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Abstract

Bimetallic catalysts are promising for the most difficult thermal and electrochemi-

cal reactions but modeling the many diverse active sites on polycrystalline samples is

an open challenge. We present a general framework for addressing this complexity in

a systematic and predictive fashion. Active sites for every stable low-index facet of a

bimetallic crystal are enumerated and cataloged yielding hundreds of possible active
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sites. The activity of these sites is explored in parallel using a neural-network based sur-

rogate model to share information between the many Density Functional Theory (DFT)

relaxations, resulting in activity estimates with an order of magnitude fewer explicit

DFT calculations. Sites with interesting activity were found and provide targets for

follow-up calculations. This process was applied to the electrochemical reduction of

CO2 on nickel gallium bimetallics and indicated that most facets had similar activity

to Ni surfaces, but a few exposed Ni sites with a very favorable on-top CO configura-

tion. This motif emerged naturally from the predictive modeling and represents a class

of intermetallic CO2 reduction catalysts. These sites rationalize recent experimental

reports of nickel gallium activity and why previous materials screens missed this excit-

ing material. Most importantly these methods suggest that bimetallic catalysts will be

discovered by studying facet reactivity and diversity of active sites more systematically.

Keywords

catalysis, electrochemistry, CO2 reduction, machine learning, DFT, energy
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Introduction

Intermetallic catalysts remain promising for tuning reactivity and developing new active site

motifs with multiple functional adsorption sites but modeling these materials requires several

orders of magnitude more calculations than modeling single transition metal surfaces. This

complexity arises from two fundamental challenges in intermetallics: they can present more

facets and terminations and they have far more feasible adsorption configurations, both due

to a reduction in symmetry. In face of this complexity, computational chemists often consider

only bimetallic versions of typical transition metal facets (e.g. (111), (100), or (211) surfaces),

or simple schemes such as overlayers or islands.1,2 This problem is even more pronounced

in theoretical screens for materials discovery, where resources per bimetallic are so limited

that often a single facet and configuration is chosen.3 Unfortunately, these simplifications

can lead to incorrect conclusions about the activity of a bimetallic catalyst or the active

sites responsible for experimental activity. Even more troublesome is that promising new

bimetallic active site motifs remain hidden in a sea of un-studied facets and active sites.

In this work, we show that bimetallic nanoparticles expose a much larger range of active

site motifs than are typically considered in theoretical studies and present machine-learning

methods that can efficiently address this combinatorial complexity. As an example we study

CO2 reduction on nickel gallium intermetallics, as they have been shown to produce ap-

preciable amounts of C1 and C2 products and are one of the few electrochemical cathode

surfaces besides copper to do so.4 First, we show that recent progress in identifying stable

crystal structures and enumerating possible facets and adsorption sites exposes a number

of interesting active sites that would not appear in theoretical studies of simple (111) and

(211) facets. Next, we report surface energy calculations that imply a markedly different

facet distribution than would be expected for single metal nanoparticles and imply that

these surfaces contain hundreds of chemically distinct active sites that must be considered.

We describe a new approach using machine-learning neural network potentials to directly

model the adsorption energy of CO on each site efficiently with a drastic reduction in the
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number of required DFT calculations. These methods rapidly predict the facets with the

most interesting active sites and suggest active site motifs for further consideration. To illus-

trate this approach, we present a systematic study of bimetallic nickel gallium surfaces and

show that the most promising active site motifs are isolated nickel atoms with surrounding

gallium atoms. More detailed electrochemical kinetic studies demonstrate that this motif

actually outperforms the typical linear scaling relations for close-packed surfaces and suggest

a new approach to designing active materials. Importantly, this active site fell out of the

systematic study and was automatically discovered, without requiring human intervention

to design a new motif. These results suggest a path forward to the automated identification

of single-site scaling relations and the systematic and predictive modeling of bimetallic facet

reactivity.

Figure 1 shows the enormous complexity of the problem of CO2 reduction activity on

nickel gallium intermetallic catalysts. The phase diagram shows that several bulk composi-

tions are formed and stable at reducing potentials, including Ni, NiGa, Ni5Ga3 and Ni3Ga.4

These four bulk structures have dozens of exposed facets, and these facets have hundreds of

unique adsorption sites, according to the coordination of the adsorption site. Electrochem-

ical CO2 reduction on these surfaces is a complex problem, so we adopt a simplified model

developed from our understanding of single transition metal catalysts.

