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The atomic-scale modeling and understanding of materials have made remarkable 

progress, but they are still fundamentally limited by the large computational cost of 

explicit electronic-structure methods such as density-functional theory (DFT). This 

Progress Report shows how machine learning (ML) is currently enabling a new degree 

of realism in materials modeling: by “learning” electronic-structure data, ML-based 

interatomic potentials enable atomistic simulations that reach similar accuracy levels 

but are orders of magnitude faster. A brief introduction to the new tools is given, and 

then applications to some selected problems in materials science are highlighted: 

phase-change materials for memory devices; nanoparticle catalysts; carbon-based 

electrodes for chemical sensing, supercapacitors, and batteries. It is hoped that the 

present work will inspire the development and wider use of ML-based interatomic 

potentials in diverse areas of materials research. 
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1. Introduction 

Materials science is an interdisciplinary research field spanning many different length scales. 

The most fundamental one is that of individual atoms, and of the three-dimensional structures 

that they form, driven by physical laws and chemical bonding. For example, the intercalation 

of Li and Na ions in electrode materials constitutes the atomistic mechanism for energy storage 

in next-generation batteries, and it is governed by a delicate interplay of physical forces[1] and 

the often highly complicated local structures involved.[2] Accurately describing, understanding, 

and ultimately controlling the atomic-scale structure of matter is therefore a central goal of 

materials science.[3–5]  

In pursuit of this goal, atomic-scale computer simulations have long been a central ap-

proach, and two major families of methods are routinely used today. On the one hand, there are 

quantum-mechanical simulations, in which we solve Schrödinger’s equation for the electronic 

structure of molecular and periodic systems, most widely based on density-functional theory 

(DFT).[6–8] These methods provide (largely) reliable results for structural models of materials 

that normally contain a few tens or hundreds of atoms. State-of-the-art DFT methods can be 

applied to many material classes, and they are increasingly used for high-throughput screening 

and “in silico” (computer-based) design of materials: new compositions and previously un-

known structures have been identified in DFT searches and subsequently experimentally real-

ized.[5,9–11] On the other hand, interatomic potential models (“force fields”), parameterizing in-

teractions between atoms with (relatively) simple functional forms, are widely used in materials 

science to describe matter in molecular dynamics (MD) simulations. These simulations grant 

access to larger time and length scales, reaching system sizes of up to hundreds of thousands of 

atoms.[12] In parameterizing these potentials, a certain physical form of the atomic interactions 

is assumed, often in terms of bond distances, angles, and so on, and physical properties such as 
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equilibrium lattice parameters or elastic constants enter the fitting of the potential. For this rea-

son, such potentials are often called “empirical”. They are several orders of magnitude faster 

than DFT, but necessarily less accurate and less easily transferable. 

In this Progress Report, we highlight recent developments in “machine-learned” intera-

tomic potentials, which represent a rapidly growing field that promises to do away with the 

aforementioned trade-offs. Over the last year, there has been a surge of interest in machine 

learning (ML) methodology: part of it is due to the dramatic growth of ML throughout the 

scientific disciplines, and part of it is due to tangible success stories of ML-based interatomic 

potentials that are now beginning to emerge. We will argue that this is an exciting development 

with very practical implications, currently on the verge of moving from a somewhat specialized 

new technology to everyday applicability, poised to enhance and complement the communities’ 

existing strengths in computational materials modeling. We will show selected applications of 

ML potentials to problems in materials science, discuss the current limitations (and possible 

pitfalls), and outline what we expect to be interesting directions for the development of the field 

in the coming years.  
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2. Essentials of Machine Learning Potentials 

Machine learning is the science and craft of extracting information from large datasets, forming 

a subset of the broader field of “artificial intelligence”. ML methods are currently making a 

tremendous impact in different areas of physics, chemistry, and materials science,[13–19] with 

research questions ranging from the accurate prediction of molecular energies[20–22] and explo-

ration of molecular reaction mechanisms[23,24] to the high-throughput screening of functional 

materials by way of optimizing a target property (say, the electronic band gap for a solar-cell 

light absorber, or the elastic properties for a superhard material) as a function of structural and 

other descriptors.[25–27] In what follows, we will strictly focus on one of the many emerging 

applications of ML in materials science: namely, on the generation and application of ML-based 

interatomic potentials for condensed-matter systems, which help to understand the structures, 

reactivities, and physical properties of materials on the atomic scale. 

ML potentials are a mathematical representation of the 3N-dimensional potential-energy 

surface (PES), that is, of the total energy and interatomic forces for a given set of N atomic 

positions. The concept resembles that of empirically fitted force fields, and ML potentials like-

wise make physically motivated assumptions, such as locality and smoothness of the PES. The 

crucial difference, however, is that ML models do not make any prior assumptions about the 

shape of the interatomic potential, that is, the specific functional form of the PES as a function 

of the atomic positions. Instead, any and all such information is extracted directly from a large 

set of input data, computed at an accurate and computationally much more expensive reference 

level (commonly, DFT). Once the potential has been fitted, it can be used to predict energies 

and forces for larger ensembles of atoms, without the need for additional reference data. It 

thereby gives the user access, e.g., to MD simulations that are orders of magnitude faster than 

with the reference method, bringing more complex structural problems within computational 

reach. In fact, access is gained to any property that is derived from the PES: for example, by 

computing interatomic force constants and vibrational (phonon) modes, one can predict thermal 
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transport properties.[28] However, the ML potentials discussed herein do not provide an explicit 

description of the electronic structure, and therefore they give no electronic information, such 

as band gaps or densities of states (DOS). 

 

 

 

Figure 1: Machine-learning methodology for materials simulations. (a) General overview of 
how ML-based interatomic potentials are constructed: from left to right, assembling a database 
of representative structural models, computing energies and forces using a reference quantum-
mechanical method (typically, DFT), expressing the atomic structure in “machine-readable” 
form using descriptors, and finally regressing (“learning”) the potential-energy surface. (b) Dif-
ferent types of descriptors for atomic environments, as commonly used in empirical as well as 
ML interatomic potentials. (c) The basic idea behind the SOAP representation,[29] in which the 
neighbor density of a given atom is expressed through Gaussian functions centered on atoms, 
controlled by the smoothness parameter, σat, and up to a specified cut-off, rcut. Sketch adapted 
from Ref. [30]. (d) Sketch of a neural-network architecture for fitting interatomic potential 
models, re-drawn after Ref. [31] where more information may be found. The atomic environ-
ment is represented by input functions, G, and the result is an atomic energy, ε. (e) Schematic 
of kernel methods to interpolate atomic properties (here, energies) by comparing an environ-
ment (red) with N entries in the reference database (green), after Ref. [32]. The approach is 
based on a similarity or kernel function k that returns, for pairs of environments, a value between 
0 (entirely dissimilar) and 1 (identical up to symmetry operations).  
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Three ingredients are needed to generate an ML potential for a given material (Figure 1): 

a database of reference structures and associated quantum-mechanical data (to which the po-

tential will be fitted); a mathematical way to represent the atomic structure such that it can be 

fed into the ML algorithm; and finally, the regression or “learning” task itself. We will discuss 

these three ingredients in sequence. 

