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Abstract 

Background: Rehabilitation medicine is facing a new development phase thanks to a recent wave of rigorous 
clinical trials aimed at improving the scientific evidence of protocols. This phenomenon, combined with new trends 
in personalised medical therapies, is expected to change clinical practice dramatically. The emerging field of Reha-
bilomics is only possible if methodologies are based on biomedical data collection and analysis. In this framework, the 
objective of this work is to develop a systematic review of machine learning algorithms as solutions to predict motor 
functional recovery of post-stroke patients after treatment.

Methods: We conducted a comprehensive search of five electronic databases using the Patient, Intervention, Com-
parison and Outcome (PICO) format. We extracted health conditions, population characteristics, outcome assessed, 
the method for feature extraction and selection, the algorithm used, and the validation approach. The methodo-
logical quality of included studies was assessed using the prediction model risk of bias assessment tool (PROBAST). 
A qualitative description of the characteristics of the included studies as well as a narrative data synthesis was 
performed.

Results: A total of 19 primary studies were included. The predictors most frequently used belonged to the areas of 
demographic characteristics and stroke assessment through clinical examination. Regarding the methods, linear and 
logistic regressions were the most frequently used and cross-validation was the preferred validation approach.

Conclusions: We identified several methodological limitations: small sample sizes, a limited number of external vali-
dation approaches, and high heterogeneity among input and output variables. Although these elements prevented a 
quantitative comparison across models, we defined the most frequently used models given a specific outcome, pro-
viding useful indications for the application of more complex machine learning algorithms in rehabilitation medicine.

Keywords: Automated pattern recognition, Clinical, Efficacy treatment, Machine learning, Prognosis, Regression 
analysis, Rehabilitation, Rehabilitation outcome, Stroke
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Background
Vascular problems in nature are the leading cause of 
death, and stroke is ranked second in worldwide mor-
tality [1]. It accounted for 5.5 million deaths in 2006 [2]. 
Indeed, for survivors, the burden of stroke is producing 
an increase in the number of disability-adjusted living 
years (DALYs). For this reason, the ultimate challenge in 
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stroke rehabilitation research is to improve the rehabilita-
tion protocols by tuning them according to an optimised 
early outcome prognosis [3]. Therefore, advances in 
artificial intelligence, machine learning (ML), and more 
generically data-driven tools, may have a central role in 
rehabilitation decision-making and protocol develop-
ment. ML is the methodology that provides computers 
with the ability to learn from experience. By designing 
and training algorithms able to learn decision rules from 
data, automatic solutions able to make predictions on 
new data can be exploited [4].

ML algorithms have been used often in recent years to 
predict clinical outcomes [5]. The recent growing inter-
est is due to the increasing complexity and numerosity 
of available data sets, as well as the presence of multifac-
torial data with diverse origins, for which more classical 
methods do not allow accurate results [6, 7].

From this perspective and given the available technolo-
gies, a new concept of rehabilitation is arising, namely 
“Rehabilomics”. This innovative view of the rehabilitative 
intervention concerns a multifactorial data-driven evalu-
ation of the patient, aiming at the identification of physi-
ological, genetic, biochemical or metabolic biomarkers 
as factors concurring in the rehabilitation process. The 
correlation of these biomarkers with the clinical outcome 
that measures the recovery of the patient could lead to 
important information for rehabilitation treatment 
planning.

Considering the latest advances in ML-based predictive 
models could be employed to promote the development 
of personalised rehabilitation processes for individual 
recovery. This would result in a human-centred frame-
work in which the synergy among therapies, biogenetics, 
imaging techniques, technological devices and data-
driven tools has a key role [8].

