable to radiation damage simulations.

Table II lists the types of structures included in the
training database. The isolated atom is included to re-
produce the correct cohesion. The elastic response of
bcc tungsten was trained using randomly distorted unit
cells. Part of these structures were taken from the train-
ing data of the previous W GAP [54]. As we are inter-
ested in physics far from equilibrium, we included unit
cells with large elastic distortions (with volumes up to
about ±30% of the equilibrium volume). Similar elas-
tically and randomly distorted unit cells were prepared
for the fcc, hcp, A15, C15, diamond cubic, and simple
cubic crystal structures. These serve to expose the GAP
to additional high-symmetry atomic environments.

Finite-temperature lattice vibrations were accounted
for by including snapshots from MD simulations at
1000 K with three different volumes. The MD sim-
ulations were performed using an early version of our
GAP, trained only to a small initial part of the train-
ing database. The structures containing a single va-
cancy were taken from [54] (although only half of them
were used in training while the other half were left for
validation). We also added various di-vacancy and tri-
vacancy structures to provide better transferability to
clusters of multiple vacancies. Furthermore, we prepared
SIAs in the common high-symmetry configurations in
bcc: 〈1 1 1〉, 〈1 1 0〉, and 〈1 0 0〉 dumbbells, and atoms in
the octahedral and tetrahedral sites.

We checked how well a GAP trained only to single
SIAs is able to predict the formation energies of clusters
of multiple SIAs. While parallel dumbbell clusters were
sufficiently well reproduced, it was not able to predict
the relative stability of non-parallel SIA clusters. For
example, the formation energies of the triangular 〈1 1 0〉
di-SIA and SIA clusters in the C15 Laves phase (both
of which are ground-state SIA configurations in Fe, but
not in W [55]), were underestimated and therefore too
stable. To correct this, we added structures containing
two SIAs to the training database, including parallel and

non-parallel dumbbells, and in the form of the smallest
possible C15 cluster [55, 56]. After adding di-SIAs to
the training database, we found that the GAP is able to
predict the energies of larger clusters in excellent agree-
ment with DFT, as will be discussed later. All of the
above-mentioned vacancy and SIA structures were sam-
pled from MD simulations at 500–1000 K using an early
version of the GAP. We note that several of the SIA struc-
tures did not remain stable during the MD preparation
simulations (for example, the 〈1 1 0〉 and 〈1 0 0〉 SIAs ro-
tate towards the 〈1 1 1〉 configuration). We included sev-
eral of these unstable, rotating SIA configurations in the
training database in order to capture various migration
and rotation paths.

Liquid structures were added iteratively until the pre-
dicted errors of newly prepared structures were below
around 10 meV/atom. The first few liquid structures
were prepared in MD simulations using the existing W
GAP [54]. An initial GAP version trained to these struc-
tures was then used to run MD and sample additional
liquid structures. We considered a range of different den-
sities around the experimental density of liquid tungsten
17.6 g/cm3 [57], including clearly unphysical low-density
liquids to ensure that the GAP does not stabilise any
spurious low-density structures. We also included half-
molten structures to capture the melting process.

Low-index bcc surface structures were taken from [54]
((1 1 1) surfaces from [58]). Additionally, to make our
GAP applicable to surface irradiation and improve the
transferability to arbitrary surface structures, we also
included damaged and half-molten (1 1 0) and (1 0 0)
surfaces. These structures were prepared by high-
temperature MD simulations using an early version of the
GAP that was trained to most of the remaining database,
including all liquid structures and the clean surfaces.

To ensure a physically reasonable and smooth dissoci-
ation of atoms as well as to guide the repulsive potential
fit, we include energies and forces from the dimer disso-
ciation curve. Fig. 1 shows the dimer curve as given by
our DFT calculations, compared with all-electron DFT
data obtained by the DMol code [38]. Our DFT results,
which treats the core-electrons as frozen with the PAW
formalism, are in good agreement with the all-electron
DFT-DMol data down to about 1 Å, below which there
is a clear divergence from DFT-DMol. Hence, we only
include dimer distances larger than 1.1 Å in the training
database, for which the DFT data closely overlaps with
DFT-DMol and the fitted Vpair. This ensures a smooth
connection between the trained GAP and Vpair, as the
GAP is trained to predict negligible energies and forces
for interatomic distances below 1.1 Å. The behaviour of
the GAP at short interatomic distances is further inves-
tigated in Appendix A.

For capturing the short-range many-body dynamics in
bcc tungsten encountered in collision cascades, we pre-
pared various bcc crystals with a randomly added inter-
stitial atom (called ”short-range” in Tab. II). The short-
est allowed distance between the added atoms and its
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FIG. 1: Top: short-range repulsion of a W–W dimer
given by our DFT, the all-electron DFT-DMol data [38],
the screened Coulomb potential Vpair, and the trained
GAP. The inset highlights the divergence of DFT

compared to DFT-DMol at around 1 Å, which is used
when sampling structures for the training database.

Bottom: The near-equilibrium part of the dimer curve.

neighbours was 1.1 Å, corresponding to the lower limit of
the range where DFT with frozen core-electrons is accu-
rate, as discussed above. A rich variety of short-range en-
vironments was captured by adding the randomly placed
atom to both perfect crystalline structures, and systems
containing one or two vacancies. In part of the vacancy
structures, the atom was inserted in a random position
around the vacancy. Hence, in addition to sampling the
non-equilibrium geometries similar to the early stages of
an energetic recoil event, these structures also capture
arbitrary vacancy migration paths.