2.1. Ingredient 1: Reference Databases 

The starting point for an ML potential is a set of reference configurations for which accurate 

energies and forces on atoms can be computed, typically using DFT. These reference data are 

collected for a representative set of atomic environments (“representative” in the sense that the 

potential is expected to encounter similar environments at runtime), shown as points in the 

stylized PES in Figure 1a, and stored in a suitable database format. The quality of these data-

points, and the effort and cost of acquiring them by quantum-mechanical computations, are 

important aspects in the generation of any ML potential. 

We emphasize that this database must contain higher-up regions of the PES, not only the 

local minima (e.g., experimentally known crystal structures). One example is to take structural 

snapshots from the liquid phase of a material, as sketched in Figure 1a. The aim in generating 

fitting databases is to achieve sufficient sampling with a finite number of structures, and one 

assumes that the smoothness of the PES will make it possible to interpolate between them—an 

assumption that is validated by experience. For example, an ML potential fitted only to a data-

base of liquid and amorphous carbon configurations (hence containing no prior knowledge of 

crystal structures, but of course some local resemblance of “tetrahedral” carbon) was shown to 

be suitable for crystal-structure searching in the spirit of the Ab Initio Random Structure Search-

ing (AIRSS)[33] technique, identifying a large number of known and new hypothetical carbon 

allotropes.[34] 
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Initially, reference databases for ML potentials have been constructed manually, which is 

still widely done today. As a starting point, one will extract the relevant crystal structures from 

data sources such as the Inorganic Crystal Structure Database (ICSD).[35] Rather than fully op-

timized cells, one will add structures in which the atoms are slightly distorted (which induces 

forces on atoms, and these forces provide valuable atomically-resolved information about the 

PES). Furthermore, structural models for point defects, surfaces, etc. are constructed, as one 

would do in DFT-based modeling,[36] and again a sufficient number of these configurations 

must be added to the reference database. Of course, the point is not just to reproduce what would 

be possible with DFT anyhow, but to exploit the “near-sightedness” of atomic and electronic 

structure[37] to learn from small systems and then to access larger length scales. For example, 

concerning crystal surfaces, the important Si (111) surface forms intriguingly complex and sta-

ble (2n+1)×(2n+1) type reconstructions (of which the 7×7 reconstruction has the lowest energy), 

involving adatoms, stacking faults and rings of 10 atoms.[38] These complex surface structures 

can be approximated by a set of smaller motifs (such as the adatoms), and these in turn can be 

included in the reference database. Consequently, it was shown that the energetic preference 

for the 7×7 reconstruction can be captured by an ML potential, whereas state-of-the-art empir-

ical potentials fail at the task (all of them incorrectly predicting the un-reconstructed surface 

structure to be the most favorable).[39] 

For liquid and amorphous structures in particular, iterative schemes have been used, in 

which an initial (coarse) potential is fitted to a limited DFT-MD dataset, and then simulations 

with this initial potential are run to create a more diverse set of structures. This way, the ML 

potential “steers” itself into regions of configuration space that need to be further explored, and 

large amounts of structures can be quickly assembled, much more quickly than would be pos-

sible with DFT-MD. This iterative training approach was suggested early on already, in the 

creation of the first ML potentials for silicon,[40] sodium,[41] and for the phase-change material 

GeTe,[42] the latter of which we will discuss in Section 4.1. Similar strategies were later used 
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for amorphous carbon,[43] where hundreds of small structural snapshots could be generated in 

parallel runs using a computationally cheap interim potential, and the end points of these tra-

jectories were evaluated with DFT and added to the database.[43] 

A more pressing challenge concerns the sampling of general PESs, which is needed to 

ensure wide applicability of ML potentials—combining robustness and flexibility in the high-

energy regions with sufficient accuracy in the low-energy regions (that is, for the stable and 

metastable crystal structures). A recently proposed strategy is to explore the PES using global 

searches[44–47] that are normally done in DFT-based crystal-structure prediction.[5] This idea can 

be taken a step further, by exploring and fitting structural space on the fly (and running all 

structural optimizations with interim potentials, requiring DFT only for single-point input data), 

thereby unifying ideas from ML potential fitting and crystal-structure searching.[46,48–50] Such 

approaches hold the long-term promise of discovering new materials on larger length scales 

than would be accessible to current state-of-the-art methods.[5,49] 

2.2. Ingredient 2: Representations for Atomic Structure 

With the reference data available, the second task is to describe the atomic structure in a suitable 

form as an input for the fit. In the ML jargon, the mathematical objects which encode the atomic 

structure (or, more generally, any information about the system) are referred to as “descriptors” 

(or “features”). Descriptors for local environments, centered on an atom and encoding infor-

mation about its neighbors, range from simple two- or three-body terms all the way to complex 

“many-body” formalisms (Figure 1b). All these descriptors must fulfill various symmetry re-

quirements, namely, permutational (regarding exchange of two atoms of the same kind), trans-

lational, and rotational invariance. For a descriptor to be usable in practice, it is normally con-

fined to a local environment of the atom, up to a given cutoff radius (typically, 5 or 6 Å).  
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Albeit the choices of representation and regressor are not necessarily tied to each other, 

the development of (currently) widely used representations for ML potentials has been moti-

vated by a specific fitting framework. Behler’s atom-centered symmetry functions (ASCFs) 

were introduced in 2011,[51] and today they are popular choices for NN potentials. For kernel-

based methods, these atomic descriptors are used to construct similarity measures between 

atomic environments, which are then employed for the regression task. A many-body descriptor 

initially developed for use with GAPs (see below) is the so-called “Smooth Overlap of Atomic 

Positions” (SOAP).[29] Within SOAP, Gaussian functions are placed on each atom inside the 

cutoff sphere (Figure 1c), the smoothness being controlled by the width of the Gaussian, σat. 

Two atomic environments can be compared by integration over positions and rotations; in prac-

tice, this is computed efficiently by expanding the density in a basis of radial functions and 

spherical harmonics, resembling how atomic orbitals are represented in quantum chemistry. 

SOAP can directly compare atomic environments with different and arbitrary numbers of neigh-

bors, returning a value between zero (totally dissimilar) and unity (identical up to symmetry 

operations); it is invariant under all physical symmetries and has continuous values and deriv-

atives.  