In the literature, there has been a broad exploration of 
solutions for outcome prediction in medicine applica-
tions [6, 9–11], and very few of them are about ML mod-
els in stroke rehabilitation [12, 13]. Most of the reviews in 
this field provide only a narrative description of the stud-
ies, without providing a systematic analysis of the results. 
On the other hand, those prioritising the technical 
aspects of the models often lack a clinical contextualisa-
tion of the findings. For example, Christodoulou et al. [6], 
ML methods for clinical outcome prediction are com-
pared across pathologies without providing details about 
the outcomes used. So, although the review was highly 
detailed from the technical point of view, i.e. regarding 
the algorithms validation approaches and performance 
metrics used, the clinical aspects were out of focus. We 
are convinced that a proper discussion of the results in 
light of the clinical context (i.e., pathology and measures) 
in which they are obtained is essential for translational 

applicability of the solutions developed, from research to 
the clinical practice.

Thus, there is an urgent need for a study able to inte-
grate and combine clinical and engineering/technical 
aspects of predictive solutions used in rehabilitation. The 
aim of this study is to identify the predictive solutions, 
developed using ML or theory-based algorithms and 
internally or externally validated, used for functional out-
come prognosis in stroke patients after a rehabilitation 
programme. The predictive solutions were investigated 
comprehensively, by evaluating their technical character-
istics and performances in association with the clinical 
selection of input and output variables.

Methods
Study design
A systematic review has been performed following the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines [14]. The protocol 
was registered on PROSPERO (ID CRD42020164184).

Selection criteria
The eligibility criteria of the studies included in the 
review followed the Patient, Intervention, Comparison 
and Outcome (PICO) framework.

– Type of studies
 We searched for all types of primary studies, exclud-

ing only reviews and overviews from the search.
– Types of participants
 We included in the study all adult participants (over 

18 years old) with stroke, independently of the type 
of stroke or the time post-onset (TPO).

– Types of intervention
 We included all the studies evaluating predictive 

models for outcome prognosis after rehabilitation 
treatment. We defined predictive models as either 
ML or theory-based algorithms trained on data and 
internally or externally validated on new data. Pri-
mary studies were excluded when the validation of 
the models, either internal or external, was not per-
formed. We denoted as external the validation per-
formed on new data, unseen from the model during 
the training phase and geographically and/or tempo-
rally independent from the training set. On the con-
trary, internal validation refers to methods involving 
only data  from  a  single  data acquisition  campaign, 
eventually split into multiple subsets.

 Moreover, we considered the outcome of the model 
as a variable related to the motor functional status of 
the patient after the rehabilitation treatment, and we 
considered as predictors any variable related to the 
patients’ conditions before or during the rehabilita-
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tion. So, we included studies that evaluated the rela-
tionships between predictors and response, describ-
ing the functional recovery of the patient during the 
rehabilitation.

– Types of outcome
 We selected studies evaluating motor functional out-

comes and excluded studies involving only cognitive 
or only sensory-related outcomes. Because functional 
measures are less influenced than cognitive ones by 
external factors such as social and cultural biases, we 
preferred to limit our analysis to them. Nevertheless, 
we decided not to excessively constrain the selection 
of the outcome, including either upper and lower 
limb-related outcomes. Both features describing 
lower and higher-level domains with respect to the 
International Classification of Functioning, Disabil-
ity and Health (ICF) were included, e.g. body func-
tions activities and participation. We also discarded 
all studies considering responses collected more than 
three months after the end of the rehabilitation treat-
ment to focus on the effective impact of the rehabili-
tation phase on the outcome.

Search methods for identification of studies
A systematic search was conducted in the following data-
bases: PubMed, Web of Science, Scopus, CINAHL and 
the CENTRAL. The keywords used in the search string 
were ‘stroke’, ‘machine learning’, ‘regression analysis’, 
‘automated pattern recognition’, ‘prognosis’, ‘rehabilitation 
outcome’, ‘clinical’, ‘efficacy treatment’ and ‘rehabilitation’. 
The search string was built using the PICO framework 
for prognostic studies [15]. Table  1 reports the search 
strings used in the different databases.

