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Abstract

Shotgun metagenomic analysis of the human associated microbiome provides a rich set of

microbial features for prediction and biomarker discovery in the context of human diseases

and health conditions. However, the use of such high-resolution microbial features presents

new challenges, and validated computational tools for learning tasks are lacking. Moreover,

classification rules have scarcely been validated in independent studies, posing questions

about the generality and generalization of disease-predictive models across cohorts. In this

paper, we comprehensively assess approaches to metagenomics-based prediction tasks

and for quantitative assessment of the strength of potential microbiome-phenotype associa-

tions. We develop a computational framework for prediction tasks using quantitative micro-

biome profiles, including species-level relative abundances and presence of strain-specific

markers. A comprehensive meta-analysis, with particular emphasis on generalization

across cohorts, was performed in a collection of 2424 publicly available metagenomic sam-

ples from eight large-scale studies. Cross-validation revealed good disease-prediction

capabilities, which were in general improved by feature selection and use of strain-specific

markers instead of species-level taxonomic abundance. In cross-study analysis, models

transferred between studies were in some cases less accurate than models tested by

within-study cross-validation. Interestingly, the addition of healthy (control) samples from

other studies to training sets improved disease prediction capabilities. Some microbial spe-

cies (most notably Streptococcus anginosus) seem to characterize general dysbiotic states

of the microbiome rather than connections with a specific disease. Our results in modelling

features of the “healthy”microbiome can be considered a first step toward defining general

microbial dysbiosis. The software framework, microbiome profiles, and metadata for thou-

sands of samples are publicly available at http://segatalab.cibio.unitn.it/tools/metaml.

Author Summary

The human microbiome–the entire set of microbial organisms associated with the human

host–interacts closely with host immune and metabolic functions and is crucial for human
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health. Significant advances in the characterization of the microbiome associated with

healthy and diseased individuals have been obtained through next-generation DNA

sequencing technologies, which permit accurate estimation of microbial communities

directly from uncultured human-associated samples (e.g., stool). In particular, shotgun

metagenomics provide data at unprecedented species- and strain- levels of resolution. Sev-

eral large-scale metagenomic disease-associated datasets are also becoming available, and

disease-predictive models built on metagenomic signatures have been proposed. However,

the generalization of resulting prediction models on different cohorts and diseases has not

been validated. In this paper, we comprehensively assess approaches to metagenomics-

based prediction tasks and for quantitative assessment of microbiome-phenotype associa-

tions. We consider 2424 samples from eight studies and six different diseases to assess the

independent prediction accuracy of models built on shotgun metagenomic data and to

compare strategies for practical use of the microbiome as a prediction tool.

Introduction

The human microbiome constitutes the whole set of microbial organisms associated with the

human host. It has been shown to be crucial for human health and for the development and

maintenance of the immune system and for several metabolic activities [1–3]. Significant effort

has been devoted to its characterization in healthy individuals and subjects with a variety of

diseases such as inflammatory bowel diseases [4,5], obesity [6,7], and type-2 diabetes [8]. Con-

sequently, the potential use of the microbiome as a diagnostic tool is a promising line of investi-

gation [9]. In addition, even when the findings are not immediately relevant for the clinical

setting, identifying associations between the microbiome and specific diseases is essential for

follow-up mechanistic studies.

Next-generation DNA sequencing technologies permit comprehensive profiling of the

microbial communities from human-associated samples, and have now been sufficiently

widely employed to enable meta-analysis for discovering patterns common to independent

studies. Meta-analysis has been broadly adopted in other genomics applications, such as for

analysis of microarray or RNA-seq data, where multiple studies have been performed for a sim-

ilar purpose including identifying gene expression signatures of specific human cancers. The

general objectives of meta-analysis include proposing new classifiers [10], comparing different

classification methods [11], finding a common transcriptional profile [12], and evaluating gen-

eralization of prediction models across different studies [13]. In genomics, rigorous meta-anal-

yses are crucial both to validate the findings of each single study, and for providing robust

models for clinical purposes.

The most common and cost-effective approach for microbiome characterization to date tar-

gets the 16S rRNA gene as taxonomic marker [14]. Meta-analyses and independent validation

of such experimental approach have identified differences in microbiome composition or func-

tion by body site, age, and disease state [15–17], and have been conducted to determine the

most effective techniques for disease classification [18]. More recently, shotgun metagenomics

[19] provided expanded resolution to the level of microbial species [20–22] and strain [23], to

the fungal and viral kingdoms [24], and to the level of individual genes across the metagenome

[25,26]. The decreasing cost of shotgun metagenomics is rapidly increasing the number of

available human disease-associated datasets; however, the generalization of resulting prediction

models is still unclear.
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Improved resolution and lower variability of shotgun metagenomics hold the promise to

provide improved generalization of microbial signatures over 16S rRNA sequencing [27].

Meta-analyses on specific host characteristics have been performed (e.g., with respect to host

age [28]). The importance of cross-cohort consistency and validation of predictions has also

been recognized, with some works assessing the structure of the microbiome in European

cohorts [29] and combined European-American cohorts [21, 30]. Some studies focusing on the

link between host conditions and microbiome further provided a validation step with respect

to other single investigations [31, 32]. Although these works provided a first assessment on the

transferability of condition-associated microbiome features across cohorts, no systematic

assessments have been performed on clinical outcomes using the full archive of shotgun meta-

genomic data now publicly available, and no convenient software frameworks for doing so are

available in the community.

In this study we uniformly process 2424 shotgun metagenomic samples from eight studies

to assess the independent prediction accuracy of models built on metagenomic data and to

compare strategies for practical use of the microbiome as a prediction tool. The software frame-

work and the microbiome profiles for thousands of samples are made publicly available.

Results and Discussion

We evaluated alternative approaches to metagenomics-based prediction tasks, and assessed the

strength of microbiome-phenotype associations using publicly available raw sequence data.

For this purpose, we developed a machine-learning software framework which uses as features

quantitative microbiome profiles, including species-level relative abundances and presence of

species- and strain-specific markers (seeMethods). Our multi-level validation strategy includes

the assessment of microbiome models on single cohorts, across stages of the same study, across

different studies, and across target outcomes and conditions (Fig 1). The software and valida-

tion framework is publicly available at http://segatalab.cibio.unitn.it/tools/metaml and was

applied on a total of 2424 publicly available metagenomic samples from eight large-scale stud-

ies (see Table 1 andMethods). All samples were processed with MetaPhlAn2 [21] for quantita-

tive species- and subspecies-level taxonomic profiling after standard sequencing data pre-

processing (seeMethods).

Cross-validation studies revealed good capabilities for disease
prediction

We first assessed the prediction power of metagenomic data in linking the gut microbiome

with disease states. For such purpose, we considered six available disease-associated metage-

nomic datasets spanning five diseases: liver cirrhosis [33], colorectal cancer [34], inflammatory

bowel diseases (IBD) [35], obesity [31], and type 2 diabetes (two distinct studies—[37] and

[32]). Each dataset was analyzed independently using cross-validation (denoted as CV in Fig

1), which repeatedly uses part of the samples with associated known phenotype for learning

the statistical model, and the remainder for validating the predictions (seeMethods). The sup-

port vector machines (SVM) [38] and random forest (RF) [39] classifiers were used for this

evaluation as they are state-of-the-art approaches and are appropriate for this type of data [18].