Recently, the works of Ceriotti and coworkers[52] and Drautz[53] revealed that SOAP and 

many other representations,[54,55] including Behler’s symmetry functions,[51] are in fact closely 

related and can be derived as projections of the atomic neighbor density onto variously chosen 

basis functions (cf. Figure 1c). Work in the community is ongoing, and we expect that new and 

improved basis functions will emerge in the near future.  

The relative merits of descriptors in terms of accuracy, speed, and the trade-off between 

the two, are currently being investigated;[56–58] the emerging conclusion seems to be that several 

many-body formalisms can be similarly suitable for practical use in ML potentials. There are 

many recent developments aside from the examples discussed above,[59,60] and we may refer 

the interested reader to a publicly available library of different descriptors.[57] We also stress 
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that some approaches (such as the Coulomb matrix:[61] a scaled, pairwise table of inverse atomic 

distances) provide a global, rather than atom-centered representation of a system, which is more 

useful for gas-phase molecules than for solids.  

2.3. Ingredient 3: Regression Tools and Implementations 

Once the reference data and atomic representations are in place, the final step is to carry out the 

fit itself. In the taxonomy of ML approaches, this is a “supervised learning” problem, because 

the input data (structures) are labeled (have reference energies); more specifically, it represents 

a regression task, because a continuous range of output values (energies) is sought. Approaches 

currently employed in the field can be roughly divided into three categories, namely, artificial 

neural networks (NNs), kernel-based methods, and linear regression. 

The description of potential-energy surfaces by artificial NNs builds on ideas from the 

1990s[62] and 2000s[63–65] when such networks were constructed for specific problems with fixed 

numbers of atoms in a system (e.g., an H2 molecule on a surface[63]). Over the last few years, 

NNs have gained enormous interest—driven by the idea to “learn” local, atomically short-

sighted energies which are then summed up to yield the total energy.[40] This approach makes 

it possible to access (much) larger system sizes than those encountered at the fitting stage, and 

it can make the resulting potentials more general, less dependent on which particular problem 

is to be studied. This idea of locality forms the basis of ML potential development as of today.  

NNs are a set of mathematical functions that aim at resembling the functionality of neu-

rons in the brain. Neurons, referred to as “nodes” in the context of a NN, accumulate and weigh 

input signals and “fire” (giving an output) once a certain threshold value is reached. This is 

achieved by a non-linear mathematical activation function; normally, several consecutive “hid-

den” layers (functions) are coupled, in which case one speaks of a “deep” NN. A simple exam-

ple for such an architecture is sketched in Figure 1d: the atomic structure is encoded by de-

scriptors that form the “input layer”, from which information is passed to (in this example) two 
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hidden layers and finally to the output; the hidden layers thereby carry no physical meaning on 

their own. To generate an NN potential, one will define the architecture (the number and shape 

of the nodes, the number of layers, etc.) and then “train” the model by optimizing the weights, 

tuning them such that the network’s error on a set of known data is minimized. A more detailed 

introduction to NN-based ML potentials and the associated methodology may be found in Refs. 

[31] and [66]. 

An alternative approach is given by kernel methods. In these, an atomic property is inter-

polated as a linear combination of kernel functions, the latter measuring how similar a new 

configuration’s descriptor is to those of the reference data. The property is typically a local 

energy, or a force acting on an atom, and the kernels can be understood as similarity measures 

(on a scale from zero to one) between the new environment and those contained in the database, 

both of which are represented by the descriptor. The regression coefficients that weigh each 

kernel basis function are computed during the fitting using simple linear algebra. Kernel ridge 

regression (KRR) and Gaussian Process Regression (GPR) are two currently employed tech-

niques, differing only slightly in how these coefficients are computed. These methods rely on 

a carefully designed kernel function that is appropriate for the problem (such as the SOAP 

kernel in the present case), whereas NNs are more general—but often need more data to balance 

out their extra flexibility.   
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Table 1. Selected examples of current methods and implementations for ML-based interatomic 

potentials that aim primarily at condensed-phase materials modeling. We do not add web ad-

dresses, as these may be subject to change, but they are easily retrieved using a web search. The 

fitting methods (“regressors”) include neural networks (NN), kernel methods such as Gaussian 

process regression (GPR) and kernel ridge regression (KRR), and linear fits. 

Method Reference Regressor Implementation 

Artificial neural networks (Behler) [40] (2007) NN RuNNer (custom); 
LAMMPS interface[67] 

Gaussian Approximation Poten-
tials (Bartók & Csányi) 

[68] (2010) GPR GAP code (custom); 
LAMMPS interface 

Spectral Neighbor Analysis Poten-
tial (SNAP) (Thompson) 

[55,69] (2015) Linear fit LAMMPS interface 

Adaptive, Generalizable, and 
Neighborhood Informed (AGNI) 
Force Fields (Ramprasad) 

[70–
72] 

(2015) KRR LAMMPS interface 

ænet (Artrith) [73] (2016) NN Standalone (“aenet”) 

Amp (Korshidi & Peterson) [74] (2016) NN Standalone (“amp”); 
LAMMPS interface 

Moment Tensor Potentials 
(Shapeev) 

[54,75] (2016) Linear fit LAMMPS interface 

DeePMD (E) [76] (2018) NN Standalone 
(“DeePMD-kit”); 
LAMMPS interface  

 

With the field evolving so rapidly, it is difficult to provide an accurate snapshot of its 

development. We collect in Table 1 several approaches that combine a theoretical framework 

and a practical implementation. Beyond the two major categories discussed herein (NNs and 

kernel methods), this notably includes emerging methods based on linear fitting, such as the 

SNAP[55] and Moment Tensor Potential[54] approaches; a complete review of all advances in the 

field is not possible within the scope of this Progress Report, but we stress that these methods 

are under active development as well. All methods referenced in Table 1 are primarily focused 

on condensed phases, as opposed to molecules (for which increasingly powerful ML potentials 
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are being developed just as well[77–79]), and they are implemented in freely available simulation 

software, such that they can be directly used by anyone. 

