
■ The problem of learning is arguably at the very

core of the problem of intelligence, both biological

and artificial. In this article,  we review our work

over the last 10 years in the area of supervised

learning, focusing on three interlinked directions

of research—(1) theory, (2) engineering applica-

tions (making intelligent software), and (3) neuro-

science (understanding the brain’s mechanisms of

learnings)—that contribute to and complement

each other.

L
earning is now perceived as a gateway to
understanding the problem of intelli-
gence. Because seeing is intelligence,

learning is also becoming a key to the study of
artificial and biological vision. In the last few
years, both computer vision—which attempts
to build machines that see—and visual neuro-
science—which aims to understand how our
visual system works—are undergoing a funda-
mental change in their approaches. Visual neu-
roscience is beginning to focus on the mecha-
nisms that allow the cortex to adapt its
circuitry and learn a new task. Instead of build-
ing a hard-wired machine or program to solve
a specific visual task, computer vision is trying
to develop systems that can be trained with
examples of any of a number of visual tasks.
Vision systems that learn and adapt represent
one of the most important directions in com-
puter vision research, reflecting an overall
trend—to make intelligent systems that do not
need to be fully and painfully programmed. It
might be the only way to develop vision sys-
tems that are robust and easy to use in many
different tasks.

Building systems without explicit program-
ming is not a new idea. Extensions of the clas-
sical pattern-recognition techniques have pro-
vided a new metaphor — learning from
examples — that makes statistical techniques
more attractive (for an overview of machine
learning and other applications, see Mitchell
[1997]). As a consequence of this new interest

in learning, we are witnessing a renaissance of
statistics and function approximation tech-
niques and their applications to domains such
as computer vision. In this article, we review
our work over the last 10 years in the area of
supervised learning, focusing on three inter-
linked directions of research sketched in figure
1: (1) theory, (2) engineering applications
(making intelligent software), and (3) neuro-
science (understanding the brain’s mecha-
nisms of learning). The figure shows an ideal
continuous loop from theory to feasibility
demonstrations to biological models feeding
back into new theoretical ideas. In reality, the
interactions—as one might expect—are less
predictable but not less useful. For example in
1990, ideas from the mathematics of learning
theory—radial basis function networks—sug-
gested a model for biological object recogni-
tion that led to the physiological experiments
in cortex described later in the article. It was
only later that the same idea found its way into
the computer graphics applications described
in the conclusions.

Learning and Regularization

In this article, we concentrate on one aspect of
learning: supervised learning. Supervised learn-
ing—or learning from examples—refers to sys-
tems that are trained, instead of programmed,
by a set of examples that are input-output pairs
(xi, yi), as sketched in figure 2. At run time, they
will hopefully provide a correct output for a
new input not contained in the training set.
One way to set the problem of learning from
examples in a mathematically well-founded
framework is the following: Supervised learning
can be regarded as the regression problem of
interpolating or approximating a multivariate
function from sparse data (figure 3). The data
are the examples. Generalization means estimat-
ing the value of the function for points in the
input space in which data are not available.
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[1999]), and the sum is the deviation of the
function from the data points (thus we are
making a trade-off between accurately model-
ing the data points and the smoothness of the
learned function). For example in the one-
dimensional case, using ||f||2K =�dx (∂2 f(x)/∂x2)2

in H yields cubic splines as the minimizer f(x)
of H.

The use of smoothness stabilizers in the
functional equation 1, penalizing nonsmooth
functions, can be justified by observing that it
would be impossible to generalize for input-
output relations that are not smooth, that is,
for cases in which “similar” input do not cor-
respond to “similar” output (in an appropriate
metric!). Such cases exist: For example, the
mapping provided by a telephone directory

Once the ill-posed problem of learning from

examples has been formulated as a problem of

function approximation, an obvious approach

to solving it is regularization. Regularization

solves the problem of choosing among the

infinite number of functions that all pass

through the finite number of data points by

imposing a smoothness constraint on the final

solution (as we describe later, it is reasonable to

assume that any learnable function is smooth).