We also evaluated Lasso [40] and elastic net (ENet) [41] regularized multiple logistic regres-

sion. Neural networks [42] and Bayesian logistic regression [43] represent other possible alter-

natives not evaluated here.

Prediction performance was evaluated by the area under the curve (AUC) metric, which

summarizes true positive and false positive rates and is robust to unequal proportions of each

outcome. Using MetaPhlAn2 species abundance [21] as input data produced high accuracy for
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disease classification (Fig 2), although prediction performance varied considerably between

datasets. The most predictable disease state appears to be liver cirrhosis (AUC = 0.945, 95% CI:

0.909–0.981 for the best classifier), followed by colorectal cancer (AUC = 0.873, 95% CI: 0.802–

0.944), and IBD (AUC = 0.890, 95% CI: 0.812–0.968). For IBD we considered Crohn and ulcer-

ative colitis patients together due to the low number of cases in the datasets compared to con-

trols (as general rule at least ten samples per class are required for reliable prediction models).

Stronger signatures might be found when considering the two conditions separately with ade-

quate sample size, as it has been observed that some bacterial features are specific to Crohn

Fig 1. Validation strategies implemented in the developed framework. (a) Main strategies include cross-validation on single studies and cross-
validation across multiple studies. (b) Additional strategies when multiple stages are available from the same study.

doi:10.1371/journal.pcbi.1004977.g001

Table 1. Summary of the datasets considered in the experiments.

Dataset
name

Body site Disease #stages #case samples #control samples Average reads per sample (std) Reference

Cirrhosis Gut Liver Cirrhosis 2 118 114 51.6M (30.9M) [33]

Colorectal Gut Colorectal Cancer 1 48 73 60.0M (25.5M) [34]

HMP Several None 1 - 981 61.1M (51.2M) [1]

IBD Gut Inflammatory Bowel
Diseases

1 25 85 45.2M (18.4M) [35]

Obesity Gut Obesity 1 164 89 68.2M (23.2M) [31]

Skin Skin None 1 - 287 24.7M (38.1M) [36]

T2D Gut Type 2 diabetes 2 170 174 40.2M (11.8M) [37]

WT2D Gut Type 2 diabetes 1 53 43 31.0M (17.6M) [32]

doi:10.1371/journal.pcbi.1004977.t001
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disease only [16]. Confounding factors such as active treatment could of course lead to overes-

timated prediction capabilities [44, 45], but we adopted here the same contrasting approach

used in the original works.

For the other diseases we achieved lower discrimination capabilities, suggesting less dramatic

microbial shifts in the patients. For type 2 diabetes, although the two considered datasets have

independently sampled and geographically distinct cohorts, we obtained very similar AUC values

for both (0.744, 95% CI: 0.688–0.800 and 0.762, 95% CI: 0.651–0.873 for T2D andWT2D,

respectively). Prediction of obesity generated the lowest AUC (0.655, 95% CI: 0.576–0.734).

Despite a wide range of classification performances, all investigated datasets showed a substantial

level of association between disease and the microbiome (Fig 2), with AUC values significantly

higher than those obtained by the same classifier applied to the same data with shuffled class

labels (p-values ranging from 9.9 × 10−3 for obesity to 5.6 × 10−7 for cirrhosis, S1 Table).

Comparing the accuracy of SVM and RF classifiers, RFs exhibited in all cases similar or bet-

ter results than SVM. In particular, accuracies differed substantially for three datasets: AUC

increased from 0.809 to 0.873 for colorectal, from 0.663 to 0.744 for T2D (difference also sup-

ported by statistical significance, p-value 0.011, see S1 Fig), and from 0.664 to 0.762 for WT2D.

In two cases, slight improvements were verified: AUC increased from 0.922 to 0.945 for cirrho-

sis and from 0.862 to 0.890 for IBD. Methodologically, our results thus suggested the use of

RFs for disease prediction from species abundances.

Feature selection and strain-specific markers improve prediction
accuracy

We then investigated how feature selection, i.e., the procedure of selecting a reduced subset of

relevant discriminative features, impacts the prediction accuracy. To this end, we used the RF

Fig 2. Cross-validation analysis for disease discrimination on six different datasets. Species abundance was used as microbiome feature. (a)
Prediction performance metrics for different diseases versus healthy controls. The margin of errors are reported in parenthesis. In bold we report the best
value for each dataset. (b) Average ROC curves (over folds) with confidence intervals for random forests (RF) and support vector machines (SVM).

doi:10.1371/journal.pcbi.1004977.g002
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classifier that implicitly embeds a feature selection step during the model generation phase (see

Methods). Feature selection produced a slight improvement of the AUC in all the cases when

the model was generated on a reduced set of species (Fig 3). The advantage of this procedure is

twofold. In addition to the increased accuracy, it enables biomarker discovery by detecting the

(few) species that are most useful to discriminate between “healthy” and “diseased” subjects.

These most discriminative species may be prioritized when performing follow-up and valida-

tion analyses, and the reduced complexity of the model potentially enables additional evalua-

tions on low-throughput assays. However, the best accuracies were obtained with still relatively

high numbers of species, i.e., more than 60 (S2 Fig). This confirms the complexity of microbial

ecosystems where the combination of few species is probably not sufficient to characterize the

microbiome associated with complex diseases.

We then investigated the use of strain-specific markers, as opposed to species-level taxo-

nomic abundance, by applying the same classification and cross-validation methods to strain-

specific microbial features generated by MetaPhlAn2. Given their strain-specificity, adopting

markers as features let us also test the hypothesis that complex diseases are associated with the

Fig 3. Prediction performances (assessed using AUC) for disease discrimination in different cross-validation
studies. Species abundance and marker presence are the microbiome features used by the classifiers. The best value for
each dataset and feature type (i.e., species abundance or marker presence) are in bold, and the overall best values for each
dataset are circled. RF and SVM are applied on the entire set of features whereas RF-FS:Emb incorporates a feature
selection step (seeMethods). Margins of error are reported in parenthesis.

doi:10.1371/journal.pcbi.1004977.g003
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presence of specific strains or subspecies rather than only species-level abundances. Consistent

with this hypothesis, better predictions were obtained from markers (Fig 2) than species abun-

dance, with differences that were statistically significant for one dataset (S1 Fig). This was

obtained using SVM with linear kernel, which in this context is more practical to use than RF

and SVM with more complex kernels due to the very high dimensionality (~100K features) of

the data. Focusing on SVM, markers gave statistically significant improvements with respect to

species abundances in half of the datasets (S1 Fig). Moreover, RF in combination with feature

selection (RF-FS:Emb) achieved satisfactory classification results, i.e., average accuracies were

usually worse than SVM but with no statistically significant difference (S1 Fig) even using a

very limited portion (<0.2%, S2 Fig) of the investigated markers. The biomarker discovery

step here is of particular interest because it permits identification of a limited set of strain-spe-

cific markers potentially directly involved in the association with disease.

