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Abstract

A large number of papers are appearing in the biomedical engineering literature that
describe the use of machine learning techniques to develop classifiers for detection
or diagnosis of disease. However, the usefulness of this approach in developing
clinically validated diagnostic techniques so far has been limited and the methods
are prone to overfitting and other problems which may not be immediately
apparent to the investigators. This commentary is intended to help sensitize
investigators as well as readers and reviewers of papers to some potential pitfalls in
the development of classifiers, and suggests steps that researchers can take to help
avoid these problems. Building classifiers should be viewed not simply as an add-on
statistical analysis, but as part and parcel of the experimental process. Validation of
classifiers for diagnostic applications should be considered as part of a much larger
process of establishing the clinical validity of the diagnostic technique.
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Introduction
In recent years, there has been a dramatic increase in the use of computation-intensive

methods to analyze biomedical signals. The general approach falls under the rubrics of

artificial intelligence or machine learning, in which a computer program “learns” im-

portant features of a dataset to enable the user to make predictions about other data

that were not part of the original training set. One of many applications of this ap-

proach is to create classifiers that can separate subjects into (usually) two or (rarely)

more classes based on attributes measured in each subject. An obvious potential use of

such a classifier is to analyze biomedical data and detect or diagnose disease.

This commentary focuses on use of support vector machines (SVMs), a computa-

tionally intensive statistical technique that emerged as a research topic in the late

1990s, but similar comments would apply to other machine learning techniques as

well. The literature on these topics is immense: a search on Google Scholar using key-

words SVM and image analysis results in 93,000 cites, on SVM and facial recognition

finds 32,000 references, and SVM and speech recognition uncovers 28,000 cites. (Not

all of the cites are equally relevant however, since Google Scholar casts a very wide

net). Google Scholar finds several thousand recent articles in response search terms

SVMs and biomedicine. In the single area of electrocardiogram (ECG) analysis, these
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include papers on heartbeat detection, arrhythmia classification, diagnosis of heart valve

disease, and recognition of sleep apnea from the ECGs.

The wide popularity of machine learning arises in part from the availability of

commercial software packages such as the Statistical Toolbox of Matlab (Mathworks,

Natick MA USA) or Statistica (Statsoft, Tulsa OK USA) that make it easy for investigators

to apply, or misapply, these sophisticated statistical techniques. These make it easy to do

quick studies – one can simply download ECG or other data from individuals with various

medical conditions from the Internet, subject it to wavelet or other analysis, input the

parameters into the software, and then propose a diagnostic technique using the result-

ing classifier. Investigators who use such software are not necessarily trained or inclined

to perform the additional analysis needed to demonstrate the validity or usefulness of

their results.

Another problem is the “black box” character of many of these methods, SVM in par-

ticular, which makes them prone to false discovery (i.e. finding spurious associations) [1].

Used carelessly, they can create classifiers that appear to perform impressively well– when

applied to the original training set –but are useless when applied to new data. Examples

are given in cases discussed below.

This present commentary is a result of extensive discussions among members of the

editorial board of this journal and other experts about how editors and referees should

evaluate papers in biomedical engineering that employ such methods. It is not intended

as a scholarly contribution to the voluminous and sophisticated literature in this area

e.g. [2-9] but rather to illustrate some major pitfalls of the technique and sensitize

readers and reviewers of biomedical engineering papers of issues to be alert for.

Developing and validating classifiers

Developing a classifier using SVMs or other classification technique consists of several

steps: (a) choosing a method of analysis; (b) choosing a set of features or attributes that

will be used to classify the subjects; (c) training the classifier; (d) validating the classi-

fier; and (e) evaluating potential errors in the classification [10]. Each step presents op-

portunities to introduce bias and error into the process.

Choice and number of attributes

The number and choice of attributes is critical to the success of a classifier. Too many

attributes relative to the number of “events” (e.g. sick individuals) leads to overfitting, a

result of the classifier learning the data instead of the trend that underlie the data [11].

An analogous problem arises when one fits data to a high order polynomial: if the order

of the polynomial is too large relative to the number of data points, a good fit will be

obtained but the polynomial will not capture underlying trends in the data and have no

predictive value for new data.

As a rule of thumb, more than 10 “events” are needed for each attribute to result in a

classifier with reasonable predictive value [12]. Ideally, similar numbers of “healthy”

and “unhealthy” subjects would be used in a training set, resulting in a training set that

is more than 20 times the number of attributes. Since biomedical engineering studies

typically involve a small number of subjects, and there are essentially unlimited num-

bers of parameters that can be used to characterize biomedical signals, reviewers and

readers should be on the lookout for the possibility of overfitting.
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Another crucial issue is the choice of attributes [13-15]. For a diagnostic application,

the attributes must have some bearing on the disease. Physicians typically interpret

physiological data such as an ECG by examining features that are considered to repre-

sent medically significant phenomena, for example observing the polarity of certain

waves in the ECG.