This results in minimizing the cost functional

(1)

where ||f||2K is a measure of deviation from

smoothness of the solution f (see Wahba

[1990] and Evgeniou, Pontil, and Poggio
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Figure 1. A Multidisciplinary Approach to Supervised Learning.
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between names and telephone numbers is usu-

ally not “smooth,” and it is a safe bet that it

would be difficult to learn it from examples!

The functional regularization approach can

also be regarded from a probabilistic and

Bayesian perspective. In particular, as Girosi,

Jones, and Poggio (1995, 1993) (see also Poggio

and Girosi [1990a, 1990b] and Wahba [1990])

describe, an empirical Bayes’s approach leads to

the maximum a posteriori (MAP) estimate of

P(f | g) ∝ P(f ) P(g | f ),

where the set g = (xi, yi) N i=1 consists of the

input-output pairs of training examples, and f

is again the learned function. Under a few

assumptions (additive Gaussian noise and a

linear Gaussian prior), taking this probabilistic

approach to solving the learning problem is

equivalent to minimizing equation 1.

Regularization Networks

A key result for our work since 1990 is that

under rather general conditions, the solution of

the regularization formulation of the approxi-

mation problem can be expressed as the linear

combination of basis functions, centered on the

data points and depending on the input x. The

form of the basis function K depends on the

specific smoothness criterion, that is, the func-

tional |f|2K. The simplest solution (for several

important K such as the Gaussian) is

(2)f x c K x xi i
i

l
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fInput Output

Figure 2. In the Learning-from-Examples Paradigm, We Learn a Function f
from Input-Output Pairs (xi, yi) Called the Training Set.

f, f*

•    = data from the graph of f

= function f* that approximates f

= function f

x

Figure 3. Learning from Examples as Multivariate Function Approximation or Interpolation from Sparse Data.

Generalization means estimating f*(x) ≈ f(x), ∀x ∈ X from the examples f*(xi) = f(xi), i = 1, ..., N.



limit of very small σ for the variance of the

Gaussian basis functions, RBF networks

become lookup tables. Thus, each unit com-

putes the distance ||x – xi|| of the input vector

x from its center xi, and in the limiting case of

G as a very narrow Gaussian, the network

becomes a lookup table, and centers are like

templates. Gaussian RBF networks are a simple

extension of lookup tables and can be regarded

as interpolating lookup tables, providing a

very simple interpretation of the result of rela-

tively sophisticated mathematics. The “vanil-

la” RBF described earlier can be generalized to

the case in which there are fewer units than

data, and the centers xi are to be found during

the learning phase of minimizing the cost over

the training set. These generalized RBF net-

works have sometimes been called hyperBF

networks (Poggio and Girosi 1990a).

Regularization 
Provides a General Theory

Several representations for function approxi-

mation and regression, as well as several neural

network architectures, can be derived from

regularization principles with somewhat dif-

ferent prior assumptions on the smoothness of

the function space (that is, different stabilizers,

defined by different kernels K). They are there-

fore quite similar to each other.

Figure 5 tries to make the point that regular-

ization networks provide a general framework

for a number of classical and new learning

techniques. In particular, the radial class of sta-

bilizer is at the root of the techniques on the

left branch of the diagram: RBF can be gener-

alized into hyperBF and into so-called kernel

methods and various types of multidimension-

al spline. A class of priors combining smooth-

ness and additivity (Girosi, Jones, and Poggio

1995) is at the root of the middle branch of the

diagram: Additive splines of many different

forms generalize into ridge regression tech-

niques, such as the representations used in

projection pursuit regression (Friedman and

Stuetzle 1981); hinges (Breiman 1993); and

several multilayer perceptronlike networks

(with one hidden layer).

The mathematical results (Girosi, Jones, and

Poggio 1995) summarized in figure 5 are useful

because they provide an understanding of

what many different neural networks do, the

function of their hidden units, an approximate

equivalence of many different schemes for

regression while providing insights into their

slightly different underlying (smoothness)

assumptions, and a general theory for a broad

class of supervised learning architectures.