The entire training database contains around 40,000
local atomic environments, which is considerably fewer
than many previous single-element GAPs [36, 54, 58].
Indeed, we aimed to keep the training database relatively
small in anticipation of re-using the same structures for

other non-magnetic bcc metals and as a basis for alloy
potentials. For this reason, we decided to omit structures
related to screw dislocations and gamma surfaces, which
made up a large fraction of the training database for the
previous tungsten GAP [54] and the iron GAP [58].

When training the GAP, different weights are assigned
to different structure types through the regularisation
parameters σν . For liquids, short-range, and the dimer
structures we used σenergy

ν = 10 meV/atom, σforce
ν = 0.4

eV/Å. For disordered surfaces σenergy
ν = 10 meV/atom,

σforce
ν = 0.2 eV/Å, and for all other structures σenergy

ν = 1
meV/atom, σforce

ν = 0.04 eV/Å. Virial stresses were
only trained for the distorted crystal unit cells, using
σvirial
ν = 0.04 eV. The resulting root-mean-square er-

rors (RMSE) of the training data are consistent with
the assumed uncertainties, being well below 1 meV/atom
and 0.1 eV/Å for most crystalline structures, and a few
meV/atom and around 0.3–0.4 eV/Å for the liquid and
short-range structures.

V. VALIDATION

In the following sections we present results from bench-
marking of the GAP, including properties that by design
are well-represented by the training database, as well
as properties that were not specifically targeted in the
construction of the training data. We attempt to high-
light both the strengths and shortcomings of the GAP, to
demonstrate the applications for which the GAP is well-
suited, but also applications where an extension of the
training database would be necessary. The results are
compared with experimental data when possible, with
DFT data from the literature when indicated as such,
and with our own DFT results otherwise.

A. Bulk properties

Basic properties of bcc tungsten are compiled in
Tab. III. All listed properties are well-represented by the
training database, and therefore in close agreement with
DFT. We note that the vacancy formation energy is sur-
prisingly sensitive to the size of the box in DFT, even
though elastic interactions across the periodic boundaries
are negligible [63] and the k-point density is the same.
With a box of 53 atoms we obtain a formation energy of
3.36 eV, while a box of 120 atoms gives 3.22 eV. Almost
identical values have been reported previously [62, 63]
(3.35 for a 53-atom box and 3.22 for a 127-atom box).
Since our training database contains structures of differ-
ent sizes, the GAP reproduces a value in-between these
two values (regardless of box size).

Fig. 2 shows energy-volume curves of various crystal
structures. All of these crystals were included in the
training database (although only as randomly distorted
cells) and the GAP therefore accurately reproduce the
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TABLE III: Basic properties of bcc tungsten: energy
per atom Ebcc, cohesive energy Ecoh, lattice constant a,

bulk modulus B and elastic constants Cij , (1 1 0)
surface energy Esurf , vacancy formation energy Evac

f ,
vacancy relaxation volume Ωvac

rel., vacancy migration
energy Evac

mig., lowest SIA formation energy ESIA
f , SIA

migration energy (main path) ESIA
mig., and melting

temperature Tmelt.

Exp. DFT GAP

Ebcc (eV/atom) −12.956 −12.956
Ecoh (eV/atom) −8.81a

−8.39 −8.39
a (Å) 3.165a 3.1854 3.1852
B (GPa) 310a 304 309
C11 (GPa) 522a 522 526
C12 (GPa) 204a 195 200
C44 (GPa) 161a 148 149
Esurf (meV/Å2) 187b, 203b 204 204
Evac

f (eV) 3.67 ± 0.2c3.36d, 3.22e 3.32
Ωvac

rel. −0.36d, −0.33e
−0.31

Evac
mig. (eV) 1.7–1.9c, f 1.73g 1.71

ESIA
f (eV) 10.25h 10.34

ESIA
mig. (eV) < 0.1f 0.040i 0.038

Tmelt (K) 3687a 3450 ± 100j 3540 ± 10

a Ref. [57] b Ref. [59] c Ref. [60]
d 53 atoms e 120 atoms f Ref. [61]
g Ref. [62] h Ref. [63] i Ref. [64] j Ref. [65]
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FIG. 2: Energy-volume curves of the various crystal
structures included in the training database. The data
points are DFT data and the solid lines are the GAP

predictions.

DFT data. The only visible discrepancies are for strongly
expanded fcc and hcp lattices (> 20 Å3/atom).

To further explore the transferability of the GAP to
crystal symmetries not included in the training database,
we considered four different volume-conserving deforma-
tion paths of the bcc crystal. The tetragonal path (also
called the Bain path) is perhaps the most well-known
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FIG. 3: Volume-conserving deformation paths of bulk
W computed with GAP and DFT.
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FIG. 4: Phonon dispersion of bcc W as given by the
GAP and compared with DFT [54, 70] and
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path, in which a bcc crystal is stretched along the [1 0 0]
direction and simultaneously compressed in [0 1 0] and
[0 0 1], leading to the fcc symmetry and eventually the
body-centred tetragonal (bct) crystal. For the trigonal
path, the bcc crystal is stretched along the [1 1 1] direc-
tion and compressed in [1 1 0] and [1 1 2], reaching the
simple-cubic symmetry and eventually fcc again. The or-
thorhombic deformation path involves stretching in the
[0 0 1] direction while compressing in [1 1 0]. Finally, twin-
ning and anti-twinning involves shearing a primitive bcc
lattice in [1 1 1] (positive strains for twinning and nega-
tive strains for anti-twinning) and can be used to measure
the theoretical shear strength of single crystals [66]. The
energy difference for each of these deformation paths are
shown in Fig. 3, where the GAP results are compared
with our DFT data. The values of c/a and p correspond
to the magnitude of the strains. For more details about
the various deformation paths, we refer to Refs. [67–69].
For the most part, GAP is indistinguishable from DFT,
with the only notable exceptions being underestimating
the anti-twinning energy and the high-strain tail of the
trigonal path. Note that all deformation paths corre-
spond to strains far beyond the maximum strains of the
training structures.