We also considered alternative approaches to feature selection based on Lasso and ENet

(seeMethods). Applying Lasso or ENet as pure classifiers, which implicitly incorporates the

feature selection and classification steps, did not give satisfactory results, with AUC worse than

RF or SVM for both species abundance and marker features (S3 Fig). Better accuracies were

obtained by using them for feature selection only, followed by RF or SVM classification. How-

ever, both Lasso and ENet feature selection in general worsened the performance of RF and

SVM without prior feature selection. Finally, ENet worked better than Lasso, although it was

associated with more time-consuming tuning of its free parameters on a two-dimensional grid.

Detection of the disease-associated microbial features

Feature selection can also be used for biomarker discovery, and several tools have been devel-

oped specifically for this task in metagenomics [46–48]. The approach proposed here (RF with

embedded feature selection) focuses on the set of features with the most discriminating power

rather than on strictly statistical assessments [46] or statistical assessment coupled with effect

size [47]. The implemented tool automatically plots the most relevant species (or markers)

with the importance factor (seeMethods) along with the average relative abundance (or aver-

age presence) associated with the different considered classes. We observed a reasonable level

of overlap between the detected species and markers, as the most discriminative markers

tended to represent strains of the most discriminative species. Interestingly, for all the consid-

ered datasets (Fig 4 and S4 Fig) the importance factor attributed to each species (or marker)

was not well correlated with its average relative abundance (or presence) in the samples (maxi-

mum correlation of 0.49 for the T2D dataset, S5 Fig). In several cases, we detected relevant spe-

cies with partial prevalence but highly discriminative potential between “healthy” and

“diseased” subjects. For example, Peptostreptococcus stomatis resulted the most discriminative

species in the colorectal dataset with an average relative abundance in the samples less than

0.15%.

In the cirrhosis dataset, the most relevant taxonomic abundances were enriched in diseased

patients. The top features were especially related to the Veillonella (Veillonella spp., Veillonella

dispar, Veillonella parvula, and Veillonella atypica) and Streptococcus genera (Streptococcus

anginosus and Streptococcus parasanguinis) in addition toHaemophilus parainfluenzae, which

is consistent with findings of the original study [33]. Species belonging to Veillonella and Strep-

tococcus are typical colonizers of the oral cavity, but they are often overgrown in the small

intestine in patients affected by liver cirrhosis, thus suggesting the invasion of the gut from the

mouth in these patients [33]. Moreover, species such as Veillonella spp., V. dispar, V. atypica,

and S. anginosus were already associated with opportunistic infections [33]. Also theH. parain-

fluenzae pathogen may arrive to the gut from the oral cavity [33]. In the colorectal dataset we
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Fig 4. Most important discriminating species (left) andmarkers (right) identified by RF for disease discrimination in the (a) cirrhosis and (b)
colorectal cancer cross-validation studies. In the left panels, for each species reported on the vertical axis, the top bar (in blue) corresponds to the
feature relative importance (with standard deviation reported with error bars) and the two bottom bars refer to the average relative abundance for healthy
(in green) and diseased (in red) samples. In the right panels, for each marker the top bar is coloured according to the corresponding species and the two
bottom bars refer to the average marker presence.

doi:10.1371/journal.pcbi.1004977.g004
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identified five major species: P. stomatis, Fusobacterium nucleatum (both enriched in diseased

patients) and Streptococcus salivarius (depleted in diseased subjects) as found in the original

study [34], in addition to Parvimonas spp. and Parvimonas micra.

We then compared the discriminative species across datasets through hierarchical clustering

(S6 Fig). We found some species that were distinctive of one disease only as it is the case for P.

stomatis, P.micra and Gemella morbillorum in colorectal cancer, multiple Veillonella species in

cirrhosis, and, partially, Bifidobacterium bifidum and Lachnospiraceae in IBD. Interestingly, F.

nucleatum was highly discriminant both in colorectal cancer and cirrhosis, suggesting the pres-

ence of a similar dysbiosis niche for this organism. Overall, the discriminative species for the

two diabetes datasets and the obesity dataset had lower weights, consistent with the lower clas-

sification performances achieved with them. Moreover, the pattern of discriminative species

for these two datasets clustered together (S6 Fig), suggesting similar dysbiotic configurations

of the gut microbiome for obesity and type-2 diabetes. Some species were also found in the set

of top discriminative features for all the studies, in particular S. salivarius, S. anginosus, V. par-

vula, Roseburia intestinalis, and Coprococcus comes. These species might thus be biomarkers of

general dysbiosis or ecological community stress in non-healthy states, and should be recog-

nized as such in future disease-microbiome association studies.

Extension to non-disease classification problems

We extended the cross-validation analysis by evaluating the predictability for non-disease based

classification problems. Gender discrimination (S7 Fig, part a) exhibited in general low classifi-

cation accuracy with an AUC close or less than 0.6 for most of the considered datasets. However,

statistically significant discrimination was verified in some cases (AUC equal to 0.662 and 0.796

for skin and IBD dataset, respectively, both p< 0.05 by permutation test with shuffled labels),

which may suggest some gender-dependent differences in the human microbiome as highlighted

by recent studies [49]. High classification accuracy in body site prediction in the HumanMicro-

biome Project (HMP) dataset (AUC = 0.96), is consistent with previously reported large differ-

ences in the microbiome composition among different body areas [1], and provided validation of

the proposed tool for multi-class classification problems (S8 Fig). The confusion matrix revealed

moderate misclassification between nasal and skin body sites, which may be due to nasal samples

being taken from the anterior nares (external part of the nostrils), and thus having relatively simi-

lar biochemical characteristics compared to skin samples from the retroauricular crease.

Metagenomic disease-predictive models show strong cross-stage
generalization

The cross-validation studies discussed in previous sections permitted evaluation of the predict-

ability of different disease states from the human microbiome. However, they are not necessar-

ily a good proxy to evaluate the generalization of the prediction model to independent

validation samples, a scenario more relevant to a clinical setting but that has been scarcely

investigated. Specifically, how do prediction models perform when applied to samples gener-

ated in an independent clinical and laboratory study? We address this question for several

problems of increasing complexity (denoted as CStaV in Fig 1).

We first considered the cirrhosis dataset, in which the samples were acquired in two distinct

stages named “discovery” and “validation” (Fig 5). The generalization of the model was evalu-

ated by (i) generating the model on the samples of the training (TR) stage and (ii) applying it

on the test (TS) stage. For comparison, we also report the cross-validation results obtained on

each specific stage. In general, we found that the model was transferred properly from one

stage to the other. In fact, RF applied on species abundance produced an AUC value on the
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discovery stage that was only slightly decreased from 0.936 (for cross-validation) to 0.919. For

the validation stage we actually obtained an increase from 0.958 (for cross-validation) to 0.972,

and the marker-based predictions achieved slightly better but overall consistent values (Fig 5).

Finally, we note that the AUC achieved on each specific stage were in line with the AUC exhib-

ited by cross-validation using the entire set of samples (0.945).