By contrast, biomedical engineers often train classifiers using abstract characteristics

of a signal, for example entropy within a signal or wavelet coefficients. The classifier

would be useful only if the attributes captured a significant amount of medically rele-

vant information, and ideally should be independent and not contain confounding vari-

ables. Establishing that a set of abstract coefficients is suitable for developing diagnostic

applications is just the beginning of the larger clinical validation process, which would

normally require extensive clinical trials.

Validation of predictive model

Validating a classifier involves testing it on a set of subjects (the test set) that is independ-

ent of the training set. When the dataset is large, one can simply divide it into a training

and test set (hold-out method). An effective and statistically justified validation method

that can be used with smaller datasets is leave-one-out cross-validation. In this approach,

one sample is removed from the training set, the classifier is recalculated using the

remaining training set, and then applied to the holdout sample as a test. This process is

repeated in turn for each member of the training set. Other validation methods can be

used instead that are computationally less intensive, and some machine learning tech-

niques combine training and validation of classifiers in one process [16,17]. But however

it is done, the classifier cannot be validated using the same data that were used to develop

the classifier in the first place, which would introduce circularity.

“Independence” is a theoretical construct that impacts on the external validity of the

model. For a project involving ECG analysis, different ECG records from the same pa-

tient would probably not be sufficiently independent, even if the records were from dif-

ferent days. For developing a medical diagnostic technique, one may need more than

individuals selected from a single cohort of subjects (for example, patients of the same

physician) if the test is to be used in different medical centers by different physicians.

The quality of the biomedical engineering literature on these topics is extremely var-

ied. At the low end of the quality scale, one can find many papers that report no valid-

ation studies at all, but merely show that the classifier works well on the training set,

which tells nothing about the predictive value of the classifier when faced with new

data. Many other papers lack sufficiently clear description of the validation methods to

enable readers to judge the validity of the work. Reviewers of papers need to be sure

that enough information is provided to allow them to judge the scientific validity of the

validation process used in the study.

Illustrations of pitfalls in using classifiers

Three following examples illustrate these pitfalls as related to the use of SVM. The first

uses a classifier trained on a synthetic dataset consisting of random numbers, while the

remaining examples employ a real dataset consisting of ultrasound images from pa-

tients with Hashimoto’s inflammation, an autoimmune disease affecting the thyroid,

and healthy controls [18].
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Random dataset

In this example, synthetic training sets were created with equal numbers of “healthy”

and “ill” individuals. Each individual was assigned 10 attributes consisting of random

numbers. Because the attributes were chosen independently from the assigned class,

they contain no predictive information. Consequently the accuracy of the classifier when

applied to a validation set with equal numbers of “healthy” and “ill” subjects would be

50% due to chance alone.

Each synthetic training set was used to train a classifier using a linear SVM (Matlab

Statistics Toolbox, Mathworks, Natick MA). Figure 1 shows the results of applying the

classifier to the same training set that had been used to develop it, for training sets of

different size.

For small training sets (4–6 subjects per attribute, including patients and controls)

the classifier seemed to approach 100% in accuracy in Figure 1 due to the circular na-

ture of this (clearly invalid) training/validation. The actual predictive value of the classi-

fier is, of course, nil. Readers should note the remarkably large training/validation set,

perhaps 200 “patients” in this case, for the actual level of performance of the classifier

to become apparent.

Clinical ultrasound images – hashimoto’s disease

Data were obtained by one of the present authors (R.K.) in connection with a previous

study that examined feature selection as related to the accuracy of a classifier in diag-

nosing Hashimoto’s inflammation of the thyroid based on ultrasound images [19]. The
Figure 1 Apparent accuracy of classifiers (ACC) applied to synthetic training sets of equal numbers
of “healthy” and “ill” subjects, with 10 attributes for each subject created using a random number
generator. The horizontal axis is the ratio of the number of “ill” subjects to number of attributes (10 in
each case). The increase in accuracy (ACC in the vertical axis) for smaller training sets is a result of use of a
too-small training set, coupled with post-hoc theorizing. Since the set had an equal number of “patients”
and “healthy” individuals, the accuracy of the classifier should be 50% as expected by chance.
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images of patients were obtained by Dr. W. Zieleźnik and his team [18], and the med-

ical status of each subject had been confirmed by a physician based on the ultrasound

images together with other clinical data. In the following example, we consider 250 im-

ages from Hashimoto’s patients and the same number from healthy individuals; each

image is from a different subject.