Fig. 4 shows the phonon dispersion of bcc tungsten
compared with experimental data and previous DFT
studies [54, 70, 71]. The dispersion relation is overall
well-reproduced by the GAP, although subtle discrepan-
cies exist, in particular between the H and P points and
at the N point. It remains unclear what causes these
differences between GAP and DFT, which were also ob-
served in the previous tungsten GAP [54] (the phonon
dispersions in both GAPs are virtually identical).

The linear thermal expansion and the associated ex-
pansion coefficient (αL) of bcc tungsten as predicted by
the GAP is shown in Fig. 5, and compared with exper-
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FIG. 5: Linear thermal expansion (top) and the
expansion coefficient (bottom) of bcc W predicted by
the GAP and compared with experimental results [72].
GAP data is obtained from both MD simulations and
by using the quasi-harmonic approximation (QHA).

TABLE IV: Heat capacities (CP , CV ), linear thermal
expansion coefficient (αL), and Grüneisen parameter
(γ) at 300 K calculated within the quasi-harmonic

approximation with GAP and DFT, and compared with
experimental data.

Exp. DFT GAP

CP (J mol−1K−1) 24.35a23.95 23.98
CV (J mol−1K−1) 24.20a23.77 23.77
αL (10−6K−1) 4.43b 4.87 5.10
γ 1.6a 1.80 1.87

a Ref. [73] b Ref. [72]

imental measurements from [72] and our DFT results.
The expansion is calculated with the reference temper-
ature set to room temperature (300 K), as in the ex-
perimental data. GAP data is obtained by two differ-
ent methods; MD simulations in the NPT ensemble,
and calculations within the quasi-harmonic approxima-
tion (QHA) using the phonopy code [53]. The lat-
ter includes zero-point energies and is accurate at low
temperatures, but eventually fails when anharmonic ef-
fects beyond the QHA become non-negligible. On the
other hand, MD fails at low temperatures but is reli-
able at temperatures when zero-point energies are neg-
ligible. Fig. 5 shows that the experimentally measured
low-temperature trend is well-captured by both GAP and
DFT when combined with the QHA. Fig. 5 also suggests
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from Ref. [74]. GAP data for the bulk modulus is

obtained from both MD simulations and by using the
quasi-harmonic approximation (QHA). DFT data are
shown at 0 K for the elastic constants and as obtained
by the QHA for the bulk modulus. The solid lines

connecting the GAP points are polynomial fits to guide
the eye.

that the QHA is valid up to around 1000 K, while MD
with the GAP is consistent with the experimental trend
at temperatures above 300 K. The thermal expansion
coefficients at room temperature are listed in Tab. IV,
along with heat capacities and the Grüneisen parame-
ter. The experimental heat capacity is well-reproduced
by both GAP and DFT. DFT overestimates the exper-
imental room-temperature thermal expansion coefficient
and Grüneisen parameter by about 10%, and GAP by
about 15%.

Fig. 6 shows the elastic constants of bcc W at fi-
nite temperatures as predicted by the GAP. The re-

sults are compared to the experimental least-squares fits
from Ref. [74], measured for single crystals up to around
2000 K. The uncertainties of the experimental curves
are shown as shaded areas. The GAP elastic constants
are extracted from the average stress tensor of constant-
temperature MD simulations of distorted bcc systems
containing 1024 atoms. The error bars are given by
the standard deviation of the values obtained for equiv-
alent elastic constants (e.g. C11, C22, and C33). The
experimental trends are qualitatively well reproduced by
the GAP, although quantitative differences are appar-
ent. Both C11 and C44 decrease at increasing temper-
atures, while C12 remains almost constant at low tem-
peratures and increases slightly at higher temperatures.
The weak temperature dependence of C12 is reproduced
by the GAP, although the uncertainties in both experi-
ments and MD are larger than for the other elastic con-
stants. The softening of the bulk modulus in DFT can
be estimated from finite-temperature free energy-volume
curves calculated in the quasi-harmonic approximation.
Results for both DFT and the GAP coupled with the
QHA are shown for the bulk modulus in Fig. 6. Note
that as previously mentioned, the QHA is only reliable
up to around 1000 K. The good agreement between GAP
and DFT for the bulk modulus indicate that the quan-
titative discrepancies between experiments and GAP are
mainly inherited from DFT, as both GAP and DFT pre-
dict a slightly stronger temperature dependence of the
bulk modulus than experiments.

For validating that we sampled enough liquid struc-
tures, we performed a form of k-fold cross validation
(with k = 5). That is, we split the 45 liquid structures
into five subsamples, with each part containing liquids
with different densities. Five different GAP models were
then trained using four of the subsamples together with
the rest of the training database, while for each model
leaving out a different liquid subsample for validation.
The mean root-mean-square errors for the energy and
forces of the validation subsamples for the five GAP mod-
els are 7.76 meV/atom and 0.434 eV/Å. These values are
close to the assumed uncertainties, σν , used when train-
ing the GAP (10 meV/atom and 0.4 eV/Å). This pro-
vides confidence that the GAP reproduces the energies
and forces of any liquid structure with sufficient accuracy.