A similar analysis was done on the T2D dataset, in which samples were collected in two dif-

ferent stages (stageI and stageII, Fig 6). We verified sufficient generalization of the model

across the two stages, although we observed a decrease in accuracy relative to cross-validation.

AUC for RF on species abundance decreased from a cross-validation value of 0.737 (0.735 for

marker presence) to 0.661 (0.639) for stageI, and from 0.743 (0.771) to 0.686 (0.672) for stageII.

In general, the results obtained on the cirrhosis and T2D datasets provide reasonably good gen-

eralization of the model when applied across disease stages, i.e., to independent samples/

batches from the same study. This implies that the samples, although associated with different

subjects and acquired at different time points, share common characteristics such the

Fig 5. Cross-stage analysis of disease discrimination in the cirrhosis dataset, which was generated in two independent
stages (discovery and validation). The “All” columns and rows show results when all samples are combined. When the training
(TR) and test (TS) stages coincide, the analysis was done in cross-validation (with the margin of error reported in parenthesis). In the
other cases, the model was generated on TR and then applied to TS. In bold we report the best value for each scenario and feature
type (i.e., species abundance or marker presence), and circled are the overall best value for each scenario.

doi:10.1371/journal.pcbi.1004977.g005
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Fig 6. AUC by cross-stage and cross-study analysis for T2D discrimination in the T2D andWT2D datasets.When the training (TR) and test
(TS) sets coincide, the analysis was done in cross-validation (with the margin of error reported in parenthesis). In the other cases, the model was
generated on TR and then applied to TS. In bold we report the best value for each setting and feature type (i.e., species abundance or marker
presence), and circled are the overall best value for each scenario.

doi:10.1371/journal.pcbi.1004977.g006
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population of study, sample collection approach, DNA extraction protocol, sequencing tech-

nology, and analysis strategy [19].

Cross-study generalization is improved by including healthy samples
from other cohorts

Cross-study validation (denoted as CSV in Fig 1) is a more difficult standard of validation than

cross-stage validation, in that training and validation are performed in completely independent

studies targeting the same disease. We focused on type-2 diabetes, for which two distinct data-

sets are available (i.e., T2D and WT2D). The two datasets presented very different population

characteristics as T2D targeted Chinese subjects while WT2D enrolled European women. Still,

we observed generalization from one study to the other, (Fig 6), although cohort effects clearly

affected the results. For validation on the T2D dataset, the AUC for RF on species abundance

decreased from a cross-validation value of 0.744 (0.747 for marker presence) to 0.569 (0.566)

when the model was constructed on the WT2D dataset. Similarly, for validation on the WT2D

dataset, AUC decreased from a cross-validation value of 0.762 (0.739) to 0.664 (0.622). Different

results were achieved by transferring the model to WT2D from the two different experimental

stages of the T2D dataset. We obtained an AUC of 0.585 (0.595) and 0.689 (0.637) by transferring

the model from T2D_stageI and T2D_stageII, respectively, indicating that T2D_stageII was

more similar than T2D_stageI to WT2D. This similarity was consistent with integrative correla-

tion [50] between the feature relative importance scores obtained on the considered stage of T2D

and those onWT2D (S2 Table). The features of T2D_stageII were more correlated to WT2D

than were T2D_stageI features, in agreement with the prediction accuracies.

Cross-study validation of T2D classification was improved by adding gut microbiome sam-

ples from the healthy subjects of four other datasets, i.e., cirrhosis, colorectal, HMP, and IBD,

to the training data. While we included all the control groups as “healthy”, there is the potential

for health problems among some control subjects. However, it is standard practice in case-con-

trol studies to exclude known disease conditions from control groups, so we can assume that,

even in the worst case, just a few diseased patients may be included in the controls and these

may be mostly due to undiagnosed cases. In this setting we tested the generalization of the

model across cohorts (Fig 7A) by generating the models on all the available samples apart

those associated with the dataset considered for testing, a "leave-one-dataset-out" cross-study

validation [51] (denoted as lodoCSV in Fig 1). Interestingly, we obtained improved discrimina-

tion for T2D when control samples from multiple independent studies were added to training

sets, with a high cross-validation AUC score in predicting type-2 diabetes on the entire set of

samples (0.837/0.806 for species abundance and marker presence using RF, respectively). These

values were in fact higher than the AUC obtained by merging all the T2D andWT2D samples

into a single set and cross-validating them (0.743/0.736). This cross-validation accuracy was

reduced when we tested the generalization of the model to the two T2D datasets (from 0.743/

0.736 to 0.655/0.653 and 0.709/0.679 for T2D andWT2D, respectively), which confirmed a non-

complete generalization of the model across cohorts. Interestingly, such values obtained by

including healthy samples from other cohorts were again higher than for models constructed

only on the T2D orWT2D datasets (Fig 6). Thus, including healthy samples from independent

cohorts was effective at improving the detection of T2D status. Finally, we evaluated generaliza-

tion on the healthy samples of the four other datasets (prediction assessed in terms of overall

accuracy–OA, right part of Fig 7A). In such cases we verified high accuracy (i.e., OA close to 1

for all the considered datasets), confirming correct prediction for most of the control samples.

Addition of independent healthy samples to training sets was also performed for gender predic-

tion (S7 Fig, part b), also resulting in increased accuracy, although the discrimination capabilities
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remained generally low. Overall, these results strongly suggest that the inclusion of samples of

healthy individuals from unrelated cohorts is beneficial in disease-targeted investigations, espe-

cially when the prediction task has to be generalized to new cohorts.

Avoiding overfitting is crucial to generalization on different cohorts

We compared the cross-validation accuracies that we obtained (Fig 3) with results reported in

the original papers, when available. For cirrhosis, our best AUC value was 0.963, higher than

Fig 7. Cross-study analysis in multiple gut datasets for (a) T2D discrimination and (b) disease discrimination (independently from the type of
disease). For (a), we included all the healthy (controls) and diabetes (cases) samples, whereas samples labelled as other diseases were not considered.
For (b), we instead included all the samples where samples with one of the considered diseases were put together in the same "diseases" class. The *
denotes cross-validation results (with the margin of error reported in parenthesis). In the other cases, the model was generated on all the datasets other
than the dataset considered for testing, a “leave-one-dataset-out” cross-study validation [51]. For the testing datasets with only healthy samples,
prediction accuracy was evaluated in terms of overall accuracy (OA). In bold we report the best value for each scenario and feature type (i.e., species
abundance or marker presence), and circled are the absolute best value for each scenario.

doi:10.1371/journal.pcbi.1004977.g007
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the cross-validation result reported in [33] (AUC = 0.838). Slight improvements were also veri-

fied for colorectal cancer (AUC = 0.881 against the 0.84 reported in [34]). The best AUC for

discrimination of IBD patients in the IBD dataset was 0.914, while a similar analysis was not

performed in the original paper [35].