Once the results of each database search were merged, 
two independent reviewers (SC and MP) screened the 
papers, first by title and abstract, and then with the full 
text. A third reviewer was involved in case of disagree-
ments (AM). During this phase, only papers in English 
were considered eligible for screening. The selection 
concerning outcomes was not applied during the search 
phase; it was involved in the screening phase only.

Data collection
The CHecklist for critical Appraisal and data extraction 
for systematic Reviews of prediction Modelling Studies 
(CHARMS) was used [16]. The data extracted from the 
included studies concerned:

– Source of data: authors, publication year, study 
design and DOI.

– Participant characteristics: age, number, specifica-
tions of the stroke event both in terms of aetiology 
and TPO.

– Setting: monocentric or multicentric, type.
– Outcomes: type, measures used, the timing of acqui-

sition with respect to the rehabilitation treatment.
– Predictors: type, measures used, the timing of acqui-

sition with respect to the rehabilitation treatment, 
number.

– Data treatment: number of missing data and treat-
ment of missing data.

– Methods used: features selection approach, the algo-
rithm used, internal or external validation strategy.

– Model performances: metrics used for perfor-
mance evaluation, performance reported, limitations 
reported.

Table 1 Search string

Database Search string

PubMed ((“machine learning”[MeSH Terms] OR “regression analysis”[MeSH Terms] OR “automated pattern recognition”[MeSH Terms]) AND 
(“stroke”[MeSH Terms]) AND (“rehabilitation”[MeSH Terms]) AND (“prognosis”[MeSH Terms] OR “rehabilitation outcome”[MeSH Terms] 
OR “clinical”[MeSH Terms] OR “efficacy treatment”[MeSH Terms])) OR ((“Machine Learning” OR “pattern recognition” OR “automated 
pattern recognition” OR “classif*” OR “regress*” OR “regression analysis”) AND (“stroke”) AND (“rehab*”) AND ((“pred*”) AND (“prognosis” 
OR “rehabilitation outcome” OR “clinical” OR “efficac*” OR “efficacy treatment” OR “treatment effect” OR “treatments effect”))) Sort by: 
Best Match Filters: English

Web of Science (TS = ((“Machine Learning” OR “pattern recognition” OR “automated pattern recognition” OR “classif*” OR “regress*” OR “regression 
analysis”) AND (“stroke”) AND (“rehab*”) AND ((“pred*”) AND (“prognosis” OR “rehabilitation outcome” OR “clinical” OR “efficac*” OR 
“efficacy treatment” OR “treatment effect” OR “treatments effect”)))) AND LANGUAGE: (English)

Scopus TITLE-ABS-KEY ((“Machine Learning” OR “pattern recognition” OR “automated pattern recognition” OR “classif*” OR “regress*” OR “regres-
sion analysis”) AND (“stroke”) AND (“rehab*” OR “rehabilitation”) AND ((“pred*”) AND (“prognosis” OR “rehabilitation outcome” OR “clini-
cal” OR “efficac*” OR “efficacy treatment” OR “treatment effect” OR “treatments effect”))) AND (LIMIT-TO (LANGUAGE, “English”))

CENTRAL ((pred*) AND (prognosis OR “rehabilitation outcome” OR clinical OR efficac* OR “efficacy treatment” OR “treatment effect” OR “treat-
ments effect”)) AND (“Machine Learning” OR “pattern recognition” OR “automated pattern recognition” OR classif* OR regress* OR 
“regression analysis”) AND (stroke) AND (rehab*)

CINAHL ((“Machine Learning” OR “pattern recognition” OR “automated pattern recognition” OR “classif*” OR “regress*” OR “regression analysis”) 
AND (“stroke”) AND (“rehab*”) AND ((“pred*”) AND (“prognosis” OR “rehabilitation outcome” OR “clinical” OR “efficac*” OR “efficacy treat-
ment” OR “treatment effect” OR “treatments effect”)))
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Assessment of risk of bias of the included studies
The Prediction model Risk Of Bias ASsessment Tool 
(PROBAST) was used for the assessment of the meth-
odological quality of the included studies [17]. The 
PROBAST tool is helpful to evaluate both the risk of 
bias and applicability of the included predictive models 
in four domains (participants, predictors, outcome and 
analysis).