We simulated the melting temperature predicted by
the GAP using the solid-liquid interface method. At 3540
K, the solid and liquid phases remains roughly in equi-
librium, while at 3550 K the entire system melts and at
lower temperature it recrystallises. The estimated melt-
ing temperature of 3540 K is slightly lower, but very
close to the experimental value of 3687 K [57]. Wang
et al. [65] used vasp with comparable settings to our
training data (PBE functional and hard PAW potential),
and estimated a melting point of 3450± 100 K using two
different methods. This is in line with the GAP predic-
tion of 3540 K, which confirms that the GAP reproduces
melting with DFT accuracy. Hence, the slight underes-
timation compared to experiments can be attributed to
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FIG. 7: Surface energies predicted by the GAP and
compared with DFT. Only the first four surfaces were
included in the training database. The experimental

values are from Ref. [59].

the accuracy of DFT with the PBE functional.

B. Surface properties

We calculated surface energies of 10 surfaces with DFT
in order to test how transferable the GAP is to surfaces
not included in the training database. A comparison be-
tween GAP and DFT is shown in Fig. 7, where only the
first four low-index surfaces were included in the training
database. The GAP successfully predicts surface energies
in close agreement with DFT, with the largest discrep-
ancies within 5 meV/Å2 of the DFT values. The or-
der of stability is also for the most part reproduced by
the GAP, although e.g. the (3 2 1) surface is incorrectly
lower in energy than the (1 1 1) surface. The ability to re-
produce accurate surface energies is a clear improvement
over traditional analytical potentials, which consistently
underestimate surface energies and fail to reproduce the
correct order of stability [23].
We also confirmed that the GAP reproduces the DFT-

observed displacements along the surface normal dur-
ing relaxation of the most common surfaces. Relaxation
of the most stable (1 1 0) surface involves a small shift
(−0.07 Å) of the topmost layer down towards the bulk.
For the (1 1 1) surface in both the GAP and DFT, the
topmost atomic layer is relaxed by −0.27 Å, the second
layer by −0.08 Å and the third layer by 0.14 Å compared
to the initial bulk lattice spacing. The (1 1 2) surface
undergoes a subtle spontaneous reconstruction. In both
DFT and the GAP, the topmost layer is laterally dis-
placed by 0.1 Å in the [1 1 1] direction during relaxation
(0.06 Å with respect to the second surface layer and 0.11
Å with respect to the third). This is in excellent agree-

FIG. 8: Reconstruction of the (1 0 0) surface. Top left:
initial unrelaxed surface, top right: reconstructed

surface. Only the top two surface layers are shown and
atoms are coloured according to height, so that atoms
in the top layer are green and atoms in the second layer

purple. Red arrows show the direction of the
displacement vectors with respect to the unrelaxed
surface. The bottom figure shows a side-view of the

zigzag surface layer.

ment with the experimentally observed lateral [1 1 1] shift
of 0.1 Å [75].

For the (1 0 0) surface, there is an experimentally and
theoretically observed reconstruction, in which the atoms
in the surface layer are shifted laterally by a small dis-
tance, resulting in zigzag rows of atoms [76, 77]. This
reconstruction does not occur spontaneously in either
DFT or the GAP when optimising the atom positions,
and is not explicitly included in the training database.
Nevertheless, since our GAP is trained to various disor-
dered or half-molten surface structures (the purpose of
which is to at least qualitatively capture arbitrary sur-
face properties), it is a good test to investigate whether
it is able to reproduce the (1 0 0) reconstruction. Indeed,
upon heating and quenching a (1 0 0) surface in MD sim-
ulations with the GAP, the (1 0 0) surface reconstructs in
the way described above. Fig. 8 shows snapshots of the
initial and reconstructed surfaces. The lateral displace-
ment of the surface atoms in the reconstructed layer is
about 0.2 Å in the 〈1 1〉 direction in the surface plane,
which is slightly below the DFT-obtained 0.28 Å [78] but
coincidentally in better agreement with the experimen-
tal value 0.24 Å [77]. The surface energy of the relaxed
reconstructed surface is about 3 meV/Å2 lower than for
the perfect (1 0 0) surface.

In order to further test the GAP for surface proper-
ties, we carried out NEB calculations for the main migra-
tion paths of adatoms on the (1 1 0) and (1 0 0) surfaces
(adatom-hopping between adjacent ground state adsorp-
tion sites, and the exchange migration as discussed in
e.g. [79]). The tests revealed that while the GAP repro-
duces the correct stable adsorption sites, the migration
paths are systematically underestimated by about 20–
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30% compared to the DFT values from [79]. For exam-
ple, the main migration mechanism of adatoms on the
(1 1 0) (hopping between adjacent long-bridge sites) has
a barrier of 0.87 eV according to DFT [79], while GAP
predicts a barrier of 0.6 eV. For the exchange mecha-
nism, the comparison is 3.09 eV by DFT and 2.5 eV
by GAP. Hence, the GAP does reproduce the correct
adatom behaviour in terms of stable sites and migration
mechanisms, but would require an extension of the train-
ing database in order to achieve quantitative agreement
with DFT (by e.g. adding various stable and unstable
adatom structures to the training data). Nevertheless, we
conclude that including the disordered surface structures
in the training database achieved our goal of qualitatively
capturing the correct behaviour of damaged surfaces.