For the other datasets (i.e., obesity, T2D, and WT2D), the original works used a two-step

procedure that tends to overstate discrimination accuracy: i) first a statistical test was applied

on the entire set of samples to select the most discriminative features, then ii) the model was

generated on this set of features and the prediction accuracies were estimated directly on the

training set or through a cross-validation approach. This approach overestimates accuracy

metrics such as AUC because supervised feature selection is applied on the same data used to

evaluate the model, a problem referred by the machine learning community as overfitting [52].

When we adopted the same overfitting-prone procedure, our cross-validation accuracy esti-

mates (especially using marker features) were higher than the original ones for all datasets (S9

Fig), but as discussed these are overestimations of the actual discriminative power of the

models.

Conversely, the overfitting-prone method resulted in much worse performance when the

model was transferred to different cohorts. For example, the results reported in [32] showed an

AUC equal to 0.83 when cross-validating on WT2D, which decreased significantly to 0.66

when the model was transferred from the T2D dataset. For the same dataset, we estimated an

AUC of 0.785 (Fig 3) and 0.701 (Fig 6) by (non-overfitted) cross-validation and cross-study

validation, respectively. Non-overfitted models in general exhibit cross-validation accuracies

that are lower, but better represent the ultimate goal of generalization of the model to indepen-

dent cohorts.

We stress that the use of a strict, complete cross-validation/cross-study validation approach

is necessary in metagenomics. For cross-validation this requires that for each fold, all training

steps (including feature selection, model selection, and model construction) are applied on a

set of samples that are not overlapping with the samples used for model evaluation/testing.

This, together with reducing confounding factors such as antibiotic usage, is necessary for non-

overfitted and non-overestimated assessment of the prediction capabilities of metagenomic

data.

Modelling the “healthy”microbiome: Cross-disease prediction

We finally tested the hypothesis that the distinction between the “healthy” and disease-associ-

ated gut microbiome can be generalized to diseases for which training information is not avail-

able. For this purpose, we considered all gut samples from the disease-associated datasets for a

total of 903 samples (Fig 7B). Here the class “diseased” included patients affected by the set of

disparate diseases discussed above. The cross-validation analysis on the entire set of samples

exhibited satisfactory results (AUC = 0.821 for the best model; most discriminative features are

reported in S10 Fig, part a, although in this scenario the model may in reality classify each

type of disease separately from the others. More interesting are the results of cross-study and

cross-disease prediction. In such cases the disease associated with the testing cohort was not

present in the datasets used to generate the model. Although the obtained AUC were lower

than the disease-specific cross-validation results reported previously in Fig 3, we still verified

in all cases a certain level of generalization of the model. In particular, the AUC varied between

0.628 (for T2D) and 0.872 (for cirrhosis). This represents an intriguing result that can be asso-

ciated to the task of modelling the features of the “healthy”microbiome for use as a dysbiosis

prediction model for syndromes where few or no training samples are available. As expected,

several disease-specific species such as G.morbillorum, B. bifidum and P.micra were not
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among the most discriminative, the diseases with which they are correlated are not in the train-

ing set (S10 Fig, part b). Conversely, species discriminative for multiple diseases (S. salivarius,

S. anginosus, V. parvula, R. intestinalis, and C. comes) are even more relevant here, confirming

that these species are associated to a general non-healthy microbiome state rather than to spe-

cific host conditions (especially S. anginosus, which is the most relevant feature for four of the

five testing datasets). Overall, this suggests that the dysbiosis-associated microbiome is partially

distinct from the healthy microbiome regardless of the specific disease under investigation.

This also confirms that study-specific confounding factors [44, 45] are only partially affecting

the estimation of the classification performance. These species identified as associated to gen-

eral microbiome dysbiosis should be considered in future microbiome studies as non-specific

responses to dysbiosis rather than as organisms directly involved in the pathogenesis of the dis-

ease under study.

Conclusion

We uniformly processed shotgun metagenomic microbiome data for 2424 samples from 8

studies of 6 disease types, and used cross-validation, cross-study validation, and cross-disease

validation to evaluate the accuracy of candidate methods of predictive modelling of disease

states. We make recommendations of best approaches and non-overfitted practices for using

the microbiome as a prediction tool and discuss species and strain-level biomarkers we identi-

fied for single and combined datasets. While in this manuscript we focused on taxonomic

information, metagenomic functional data such as gene or gene-family abundance data [53]

can be exploited in a similar way to conduct a more advanced function-based analysis. Future

work will be devoted to exploring more advanced machine learning strategies to further

improve classification performance.

In general, cross-validation revealed good prediction capabilities, however classification

results varied considerably between prediction tasks. In some cases, the ability to predict dis-

ease in undiagnosed cases may be overestimated due to the presence of confounding factors

such as active antibiotics treatment. The influence of confounding factors on human micro-

biome has been scarcely investigated in the literature [54, 55], but recent studies [44, 45] high-

light this problem and question the study design of some works.

Cross-study validation involved evaluating the transferability of prediction models between

completely independent patient cohorts. We verified generalization across studies, although

transferred models were in some cases less accurate than models tested by within-study cross-

validation. Interestingly, the inclusion of healthy (control) samples from independent cohorts

in training sets was effective for improving the transferability of predictions. We emphasize

that considering cross-study performance, instead of the more traditional cross-validation

approach, is necessary to understanding prediction capabilities from metagenomic data [56].

Furthermore, avoiding overfitting is crucial for transferring models between different cohorts.

Finally, we obtained promising results in the ambitious task of modelling the features of the

“healthy”microbiome for use as a dysbiosis prediction model for syndromes where few or no

training samples are available. Importantly, this setting is not affected by confounding factors

on the target dataset since target samples are not used to build the model. The identified bio-

markers for the “healthy” versus “dysbiosis”-associated microbiome are also very important for

future microbiome studies of new diseases, because if the same biomarkers are appearing as

discriminatory they should be regarded as general dysbiotic organisms rather than microbes

directly in involved in the disease under investigation.

Compared to the considerable amount of work done on learning methods for 16S rRNA

studies, our contribution emphasized two strengths unique to the shotgun metagenomic
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approach. First, we showed that improved performance can be achieved using strain-level

genomic features (i.e., markers) that are not available from 16S rRNA studies. This is also a

confirmation that many disease phenotypes are likely linked with microbial genes and factors

that are not “core” components of microbial species, but rather are encoded in variable geno-

mic portions that are strain- or subspecies-specific. Second, despite the common potential

biases in DNA extraction, shotgun sequencing is considered more consistent across studies

than 16S rRNA sequencing for which different variable regions and primer choices are avail-

able [57–59], and thus quantitative microbial signature are inherently less difficult to transfer

across cohorts and populations. From a more technical viewpoint, learning analysis in shotgun

metagenomes presents distinct challenges due to the very high dimensionality of the dataset

when considering strain-level markers (~100K features), requiring different considerations in

machine learning than for 16S rRNA datasets. Altogether, we provide the first validated

toolbox for disease prediction across studies using shotgun metagenomics.