As observed by Poggio and Girosi (1990b)

(see also Broomhead and Lowe [1988]), the

solution provided by equation 2 can always be

rewritten as a network with one hidden layer

containing as many units as examples in the

training set (figure 4). We called these net-

works regularization networks. The coefficients

ci that represent the “weights” of the connec-

tions to the output are “learned” by minimiz-

ing the functional H over the training set

(Girosi, Jones, and Poggio 1995).

Radial Basis Functions

An interesting special case arises for radial K.

Radial basis function techniques—or radial

basis function (RBF) networks—(Girosi, Jones,

and Poggio 1995; Poggio and Girosi 1989;

Powell 1987; Micchelli 1986) follow from reg-

ularization when K(s, t) is shift invariant and

radially symmetric: The best example is a

Gaussian K(s, t) = Gσ(|s – t|2):

(3)

In the Gaussian case, these RBF networks

consist of units each tuned to one of the exam-

ples with a bell-shaped activation curve. In the
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Figure 4. A Regularization Network.

The input vector x is d-dimensional; there are N hidden units, one for each exam-

ple xi, and the output is a scalar function f(x).



Support Vector Machines 
and Regularization

Recently, a new learning technique has

emerged and become quite popular because of

its good performance and its deep theoretical

foundations: support vector machines (SVMs),

proposed by Vapnik (1995). It is natural to ask

the question of its relation with regularization

networks. The answer is that it is very closely

connected to regularization (Evgeniou, Pontil,

and Poggio 1999): It can be regarded as the

same type of network, corresponding to exact-

ly the same type of solution f (that is, equation

2) but “trained” in a different way and, there-

fore, with different values of the weight ci after

the training (Engeniou, Pontil, and Poggio

1999). In particular, in SVM many of the coef-

ficients ci are usually zero: The xi corresponding

to the nonzero coefficients are called support

vectors and capture all the relevant information

of the full training set.

Support Vector Machines and Sparsity

In recent years, there has been a growing inter-
est in using sparse function approximators. An
analogy to human speech owed to Stefan Mal-
lat (of wavelet fame) provides the right intu-
ition. If one were to describe a concept using a
small dictionary of only three thousand Eng-
lish words, the description of most concepts
would require long sentences using all of most
of the three thousand words. However, if one
were to describe a concept using a large dictio-
nary of 100,000 words, only a small number of
the words would be required for most con-
cepts.

As we mentioned, in SVMs many of the
weights c in the sum of equation 2 are zero.
The link to sparsity can be made formal: Girosi
(1998) proved that, loosely speaking, the spars-
est representation (in a certain sense, see Girosi
[1998]) is also the one with the best prediction
and generalization abilities. The result suggests
that a sparse representation of a signal (for

Several 
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function
approxima-
tion and
regression, 
as well as 
several neural
network
architectures,
can be derived
from regular-
ization
principles
with some-
what different
prior 
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ers and Basis Functions, Showing the Common Bayesian Roots (Girosi, Jones, and Poggio 1993).



of machines or models or network architec-

tures). Vapnik’s theory characterizes and for-

malizes these concepts in terms of the capacity

of a set of functions and capacity control

depending on the training data: For example,

for a small training set, the capacity of the

function space in which f is sought has to be

small, whereas it can increase with a larger

training set. A key part of the theory is to

define and bound the capacity of a set of func-

tions. Evgeniou, Pontil, and Poggio (1999)

show how different learning techniques based

on the minimization of the H functionals list-

ed earlier can be justified using a slight exten-

sion of the tools and results of Vapnik’s statis-

tical learning theory.

example, images) from a large dictionary of

features is optimal for generalization.

Finally, it is important to observe that until

now the functionals of classical regularization

have lacked a rigorous justification for a finite

set of training data. Vapnik’s seminal work has

laid the foundations for a more general theory

that justifies a broad range of regularization

functionals for learning from finite sets,

including classical regularization and support

vector machines for regression and classifica-

tion. The basic idea is that for a finite set of

training examples, the search for the best mod-

el or approximating function has to be con-

strained to an appropriately small hypothesis

space (which can also be thought of as a space
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Figure 6. Architecture of Support Vector Machine System for Object Detection.