Recent mechanistic studies of CO2 reduction on copper and other transition metal sur-

faces have revealed two key challenges that must be overcome to generate appreciable

amounts of higher hydrocarbon or alcohol products. The first challenge is that the rate-

limiting protonation of CO to CHO must be made feasible, with both a favorable active site

and a favorable transition state energy. For materials that follow the scaling behaviour of

pure transition metals, the CO binding energy is the best current descriptor for the barrier of

the CO protonation step, with weaker CO binding materials having lower barriers. However,

materials with a positive CO binding free energy would desorb CO as a final product rather

than make higher products. Second, the hydrogen evolution reaction (HER) must also be
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suppressed for an appreciable selectivity to hydrocarbons or alcohols compared to hydrogen

gas. This implies that an optimal material would either not bind hydrogen in apprecia-

ble amounts or would have a large kinetic barrier to the formation of molecular hydrogen.

Unfortunately, hydrogen binding energy and HER barriers also tend to be correlated with

CO adsorption energies. Thus, the binding free energy of CO is the best sole descriptor for

CO2 for the transition metal surfaces that have been studied in full microkinetic detail,5

as shown in Figure 2. Materials with significantly different active site motifs might be able

to circumvent the correlations that form these guidelines, and this forms the motivation for

searching bimetallics with interesting new activity.

Theoretical Methods

Enumeration and Prediction of Stable Facets and Adsorption Sites

Determining facet stability and reconstruction for bimetallic catalysts is an open question,

especially in the presence of solvation and strongly binding adsorbates. There is no general

method to quickly determine the surface area or facet distribution of sites for an experimental

polycrystalline catalyst. We generated a catalog of all nickel gallium facets up to a maximum

Miller index of (2,2,2), and all nickel facets up to (3,3,3). Facets were generated using the

python package pymatgen.6 All generated facets were bulk-terminated to reduce the number

of surfaces to consider. Using this reduction technique, 176 unique surfaces were identified

for the four compositions (Ni, NiGa, Ni3Ga, Ni5Ga3). Effects such as adsorbate-induced

segregation or surface reconstruction were not considered.

An established method7 for determining surface energy using DFT energies from slabs

of three different thicknesses was used to generate likely facet distributions for each of the

bimetallic compositions as illustrated in Figure 3. Surface energies were calculated for every

surface in the catalog described above (including Ni surfaces up to Miller index (3,3,3) and

every Ni/Ga bimetallic up to Miller index (2,2,2)). By extrapolating the bulk energy from
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the successive surface calculations, surface energies were obtained from slab energies at three

different thicknesses. Details of the DFT methods used are included in the Supplementary

Information. Surface energy calculations for Ni facets were in agreement with previous the-

oretical work,8 as well as experimental characterization of Ni nanoparticles.9 Wulff crystal

constructions were used to estimate available surface areas and indicate likelihood of exper-

imental occurrence. We note that this approach may not show quantitative agreement due

to solvent effects or nanoparticle-induced compressive strain, but qualitatively the approach

should yield the most likely facets to appear in polycrystalline samples. All facets appearing

the Wulff constructions for each composition were included for adsorption energy analysis.

The precise quantitative area of each facet from the Wulff construction was not needed. This

process resulted in just a single facet for NiGa, the (110) facet, so several additional NiGa

facets were included that included step sites. This process resulted in a total list of 23 Miller

indices to be considered in this study. Due to slab asymmetries, these 23 Miller index slabs

yielded 40 unique surfaces to consider. Interestingly the Ni3Ga and Ni5Ga3 Wulff construc-

tion contained a large number of facets with substantial surface area, in contrast to the case

of NiGa which contains almost entirely the close packed (110) facet. This result reinforces

that the typical facets used in single metal studies including (100), (111), and (211), may

not be indicative of the facets in bimetallic systems.