Ten attributes were defined for each image: average image power spectrum, regional

minimum value on the image, smoothness of the image, the minimum value of bright-

ness of the image, the position of the center of GLCM (Gray-Level Co-occurrence

Matrix) matrix gravity, range of contrast in different values of GLCM, and three parame-

ters obtained from square-tree decomposition of the image (for details see [18]). Images

were analyzed using custom written software (Matlab, The Mathworks, Natick MA). For

purposes of this example, a classifier was trained using a SVM with a linear kernel imple-

mented with Matlab’s Statistics Toolbox.

a. Size of training set.

We investigate the effect of the size of training sets of different size, consisting

of images from Hashimoto’s patients and an equal number of healthy controls. In

each case, the validation set consisted of 100 images from subjects (50 healthy, 50

ill) that had been held out as a test set (and not used in the training set).

The sensitivity SEN and specificity SPC of the classifier as a function of the number

of Hashimoto’s patients in the training set are shown in Figure 2. The sensitivity mea-

sures the proportion of true positives that are correctly identified by the classifier and

is defined as SEN = TP/(TP + FN), while the specificity measures the proportion of true

negatives that are correctly identified and is defined as SPC = TN/(FP + TN) where TP -

true positive, TN- true negative, FN- false negative, FP - false positive. The accuracy
Figure 2 Sensitivity (SEN) and specificity (SPC) of classifier applied to a validation set of 50 healthy
and 50 ill subjects. The training set consisted of the indicated number of individuals with Hashimoto’s
disease (horizontal axis) with an equal number of healthy subjects. The test set consisted of different
individuals than those used for the training set. Ten attributes were defined for each image.



Table 1 Impact of the operator and the device type on the sensitivity and specificity of
the classifier SVM

Operator\device 1 2

1 SEN = 75% SEN = 68%

SPC = 82% SPC = 61%

2 SEN = 68% SEN = 58%

SPC = 59% SPC = 70%

In this case, the SVM had been trained on 100 images (50 healthy, 50 ill patients) acquired by Operator 1 and validated
using independent sets of the same size of images obtained by Operator 1 or 2. The performance of the classifier is
generally better with Operator 1 on data collected on device 1 (which originated the data) although there are variations
in performance. Both operators used both devices to acquire data.
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ACC of the classifier is defined as the fraction of cases that are classified correctly, i.e.

the true positive plus the true negative detection rates.

As shown in Figure 2, the performance of the classifier is highly variable for

training sets with fewer than about 60 cases (plus an equal number of healthy con-

trols). For larger training sets the performance of the classifier approaches a sensi-

tivity and specificity of 75-85%, which may possibly be useful for medical purposes.

In this case the validation was statistically correct (the validation and training sets

used images from different individuals) but the classifier performed poorly when

trained with fewer than about 100 images. Readers should note the large size of

the training and evaluation sets that are needed to train a useful classifier and to

gain a reasonable understanding of its performance.

b. Effect of different operators and equipment.

We next consider the performance of the classifier using images acquired by

two operators with different ultrasound apparatus in different medical units. Both

operators 1 and 2 use both medical units 1 and 2. The classifier was created with

a training set of 50 healthy subjects and 50 ill patients obtained only by the first

operator, and applied to independent validation sets of the same size acquired by

either operator (Table 1). The classifier generally performed better for Operator 1

(who had acquired the data) than for Operator 2.

c. Assessment of attribute relevance

We now consider how the selection of attributes affects the performance of the clas-

sifier using the previously described images. The input set of 10 attributes was divided

into subgroups containing all their combinations – a total of 1023 SVM classifiers. The

classifier was trained with the same set of 400 individuals as before (half ill, half

healthy) using combinations of attributes shown in Table 2, and tested with a holdout

group of 100 different individuals (half healthy, half ill). The sensitivity (SEN), specifi-

city (SPC) and accuracy (ACC) of the classification is shown in Table 2. This process

had been conducted using four different kernel functions available in Matlab’s Statistics

Toolbox; Table 2 shows the results obtained for the quadratic kernel basis.

Notably, as shown in Table 2, in some cases the classifier performed better when it had

been trained using fewer attributes; it seems that only 3–4 of the attributes contributed

significantly to the classification. Additional attributes may have reduced the performance



Table 2 Results of training a classifier with SVM (quadratic kernel), using a training set of
400 ultrasound images (half from healthy individuals, half from individuals with Hashimoto’s
disease) with a validation set of 100 separate individuals, half of whom had the disease
Attribute number from 1 to 10 SEN SPC ACC

(1 - occurs, 0 – does not occur)