Object Detection with 
Support Vector Machines

One can only ask, “Does all the theory mean

anything?” The mathematics of the previous

section suggest that a sparse regularization net-

work (such as a support vector machine) will

perform well in classification tasks.

We present here two systems based on the

theory outlined in the previous sections—they

use support vector machine (SVM) classifiers of

the form of figure 4 and equation 2—that learn

to detect and classify objects of a specific class

in complex image and video sequences. In

both systems, the goal is to take an image and

find whether and where the object of interest

is in the image.

Both use the same architecture (depicted in

figure 6). A window is translated across the

image. At each translation step, the subwin-

dow of the image masked by the sliding win-

dow is fed into a feature extractor (which can

return features of the image or just the raw pix-

el values) whose output is then given to a sup-

port vector classifier. This classifier was previ-

ously trained using labeled examples of

subimages. To achieve detection at multiple

scales, the image is rescaled to different sizes

and the translation rerun at the new scales.

Thus, the output of the classifier on a particu-

lar subimage indicates whether the object

exists at that location and scale.

Face Detection

For face detection, the goal is to identify the

position and scale of all the faces in the image.

The subwindow for this task was 19 x 19 pix-

els, and no feature extraction was used (the

gray-scale intensity values from the subimage

were fed directly to the classifier). The full sys-

tem details are described in Osuna, Freund,

and Girosi (1997). Here, we just quote some of

the results from their experiment.

After training an SVM, most of the examples

are automatically discarded because many of

the ci of equation 2 are zero, which is related to

the theoretical connection between the SVM

framework and sparsity and results in a net-

work that depends only on a few boundary

examples (the support vectors). Theoretically,

these examples helped to define the decision

boundary. Figure 7 shows a few examples from

the face-detection system of Osuna et. al. It is

interesting to note that they appear to be the

most “unfacelike” of the face images and the

most “facelike” of the nonface images. Put

another way, they are the most difficult train-

ing examples and the ones mostly likely to be

confused later and therefore the ones that

should be remembered to classify new exam-

ples correctly.

These learned support vectors and their

associated weights were used in a network, as

shown in figure 4, to do classification. Some

examples of the results of the system are

shown in figure 8.

Pedestrian Detection

Using the same system architecture, we can

attempt to learn to detect pedestrians. Unfortu-

nately, because pedestrians are a far more varied

class of objects, using a subwindow of the pixel

values is not sufficient for good performance.

To solve this problem, we add a feature-

extraction step (as shown in figure 6) to build

an overcomplete, multiscale set of the absolute

values of Haar wavelets as the basic dictionary

with which to describe shape. These wavelets

are simple differencing filters applied to the

image at different resolutions, resulting in

roughly 1300 coefficients for each subwindow.

The full system is described in depth in Papa-

georgiou, Evgeniou, and Poggio (1998); Papa-

georgiou, Oren, and Poggio (1998); Oren et al.

(1997); and Papageorgiou (1997).
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Figure 7. Some of the Support Vectors Found by Training for Face Detection
(Osuna, Freund, and Girosi 1997).



performance resulting from the choice of fea-
tures. What is not shown (for clarity) is the
impact of changing the kernel function.
Changes to the kernel used in the SVM had lit-
tle effect on the final performance (those
shown are for polynomials of degree 3).

As expected, using color features results in a
more powerful system. The curve of the system
with no feature selection is clearly superior to
all the others, indicating that for the best accu-
racy, using all the features is optimal. When
classifying using this full set of features, we pay
for the accuracy through a slower system. It
might be possible to achieve the same perfor-
mance as the 1326 feature system with fewer
features; this is an open question, however.
Reducing the number of features is important
to reducing the running time of the final
detection system. Examples of processed
images are shown in figure 10; these images
were not part of the training set.