Asymmetric facet terminations were also included as possible active sites. For Ni surfaces,

the cuts were symmetric and the top and bottom surfaces of the slabs were considered. For

the bimetallic crystals, some cuts were necessarily asymmetric, for example the NiGa(100)

facet. This facet exposes alternating layers of nickel and gallium sheets, hence facets with

stoichimetric ratios of the bulk would have one side of the slab with a gallium termination,

and the other with a nickel termination. In physical systems, one termination would likely

be preferential and could be formed by adding a non-stoichiometric layer. Identifying pref-

erential surface energies of various facet terminations under electrochemical conditions with

the possibility of plating or reconstruction is an open question with interesting thermody-
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namic considerations, for example, a solution-phase Ni or Ga chemical potential would be

required to determine if one of the two asymmetric surfaces would plate to become symmet-

ric. Therefore we simply included both possible terminations; the reported surface energy

corresponds to the average of both terminations (the asymmetric top and bottom sides of

the stoichiometric slabs). Decomposing these surface energies into separate energies for each

side is an open question for bimetallics and should lead to more accurate surface energies in

the future.

Adsorption sites for the most likely facets were enumerated to create a catalog of all

possible adsorption sites. The enumeration was made possible by recent extension to the

Materials Project library pymatgen.10 The number of adsorption sites was typically much

larger for bimetallic surfaces than for single metal surfaces, due to reductions in symmetry.

Each adsorption site was characterized by coordination, including the number of Ni neigh-

bors, the number of Ga neighbors, the average Ni and Ga coordination of neighboring Ni

atoms, the average Ni and Ga coordination of neighboring Ga atoms, and the fraction of the

Ni in the alloy, for a total of 7 descriptors

[#Ni,#Ga, Avg.#Ni-Ni, Avg.#Ni-Ga, Avg.#Ga-Ni, Avg.#Ga-Ga,Bulk Fraction].

In this way, the type of site could be inferred (e.g. on-top Ni vs Ni-Ga bridge), and similar

sites with different coordination (e.g. Ni-Ni bridge on a terrace vs Ni-Ni bridge on a step)

could also be identified. Only sites with unique descriptions were kept, so that multiple

identical sites were not considered on a surface. Developing a generalized coordination

number to handle this more generally is a topic of interest in the literature.11,12

Machine Learning Prediction of Adsorption Energies

DFT-fitted neural network potentials were used to greatly reduce the many thousands of

DFT calculations required to obtain relaxed adsorption energies for each adsorption site on
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every facet. All-DFT relaxations often take 20-100 steps in a local minimizer with each step

requiring a full single-point calculation. Performing DFT relaxations for every adsorption

site is inefficient due to a lack of information sharing between relaxations. Also, every

step in every relaxation is an independent DFT calculation with little information from

previous steps and no information from relaxations at similar sites. Using a neural network

potential allows information to be shared and the simulation process accelerated, as has

been demonstrated for the reactivity on metal surfaces,13 studying the solvation of alloy

nanoparticles,14 and for accelerating the study of alloy segregation,15 among others. In this

work we use a set of neural network potentials were used to simultaneously relax all possible

adsorption sites, select configurations to study with DFT, add to the training set, and refine.

Neural network potentials were used to perform relaxations of adsorptions and direct

predictions of adsorption energy using only information from near-adsorbate atoms. The

per-atom neural network potentials were similar to a standard scheme shown to be effective

in recent literature16 and implemented recently in an open-source software package,17 one

of several implementations in the literature.18,19 However, rather than predict the electronic

energy reported by the DFT code as is standard for these methods, the adsorption energy

was instead chosen as a target, which had several advantages. First, the adsorption energy

is a small well-normalized energy, usually ranging from -3 eV to +1 eV, so that energy

normalization was not a problem. Second, this scheme only requires a relaxation of the

adsorbate and slab to predict the adsorption energy using the surrogate model, rather than

a prediction for the slab+adsorbate and bare slab and relying on cancellation of energies

as is normal in DFT. A relaxation for the bare slab was only necessary to get the small

relaxation energy of the bare slab as the top layer was relaxed. Finally, directly predicting

the adsorption energy allowed for a significant reduction in system size, because only near-

adsorbate metallic atoms contribute to the adsorption energy, so atoms deep in the bulk can

be neglected.