We conclude this methodological overview by stressing that all methods discussed here 

lead to “offline-trained” ML potentials: one generates (and extensively validates) a suitable 

potential for a specific material, and then applies it without further modification. We also men-

tion on-the-fly or “online-trained” ML potentials:[80–82] these start with a quantum-mechanical 

(again, normally DFT-based) MD simulation and train an ML potential while the simulation is 

being run. Numerical measures are put in place to monitor the degree of extrapolation (that is: 

do we need additional data at this point?), and after a while, DFT evaluations are only needed 

when the potential runs outside its “comfort zone”. The resulting potentials will be specific to 

the problem being studied: e.g., an on-the-fly fitted ML potential for TiO2 will not be expected 

(or required) to describe all the different crystal structures of elemental Ti correctly. In turn, 

such techniques promise an even much broader availability of ML-driven atomistic modeling 

in materials research. As a direct consequence, it becomes more and more important for the 

wider community to be aware of the nature, benefits, and limitations of such potentials. 
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3. High Accuracy for Crystalline and Amorphous Materials: The Case of Silicon 

We begin by illustrating the accuracy that ML potentials can reach in atomistic simulations for 

materials science. As a case in point, we choose elemental silicon, which has traditionally been 

a prominent test system for materials modeling. In terms of empirical interatomic potentials, 

the foundational models by Stillinger and Weber[83] and Tersoff[84] were introduced for silicon, 

as was, a decade later, the environment-dependent interatomic potential (EDIP) family.[85] Re-

vised and further improved empirical silicon potentials are continuing to be reported, such as 

one very recently optimized for the graphene-analogous 2D structure of “silicene”.[86] On the 

DFT side, having been able to describe the aforementioned silicon (111) surface was a major 

success at the time.[87] Far beyond the computational relevance and the deep academic interest, 

e.g., in the nature of its amorphous (non-crystalline) phase,[88] silicon is a centrally important 

material for applications: in crystalline form, it currently forms the backbone of the electronics 

industry; in amorphous form, it is used in solar cells,[89] thin-film transistors,[90] or as an anode 

material for batteries.[91]  

Silicon has been the verification and application case of choice for ML potentials as well, 

since the first high-dimensional NN potential was developed in 2007 by Behler and Parrinello: 

in their initial work, the neighbor statistics in the liquid phase were computed, and shown to 

outperform various high-quality empirical potentials.[40] Directly following, in 2008, Behler et 

al. applied their NN potential to the phase transitions in silicon under pressure,[92,93] using a 

technique known as metadynamics to jump over barriers in the PES (from one local minimum 

to the other).[94] In these simulations, the Cmca phase of silicon had not been included in the fit 

but was readily discovered by the ML-potential-driven metadynamics simulations, which al-

ready points toward the applicability for crystal-structure searching. Further early developments 

in the field were tested and benchmarked for silicon: Bartók et al. computed elastic properties 

of diamond-type silicon (as well as other semiconductors) with the first GAPs in 2010,[68] and 

Li et al. used the material to test their on-the-fly ML scheme in 2015.[80]   
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Figure 2: Highly accurate materials modeling using ML-based potentials, illustrated for the 
example of a recently developed silicon potential (see Table 2 for broader context). (a) Repre-
sentative structures from a large reference database, for which DFT energies have been com-
puted.[95] Structures were visualized using VESTA.[96] (b) Numerical errors for key engineering 
properties, comparing the ML potential (GAP; red) to several state-of-the-art empirical poten-
tials and to density-functional tight-binding (DFTB) which are widely used to study materials 
on large length scales. Unsigned errors are given relative to DFT results. Data are taken from 
Ref. [95], where a much more detailed set of benchmarks may be found. (c) Crack propagation 
in crystalline silicon simulated by GAP, adapted from Ref. [95]. Color coding shows the pre-
diction error, which is intrinsically obtained in the GAP framework, and allows for uncertainty 
quantification.[95] (d) NMR fingerprints of amorphous silicon (a-Si) samples created in ML-
driven melt-quench simulations with progressively slower quench rates and increasingly high 
structural order; adapted from Ref. [97]. Experimental NMR data are shown for comparison 
and are taken from Ref. [98]. 

Subsequently, silicon served to explore the question as to whether a “general-purpose” 

ML potential can be created for a given element.[95] Such a general potential should be able to 



  

16 
 

accurately describe a very wide range of atomic configurations, including multiple phases, sur-

faces, and defects, for which the training database is explicitly “designed”, but at the same time 

give sensible results for completely new kinds of configurations (e.g., structures found during 

systematic random structure search, or more complicated structural defects that were not in-

cluded in the training but may occur in experiment). Following this logic, a systematic database 

of reference configurations was constructed for silicon (Figure 2a).[95] 

The first necessary test for the resulting potential is the performance in regard to the 

“usual” quality indicators, which includes standard material properties that are relevant for 

practical applications (such as the bulk and shear modulus). Running these tests and comparing 

their outcome to the arsenal of high-quality empirical potentials available (Figure 2b) allows 

one to quickly appreciate the usefulness of the method. It should be noted, as always when 

considering ML potentials, that these are normally orders of magnitude slower than empirical 

potentials (yet orders of magnitude faster than DFT). 

Although such validation against DFT-computed properties is an important step, the most 

important application for ML potentials is in those simulation scenarios that are completely out 

of reach for DFT. A typical example is the formation and propagation of cracks (Figure 2c), a 

microscopic effect that has tremendous importance for the macroscopic behavior of materials. 

In crack simulations, a large piece of material is “cleaved” across a certain crystallographic 

direction by applying strain on either side, and one monitors whether a pre-formed crack tip 

propagates (brittle failure) or blunts (plastic deformation). Because of the ongoing breaking and 

making of bonds during fracture, this is a very challenging problem for atomistic simulations. 

Indeed, empirical interatomic potentials may have trouble correctly describing these mecha-

nisms even qualitatively, and it was shown how suitable corrections such as an environment-

dependent cutoff can help to restore the correct materials behavior.[99] The ML potential de-

scribed in Ref. [95] also correctly captures this qualitative behavior—but what is more, it re-

covers even subtle bond-rotation mechanisms that have previously been only seen in extremely 
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expensive QM/MM simulations (mixing a quantum-mechanical method with a force field), us-

ing DFT at the crack tip.[100] Figure 2c also illustrates an intrinsic feature of GPR, the ML 

method used for this particular potential: the “predicted error” measures how far the potential 

is from configurations that it has encountered during training (indicating the degree of extrap-

olation), which here arrives at a few meV per atom, given by color coding in Figure 2c.[95] We 

note that tests for extrapolation are also done for NN potentials: e.g., by fitting several networks 

in parallel and determining the variance between them.[31] 

Beyond the crystalline phases, their phase transitions and engineering-relevant properties, 

the amorphous phase of silicon is also of wide interest, and similarly a challenging case for 

atomistic simulations. Traditionally, DFT-based studies have reported calculations for small 

melt-quenched unit cells, but such simulations cannot normally reach below ~1012 K/s cooling 

rates, corresponding to roughly one million timesteps. In contrast, using an ML potential, it was 

possible to reduce the quench rate to 1011 K/s,[97] later even to 1010 K/s.[30] One cannot probe 

the local structural environments directly by imaging techniques, but one can investigate them 

by comparing to a set of different experimental observables. One such tool is NMR, where 

shifts can be computed from first principles (Figure 2d).[101]  

Very recently, simulations using an NN potential were reported for the (structurally even 

more complex) liquid phase of silicon and the nucleation of crystals.[102] In these studies, the 

authors emphasize the importance of having a flexible potential that can treat the structurally 

very different local environments that occur during the formation and growth of crystallites in 

the disordered phase: seed nuclei might look very different from the corresponding bulk phases 

that grow out of them. In a more general sense, understanding crystal nucleation is a very im-

portant goal for chemistry and materials science.[103] 
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Table 2. Selected milestones in the modeling of elemental silicon using ML potentials. 