The system has also been extended to allow

Because the sensitivity of the system to
pedestrians can be adjusted, we can trade off
the number of undetected pedestrians (false
negatives) against the number of incorrect
detected nonpedestrians (false positives). Fig-
ure 9 plots a curve showing the performance of
the system for various settings of the sensitivi-
ty. The upper left corner represents an ideal
system that classifies all pedestrians correctly
and does not signal nonpedestrian image
patches as pedestrians. These ROC curves were
computed over an out-of-sample test set gath-
ered around the Massachusetts Institute of
Technology and over the internet.

The different plots in figure 9 correspond to
different sets of features. Shown are the
receiver operating characteristics (ROC)
curves for three systems: (1) color processing
with all 1326 features, (2) color processing
with 29 features, and (3) gray-level processing
with 29 features.

The ROC curve shows the difference in the
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Figure 8. Results of the Face-Detection System (Osuna, Freund, and Girosi 1997).



detection of frontal, rear, and side views of
pedestrians. It is currently installed in an
experimental car at Daimler. Figure 11 shows
the results of processing a video sequence from
this car driving in downtown Ulm, Germany.
The results shown here are without using any
motion or tracking information; adding this
information to the system would improve
results. From the sequence, we can see that the
system generalizes extremely well; this test
sequence was gathered with a different cam-
era, in a different location, and in different
lighting conditions than our training data.

Object Recognition in the 
Inferotemporal Cortex

As an example of neuroscience research, in this
section, we present results from the inferotem-
poral cortex, believed responsible for some
forms of object recognition.

View-Based Object Recognition

As we mentioned in the introduction, 10 years
ago a learning approach to object recogni-
tion—based on Gaussian radial basis func-
tions—suggested a view-based approach to
recognition (Poggio and Edelman 1990). Regu-
larization networks store a number of exam-
ples in the hidden nodes and compare the cur-
rent input to each of those stored examples in
parallel. Instead of having an explicit three-
dimensional (3D) model of the object we want
to recognize, we instead have a number of 2D
examples of what the object looks like, and we
compare a current view against each of the
stored examples. Different simulations with
artificial (Poggio and Edelman 1990) and real
“wire-frame” objects (Brunelli and Poggio
1991), and also with images of faces (Beymer
1993; Romano 1993), showed that a view-
based scheme of this type can be made to work
well.

It was not surprising that one of the first
questions we asked was whether a similar
approach might be used by our brain. As Pog-
gio and Girosi (1989) and Poggio (1990)
argued, networks that learn from examples
have an obvious appeal from the point of view
of neural mechanisms and available neural
data. In a certain sense, networks such as
Gaussian RBFs are an extension of a very sim-
ple device: lookup tables. The idea of replacing
computation with memory is appealing, espe-
cially from the point of view of biological and
evolutionary plausibility. Interpolating or
approximating memory devices such as RBF
avoids many of the criticisms of pure lookup
table theories. It was therefore natural for our

group to try to see how far we could push this

type of brain theory.

Somewhat surprising to us, over the last 10

years many psychophysical experiments (for

the first such work see Bülthoff and Edelman

[1992]) have supported the example-based and

view-based schemes that we suggested as one

of the mechanisms of object recognition. More

recent physiological experiments have provid-

ed a suggestive glimpse on how neurons in

inferotemporal cortex (the area of the brain

responsible for object recognition) can repre-

sent objects. The experimental results seem

again to agree (so far!) to a surprising extent

with the model (Logothetis, Pauls, and Poggio

1995). We are now developing a more detailed

model of the circuitry and the mechanisms

underlying the properties of the view-tuned

units of the model (Riesenhuber and Poggio

1998).

View-Based Model

Here, we review briefly our model and the

physiological evidence for it. Figure 12 shows

our basic module for object recognition. Clas-

sification of a visual stimulus is accomplished
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Consider how the network “learns” to rec-

ognize views of the object shown in figure 13.