C. Repulsive potential

The short-range many-body behaviour relevant for cas-
cade simulations was tested by statically moving an atom
along various crystal directions in the bcc lattice. The
difference in total energy and the force components of the
moving atom were calculated in both GAP and DFT.
Only the interatomic range for which DFT is still ac-
curate, as discussed previously, was sampled (down to
about 1.1 Å or 100–200 eV energy differences). Fig. 9
shows the obtained curves for six different crystal direc-
tions. Several more directions were sampled with similar
results, and therefore not shown here. The agreement
between GAP and DFT is excellent. Considering that
none of the points shown in Fig. 9 were included in the
training database, we are confident that the GAP repro-
duces any short-range forces and energies encountered
in cascade simulations with DFT accuracy. Fig. 9 also
includes results using the previous tungsten GAP [54],
demonstrating the poor extrapolation of GAP when re-
pulsive interactions are not considered during training.
To test the short-range part of the GAP in dynamic

simulations, we simulated the threshold displacement en-
ergy (TDE) surface according to the methods described
in Ref. [81]. The simulations were performed at 0 K.
We also simulated a few directions in a sample equili-
brated at 40 K for comparison, but found that the min-
imum values for a given direction remained the same as
for 0 K. Hence, we report the results obtained at 0 K,
for which we can exploit the full symmetry of the lattice
when sampling directions. The crystal directions were
sampled uniformly over the symmetry-reduced sphere at
5◦ intervals. We used a non-cubic simulation box of 4368
atoms. The increment in kinetic energy was 4 eV. After
obtaining the full angular map of TDEs, we sampled ad-
ditional directions close to the low-index directions with
a lower increment of 1 eV to obtain more exact TDE
values for comparison with experiments.
Fig. 10 shows the angular map of the threshold dis-

placement energies obtained at 0 K with the GAP. The
global average of the uniformly sampled directions is

93.6 ± 5.5 eV. As expected based on experimental re-
sults [80], the minimum TDE values are found around
the 〈1 0 0〉 and 〈1 1 1〉 directions. Experimental values are
42±1 eV for 〈1 0 0〉 and 44±1 eV for 〈1 1 1〉, obtained at
a temperature ≤ 7 K [80]. In simulations, it is not obvi-
ous how to report the values for a given crystal direction
due to the possibility of small angular deviations leading
to large differences in the TDEs, either due the random-
ness of thermal and zero-point displacements or simply
due to the anisotropy of the TDE surface [8, 81]. In ex-
periments, the electron beam is spreading in the sample,
so the measurement always actually probes some angular
interval around the principal direction. Without knowl-
edge of the precise details of the experimental setup, it is
very difficult to know what the magnitude of this spread
is. In simulations, one has to choose a tolerance around
the exact desired crystal direction (at 0 K with the GAP,
the TDE at e.g. exactly 〈1 0 0〉 is significantly higher
than a few degrees away from 〈1 0 0〉). Using a 10◦ toler-
ance, the minimum TDE values obtained with the GAP
are 45.5 ± 0.5 eV for the 〈1 0 0〉 direction and 51.5 ± 0.5
eV for 〈1 1 1〉, slightly higher than the experimental val-
ues. However, allowing for a 15◦ tolerance, the mini-
mum around the 〈1 1 1〉 direction becomes 47.5± 0.5 eV,
but remains the same for the 〈1 0 0〉 direction. For the
〈1 1 0〉 direction, GAP predicts a TDE of 78± 2 eV. The
〈1 1 0〉 direction was not accessible from the experimental
measurements, but good fits to the measured data were
obtained by assuming values in the 70–80 eV range [80].

D. Self-interstitial atoms and clusters

Defects in the form of vacancies and self-interstitial
atoms and their clusters have been extensively studied
by density functional theory calculations in the litera-
ture. In particular, the recent papers by Ma and Du-
darev [62–64] provides a comprehensive database of the
energetics of single vacancies and SIAs in bcc metals,
while Alexander et al. [82] in detail studied the energetics
of SIA clusters. Most conveniently, they also used vasp

with very similar input as we used when constructing the
training database (the only noteworthy difference being a
12-electron PAW potential compared to 14 valence elec-
trons in our DFT). Hence, we can rely on their results
to be consistent with our training data and therefore use
them to benchmark our GAP against defect properties.

Single SIAs have historically been thought to sta-
bilise as straight 〈1 1 1〉 dumbbells or crowdions, and
migrate one-dimensionally through sequences of subtle
〈1 1 1〉 dumbbell-to-crowdion motion. However, it has
been speculated [21] and recently thoroughly demon-
strated [64], using DFT, that the most stable single SIA
configuration in tungsten in fact is a tilted 〈1 1 ξ〉 con-
figuration, where ξ is close to 0.5. The difference in
energy between the 〈1 1 ξ〉 and the straight 〈1 1 1〉 con-
figuration is only 0.04 eV [64]. We did not explicitly
include the 〈1 1 ξ〉 configuration in the training struc-
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FIG. 10: Threshold displacement energies obtained with
the GAP at 0 K. The colours are linearly interpolated
between the (light grey) data points. The average value
of the uniformly sampled points is 93.6± 5.5 eV and the
minimum values 45.5 eV for the 〈1 0 0〉 direction, 51.5
eV for 〈1 1 1〉 and 78 eV for 〈1 1 0〉, compared with the
experimental values 42± 1 eV for 〈1 0 0〉 and 44± 1 eV

for 〈1 1 1〉 [80].