2007 First neural-network (NN) potential for bulk silicon 
and tests for the liquid phase 

Behler & Parrinello[40] 

2008  Description of high-pressure phase transitions in sili-
con using NN potentials and metadynamics 

Behler et al.[92,93] 

2010 First Gaussian Approximation Potential (GAP) model 
for diamond-type silicon and tests for elastic properties 

Bartók et al.[68] 

2015 Development of an on-the-fly learning scheme using 
the example of silicon 

Li et al.[80] 

2017 Correct energy ranking of the silicon (111) and (100) 

surface reconstructions using a GAP  
Bartók et al.[39] 

2018 Description of surface energies, dislocations, cracks, etc. 
with a general-purpose GAP 

Bartók et al.[95] 

2018 Description of amorphous silicon with high accuracy 
by GAP-driven slow quenching; validation against ex-
perimental probes (calorimetry, diffraction, 29Si NMR) 

Deringer et al.[97] 

2019 Description of liquid silicon and crystal nucleation 
from the liquid, using a DeePMD potential 

Bonati & Parri-
nello[102] 

 

We summarize the present section in Table 2. We expect that the accurate modeling of 

silicon using ML potentials will continue to be an important benchmark for methods develop-

ment, and for linking ML potentials to other (high-level) simulation techniques. For example, 

the melting point of Si was very recently described by Random Phase Approximation (RPA) 

computations, arriving within a few percent of the experimental reference.[104] Looking toward 

the future, it seems promising to fit to such RPA data (given that gradients and thus force data 

are available), rather than DFT. Once the fit is done, the cost of using the ML potential is inde-

pendent of the level of electronic structure method that was used to produce the training data. 

This promises access to the modeling of liquid, amorphous, and nanocrystalline materials at 

computational levels of quality that are currently completely out of reach for such systems. 
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4. Applications to Materials-Science Problems 

The long-term goal for ML potentials must be to solve challenging problems, in a way akin to 

DFT and empirical potentials, but addressing new challenges that neither of the established 

approaches can handle. The focus, thereby, shifts away from the numerically accurate descrip-

tion of energies and forces—which is very much needed, of course, but which does not solve 

an application problem on its own. Instead, one also needs flexibility and transferability, to be 

able to explore previously unknown scenarios and structures: this is not a trivial task for ML 

potentials, because they lack inherent physically informed functional forms. Truly predictive 

potentials will need to describe diverse atomic environments as they may occur in manufactur-

ing and practical applications of materials: during melting and solidification, mechanical shear-

ing, or deposition and growth of thin films, to name just a few examples. We highlight here 

three selected areas of current research interest where applications of ML potentials to materi-

als-science problems have already become reality. 

4.1. Structure, dynamics, and function in phase-change materials 

Phase-change materials (PCMs) for data-storage applications are a group of chalcogenides, 

most prominently Ge–Sb–Te alloys, that can be rapidly and reversibly switched between crys-

talline and amorphous phases with a peculiar contrast in reflectivity and electrical resistivity 

(Figure 3a).[105] This property contrast can be exploited to encode digital “ones” and “zeroes” 

in memory devices.[105] The need for new data-storage and data-processing technologies is ob-

vious, nowadays more than ever: ongoing efforts to optimize the switching mechanisms are 

bringing sub-nanosecond memory operations within reach,[106–108] and even the use of PCMs in 

brain-inspired computing has been proposed.[109] Extending their range of applications further, 

PCMs are also rapidly garnering interest as candidate materials for photonic devices such as 

switchable displays (Figure 3b)[110–112] or thermoelectrics for waste heat recovery (e.g., by al-

loying GeTe with guest atoms to modify the atomic and electronic structure).[113–115]  
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While the structures of crystalline PCMs have long been known and can be accurately 

studied using diffraction experiments,[116–118] a similar understanding of the structures and prop-

erties of the amorphous phases has remained a major challenge. DFT-MD simulations are there-

fore one of the primary approaches for obtaining insight into amorphous PCMs.[119,120] The 

challenge is exacerbated by the fact that the amorphous phases are structurally very complex—

with coexisting tetrahedral and octahedral-like fragments,[121] and with a substantial number of 

homopolar Ge–Ge bonds[120] that are relevant to aging (resistivity changes over time) in amor-

phous PCMs.[122–124] This large structural diversity makes it very difficult to create empirical 

potential models for PCMs. 

The relevant system sizes are illustrated in Figure 3c–d. Typical DFT-MD simulations in 

this area encompass on the order of 300–400 atoms,[107,125,126] having very recently reached up 

to 900 atoms in one instance,[127] but this is only possible with fast supercomputers and sophis-

ticated algorithms.[128] In contrast, an ML potential readily makes system sizes of many thou-

sand atoms accessible, as we show for a structural model of bulk amorphous (a-) Ge2Sb2Te5, 

containing 7,200 atoms (Figure 3c),[129] and of a partially melted GeTe nanowire, described by 

an even more complex structural model with over 16,000 atoms (Figure 3d).[124]  

An NN potential for GeTe was introduced by Sosso et al. in 2012 already.[42] The first 

and most central application was in modeling crystallization (the atomistic process leading from 

a “zero” to a “one” in digital memories).[130] MD simulations, initially carried out in a system 

containing 4,096 atoms, showed how at low temperature a single nucleation event induces crys-

tal growth, whereas at high temperature multiple nuclei emerge. Figure 3e illustrates how at a 

temperature of 650 K, the number of “crystal-like” atoms (as measured by a suitable structural 

order parameter) quickly approaches the number of atoms in the system. The process is com-

pleted in less than a nanosecond at high temperature (red) but takes much longer at lower tem-

perature (blue).  