The precise adsorption energy prediction scheme is illustrated in Figure 4. A standard
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surface adsorbate model was used and represented the configuration that the underlying

DFT code would see when asked for electronic energies. For predictions of the adsorption

energy, all atoms within 3.5Å of unconstrained atoms (those allowed to relax, generally the

adsorbate or the top layer) was chosen for inclusion in the final energy representation, so that

forces on these atoms could be properly reconciled. Each atom in this reduced representation

was then fingerprinted and its energy predicted with a neural network specific to the atomic

species (Ni, Ga, C, H, O). The energy for training was the adsorption energy relative to the

unrelaxed slab and the gas-phase CO energy, ∆E0
ads = Eslab+ads − Eunrelaxed

slab − Egas. This

process requires only one single-point DFT calculation for the unrelaxed slab and a relaxed

gas energy to calculate the adsorption energy for any given snapshot of a slab and adsorbate.

A similar prediction was made for the bare slab so that the relative energy of the relaxed

slab with respect to the unrelaxed slab could be calculated as ∆E0 = Eslab−Eunrelaxed
slab . The

final adsorption energy was thus ∆Eads = ∆E0
ads −∆E0 = Eslab+ads −Eslab −Egas. In most

cases the bare slabs were found to relax little and ∆E0 was usually under 0.1eV. The final

predicted free energy was calculated by applying a standard free energy correction for CO

as described in the methods section. This process allows the adsorbate to be relaxed using

only fingerprints of the near-adsorbate region of the slab.

Efficiently training large neural network potentials with thousands of single point calcu-

lations is an open challenge, especially for large systems in the range of this example. The

machine learning community has made rapid progress in developing codes and methods to

make this process more efficient, from fast implementations of neural networks, to improved

optimizers, and techniques such as dropout20 and L1/L2 regression to reduce problems asso-

ciated with overfitting. To take advantage of these lessons, we developed and contributed a

new implementation of neural network potentials based on the Google-supported tensorflow

library.21 This implementation resulted in greater than a 10-fold increase in training rate and

allowed for more sophisticated training of potentials, making this approach practical for the

problems addressed herein. Further, error estimates for the surrogate model were tracked
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by monitoring the stochastic distribution of predictions under neural network dropout.22

Details of the training scheme are included in the Supporting Information and the code is

now implemented in the open source AMP package.17

On-line Model Refinement

An iterative process, illustrated in Figure 5, was used to train the surrogate model, relax

adsorbates according to the surrogate model, and select configurations to study with single-

point DFT calculations to add to the training set. This process was bootstrapped starting

with a single DFT relaxation of a CO molecule on an arbitrary nickel gallium surface.

The relaxations using the surrogate model were carried out in parallel and resulted in a

predicted CO adsorption energy for each of the sites outlined above (583 relaxations, for a

total of 70,000 single-point calculations). The model energy uncertainty was tracked along

each relaxation. The relaxation was halted if the uncertainty rose above 0.2 eV. Adsorption

configurations selected for refinement were automatically submitted for calculation using the

fireworks workflow manager as a single-point DFT calculation.23

To verify the convergence of this surrogate model approach for predicting adsorption

energies, standard DFT relaxations were used to get the adsorption energy for each ad-

sorption site in this work. This process resulted in approximately 70,000 DFT single-point

calculations and represented approximately 50,000 core-hours of computational time. This

approach was feasible for this study, but the number of DFT calculations would rapidly in-

crease if more facets or adsorbates were included. However, the number of DFT single-point

calculations needed to train the machine-learning would not scale in the same fashion due

to the similarity of sites on different facets.

The convergence of the surrogate model to DFT predictions is illustrated in Figure

5(B,C). With just one DFT relaxation as a starting point, reported adsorption energies

are clustered around 0 eV. After approximately 2000 DFT single-points have been added,

a correlation begins to form, and after 4000 DFT single-points there is a strong correlation
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between the reported adsorption energy for each facet and the DFT calculated values. The

RMSE error converges steadily with each iteration of this process, as shown in Figure 5C,

starting at well over 1 eV RMSE with nearly no information and approaching DFT accuracy

of 0.2 eV. This result required only 10% of DFT calculations required in a full explicit DFT

study.