1 2 3 4 5 6 7 8 9 10

1 0 1 0 1 0 0 0 0 0 0.831 0.792 0.811

1 1 1 0 1 1 0 1 0 0 0.792 0.831 0.811

1 1 1 0 1 0 1 1 0 0 0.772 0.851 0.811

1 1 1 0 1 0 0 0 0 0 0.831 0.782 0.806

0 1 0 1 1 0 0 0 0 0 0.772 0.841 0.806

1 1 0 1 1 0 0 0 0 0 0.782 0.831 0.806

…

1 1 1 1 1 1 1 1 1 1 0.732 0.811 0.772

…

SEN, SPC, and ACC refer to the sensitivity, specificity, and accuracy of the classifier with the validation set. The accuracy of
the classifier does not increase significantly when more attributes are added, implying that some of the attributes
contribute little to the performance of the classifier. The table shows the performance of the classifier when constructed
from combinations of attributes (attributes used are indicated by 1, not used by 0).
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of the classifier due to overfitting. Reducing the number of attributes greatly speeds up

the process of classification and may reduce the required sizes of the training sets to avoid

overfitting. Additionally, it simplifies the medical interpretation of the process, by direct-

ing attention to the most important attributes. However, choosing attributes in this retro-

spective manner introduces a post-hoc element into the analysis that, at least, needs to be

acknowledged by the investigators and, ideally, should be followed up by subsequent stud-

ies in which the choice of attributes had been settled on a priori.

These cases illustrate the extreme difficulty of developing effective classifiers from

relatively small training sets, and the ease with which an investigator can be mislead.

First, lack of independence of the training and validation sets can bias the validation

tests, and the problem is worse with smaller datasets. Figure 1 shows an extreme case

where the training and validation sets are the same. However, “independence” is not a

binary quantity. Hidden correlations between the training and validation sets can lead

to over optimism about the performance of the classifier. Second (Figure 2), classifiers

that are developed from too-small training sets are likely to generalize poorly.

The bottom line: developing useful classifiers can require much larger data sets than

are typically used in most biomedical engineering studies.

Recommendations

The following recommendations are offered to investigators and readers/paper re-

viewers on the use of machine learning techniques in biomedical engineering research.

1. Authors clearly state the purpose and intended applications of their work.

The work may be viewed as exploratory data analysis, where the research is still try-

ing to identify relationships among variables. In that case the authors should emphasize

in their discussion that they were performing exploratory analysis and that confirma-

tory data analysis is required. On the other hand, if the goal of the study is to develop a

predictive model, particularly one for medical diagnosis, then there must be either a
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physiological basis for the model or the investigators must have performed an appropri-

ate analysis to establish its predictive value. Developing and validating a medically use-

ful diagnostic test would require far more than exploratory classifier studies, and

investigators should not over-promise what their studies can deliver.

2. Investigators should minimize the number of attributes in their classifiers.

This is a particularly urgent need with small studies, which are prone to overfitting

with even a small number of attributes. Several approaches can be recommended to

achieve this. One is to remove one variable at a time, run the classifier, and determine

whether the sensitivity and specificity improve or degrade (for an example see one of

the cases discussed above). Another approach is to use decision trees to pare down the

variables and then process the remaining set with the classifier. Another is to use the

method proposed by Weigand [19] in the context of neural networks, which involves

use of a weight elimination algorithm to pare down the number of variables. These

methods if used properly can avoid the bias introduced when authors select the vari-

ables to be used in training a classifier.

3. Investigators should address the issue of transportability.

How can a researcher at a different institution apply the work? Must he or she collect

another full set of training data and train a SVM de novo? The authors, as experts on

the particular methodology developed, should provide some opinion as to what por-

tions of the method can be reused directly, and which might require “tuning” for imple-

mentation elsewhere. A new diagnostic technique is of no value to medicine unless

other experts can apply it.

4. Investigators should view building classifiers not simply as an add-on statistical

analysis, but as part and parcel of the experimental process, with much of that

experiment being performed computationally.

As in physical experiments, the authors should provide sufficient information to

allow others to repeat the numerical experiment.

In particular, if the goal of developing a classifier is to develop a medical diagnostic

technique, the investigator is beginning a long process that would be needed to estab-

lish the sensitivity and specificity of the technique with the entire relevant patient

population. Investigators can increase their chances of success by choosing attributes in

collaboration with physicians in relevant fields, and performing a sensitivity analysis at

an early stage to reduce the number of attributes needed.

Moskowitz et al. [20] provided guidelines for early stage development of diagnostic

imaging applications, which apply to developers of classifiers as well. These authors

pointed out that in early stages of development one cannot prove that a diagnostic

method “works” in any medically useful way, but only that it cannot work, if that is the

case, and it is better to uncover such bad news early rather than late in the develop-

ment process. That requires preliminary studies with elements of good design include

proper blinding and avoiding changing evaluation criteria during the tests. These
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considerations extend far beyond the use of packaged statistics software and learning

classifiers.
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