  

21 
 

 

 

Figure 3: Phase-change materials (PCMs) for data storage, photonics, and thermoelectrics, and 
their atomistic modeling using ML-based interatomic potentials. (a) The functional principle of 
PCMs, which are switched between a crystalline and an amorphous phase with notably different 
physical properties;[105] adapted from Ref. [118]. (b) An example application in switchable, 
flexible displays, where crystalline (top) and amorphous (bottom) layers lead to a change in 
colors due to their different optical properties.[111] Reprinted by permission from Springer Na-
ture from Ref. [111]; copyright 2014. (c) An illustration of the relevant system sizes, here for 
the ternary PCM Ge2Sb2Te5, emphasizing the capabilities of ML potentials.[129] The small cell 
is one that is accessible to DFT-MD; the larger is one that is accessible to ML potentials; both 
are drawn to scale. Reprinted with permission from Ref. [129]. Copyright 2017 American 
Chemical Society.  (d) Simulation of a GeTe nanowire, reaching device-size models: in this 
case, the center of the hexagonal wire has been liquefied by heating whereas the bottom part 
was kept fixed in the crystalline structure during the simulation.[124] Reprinted with permission 
from Ref. [124]. Copyright 2017 American Chemical Society. (e) Crystallization simulations 
of GeTe, starting from a fully amorphous phase at various temperatures, as described in nano-
second-long MD simulations by an NN-type potential.[130] Adapted with permission from Ref. 
[130]. Copyright 2013 American Chemical Society. (f) Thermal conductivity in GeTe;[131] this 
property can now be simulated using ML potentials.[28] Reprinted figure with permission from 
Ref. [131]. Copyright 2012 by the American Physical Society. 

GeTe has also served as an example for the prediction of thermal properties (Figure 3f): 

the thermal conductivity, κ, was computed using the above-mentioned NN potential.[131] In that 

work, the thermal conductivity has been studied by different approaches, namely, Allen–Feld-
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man plus Boltzmann transport equation (AF+BTE) and also by equilibrium molecular dynam-

ics (EMD). More details of the methodology and the specific technical questions pertaining to 

GeTe have been reviewed elsewhere.[28]  

Open questions in applying future generations of ML potentials to PCMs fall into two 

categories, defined by the chemical composition. On the one hand, ongoing work is concerned 

with the Ge–Sb–Te system, where further optimizations of scalability and switching speed are 

needed, and the recent development of a memory device based only on Sb (“monatomic” phase-

change memory)[132] attests to the continued relevance of this material system. The nature of 

defect states in amorphous Ge2Sb2Te5 has been studied very recently using a large number of 

structural models generated in ML-driven simulations.[133] Besides the bulk phases (Figure 3c) 

and nanowires (Figure 3d) discussed in this Progress Report, it would be highly valuable to 

understand more thoroughly the atomistic structure and behavior of superlattice structures[134], 

continuing along the lines of existing DFT studies[135] but now on larger length scales. We ex-

pect that further developments in ML potentials for the ternary Ge–Sb–Te system will pay good 

dividends in the long run. On the other hand, active research in the PCM field focuses on the 

systematic selection of guest atoms and dopants,[136] as recently demonstrated for Sc-alloyed 

Sb2Te3.[107] These systems will require careful optimization of ML potentials due to the (even) 

higher chemical and structural complexity involved. However, once a successful “recipe” has 

been established, it could be applied to various types of dopants (e.g., different transition met-

als), and even to other material classes. 
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4.2. Nanoparticles for Catalysis 

Nanoparticles (NPs) are another vast research field where knowledge of the atomic-scale struc-

ture is challenging but mandatory. Chemical synthesis techniques allow for an increasing de-

gree of control over the shapes and sizes of NPs, and this has been going hand in hand with 

increased computational capacity.[137] The surface composition of crystalline materials as a 

function of their chemical environments[138] and reaction mechanisms on pristine and defective 

crystal surfaces have been widely studied with DFT. On the other hand, nanoparticle materials 

are often structurally different from the corresponding bulk phases, and their modelling and 

understanding has remained an open challenge—with which ML potentials promise to help. 

 
 

 

Figure 4: Nanoparticles and their reactivity as a key application perspective for ML potentials. 
(a) Example TEM images of as-synthesized nanoparticles: the atomic positions can be visual-
ized with modern techniques, but which species are located where (and is there a preferred 
surface species, which would be relevant for catalysis)? Reprinted with permission from Ref. 
[139]. Copyright 2016 American Chemical Society. (b,c) Two important reactions in nanopar-
ticle catalysis, both of which have been exemplarily studied using ML potentials;[139,140] sche-
matics after Ref. [139]. (d) The Wulff construction, translating a computed surface phase dia-
gram (top) into equilibrium shapes that minimize the overall surface energy (middle, DFT; bot-
tom, NN potential; for a general overview, see Ref. [137]). (e) Monte Carlo simulations on 
Au/Cu nanoparticles, driven by an NN potential.[140] Exemplary snapshots are shown that illus-
trate how the “onion”-like structure gradually emerges. (f) Same for an Au/Cu nanoparticle 
where the ML potential includes four species, adding also H and O and, therefore, a description 
of explicit water molecules around the particle. Snapshots have been taken from the Supporting 
Information of Ref. [140], where entire videos are provided. Panels (d–f) adapted with permis-
sion from Ref. [140]. Copyright 2014 American Chemical Society. 
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Figure 4a introduces the problem by way of an example: a TEM image with sufficiently 

high resolution to allow for discerning individual atoms.[139] It is evident that the center of the 

particle exhibits crystalline order whereas the outer region is strongly disordered. The disor-

dered outer region is very difficult to fully quantify with imaging and other structure-determi-

nation methods. Furthermore, it is not enough to study one single particle but one needs an 

entire ensemble of those. 

Nanoparticles are used as catalysts, and therefore understanding their structure is only the 

first step; one then needs to model the behavior of guest atoms and adsorbates as well. We stress, 

in this context, that very early work in the field (before high-dimensional ML potentials with 

finite cutoff spheres were introduced) already dealt with molecules on surfaces (in that case, 

with crystalline order and a fixed number of atoms).[63–65] Two examples that have recently 

been explored with high-dimensional ML potentials are the CO oxidation on mixed Cu/CeO2 

NPs (Figure 4b)[139] and the CO2 reduction to give useful feedstock molecules which is per-

formed, for example, on mixed gold/copper metal NPs (Figure 4c).[140] 

Surface energies as computed from DFT can be directly translated into a so-called Wulff 

construction,[141] giving information about the equilibrium shape of the NP. Figure 4d shows 

that ML potentials can reproduce these predicted shapes with good accuracy. The major chal-

lenge, however, is to describe NPs beyond their idealized surfaces, and beyond what is acces-

sible to DFT-driven simulations. 

ML potentials can be combined with any suitable simulation tool that requires the evalu-

ation of energies as a function of structure: the majority of this Progress Report focuses on MD 

simulations, but longer length and time scales are accessible to other approaches, such as Monte 

Carlo simulations. Such a combined approach has been recently used for Cu/Au NPs.[140] Figure 

4e shows how as the simulation progresses, the “onion-like” structure of the NP is recovered. 