Data synthesis
To approach more clearly the description of the results, 
an illustration of the terminology we used is required 
(Fig.  1). The model is intended as the complex ensem-
ble of predictors, computational methods and outcome 
variables. The term variables refers to both the input 
features (or predictors) and the outcomes of the models. 
Finally, methods addresses the computational ensemble 
of the feature selection process, algorithm and validation 
approach characterising the model.

Due to the heterogeneity of the selected populations, as 
well as the heterogeneity of the model characteristics (as 
detailed in the following sections), we decided not to per-
form a meta-analysis. Instead, a qualitative analysis was 
conducted, based on the data extracted from the system-
atic search.

First, a description of the population and general 
characteristics of the studies was generated. Then, a fre-
quency analysis was conducted, investigating separately 
the variables and methods that were used. Specifically, 
in the analysis of the variables, the type of predictors and 
outcomes, the instruments used to define them, as well as 
the most used associations among the input and output 
features were investigated. All parts of the methods were 
analysed, that is, the algorithms for the training, the vali-
dation approach and the feature selection strategy (when 
used).

Given that in our work the studies could report the 
implementation of one or more models, the analysis 
was performed considering for each study the best-
performing ones. More specifically, we selected the 
best models for each outcome measure (Barthel Index, 
speed, etc.) and type (categorical, ordinal or numerical). 

The performance was evaluated using the same metrics 
reported by the studies.

Finally, a summary description of the reviewed models 
was reported. Based on the results obtained in the single 
parts of the models applied in the different studies (meth-
ods, variables and performances analysed separately), a 
critical discussion of methods with respect to the predictors 
and outcomes was presented to show the state of the art 
of currently available models versus outcomes. The asso-
ciation among the variables (outcome measures, outcome 
classes and predictor classes) and the methods (validation 
approaches and algorithms) was additionally sustained by 
graphical means with alluvial charts. By reading the alluvial 
charts either from right to left or vice versa, it is possible to 
connect the information among the domains included. In 
particular, the thickness of the flows is giving a visual indi-
cation of the strength of the specific connection.

Results
The electronic search resulted in 3567 papers. No addi-
tional records were identified through other sources. 
After removing duplicates and screening the titles and 
abstracts, there were 846 studies for full text screen-
ing. At the end, 19 results [18–36] were included in 
the study (Fig. 2). It is important to point out that the 
most relevant selection of the studies occurred during 
the full text screening rather than during the title and 
abstract selection phase. This is partly due to the selec-
tion criteria on the outcome and on the intervention 
criteria. Indeed, it was necessary to analyse the full text 
to ascertain the presence of a proper validation of the 
model, in order to assess the actual presence of a pre-
dictive model.

The criterion related to the type of intervention was 
the reason for the exclusion of 423 studies since the 
main focus of these papers was not the development 
and validation of predictive models, but an explorative 
analysis aiming at the identification of biomarkers and 
the investigation of their association with the outcome 
of interest.

Fig. 1 Terminology used in this review paper regarding the technical steps and parts of the models
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In Tables  2, 3 and 4, reduced versions of the data 
extraction, as well as a summary of the methodological 
quality of the studies, are shown; the full version of the 
data extraction table is available in the Additional file 1. 
For each included primary study, a detail of the models 
with the best performance is provided in terms of out-
come type, measure and time of acquisition, predictor 
type and time of acquisition, feature selection method, 
algorithm, validation approach and performance meas-
ure. Moreover, an indication of the total number of mod-
els investigated in the study is given. For brevity and in 
order to provide a weighted description of the state of the 
art at a study level, the characteristics of the models are 
given for the best-performing ones only, despite the fact 
that data of all the models were extracted in depth.