tures. Nevertheless, as we did sample various rotating
dumbbells when constructing the training database, the
GAP successfully reproduces the 〈1 1 ξ〉 configuration as

the most stable single SIA. The difference in energy to
the straight 〈1 1 1〉 dumbbell is 0.04 eV, consistent with
DFT. Fig. 11 shows the formation energies of the com-
mon high-symmetry SIAs in bcc tungsten. The formation
energies were calculated after minimising the positions
and stress of a non-cubic box of 421 atoms, for which the
elastic interactions across the periodic borders are min-
imal. The GAP formation energies are systematically
around 0.1 eV higher than the DFT values from [63],
except for the 〈1 1 0〉 dumbbell. Consequently, the differ-
ence in energy between the 〈1 1 1〉 and 〈1 1 0〉 configura-
tions is only 0.21 eV, compared to 0.29 eV by DFT. This
is also visible in Fig. 12, and might have consequences
in high-temperature simulations, as the frequency 〈1 1 1〉-
to-〈1 1 0〉 rotations will be overestimated. Despite efforts,
we were not successful in eliminating this anomaly, which
might be a consequence of the relatively small systems
(121 atoms) included in the training database.
Fig. 12 shows the main migration barriers of single

SIAs calculated with the NEB method. The minimum
along the 〈1 1 0〉-to〈1 1 1〉 rotation corresponds to the
〈1 1 ξ〉 configuration, with ξ just above 0.5 in both GAP
and DFT. Fig. 12b shows the expected zigzag migration
path of a [1 1 ξ] SIA towards an adjacent [1 ξ 1] posi-
tion [64]. The GAP reproduces this migration barrier in
excellent agreement with DFT. In addition to the static
NEB calculations, we used the GAP to observe the migra-
tion of single SIAs in molecular dynamics simulations at
low temperatures. We confirmed that it adopts the 〈1 1 ξ〉
symmetry and migrates in a one-dimensional zigzag-like
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manner along the path shown in Fig. 12b, consistent with
the DFT-based predictions discussed in [64].
Most existing interatomic potentials for radiation dam-

age are fitted so that single SIAs are described well. How-
ever, it should also be transferable to larger clusters that
readily form in e.g. collision cascade simulations. We
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FIG. 13: Formation energies of self-interstitial clusters
in W compared between GAP and DFT data from
Ref. [82]. Note that only sizes 1 and 2 were fit, so all
the other data points serve as tests of the potential.

found that fitting only single SIAs does not guarantee
transferability to larger clusters, and that di-SIAs (both
parallel and non-parallel dumbbell configurations) must
be included in the training database. For tungsten, the
majority of existing potentials struggle to reproduce the
correct trend of the relative stability of clusters of mul-
tiple SIAs. For example, several widely used EAM po-
tentials predict dislocation loops with the Burgers vector
〈1 0 0〉 to be lower in energy than the 1/2〈1 1 1〉 loops [5],
which is in clear contradiction to DFT [82] and experi-
mental observations [83, 84]. We therefore put particular
focus on ensuring that our GAP reproduces the expected
trend obtained by DFT.

Fig. 13 shows formation energies of parallel 〈1 1 1〉 and
〈1 0 0〉 SIA clusters (i.e. dislocation loops) compared be-
tween the GAP and DFT data from [82]. 1/2〈1 1 1〉 clus-
ters are created by inserting parallel dumbbells with a
(1 1 0) habit plane, and 〈1 0 0〉 with a (1 0 0) plane, as
in [82]. We also include the C15 clusters, which for small
sizes have energies between the two dislocation loops.
Overall, the GAP data closely overlaps with the DFT
data across the entire DFT size range.
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trend reproduced by most other EAM potentials as well.

E. Vacancies and vacancy clusters

The vacancy formation energy and the vacancy migra-
tion barrier given by the GAP are consistent with DFT,
as seen in Tab. III. This is expected as both of these
properties are well-represented by the training structures.
The binding of di-vacancies is a peculiar feature of tung-
sten and some other bcc transition metals. DFT predicts
that the binding energy of the second-nearest neighbour
(2NN) di-vacancy is strongly repulsive, while other NN
separations provide either weakly binding or weakly re-
pulsive configurations, as shown in Fig. 14. Reproduc-
ing this behaviour has presented a challenge for the vast
majority of traditional interatomic potentials, but can
be captured by the GAP as seen in Fig. 14. Note that
only the 1NN and 2NN di-vacancy configurations were
included in the training database. Overall, the GAP re-
produces the di-vacancy binding trend in good agreement
with DFT, with only the 5NN configuration being slightly
more stable than DFT predictions.

Larger clusters of vacancies form three-dimensional
voids or planar dislocation loops. These include spher-
ical voids, 1/2〈1 1 1〉 and 〈1 0 0〉 dislocation loops. Cal-
culations with existing potentials have shown that small
vacancy dislocation loops are unstable and ”open up”
in the direction normal to the loop plane during relax-
ation [19, 86], forming what we refer to as planar voids.
The critical sizes at which dislocation loops become more
stable than their corresponding planar voids are, how-
ever, vastly different in different interatomic potentials.
Some potentials predict the crossovers to occur already
at a few tens of vacancies (1–2 nm diameters), while other
predict crossovers at sizes well above 100 vacancies [19].
Since the size of the simulation cell needs to be relatively
large for clusters of this size, obtaining reliable DFT re-
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FIG. 15: Formation energies of vacancy clusters in W
obtained with the GAP.

sults to resolve this discrepancy is difficult, although ef-
forts are currently ongoing [87]. We used the GAP to
investigate the relative stability of the different types of
vacancy clusters. As the GAP is trained to di- and tri-
vacancies and accurately reproduces surface energies, we
expect it to be reasonably transferable to larger vacancy
clusters.