Configurations were selected for refinement by performing relaxations on all 583 CO ad-

sorption sites simultaneously using the surrogate model. The first step in each relaxation

with an estimated error above 0.2 eV was selected for refinement. If all steps in the re-

laxation had estimated errors below 0.2 eV, the final point was selected for refinement if

the uncertainty was over 0.1 eV. In this way, several hundred configurations were added to

the training set with a DFT single-point calculation at each iteration with a very modest

computational cost.

Results/Discussion

Bimetallic Facet Reactivity

The CO adsorption energies for each facet calculated above were used to predict the activity

and selectivity of each facet based on linear scaling relations and microkinetic model devel-

oped from previous studies on single metal transition metal (111) and (211) facets. In the

microkinetic model, all free energies and kinetic barriers are assumed to be linearly depen-

dent on either the CO adsorption energy or the transition state energy of the CO to CHO

protonation step.5 This allows the activity of a material to be predicted solely based on

these two values, as illustrated in Figure 6. Typical scaling relations for the transition state

energy vs the CO adsorption energy are also shown for terrace and step active sites. Assum-

ing surfaces fall on one of these two scaling lines, it is possible to estimate the hydrocarbon

production rate with just the type of facet (terrace vs step) and the CO adsorption energy.

Various nickel gallium facets are thus included by interpolating onto the scaling lines. Most

16

Page 16 of 26

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 17 of 26

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



of the nickel gallium adsorption sites have similar adsorption energies to the pure Ni facets

since the CO adsorption energy is dominated by the availability of 2-fold, 3-fold and 4-fold

Ni sites. Predictions of the selectivity and coverage from the microkinetic model are also

included in the Supporting Information.

Surprisingly, several nickel gallium facets have CO binding energies very close to the best

possible rates for materials that follow the existing terrace or step scaling relations, including

NiGa(210), NiGa(110), and Ni5Ga3(021). All of these facets expose Ni active sites with no

nearby Ni sites to form higher coordination adsorption sites (bridge, 3-fold, etc). We note

that all the surfaces were quickly predicted to have interesting adsorption energies by the

machine-learning algorithm above. Given the interesting nature of these adsorption sites,

predicted with our ML methods and confirmed with DFT relaxations, we explicitly calculated

the transition state of the electrochemical CO protonation explicitly. The interesting nature

of these sites were confirmed with explicit solvent transition state calculations.

Electrochemical Kinetics of CO Protonation

Transition state calculations were completed for CO protonation on the most active surfaces

as calculated above, NiGa(210), NiGa(110), and Ni5Ga3(021). Calculations were completed

with one layer of explicit solvent, and were corrected to a constant potential using a recently

developed charge extrapolation scheme.24 These explicit calculations are included in Figure

6A as filled circles. The scaling lines for both stepped (211) and terrace (111) sites for

transition metal surfaces are shown, with stepped surfaces performing significantly better

due to their lower activation energy for CO protonation.5 All three nickel gallium facets

appear to follow the step scaling relation, even though NiGa(110) for instance corresponds

to the closest-packed bcc facet.

The surprisingly facile activation energies on these nickel gallium surfaces can be ex-

plained by the on-top nature of the active site which makes rotation of the CO to the

transition state easier. Figure 6B shows the rotation energy of CO for the 3-fold and on-
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top sites of Ni(111) and the NiGa(110) facet; even on Ni(111), the on-top site has a more

facile energy of rotation than the 3-fold site; however this would not be reflected in the CO

reduction rate of Ni(111) since CO adsorbs much more strongly on the 3-fold site.

We studied the activation energies of the hydrogen evolution reaction for these surfaces

as illustrated in Figure 6C. The Heyrovsky and Volmer processes of HER reactions were

both considered, and the potential-dependent transition state energy for each are included.

The Heyrovsky transition state energy was predicted to have the lowest barrier in the range

of potentials relevant to the CO2 reduction reaction. Therefore, the Heyrovsky process on

NiGa(110) will be always faster than CO protonation and H adsorption will not be a com-

peting factor. The interesting finding is the Volmer process competes with CO protonation,

crossing at about -1 V vs. RHE. Below this potential, both HER processes have a lower

activation energy than CO protonation, consistent with the experimental observation that

HER dominates at very reducing potentials. Since the transition state of Volmer process

has more charge transferred, it has a larger slope vs potential than CO protonation.24 These

barriers were input into a microkinetic model,5 shown in Figure 6A.