In this simplified and nonbiological example,

the input of the network are the x, y positions

of the vertexes of the wire-frame object in the

image. Four training views are used. After

training, the network consists of four units,

each one tuned to one of the four views, as in

figure 13. The weights of the output connec-

tions are determined by minimizing misclassi-

fication errors on the four views and using as

negative examples views of other similar

objects (“distractors”).

The figure shows the tuning of the four

units for images of the “correct” object. The

tuning is broad and centered on the center of

the unit, that is, the training view. Somewhat

surprisingly, the tuning is also quite selective:

The thinly dotted line shows the average

response of each of the unit to 300 similar dis-
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Figure 10. Results from the Pedestrian Detection System.

Typically, missed pedestrians are the result of occlusion or lack of contrast with the background. 

False positives can be eliminated with further training (Papageorgiou, Evgeniou, and Poggio 1998).

by a network of units. Each unit is broadly

tuned to a particular view of the object.

We refer to this optimal view as the center of

the unit and to the unit as a view-tuned unit.

One can think of it as a template to which the

input is compared. The unit is maximally excit-

ed when the stimulus exactly matches its tem-

plate but also responds proportionately less to

similar stimuli. The weighted sum of activities

of all the units represents the output of the net-

work. The simplest recognition scheme of this

type is the Gaussian RBF network (equation 3):

Each center stores a sample view of the object

and acts as a unit with a Gaussianlike recogni-

tion field around the view. The unit performs

an operation that could be described as

“blurred” template matching. At the output of

the network, the activities of the various units

are combined with appropriate weights, found

during the learning stage.



tractors (paper clips generated by the same

mechanisms as the target; for further details

about the generation of paperclips, see Edel-

man and Bülthoff [1992]).

Even the maximum response to the best dis-

tractor is in this case always less than the

response to the optimal view. The output of

the network, a linear combination of the activ-

ities of the four units, is essentially view invari-

ant and still very selective. Notice that each

center can be regarded as the conjunction of

all the features represented: The Gaussian can

be, in fact, decomposed into the product of

one-dimensional Gaussians, each for each

input component, that is, for each feature. The

activity of the unit measures the global similar-

ity of the input vector to the center: For opti-

mal tuning, all features have to be closed to

the optimum value. Even the mismatch of a

single component of the template can set to

zero the activity of the unit. Thus, the rough

rule implemented by a view-tuned unit is the

conjunction of a set of predicates, one for each

input feature, measuring the match with the

template. However, the output of the network

is performing an operation more similar to the

Or of the output of the units.

This example is clearly a caricature of a view-
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Figure 11. Processing the Downtown Ulm Sequence with the Frontal, Rear, and Side-View Detection System. 

The system performs the detection frame by frame: It uses no motion or tracking. Adding motion information and the capability to inte-

grate detection over time improves results (Papageorgiou, Evgeniou, and Poggio 1998).



or orientation. The monkeys first were allowed

to inspect an object, the target, presented from

a given viewpoint and subsequently were test-

ed for recognizing views of the same object

generated by rotations. In some experiments,

the animals were tested for recognizing views

around either the vertical or the horizontal

axis, and in some other experiments, the ani-

mals were tested for views around all three

axes. The images were presented sequentially,

with the target views dispersed among a large

number of other objects, the distractors. Two

levers were attached to the front panel of the

chair, and reinforcement was contingent on

pressing the right lever each time the target

was presented. Pressing the left lever was

required on presentation of a distractor. Cor-

rect responses were rewarded with fruit juice.

An observation period began with the pre-

sentation of a small fixation spot. Successful

fixation was followed by the learning phase,

based recognition module, but it helps to make

the main points of the argument. Of course,

biologically plausible features are different from

the coordinates of the corners used by the toy

network described earlier. We (Riesenhuber and

Poggio 1998; Bricolo, Poggio, and Logothetis

1997) recently performed simulations of a bio-

logically more plausible network in which we

first filter the image through a bank of direc-

tional filters of various orders and scale, similar

to V1 neurons (cells in the part of the brain

through which the visual information first pass-

es). Before describing in more detail the model

work on the circuitry underlying the properties

of view-tuned cells, we summarize the physio-

logical findings (Logothetis and Pauls, 1995;

Logothetis, Pauls, and Poggio 1995).