This study provides a publicly available software framework and uniformly processed

microbiome profiles for thousands of samples, to facilitate follow-up studies and evaluation of

new methods for classification of disease and other states using metagenomic data. This tool

allowed us to assess the predictive power of the microbiome features with respect to disease

states and transferability across independent datasets. On a final note, we notice that meta-

analyses like the one we performed here were recently regarded as “research parasitism” [60],

because we analyse data produced by other laboratories. The analysis of cross-study predic-

tions, and identification of a dysbiotic microbiome, would not be possible any other way. We

hope that not only will these results inform future clinical microbiome studies of disease, but

that they promote data transparency and re-use as key components of scientific progress.

Methods

The proposed tool

We developed a computational tool for metagenomics-based prediction tasks based on

machine learning classifiers (i.e., support vector machines (SVMs), random forests (RFs),

Lasso, and Elastic Net (ENet)). The tool uses as features quantitative microbiome profiles

including species-level relative abundances and presence of strain-specific markers. The frame-

work is fully automatic, including model and feature selection, permitting a systematic and

non-overfitted analysis of large metagenomic datasets. Two main kinds of analysis are imple-

mented, i.e., cross-validation (to evaluate the prediction strength of metagenomic data) and

cross-study (to evaluate the generalization of the model between different studies). Addition-

ally, the most relevant features are detected for biomarker discovery tasks. Finally, a set of tools

is provided to evaluate classification performances in different ways including i) evaluation

metrics such as overall accuracy (OA), precision, recall, F1, and area under the curve (AUC);

ii) receiver operating characteristic (ROC) curve plots; iii) confusion matrices; iv) plots of the

most relevant features in addition to average relative abundances; and v) heatmap figures.

The MetAML (Metagenomic prediction Analysis based onMachine Learning) tool is open-

source and available online at http://segatalab.cibio.unitn.it/tools/metaml. All the species-level

taxonomic profiling and marker presence and absence data generated by MetaPhlAn2 and

used in this paper are available at the same address.

The adopted machine learning tools

The developed tool incorporates four classification approaches (i.e. SVM, RF, Lasso, and ENet)

which have been extensively applied in many different fields including computational biology
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and genomics [18]. The classifiers were implemented using the scikit-learn python package

[61].

SVMs aim at finding the hyperplane that maximizes the margin between the samples in dif-

ferent classes [38], a strategy with many theoretical and practical advantages [62]. Although

they are intrinsically linear, they can be extended to the non-linear case by mapping data into a

higher dimensional feature space by means of a kernel function. In this work, a radial basis

function (RBF) kernel was considered for classifying species abundances, while a linear kernel

was adopted for markers due to the sparsity of marker-based profiling. In both cases, the best

regularization parameter C (both for linear and RBF kernel) and the width parameter γ (only

for RBF kernel) were chosen in {2−5, 2−3, . . ., 215} and {2−15, 2−13, . . ., 23}, respectively, using a

5-fold stratified cross-validation approach. In cross-validation, samples are first randomly sub-

divided into k subsets (folds) of equal size. In particular, we use here stratified cross-validation,

in which folds are made to preserve the percentage of samples of each class. A single subset is

then used for the testing the model, and the remaining k−1 subsets are used for training. The

whole process is repeated k times, with each of the k subsets used once as the testing set. Finally,

the results on the k testing folds are averaged to produce a single accuracy evaluation. The

parameters that maximize the accuracy (or another metric of choice) are finally chosen. SVMs

are binary classifiers and, in this work, extension to multi-class classification problems was

obtained through the one-against-one approach [63]. Moreover, class posterior probabilities of

each sample were estimated from the predicted labels in the binary case using the Platt formu-

lation [64], which, in the multi-class case, was extended as per [65].

RFs are an ensemble learning method which constructs a large number of decision trees at

training time and outputs the class that is the mode of the classes of the individual trees [39].

The free parameters of such classifier were set in this work as follows: i) the number of trees

was equal to 500; ii) the number of features to consider when looking for the best split was

equal to the root of the number of original features; iii) the quality of a split was measured

using the gini impurity criterion. Although a better estimation of such parameters may be

obtained through cross-validation, no significant variations were verified by empirical evalua-

tion. We note that RFs can intrinsically deal with binary and multi-class classification problems

and give estimation of class probabilities. Moreover, they implicitly provides a list of the fea-

tures sorted in terms of relative importance. Feature importance was computed in our case

using the strategy usually referred to as “gini importance” or “mean decrease impurity” [66].

These importance values were exploited to perform an embedded feature selection strategy

(denoted as RF-FS:Emb) implemented as follows: i) RF was applied on the whole set of avail-

able features; ii) features were ranked in terms of importance; iii) RF was re-trained on the top

k-th features, by varying k in the set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175,

200}; iv) the number of features that maximized the accuracy was chosen as the optimal num-

ber; v) the final model was generated by training RF on this reduced set of features.

Lasso [40] and ENet [41] are generalized linear modelling approaches that incorporate fea-

ture selection and regularization to increase prediction accuracy from high-dimensional and

collinear predictors. Lasso is based on a multiple logistic regression trained with L1-norm

penalized likelihood, while both L1 and L2 norms are penalized in ENet. In this work, we

exploited them in two main ways: i) directly applying Lasso or Enet as pure classifiers by train-

ing a regression model on the binary classification problem; and ii) using Lasso or ENet for fea-

ture selection and then applying SVM or RF on the selected features. In both cases, best

regularization parameters were estimated using a 5-fold stratified cross-validation approach.

For Lasso this implied to chose the alpha parameter in {10−4, . . ., 10−0.5} with values evenly

spaced on a logarithmic scale. For ENet, along with alpha the L1_ratio parameter was chosen

in [0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0].
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Validation and evaluation strategies

Two main kinds of analysis were performed in this work, i.e., cross-validation and cross-

stages/studies. For cross-validation studies, prediction accuracies were assessed by 10-fold

cross validation, repeated and averaged on 20 independent runs. We underline that model

selection and feature selection are done using only the training set thus avoiding overfitting

problems. In the cross-stages/studies case, all the samples of the first stage/study are considered

for training and thus used to generate the classification model including the model selection

and feature selection steps. The generalization of the model is evaluated by applying it on the

samples of the independent stage/study. In all the cases, the results obtained on the original

classification problem were compared with those obtained by a random classifier (denoted in

the paper as SVM-Shuffled and RF-Shuffled). For such purpose, we applied the same setting

after shuffling randomly the labels of all the samples.

Several different metrics were taken into account to evaluate classification performances.

First, we considered the OA, which is the percentage of correctly predicted samples. From the

confusion matrix three main metrics were computed: i) the precision (i.e., the number of cor-

rect positive samples divided by the number of samples predicted as positive); ii) the recall (i.e.,

the number of correct positive samples divided by the total number of positive samples); iii)

the F1 score, which is the harmonic mean of precision and recall, i.e., F1 = 2�(precision�recall)/
(precision+recall). These three metrics (which range in [0, 1], where 1 indicates the best case)

can be computed for each class separately. For brevity, we report in the paper only the average

values: after calculating the metrics for each class, their average values, weighted by the number

of samples per class, are computed. For binary classification problems, class posterior probabil-

ities were used to plot the ROC curve, which represents the true positive rate (i.e., the recall)

against the false positive rate (i.e., the number of wrong positive samples divided by the total

number of non-positive samples). From the ROC curve, we computed the widely-used AUC

statistic, which can be interpreted as the probability that the classifier ranks a randomly chosen

positive sample higher than a randomly chosen negative one, assuming that positive ranks

higher than negative. The AUC ranges in [0.5, 1], where 0.5 corresponds to random change.