Study characteristics
We included 19 trials involving a total number of 23118 
participants both for model development and validation. 
Eight of the included trials are multicentric studies [20, 
22–24, 26, 30, 32, 33] and four of the studies with the 
largest sample sizes relied on shared digital databases and 
infrastructure for data collection [20, 21, 24, 26].

Regarding the participants, the mean age ranges from 
55 to 72 years. For what concerns specific inclusion cri-
teria related to the pathology, six studies reported a 
focus on ischemic stroke patients [23, 24, 26–28, 36], 
four studies included only stroke patients in the chronic 
phase (TPO > one month) [18, 19, 25], one in the suba-
cute (2 weeks < TPO < 1 month) phase [31] and two 
studies included only stroke patients in the acute phase 
(TPO < two weeks) [23, 26]. More detailed information 

Fig. 2 Study flow-chart. It is reported the number of papers screened and the reasons for exclusion
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about the populations included in the studies is reported 
in Table 2.

As reported in the inclusion criteria related to the 
intervention, all included studies investigated predictive 
models for functional outcome prediction, thus, after 
its training, the validation of the model (either inter-
nal or external) was studied. The PROBAST tool identi-
fied only three papers reporting in the same article the 
external validation, i.e. performing the validation on 
new data independent from the training dataset content 
and unseen from the model [23, 24, 26]. Conversely, the 
remaining 16 focussed on the development only, indicat-
ing, according to the instructions of the PROBAST tool, 

the presence of training and internal validation of the 
model (Table 3).

The 19 included primary studies investigated a total 
of 174 different models, with studies reporting only one 
model, up to 102 within the same paper [19]. More in 
detail, 4 papers reported in the study the investigation 
of one model only [20, 26, 29, 32], 5 papers included in 
the study multiple models comparing only different out-
comes or outcome types [22, 28, 30, 33, 34], whilst the 
remaining 10 performed multiple comparisons among 
outcomes, algorithms or predictors subsets. The perfor-
mances of the best performing models, given the same 
outcome measure and type, were evaluated using the 
metrics reported by the authors. In presence of equally 

Table 2 Population characteristics. Information regarding the sample size, age, additional aetiology-related inclusion criteria, and 
outcome type are presented

N/R information should be specified but it is not reported in the paper, N/A information not applicable to the specific paper

Study Age (mean (std) or [range]) Sample size Further inclusion criteria 
specifications regarding stroke 
pathology (time from event or 
aetiology)

Outcome

Almubark et al. N/R 45 Event happened more than 6 months 
before the study

Upper extremity home use

Bates et al. 70.4 (11.47) 4020 N/A Physical grade achievement

Berlowitz et al. 67.7 (11.1) 2402 N/A Functional outcome

Bland et al. [21–93] 269 N/A Walking ability

Cheng et al. N/R 82 Ischemic Recovery

Li et al. 65.6 (12.31) 271 First-ever ischemic Functional status

De Marchis et al. [60–83] 1102 Acute ischemic Unfavourable functional outcome

de Ridder et al. PAIS: 70.1 (13.4)
PRACTISE: 70.6 (13.4)
PASS: 71.9 (12.5)

PAIS = train-
ing = 1227
PASS = valida-
tion = 2125 (2107)
PRACTISE = vali-
dation = 1657 
(1589)

Ischemic Disability and functional outcome

George et al. [24–84] 35 Chronic Extent of motor recovery after 
constraint-induced movement 
therapy

König et al. Original: 68.1 (12.7)
VISTA: 68.8 (12.3)

Original = 1754
VISTA = 5048

Acute ischemic Functional independence

Kuceyeski et al. 72.0 (12.0) 41 Ischemic Clinical performance

Abdel Majeed et al. Control arm: 55.54 (12.63)
Treatment arm: 55.23 (9.11)

26 Chronic Change in clinical outcomes

Masiero et al. Construction set: 69 (12)
Validation set: 68 (11)