Experimental Evidence

Two monkeys were trained to recognize com-

puter-rendered objects irrespective of position
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Figure 12. A Gaussian Radial Basis Function Network with Four View-Tuned Units That, 
after Training, Are Each Tuned to One of the Four Training Views Shown in the Next Figure.

The resulting tuning curve of each of the units is also in the next figure. The units are view 

dependent and selective, relative to distractor objects of the same type.
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Figure 13. Tuning Each of the Four Hidden Units of the Network of the
Previous Figure for Images of the “Correct” Three-Dimensional Objects.

The tuning is broad and selective: The dotted lines indicate the average response to 300 distractor objects of the same type. The bottom

graphs show the tuning of the output of the network of the previous figure after learning (that is, computation of the weights c): It is view

invariant and object specific. Again, the dotted curve indicates the average response of the network to the same 300 distractors (Vetter and

Poggio 1992).



thetis and coworkers found a significant num-

ber of units that showed a remarkable selectiv-

ity for individual views of wire objects that the

monkey was trained to recognize.

Figure 14 shows the responses of three units

that were found to respond selectively to four

different views of a wire object (wire 71). The

animal had been exposed repeatedly to this

object, and its psychophysical performance

remains above 95 percent for all tested views,

as can be seen in the lower plot of figure 14.

whereby the target was inspected for two sec-

onds from one viewpoint, the training view.

The learning phase was followed by a short fix-

ation period after which the testing phase

started. Each testing phase consisted of as

many as 10 trials, in each of which the test

stimulus, a shaded, static view of either the tar-

get or a distractor, was presented.

A total of 970 IT cells were recorded from

two monkeys during combined psychophysi-

cal-electrophysiological experiments. Logo-
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Figure 14. The Top Graph Shows the Activity of Three Units in IT Cortex, 
as a Function of the Angle of the Stimulus View.

The three neurons are tuned to four different views of the same object, in a similar way to the units of the model

of figure 12 and figure 13. One of the units shows two peaks for two mirror symmetric views. The neurons firing

rate was significantly lower for all distractors (not shown here). The bottom graph represents the almost perfect,

view-invariant behavioral performance of the monkey for this particular object for which he was extensively trained

(Logothetis and Pauls 1995).



Notice that one of the three neurons is tuned
to a view and its mirror image, consistent with
other theoretical and psychophysical work.
Figure 14 is surprisingly similar to figure 13
showing the response of the view-tuned hid-
den units of the model of figure 12.

A small percentage of cells (8 of 773)
responded to wirelike objects presented from
any viewpoint, thereby showing view-invari-

ant response characteristics, superficially simi-
lar to the output unit of the model of figure 12.
An example of such a neuron is shown in fig-
ure 15. The upper plot shows the monkey’s hit
rate and the middle plot the neuron’s average
spike rate. The cell fires with a rate of about 40
Hertz for all target’s views. The lower plot
shows the responses of the same cell to 120
distractors. With four exceptions, activity was
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Figure 15. The Monkey Performed Quite Well on This 
Particular Wire after Extensive Training (Bottom Graph).

A neuron in IT was found that shows a view-invariant response, with about 30 spikes/second to any view of the

wire object (top). The response of the cell to any of the 120 distractors is lower, as shown in the middle graph

(Logothetis and Pauls 1995). This response is similar to the output unit of the model of figure 12 (see figure 13).



are neurons in the IT cortex with properties

intriguingly similar to the cartoon model of

figure 12, which is itself supported by psy-

chophysical experiments in humans and pri-

mates. Several neurons showed a remarkable

selectivity for specific views of a computer-ren-

dered object that the monkey had learned to

recognize. A much smaller number of neurons

were object specific but view invariant, as

expected in a network in which “complex”-

like view-invariant cells are fed by view-cen-

tered “simple”-like units. Furthermore, we

uniformly low for all distractor objects present-

ed. In all cases, even the best response to a dis-

tractor, however, remains about one-half the

worst response to a target view. This neuron

seems to behave as the output of the model of

figure 12. Of the 773 (9 percent) analyzed cells,

71 showed view-selective responses similar to

those illustrated in figures 12 and 13. In their

majority, the rest of the neurons were visually

active when plotted with other simple or com-

plex stimuli, including faces.