In the comparison among classifiers, prediction accuracy was assessed by 10-fold cross-valida-

tion, repeated and averaged on 20 independent runs. The same folds were used for all classifiers, i.e.

training and test sets were identical for each classifier. In this way, the difference in performance of

two classifiers could be calculated directly as the difference in AUCs (or any other metric) within

each test fold. Mean difference and standard error were calculated for each 10-fold CV, then aver-

aged across the 20 repetitions for smoothing. 95% confidence intervals on the difference in AUC

performance of two classifiers were calculated using the t-distribution with df = 9, i.e.:
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using two-tailed t-test with df = 9, noting that the AUC differences were approximately normally

distributed.
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In terms of feature selection, we reported the list of the 25 most important features found by

RFs. For each feature, we considered also the relative importance score, which is a real number

in the range [0, 1] with features that sum to 1. Feature selection is done for each run indepen-

dently, and we report the average results.

The considered large metagenomic datasets

We initially considered a total of 2571 publicly available metagenomic samples (from eight

main studies/datasets) that were reduced to 2424 after pre-processing and curation (see next

sections). These are all the human-associated shotgun metagenomic studies with more than 70

samples and read length bigger than 70nt available as of January 2015. Six studies were devoted

to the characterization of the human gut microbiome in presence of different diseases. Cirrho-

sis included 123 patients affected by liver cirrhosis and 114 healthy controls [33]. Colorectal

consisted of a total of 156 samples, 53 of which were affected by colorectal cancer [34]. IBD

represented the first available large metagenomic dataset and includes 124 individuals, 25 were

affected by inflammatory bowel disease (IBD) [35]. Obesity included 123 non-obese and 169

obese individuals [31]. Two distinct studies were instead related to the alteration of the micro-

biome in subjects with type 2 diabetes (T2D). In the T2D dataset, 170 Chinese T2D patients

and 174 non-diabetic controls were present [37]. The WT2D focused on European women and

included 53 T2D patients, 49 impaired glucose tolerance individuals and 43 normal glucose tol-

erance people [32]. Among these six datasets, two of them comprise two independent stages.

For cirrhosis, 181 and 56 samples were collected during the so defined discovery and validation

phases, respectively. Similarly, for T2D, 145 and 199 samples were acquired during the first

(stageI) and second (stageII) stages, respectively. Additionally, two studies focused on healthy

subjects and not strictly related to the gut microbiome were also taken into account. HMP

included samples collected from five major body sites (i.e., gastrointestinal tract, nasal cavity,

oral cavity, skin, and urogenital tract). A subset of these samples were described in [1]. Finally,

skin was composed by 291 samples acquired from several different skin sites [36].

Extraction of species abundance and marker presence profiles from
metagenomic samples

The entire analysis was done by taking into account two types of features: species-level relative

abundances and presence of strain-specific markers. These features were extracted from the

metagenomic samples using MetaPhlAn2 [21] with default parameters. Species abundances

are real numbers in the range [0, 1] that sum up to 1 within each sample, while markers assume

binary values. Species abundance and marker presence profiles are characterized by very differ-

ent numbers of features: in the hundreds for species abundance, and hundreds of thousands

for markers (the exact numbers of features for each dataset are detailed in Fig 2). Before apply-

ing MetaPhlAn2 the samples were subject to standard pre-processing as described in the SOP

of the Human Microbiome Project [1] without however the step of human DNA removal as

these publicly available metagenomes were deposited free from human DNA contamination.

Additionally, we removed reads with length less than 90 nucleotides. For the IBD and obesity

datasets the minimum length was set to 70 and 75, respectively, as these cohorts were

sequenced with shorter read-lengths. Few samples did not pass the minimum length require-

ment and were thus discarded.

Experimental setting

The experimental evaluation can be summarized into five main steps: 1) cross-validation analy-

sis was done on the six disease-association datasets for evaluating the capabilities of
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metagenomic data for disease classification; 2) cross-stage studies were performed on the cir-

rhosis and T2D datasets in order to test the generalization of the model on independent collec-

tion batches from the same study; 3) in terms of T2D, the analysis was extended by taking into

account also samples from completely distinct cohorts; 4) cross-studies were also done to

model the features of the “healthy” gut microbiome for use as a dysbiosis prediction model for

syndromes where few or no training samples are available; 5) cross-validation and cross-study

analysis were applied to deal with different classification problem such as gender and body site

discrimination. We note that all the investigated classification problems, excluding the body

site discrimination, represented binary classification problems. Moreover, most of the analysis

was done in terms of disease classification, in which the objective was to discriminate between

“healthy” and “diseased” subjects.

1. Cross-validation analysis (see “Cross-validation studies revealed good capabilities for dis-

ease prediction”, “Feature selection and strain-specific markers improve prediction accu-

racy” and "Detection of the disease-associated microbial features") was done on 6 datasets,

in which we adopted the same settings used in the original papers. For such reason, in some

cases some samples were removed from the analysis. For cirrhosis, all the 232 available sam-

ples (subdivided into “healthy” and “affected by liver cirrhosis” subjects) were taken into

account. For colorectal we removed the individuals affected by “large adenoma”, which

resulted in a total of 121 samples. “Cancer” patients were discriminated from “healthy” sub-

jects, which included also persons affected by “small adenoma”. IBD was composed by a

total of 110 samples, in which the “diseased” class included IBD patients affected by both

“Crohn's disease” and “ulcerative colitis”. For obesity, we discriminated between “lean”

(BMI� 25 kg m -2) and “obese” (BMI� 30 kg m -2) subjects for a total of 253 samples. Indi-

viduals having an intermediate BMI (i.e.,> 25 and< 30 kg m -2) were excluded. All the 344

samples of the T2D dataset were considered to discriminate between “healthy” individuals

and “T2D” patients. The same classification problem was investigated in WT2D, in which

96 samples were taken into account after excluding impaired glucose tolerance women.

2. Cross-stage analysis (see “Metagenomic disease-predictive models show strong cross-stage

generalization”) was applied to the cirrhosis and T2D datasets, in which the samples were

collected in two independent stages. For cirrhosis, the 232 samples were constituted by 178

samples of discovery and 54 samples of validation. Similarly, for T2D, stageI and stageII

included 145 and 199 samples, respectively.

3. Cross-study/cohort analysis was done by taking into account gut samples from multiple

datasets. In particular, we focused on the discrimination between “healthy” and “T2D” sub-

jects (see “Cross-study generalization is improved by including healthy samples from other

cohorts”). For this purpose, in addition to the T2D and WT2D datasets, we considered also

the “healthy” samples from four other datasets, for which “diseased” samples were excluded

since not related to “T2D”: cirrhosis, colorectal, HMP and IBD for a total of 908 samples.