We created 〈1 0 0〉 and 1/2〈1 1 1〉 vacancy clusters by
removing atoms in two or three consecutive 〈1 0 0〉 or
〈1 1 1〉 planes, respectively. To create dislocation loops,
the surrounding atomic layers were compressed to create
an initial strain field. For a cluster of size N vacancies,
the N nearest atoms were removed in the corresponding
planes for planar clusters, and in 3D for voids, result-
ing in clusters as close to circular and spherical shapes
as possible. The simulation cells contained around 5500
atoms for clusters below 40 vacancies, and 16000 atoms
for clusters in the 40–100 size range. Fig. 15 shows the
formation energies per vacancy for the different clusters,
calculated after a minimisation of the atomic positions
and pressure.

The GAP predicts spherical voids to be the most sta-
ble vacancy cluster. The sharp local minima and maxima
of the voids in Fig. 15 correspond to symmetric config-
urations. The 1/2〈1 1 1〉 loop is the most stable planar
configuration for sizes above around 40 vacancies, con-
sistent with experimental observations of (both intersti-
tial and vacancy) dislocations loops [84]. For dislocation
loops, only energies of stable sizes are shown in Fig. 15.
Loops smaller than 20 vacancies for 1/2〈1 1 1〉 and smaller
than 30 vacancies for 〈1 0 0〉 spontaneously open up into
planar voids during relaxation. The almost constant or
slightly increasing formation energy per vacancy at small
clusters seen in Fig. 15 is indicative of the weak or some-
times repulsive binding energies of small vacancy clusters
in tungsten. The crossovers in stability between disloca-
tion loops and planar voids occurs at 25 vacancies for
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1/2〈1 1 1〉 (but they remain very close in energy up to
40 vacancies) and at 55–60 vacancies for 〈1 0 0〉 clusters.
This is roughly consistent with recent DFT results, which
predicted a crossover at around 45 vacancies for 1/2〈1 1 1〉
clusters [87].

VI. CONCLUSIONS AND OUTLOOK

We have shown that a machine-learning potential
(GAP) with a moderately sized training database can
capture a variety of properties of tungsten with essen-
tially DFT accuracy. Even though the potential is fairly
general, we particularly focused on reproducing proper-
ties relevant for radiation damage. The flexibility of the
machine-learning framework allows the potential to de-
scribe properties that have been persistent challenges for
analytical potentials, such as the relative stability of de-
fect clusters and various surface properties. Hence, the
potential will be useful for extracting more accurate data
from classical molecular dynamics simulations of radia-
tion damage in fusion-relevant tungsten, and settle pre-
viously unclear discrepancies in results with different ex-
isting potentials [5, 20]. We should, however, emphasise
that the computational cost of the GAP with the cur-
rent implementation is about 2–3 orders of magnitude
higher than traditional analytical potentials. The high
computational cost makes it challenging to obtain exten-
sive statistics of radiation damage, but recent work on
optimisation of the SOAP kernel has shown promising
speed-ups without loss of accuracy [32].
The GAP also provides a good basis for further ex-

tension or development of potentials tailored to specific
applications that are not reflected by our training struc-
tures. Additionally, the potential can be useful as a ba-
sis for extension to multi-component potentials, such as
tungsten-based alloys or potentials for plasma-wall inter-
actions in fusion reactor conditions. In the latter case,
the accurate description of various surface reconstruc-
tions and surface energies provides an attractive basis for
more accurate modelling of fusion-relevant W–H and W–
He surface interactions (by adding analytical or machine-
learned potentials for the light elements). Additionally,
the training structures and fitting strategy can be easily
repeated to develop similar potentials for other bcc met-
als. Efforts in these directions are ongoing and will be
published elsewhere.
The potential files and the training database are avail-

able as supplementary material and from Ref. [88].
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15

Appendix A: GAP predictions at extremely short

interatomic distances

The short-range part of the potential is dominated by
the external screened Coulomb potential, as discussed in
the main text. Nevertheless, it is crucial to make sure
that the machine-learning extrapolations of the energies
and forces at short interatomic distances do not interfere
with the pair potential (i.e. remain smooth and negligi-
ble in magnitude). Fig. 16 shows the energies and forces
predicted by the GAP with and without the added pair
potential for the dimer curve. Following the strategy de-
scribed in the main text, the energies and forces given
by GAP without the pair potential are negligible in com-
parison to the contributions from the pair potential, as
desired. However, we found that the GAP becomes un-
stable at some distance close to zero, due to numerical
limitations of the spherical harmonics expansion used in
the SOAP descriptor. This is visible as kinks in the en-
ergy curve, leading to diverging forces as illustrated in
the zoomed-in insets in Fig. 16. For previous GAPs for
W, Fe, and Si [36, 54, 58], this instability occurs at dis-
tances in the 0.15–0.4 Å range, which might very well be
reached in e.g. collision cascade simulations. Although
none of the previous GAPs included a realistic repulsive
part and are not suitable for cascade simulations, they
can be made so by adding a repulsive pair potential.
A simple approach to eliminate the instability is to em-

ploy a smooth switching scheme between the GAP and a
repulsive pair potential, similar to what is typically done
with EAM and Tersoff-like potentials [89] (although it
becomes slightly less straight-forward due to the pure
many-body nature of the SOAP descriptor). We tested
such a scheme, in which the contributions of the GAP
term is smoothly forced to zero, while the full screened
Coulomb potential, Vpair, remains present. The total en-
ergy of atom i is then evaluated as