This analysis is not restricted to the pristine (gas-phase) particles, but it may include other spe-

cies such as water molecules, which are important when the particle is in solution (Figure 4f). 
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Future work may now deal with more complex entities, such as ligands coming from a chemical 

synthesis route. ML potentials for modelling these molecules are certainly available.[77,78] 

Other, recent work in this area includes the structural modeling of NPs on support sur-

faces, using various flavors of ML potentials. Kolsbjerg et al. studied NPs on a surface and used 

the resulting structural models to further study the adsorption of CO molecules with DFT meth-

ods.[47] Furthermore, a “multitribe” evolutionary search was conducted where information from 

a given particle size is transferred to a larger or smaller size intermittently during the itera-

tions.[142] Both studies exemplify the usefulness of fast and flexible ML potentials being com-

bined with global exploration. Such methods could, in the future, assist with the large-scale 

screening for NPs with desirable properties and the targeted synthesis in the laboratory. 

4.3. Carbon Nanomaterials 

Carbon is among the structurally most diverse elements, which goes back to its unique ability 

to form twofold (“sp”), threefold (“sp2”), and fourfold (“sp3”) coordinated atomic environments. 

This structural diversity is reflected in many known and hypothetical crystalline struc-

tures,[34,143] metastable over an unusually wide stability window,[144] and in a plethora of disor-

dered phases with very diverse properties.[145,146] Between the ideally ordered structures of di-

amond and graphite on the one hand, and fully disordered amorphous structures on the other 

hand (Figure 5a), there are partly ordered, “porous” and “hard” carbon materials,[147–150] a few 

examples of which are shown in Figure 5b. These materials are of utmost importance for prac-

tical applications, for example, for energy storage and conversion.[151]  

From the viewpoint of simulations, carbon materials have been widely described using 

empirical potentials.[152–154] They have also been of interest very early on for ML-type potential: 

an initial NN-type model was developed for the diamond-graphite coexistence line[155] and ap-
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plied to simulate the mechanisms by which diamond forms from graphite under compres-

sion.[156] Other phases that might be synthesized from cold compression of graphite are of in-

terest as ultra-hard materials,[157] and could be explored in the future using such ML potentials. 

We will focus here on more disordered, amorphous carbons which encompass a wide 

field with different structural and chemical properties, e.g., “tetrahedral” amorphous (ta-C)[158] 

and porous carbons.[147–150] In 2017, a GAP model for carbon was introduced and validated for 

properties that include DFT-predicted surface energies and experimentally measured elastic 

moduli.[43] Shortly after, Caro et al. performed large-scale deposition simulations using this 

potential—which, for the first time, reproduced the 90% sp3 content in dense ta-C films and 

clarified the microscopic growth mechanism of the material, which had been under debate for 

three decades (Figure 5c).[159] ta-C has important applications as protective coating for friction 

management. More recently, both high and low-density forms of a-C have begun to be em-

ployed as electrode materials in electrochemistry, in particular, in the context of in vivo analyt-

ical electrochemistry, owing to its superior biocompatibility.[146] The surface chemistry of a-C 

is complex, due in part to the disordered nature of the material but also due to the many different 

types of O-, H- and N-containing functional groups that can become attached to the surface, 

either during the manufacturing process or when the materials are put in contact with an elec-

trolyte.[146] 

Enabled by the computational efficiency of ML-based interatomic potentials, the large 

variety of structural motifs and (surface) functional groups that are present in a-C materials can 

be explored with a level of detail that is out of reach for simulations using DFT.[160,161] These 

computational atomistic models can then be compared to experimental data, such as X-ray or 

Raman spectroscopy, to elucidate the surface chemistry of the materials and ultimately make 

the connection between atomic structure and application performance.  
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The range of applicability of ML-based potentials to study interfacial chemistry is of 

course not limited to carbon materials. We expect that, in the near future, these studies will be 

extended to understand the surface chemistry of other materials used in electrocatalysis and 

electrochemistry. A bit further down the line, we also expect that, as accurate ML-based models 

of water become available,[162] we can gain an unprecedented level of understanding about the 

structure of aqueous/solid interfaces, where the effects of solvation are crucial in determining 

reaction mechanisms and free energy barriers for chemical reactions. An important application 

of ML potentials in this regard will be the systematic computational discovery of new efficient 

catalysts for CO2 reduction and H2 production. 

 
 

 

Figure 5: A Gaussian Approximation Potential (GAP) for carbon nanomaterials and example 
applications. (a) Fragment from a GAP-generated structural model of a-C, emphasizing the 
coexistence of various ring fragments.[43] Reprinted figure with permission from Ref. [43]. Cop-
yright 2017 by the American Physical Society. (b) TEM micrographs of three different carbon 
materials as used in electrochemistry, differing in their structural order (“graphite-like-ness”) 
which increases from left to right.[150] Adapted with permission from Ref. [150]. Copyright 
2017 American Chemical Society. (c) Slab model of ta-C generated in explicit growth simula-
tions using the carbon GAP, modeling the impact of one atom at a time. Structural drawing 
created with data from Ref. [159]. (d) The most relevant surface motifs as found in DFT-MD 
simulations based on a library of GAP-generated surface models.[160] Adapted with permission 
from Ref. [160]. Copyright 2018 American Chemical Society. (e) Structural models of disor-
dered, sp2-rich carbon materials, generated in GAP-MD annealing simulations from amorphous 
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precursors. (f) Intercalation of Na atoms, modeling the atomistic processes pertinent to Na-ion 
batteries. Panels (e) and (f) adapted from Ref. [163] – Published by The Royal Society of Chem-
istry. 

With regard to applications in battery materials, disordered and “porous” carbons have 

been studied using the aforementioned carbon potential,[163] following ideas initially pursued 

with empirical interatomic potentials.[153,164] Building on a computational description of pure 

disordered carbon, it was also shown how the insertion of Li ions in carbon can be described 

by a difference potential.[165] In this context, it is interesting to mention two separate studies 

that develop NN models for Li in amorphous silicon anodes:[166,167] these works provide a the-

matic link to the wide importance of silicon (Section 3) and underline the possibilities of ML 

potentials especially for energy materials modeling.  
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5. Challenges and Future Directions 

The usefulness of ML-based interatomic potentials has now been firmly established, through 

examples shown in this Progress Report and in the rapidly evolving body of literature in the 

field, combining new methodology with practical research questions. We discuss here selected 

challenges, leading to a perspective for a hierarchical approach to ML potential fitting (Figure 

6a), and thereby to our vision of how we expect that ML potentials can enable a new level of 

realism in the modeling and understanding of materials in the future. 