150 Recent stroke (< 8 weeks post-event) Ambulation

Mostafavi et al. N/R 126 Assessment of impairment

Sale et al. N/R 55 Subacute (15 ± 10 days from injury) Motor improvement

Scrutinio, Lanzillo, et al. Derivation set: 72 (12)
Validation set: 70 (12)

1592 N/A Functional status

Scrutinio, Guida, et al. [65–80] 951 30 days from stroke occurrence Treatment failure

Sonoda et al. Prediction group: 63.4
Validation group: 65.2

131 N/A Stroke outcome

Zariffa et al. [60–73] 9 Chronic Measure of upper-limb function
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Table 3 PROBAST

A short table containing the details on the four steps of the evaluation is reported

Criteria Specification of the review question

Step 1: Specify your systematic review question

 Intended use of the model: Prediction of functional outcome after rehabilitation treatment of post-stroke patients

 Participants: Adults post-stroke participants selected independently on the timing of the event or type of stroke

 Predictors: Any kind of predictor was included, more specifically any type included in the following categories 
of stroke assessment: biomechanical assessment, functional assessment, demographic charac-
teristics, medical history, stroke assessment and neurological assessment. The selected predictors 
are related to the admission or recovery phase only, excluding predictors variables collected at 
discharge

 Outcome: Any kind of functional outcome, not exclusively cognitive or sensory-related was selected

Study Outcome Type of prediction study

Step 2: Classify the type of prediction model evaluation

 Almubark et al. Upper extremity home use Development only

 Bates et al. Physical grade achievement Development only

 Berlowitz et al. Functional outcome Development only

 Bland et al. Walking ability Development only

 Cheng et al. Recovery Development only

 Li et al. Functional status Development only

 De Marchis et al. Unfavourable functional outcome Development and validation

 De Ridder et al. Disability and functional outcome Development and validation

 George et al. Extent of motor recovery after constraint-induced movement 
therapy

Development only

 König et al. Functional independence Development and validation

 Kuceyeski et al. Clinical performance Development only

 Abdel Majeed et al. Change in clinical outcomes Development only

 Masiero et al. Ambulation Development only

 Mostafavi et al. Assessment of impairment Development only

 Sale et al. Motor improvement Development only

 Scrutinio, Lanzillo, et al. Functional status Development only

 Scrutinio, Guida, et al. Treatment failure Development only

 Sonoda et al. Stroke outcome Development only

 Zariffa et al. Measure of upper-limb function Development only

Domain Risk of bias (number of models) Applicability (number of models)

Dev Val Dev Val

Step 3: Assess risk of bias and applicability

 Participants High = 0
Unclear = 0
Low = 174

High = 0
Unclear = 0
Low = 174

High = 0
Unclear = 0
Low = 174

High = 0
Unclear = 0
Low = 174

 Predictors High = 1
Unclear = 0
Low = 173

High = 1
Unclear = 0
Low = 173

High = 1
Unclear = 0
Low = 173

High = 1
Unclear = 0
Low = 173

 Outcome High = 24
Unclear = 120
Low = 30

High = 24
Unclear = 120
Low = 30

High = 24
Unclear = 119
Low = 31

High = 24
Unclear = 119
Low = 31

 Analysis High = 77
Unclear = 8
Low = 89

 Overall High = 85
Unclear = 67
Low = 22

High = 35
Unclear = 110
Low = 29
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performing models, those conducted with simpler meth-
ods or on larger sample sizes were selected. As a result, 
31 models were obtained, as reported in Table 4.

Risk of bias of the included studies
Differently from what is reported in Table  4 and the 
results, in which only the best performing models are 
presented, the risk of bias analysis, was executed for 
every model included in the review (Additional file 1), 
and the overall results were determined by the evalu-
ation given in the four domains (participants, predic-
tors, outcome and analysis). In these analyses, with the 
term bias, we refer to the methodological bias caused 
by an imprecise reporting of the results and more 
generically of the experimental process.