These theoretical results suggest that the experimentally observed activity of nickel gal-

lium surfaces for electrochemical CO2 reaction4 can be qualitatively explained by Ni active

sites surrounded by surface gallium atoms. The experimental activity is shown in Figure

7(A). First, the electrochemical reduction of CO2 is shown to have a lower onset potential

for Ni/Ga bimetallics than for copper films. Second, at all potentials the selectivity to hydro-

carbon or alchohol products is poor for Ni/Ga bimetallics due to the lower kinetic barrier for

HER than for CO reduction. Qualitatively, the same trend is suggested by the microkinetic

model; leveling off in COR activity at negative overpotentials is not reproduced theoretically,

however, surface segregation effects may be at play. The difference between the HER and

the CO2 reduction barriers predicted to be nearly potential-independent, shown in Figure

6C, explaining why hydrogen selectivity is a problem for Ni/Ga bimetallics at all applied

potentials.
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Figure 7: Experimental evidence for surface gallium impacting electrode performance. (A)
Experimental performance of Ni/Ga bimetallic catalysts for the electrochemical reduction
CO2 to hydrocarbons4 compared to the microkinetic model in this work. The total current
density to hydrocarbon and alcohol products is compared vs the applied potential. The onset
potential for CO2 reduction is significantly more positive than the best known catalyst, Cu,
but Ni/Ga intermetallics do not achieve the high selectivity of Cu at large applied potentials.
The leveling of current past -0.9V is not captured in the microkinetic model, but thought to
be continued Ni surface segregation. (B) Experimental evidence that a significant amount
of surface gallium remains at large reducing potentials, despite the strong CO binding to Ni
being a driving force for surface segregation.
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Spectroscopic investigations have confirmed that Ni and Ga remain on the surface after

catalysis. Angle resolved X-ray photoelectron spectroscopic (ARXPS) measurements were

performed on fresh samples and ones that had been polarized at -1.5 V vs. Ag/AgCl for 2

hr under 1 atm CO2, at which point over 60 C of charge had been passed (details included

in the Supplementary Information). Detailed spectra, included in Figure S1-S4, show both

Ni and Ga present throughout the surface after long-term electrolyses, a summary of which

is in Figure 7B. The approximate angle-resolved ratio is included in Figure 7B, showing

a Ni richening of the surface after CO2 reduction as would be expected for a strong CO

binding metal like Ni. However, the confirmed presence of surface Ga suggests that these

minority sites are most likely responsible for the considerably different activity of these Ni/Ga

intermetallics compared to pure Ni films.

Conclusions

Bimetallic nanoparticle catalysis is inherently challenging due to the tremendous hetero-

geneity of active sites exposed. The crystal structures vary with composition, the exposed

facets are different from what normal single metal nanoparticles might demonstrate, and

the heterogeneity of the surfaces requires many more DFT calculations to capture correctly.

This complexity is not well served by the traditional approaches that have worked for de-

veloping understanding in single-metal catalysts. This work shows that this problem can

be approached systematically with all active sites considered. The number of DFT calcula-

tions is very large but feasible for a small number of compositions. Using newly developed

machine learning potentials as a surrogate model for DFT allows for an order of magnitude

reduction in the number of DFT calculations required and makes this treatment feasible for

every bimetallic of interest.

The systematic approach in this work led to the discovery of a previously unconsidered

active site for Ni/Ga intermetallics - active Ni atoms surrounded by surface Ga atoms.
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These active sites demonstrate the best thermodynamics for CO reduction, but even more

importantly exhibit step-like kinetic behavior. The discovery of this motif contributes greatly

to our understanding of what makes a good CO2 reduction catalyst, we now know that it is

not necessarily just stepped surfaces that account for observed activities. The insight and

methods of this approach will allow similar new motifs to be cataloged and characterized for

many other intermetallic compounds.

This approach does not currently consider surface segregation or significant disorder

in the crystal composition, both of which are likely for intermetallics with small heats of

formation and situations with large adsorption energies. The methods developed in this

work should be equally applicable to such systems, but the surface generation procedures

will have to extended to enumerate these new materials (overlayer structures, disordered

materials, defects).
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