 Current ML potentials are “fragile”: if they are fitted to be highly accurate for a 

certain narrow range of configurations, they are not very accurate elsewhere. This is an intrinsic 

feature of fitting functions in high dimensions (referred to as the “curse of dimensionality”). At 

the same time, they may fail—even catastrophically—when taken to a region of configuration 

space that they have not encountered before (generalization). Sometimes, it is clear a priori 

where those regions are: a simple example is the strong exchange repulsion between two atoms 

that come very close to one another. Rather than fitting to the reference quantum-mechanical 

data as they are, one may start by subtracting an empirical baseline from the input data and 

adding it back only once the ML prediction is complete; this has been done, e.g., in the con-

struction of the silicon potential discussed in Section 3.[95] Other baselines could include, for 

example, simple fixed-charge models for electrostatics[68] or even semi-empirical quantum me-

chanical models, which brings us to the next issue. 

 Current ML potentials are “short-sighted”: typical cutoff radii enclose the first few 

coordination shells, but not more. Experience has shown that this is a very successful approach 

for predominantly covalent and metallic materials;[40,41] however, it reaches its limits when 

long-range interactions become important, most centrally in ionic solids but also in those (ubiq-

uitous) systems that are dominated by van der Waals dispersion. Fortunately, developments in 
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the field suggest that the parameters of electrostatics models (such as partial charges, local di-

poles or polarizabilities) can be fitted using ML with local descriptors.[168–170] These could now 

be made part of a hierarchical (and more general) ML potential fitting framework.  

 

 

 

Figure 6: Hierarchical ML models for interatomic potentials as one perspective for possible 
developments in the coming years. (a) Schematic of a hierarchical approach, starting with an 
empirical baseline (e.g., the exchange repulsion between atoms that come very close to one 
another), to which “machine-learned” terms are then gradually added. (b) Example of a simu-
lation carried out with an NN model that combines short-range bonding and long-range elec-
trostatics, fitted with separate NNs and then summed up, applied to a metallic Cu cluster at an 
ionic ZnO surface.[171] Reproduced from Ref. [171]. Copyright WILEY-VCH Verlag GmbH & 
Co. KGaA, Weinheim. (c) A TiO2 nanosheet, identified in structure searches accelerated by a 
charge-equilibration model, relying directly on an NN representation of atomic charges.[172] 
Structural model drawn with data from Ref. [172]. 
 

 Again, previous work suggests this to be a promising direction: successful ML potentials 

for simple ionic systems have been constructed that “learn” electrostatic information as a func-

tion of atomic structure. Behler and co-workers showed how the electrostatic energy in solids 

can be described by environment-dependent charges that are fitted through a separate NN, later 
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summing up the short- and long-range terms,[169,171] similar in spirit to how an Ewald summa-

tion is done. Figure 6b shows an example for such a simulation: a metallic Cu NP rests atop an 

ionic ZnO surface—again stressing the importance of nanostructures discussed in Section 4.2. 

More recently, Goedecker and co-workers proposed an environment-dependent charge equili-

bration scheme for ionic systems, initially introduced for NaCl clusters in the gas phase,[170] 

constructing a simple force field just from electrostatic terms. Emerging applications of this 

method deal with surface reconstructions of fluorite-structured materials[173] and the structural 

prediction of a stable TiO2 nanosheet (Figure 6c), found in global exploration as accelerated by 

the ML potential.[172] The latter structure appears to be interesting due to its electronic band gap, 

which is much larger than that of known (3D) TiO2 polymorphs—which might make the mate-

rial a candidate for photocatalytic hydrogen production, given that a way can be found to syn-

thesize it (e.g., through epitaxial growth on a suitable substrate).[172] However, a framework that 

would “learn” all long-range terms and hierarchically combine this with a short-range fit, 

thereby making it generally applicable to all kinds of solids (in particular weakly ionic ones), 

is lacking so far. 

Current ML potentials deal with inorganic materials or molecules—but not nor-

mally with both. In terms of transferability, DFT has been successfully applied to study mo-

lecular systems as well as solids, ranging from gas-phase chemistry all the way to condensed-

matter physics. On the contrary, while there are connections between the two worlds, for ex-

ample in the description of bulk liquid water,[162] a truly unified ML potential framework that 

would at the same time treat a wide range of inorganic solids and organic molecules is not 

currently available. One of the challenges here is linked to the localized (delocalized) nature of 

electrons in molecules (periodic solids), respectively, and how this manifests in the different 

physical models and simplifications that can be made for them. For example, a thorough treat-

ment of electrostatics in extended crystal structures requires complex position-dependent po-

larizability and screening to be described, whereas molecules can often be treated “in vacuo” 
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to first approximation. In turn, molecules are often treated at much higher (post-DFT) levels of 

theory, reaching further improved accuracy. Being able to incorporate such high-level quantum-

chemistry method into fitting frameworks for materials could aid the construction of ML po-

tentials strongly: by adding corrections on top of the (DFT-fitted) long- and short-range parts, 

thereby contributing the final step of the hierarchical approach outlined here (top of the pyramid 

in Figure 6a). 

Current ML potentials deal with specific compositions. Another aspect where ML po-

tentials are still severely lacking transferability is in moving from one material system to an-

other. At the moment, ML potentials are not transferable in alchemical space (that is, when 

atoms of different species are included). If one wants to study the alloying of, say, Si and C, the 

existing ML potentials for both elements as discussed in the previous sections can not be used 

on their own. Instead, a new potential would need to be constructed that is able to handle both 

elements, either by extending the existing elemental potentials (and databases) to incorporate 

the Si–C interactions, or by training a Si–C potential completely from scratch. In this case, a 

more automatic recipe for database generation and potential training would be highly beneficial, 

since it would allow us to generate new potentials as the need for them arises, without the large 

amounts of expert human time that is currently needed for this task. This would significantly 

increase the number of applications suitable for ML potentials and their wide accessibility to 

the community, similar to the current widespread use of DFT across many fields. In an effort 

to quantify this transferability, standardized tests for both robustness and accuracy of ML po-

tentials would be highly beneficial—for instance, in the spirit of a recent community-wide 

benchmark of many DFT codes that are currently in use.[8] 
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6. Conclusions 

Atomic-scale simulations are routinely used to clarify and understand the structure of matter, 

ultimately aiming to design new and improved materials for applications. ML-driven simulation 

methods are currently emerging as a powerful addition to the toolbox of materials modeling, 

and they are quickly becoming accurate and flexible enough to be applied to real-world mate-

rials-science problems. Due to their intrinsically physically and chemically agnostic nature, 

they must be used with greater care than in the case of empirically fitted interatomic poten-

tials—but there are ways to accommodate that, such as uncertainty quantification. We see the 

future of ML-driven materials modelling in two ways: on the one hand, in routine applications 

where the potential may be generated “on the fly” or in an otherwise automated fashion, and on 

the other hand, in general-purpose potentials that take longer to develop but can then be used 

off-the-shelf, on their own, for a wide range of materials problems. We have presented a few 

applications, and we are excited to see what will follow in the years to come.  
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