Ei = S(i)





∑

j

Vpair + EGAP(i)



+ [1− S(i)]
∑

j

Vpair

= S(i)EGAP(i) +
∑

j

Vpair,

(A1)

where j loops over all atoms within the cutoff range of
atom i and S(i) is a switching function that depends on
the environment of atom i and goes smoothly to zero
when the environment contains very short distances. In
our test, we simply let S(i) = S(rmin), where rmin is

the shortest interatomic distance from atom i. For the
switching function we chose the cutoff function in Eq. 6
(but inverted to approach zero as r decreases). An al-
most identical approach was recently proposed for mak-
ing deep learning neural network potentials applicable to
irradiation simulations [90].
We found that our GAP becomes numerically unstable

only below around 0.03 Å, as seen in Fig. 16. These dis-
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FIG. 16: The energies and forces given by the GAP at
short interatomic distances with and without the

external pair potential. The zoomed-in insets show the
numerical instability of GAP at extremely short

interatomic distances.

tances will never be reached even in high-energy cascade
simulations, since the pair potential contributes with en-
ergies in the MeV range. Hence the numerical instability
is of no practical concern, and there is no need to employ
the above switching scheme for our GAP. Nevertheless,
we emphasise that when developing a GAP for radiation
damage, it is crucial to ensure that the numerical limit of
the SOAP implementation is beyond reach for any practi-
cal MD simulation, or eliminated by a switching scheme.
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[46] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[47] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[48] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188

(1976).
[49] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616

(1989).
[50] “QUIP - QUantum mechanics and Interatomic Po-

tentials,” https://github.com/libAtoms/QUIP, www.

libatoms.org.

https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1016/j.jnucmat.2012.08.018
https://doi.org/10.1146/annurev-matsci-070813-113627
https://doi.org/10.1146/annurev-matsci-070813-113627
https://doi.org/10.1016/j.jnucmat.2018.10.027
https://doi.org/10.1016/j.jnucmat.2018.10.027
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/10.1209/0295-5075/103/46003
https://doi.org/ 10.1088/1361-648X/ab0682
https://doi.org/ 10.1088/1361-648X/ab0682
https://doi.org/ 10.1103/PhysRevB.57.7556
https://doi.org/ 10.1103/PhysRevB.57.7556
https://doi.org/ 10.1016/j.jnucmat.2015.12.012
https://doi.org/ 10.1016/j.jnucmat.2015.12.012
https://doi.org/10.1016/j.jnucmat.2018.06.005
https://doi.org/10.1016/j.jnucmat.2018.06.005
https://doi.org/10.1021/acs.jctc.5b01194
https://doi.org/10.1021/acs.jctc.5b01194
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1080/01418618708204464
https://doi.org/10.1080/01418618708204464
https://doi.org/10.1103/PhysRevB.76.054107
https://doi.org/10.1103/PhysRevB.76.054107
https://doi.org/ 10.1088/0953-8984/25/39/395502
https://doi.org/10.1088/1361-648X/aa9776
https://doi.org/10.1088/1361-648X/aa9776
https://doi.org/10.1016/j.jnucmat.2018.01.059
https://doi.org/10.1016/j.jnucmat.2018.01.059
https://doi.org/ 10.1063/1.2149492
https://doi.org/ 10.1063/1.2149492
https://doi.org/ 10.1063/1.3298466
https://doi.org/ 10.1063/1.3298466
https://doi.org/10.1016/j.nme.2018.06.011
https://doi.org/10.1088/1361-648X/ab2ea4
https://doi.org/ 10.1016/j.jnucmat.2011.08.024
https://doi.org/ 10.1016/j.jnucmat.2011.08.024
https://doi.org/10.1088/1741-4326/aa99ee
https://doi.org/10.1088/1741-4326/aa99ee
https://doi.org/ 10.1088/0965-0393/22/5/053001
https://doi.org/ 10.1088/0965-0393/22/5/053001
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1137/15M1054183
http://arxiv.org/abs/1512.06054
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/ 10.1103/PhysRevLett.120.143001
https://doi.org/ 10.1103/PhysRevLett.120.143001
https://doi.org/10.1063/1.4966192
http://arxiv.org/abs/1906.08888
http://arxiv.org/abs/1906.08888
https://doi.org/10.1103/PhysRevB.100.024112
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1002/qua.24927
https://doi.org/10.1002/qua.24927
https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1016/S0168-583X(97)00447-3
https://doi.org/10.1016/S0168-583X(97)00447-3
https://doi.org/10.1016/S0168-583X(97)00447-3
https://doi.org/10.1016/S0168-583X(97)00447-3
https://doi.org/10.1016/j.nimb.2017.03.047
https://doi.org/10.1016/j.nimb.2017.03.047
https://doi.org/10.1016/j.nimb.2017.03.047
https://doi.org/10.1016/j.nimb.2017.03.047
https://doi.org/10.1016/j.nimb.2017.03.047
https://doi.org/ 10.1103/PhysRevB.88.064101
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1103/PhysRevB.40.3616
https://github.com/libAtoms/QUIP
www.libatoms.org
www.libatoms.org


17

[51] S. Plimpton, Journal of Computational Physics 117, 1
(1995), http://lammps.sandia.gov.

[52] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E.
Castelli, R. Christensen, Marcin Du lak, J. Friis, M. N.
Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C.
Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L.
Kolsbjerg, J. Kubal, Kristen Kaasbjerg, S. Lysgaard,
J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka,
Andrew Peterson, C. Rostgaard, J. Schiøtz, O. Schütt,
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