The entire analysis (apart for the two experiments denoted in the figure with the �) was
done to evaluate the generalization of the model, therefore all the samples were used for

training apart the dataset considered for test. For comparison, we investigated also cross-

validation studies (denoted with the �). In such case, we considered a single sample per sub-

ject in order to avoid overestimation of the accuracies (this issue was present in the HMP

dataset only). The sample was chosen randomly from the available samples for each itera-

tion. So the cross-validation on the entire set of samples (denoted as All�) was done on a

total of 827 samples.
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4. Cross-study analysis was also applied to discriminate between “healthy” and “diseased” sub-

jects (independently from the type of disease) in gut samples (see “Modelling the “healthy”

microbiome: cross-disease prediction”). We considered five different datasets (i.e., cirrhosis,

colorectal, IBD, T2D, and WT2D) for a total of 903 samples. Therefore the class “diseased”

included patients affected by liver cirrhosis, colorectal cancer, IBD and T2D. Also in this

case all the analysis was done to evaluate model generalization, apart the cross-validation

study on the entire set of samples (denoted as All�).

5. Finally, the developed tool was applied to non-disease-based classification problems (see

“Extension to non-disease classification problems” and “Cross-study generalization is

improved by including healthy samples from other cohorts”). First, we considered gender

classification, in which therefore “female” were discriminated from “male” subjects. In this

case, we took into account six datasets acquired from different body sites: four from gut (i.e.,

cirrhosis, colorectal, IBD, and T2D), one from skin (i.e., skin), and one from multiple sites

(i.e., HMP). First, we did cross-validation studies, in which each dataset was analyzed inde-

pendently from the others. Also in this case we considered only one sample per subject in

order to avoid overestimation of the accuracies. For such reason, HMP and skin were

reduced to 131 and 17 samples, respectively. Then, we performed a cross-study analysis on

gut samples (thus the entire skin and part of the HMP datasets were excluded). In such case,

we considered first all the available samples (for a total of 1016 samples) and then only the

“healthy” samples (for a total of 642 samples). Then, the implemented tool was validated on

a multi-class classification problem, which was represented by body site discrimination in

the HMP dataset. The available samples were subdivided into five major body sites [1]: gas-

trointestinal tract, nasal cavity, oral cavity, skin, and urogenital tract. Cross-validation anal-

ysis was done by considering one sample per subject. Moreover, we considered also the case

in which more than one sample per subject, but each from a different body site, was taken

into account.

Code and data availability

The MetAML (Metagenomic prediction Analysis based onMachine Learning) software is

open-source, written in Python and available online at http://segatalab.cibio.unitn.it/tools/

metaml together with all the data used and discussed in this work.

Supporting Information

S1 Table. Statistical test against the null hypothesis of equal AUC for classification of true

and shuffled labels using RF and SVM. The table reports the p-value for cross-validation anal-

ysis for disease discrimination on six different datasets using species abundance as microbiome

features. Average values with margins of error for AUC are reported in Fig 1.

(PDF)

S2 Table. Cross-study analysis for T2D discrimination in the T2D andWT2D datasets

using RF on species abundances. The AUC is computed by training the model on one stage of

T2D and testing it on WT2D (same results in Fig 5). The IntCorr is the integrative correlation

[50] between the feature relative importance scores obtained on the considered stage of T2D

and those onWT2D.

(PDF)

S1 Fig. Statistical test to compare classification of true labels using RF and SVM. The table

reports the p-values for the null hypothesis of no difference in AUC by 10-fold cross-validation,
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assessed by paired t-test, for disease discrimination on six different datasets using species abun-

dance and marker presence as microbiome features. Comparisons that are statistically different

(p-value< 0.05) are highlighted in red. Average values with margins of error for AUC are

reported in Fig 2.

(TIFF)

S2 Fig. Average number of features selected by the different methods for disease discrimi-

nation in different cross-validation studies. The corresponding prediction performances are

reported in Fig 3 and S3 Fig.

(TIF)

S3 Fig. Prediction performances (assessed using AUC) for disease discrimination in differ-

ent cross-validation studies using Elastic Net (Enet) and Lasso. Species abundance and

marker presence were used as microbiome features. The best value for each dataset and feature

type (i.e., species abundance or marker presence) are in bold, and the overall best values for

each dataset are circled. Enet and Lasso denote their use as classifier applied on the entire set of

features; RF(or SVM)-FS:Enet(or Lasso) denotes RF (or SVM) used as classifier on the reduced

set of features given by Enet (or Lasso). The margins of error are reported in parenthesis.

(TIF)

S4 Fig. Most important discriminating species (left) and markers (right) identified by RF

for disease discrimination in (a) IBD, (b) obesity, (c) T2D and (d) WT2D cross-validation

studies. In the left panels, for each species reported on the vertical axis, the top bar (in blue)

corresponds to the feature relative importance (with standard deviation reported with error

bars) and the two bottom bars refer to the average relative abundance for healthy (in green)

and diseased (in red) samples. In the right panels, for each marker the top bar is coloured

according to the corresponding species and the two bottom bars refer to the average marker

presence.

(TIF)

S5 Fig. Correlation between feature relative importance determined by RF and species rela-

tive abundance in six different cross-validation studies for disease discrimination.

(TIF)

S6 Fig. Hierarchical clustering on the feature relative importance score determined by run-

ning RF on species abundances in six different cross-validation studies for disease discrimi-

nation. Features and data sets were clustered using correlation similarity.

(TIF)

S7 Fig. (a) Cross-validation and (b) cross-study analysis for gender discrimination in mul-

tiple datasets. In bold: the best value for each scenario and feature type (i.e., species abundance

or marker presence); Circled: the absolute best value for each scenario.

(TIF)

S8 Fig. Body site discrimination for the HMP dataset. (a) Cross-validation results by consid-

ering one sample per subject or more than one sample per subject but each from a different

body site. (b) Normalized confusion matrix when using RF on species abundance.

(TIF)

S9 Fig. The importance of cross-validation analysis. Prediction capabilities for disease dis-

crimination in the (a) obesity, (b) T2D and (c) WT2D datasets are overestimated if the most

relevant features (i.e., species abundance or marker presence) are pre-selected. Cross-validation
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prevents this problem.

(TIF)

S10 Fig. Most relevant features to discriminate between “healthy” and “diseased” subjects

independently from the type of disease in multiple gut datasets. (a) Most relevant species

(left) and markers (right) identified by RF by cross-validating on the entire set of samples. In

the left panel, for each species reported on the vertical axis, the top bar (in blue) corresponds to

the feature relative importance (with standard deviation reported with error bars) and the two

bottom bars refer to the average relative abundance for healthy (in green) and diseased (in red)

samples. In the right panel, for each marker the top bar is coloured according to the corre-

sponding species and the two bottom bars refer to the average marker presence. (b) Hierarchi-

cal clustering on the feature relative importance score determined by running RF on species

abundances in a "leave-one-dataset-out" cross-study validation [51]. For each case the model

was generated on all the datasets other than the dataset considered for testing. Features and

data sets were clustered using correlation similarity.

(TIF)
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