The main finding of this study is that there
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Figure 16. Model to Explain Receptive Field Properties of the View-Tuned 
Units of Figure 12 Found in Experiments (Riesenhuber and Poggio 1999).



believe that our results reflect experience-

dependent plasticity in IT neurons and quite

possibly also much earlier in the visual path-

way. First, the neurons we found responded

selectively to novel visual objects that the

monkey had learned to recognize during the

training. None of these objects had any prior

meaning to the animal, and none of them

resembled anything familiar in the monkey’s

environment. In addition, no selective

responses were ever encountered for views that

the animal systematically failed to recognize.

Thus, it seems that neurons in this area can

develop a complex selectivity as a result of

training in the recognition of specific objects.

Notice that view tuning was observed only for

those views that the monkey could recognize.

A back-of-the-envelope extrapolation of the

available data suggests an estimate of the num-

ber of cells whose tuning was determined by

the training. In the region of IT from which

recordings were made, which contains around

10 million neurons, we estimate that for each

of the about 12 objects that the monkeys had

learned to recognize, there were, at the time of

the recordings, a few hundred view-tuned cells

and on the order of 40 or so view-invariant

cells.

A New Model

Models like the one of figure 12 leave open the

issue of the mechanisms and circuitry underly-

ing the properties of the view-tuned cells, from

their view tuning to their invariance to image-

based transformations such as scaling and

translation. In fact, the invariance of the view-

tuned neurons to image-plane transformation

and to changes in illumination has been tested

experimentally by Logothetis, Pauls, and Pog-

gio (1995), who report an average rotation

invariance over 30 degrees, translation invari-

ance over 2 degrees, and size invariance to 1

octave around the training view.

These recent data put in sharp focus and in

quantitative terms the question of the circuitry

underlying the properties of the view-tuned

cells. The key problem is to explain in terms of

biologically plausible mechanisms their view-

point invariance obtained from just one object

view, which arises from a combination of

selectivity to a specific object and tolerance to

viewpoint changes.

Riesenhuber and Poggio (1998) described a

model that conforms to the main anatomical

and physiological constraints, reproduces all

the data obtained by Logothetis et al., and

makes several predictions for experiments on a

subpopulation of IT cells. A key component of

the model is a cortical mechanism that can be

used to either provide the sum of several affer-

ents to a cell or enable only the strongest one.

The model explains the receptive field proper-

ties found in the experiment based on a simple

hierarchical feed-forward model. The structure

of the model reflects the idea that invariance

and specificity must be built up through sepa-

rate mechanisms. Figure 16 shows connections

to invariance units with light arrows and to

specificity units with dark arrows.

This new model is an expansion of the pre-
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building machines that learn from experience
and the problem of understanding how our
brain learns are still wide open. Most of the
really challenging questions are unsolved.
There are still gaps between theory and appli-
cations and between machine learning and
biological learning. Such comparisons raise a
number of interesting questions, including the
following:

Why is there a large difference between the
number of examples a machine-learning algo-
rithm needs (usually thousands) and the num-
ber of examples the human brain requires (just
a few)?

What is the best way of naturally incorpo-
rating unlabeled examples into the supervised
learning framework?

Can supervised learning methods be used to
attack or solve other types of learning problem
such as reinforcement learning and unsuper-
vised learning?

To what extent can supervised learning
explain the adaptive systems of the brain?

We hope that the work we described repre-
sents a few small steps in the right direction, in
addition to providing a lot of fun for the math-
ematicians, the engineers, and the neuroscien-
tists who are involved.
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