Overall, there are 22, 67 and 85 models, respectively, 
rated with a ‘Low’, ‘Unclear’ and ‘High’ risk of bias, 
and 29, 110 and 35 models, respectively, with a ‘Low’, 
‘Unclear’ and ‘High’ applicability concern.

Participants
The risk of bias evaluation related to the participants’ 
section is common for each model belonging to the same 
study because all the models belonging to the same study 
share the same population and sample size. Moreover, 
the ratings on the development and validation set col-
umns are equal for this section, because the majority of 
the models did not rely on external datasets; for those 
that did, the populations did not show differences regard-
ing the data source and inclusion criteria.

The data source as well as the inclusion criteria of the 
participants were always declared; thus, all the reviewed 
models were evaluated with a low risk of bias and a low 
concern for applicability.

Predictors
In the analysis of the predictor section, there was a low 
risk of bias and applicability concern for most of the 
models. Only one model was evaluated as ‘High’ risk due 
to a lack of information about the predictors used in the 
regression method [36].

Outcome
The risk of bias analysis for the outcome highlighted 31 
models with a ‘Low’ rating, 120 with an ‘Unclear’ rat-
ing and 23 with a ‘High’ rating. All the models with 
an ‘Unclear’ or a ‘High’ evaluation had a negative or 
unknown answer to the question ‘Was the time interval 
between predictor assessment and outcome determi-
nation appropriate?’ In fact, although in these articles 
it was evident that rehabilitation treatment occurred 
between the assessment of predictors and the outcome 
determination, the exact timings were not clearly stated. 

Additionally, the models with a ‘High’ risk of bias were 
characterised by an unclear or inappropriate outcome 
definition and determination with respect to predictor 
knowledge.

Analysis In the analysis assessment, 89 models had 
a ‘Low’ risk of bias, 8 had an ‘Unclear’ rating and the 
remaining 77 had a ‘High’ rating. The main factors affect-
ing a ‘High’ risk of bias are the approaches for handling 
missing data, the awareness of overfitting during the 
description of the model performances and the presence 
(or lack thereof ) of sufficient data-set numerosity, given 
the number of predictors. In particular, only 36 models 
accounted for overfitting within the paper; almost half 
of the models (83) from 8 different studies appeared to 
have insufficient participants, and only 3 of these studies 
reported this limitation in the results [18, 27, 34].

Description of the input and output variables
The description of both outcomes and predictors was 
reported in terms of the measurement used for their defi-
nition, type of variable (categorical, ordinal or scale), the 
timing of acquisition (when specified by the article) and 
the number of variables used in the case of predictors 
(Additional file  1). Specifically, only results of the best 
models from each included study were retained within 
analyses.

For what concerns the treatment of missing data within 
the variables considered, only three papers [24, 33, 34] 
reported the number of patients with missing values, one 
of which, however, did not report the way these missing 
values were handled [33]. Conversely, six papers reported 
among the methods the techniques used for handling 
missing data, without explicitly specifying the number 
[19–22, 26, 28]. The methods mostly used were statisti-
cal imputation of missing data (mostly through median 
values) or sample deletion.

As previously stated, the aim of this review is to inves-
tigate the prediction of the clinical outcome after the 
effect of the rehabilitation treatment. Thus, to reduce the 
possible influence of intermediate events on the selected 
outcome, we constrained the upper bound of 3 months 
on the timing of acquisition of the outcomes. Using 
this approach, the majority of the models [22 in total] 
focussed on outcomes at discharge, 4 chose outcomes at 
3-month follow-up and 5 did not specify the exact tim-
ing. For the predictors, the timing of the acquisition, i.e. 
the timing in which the variable is collected, was not 
specified in most of the models (a total of 14). In those in 
which it was reported, the timing was indicated at admis-
sion in 6 models, both baseline and discharge for 3 mod-
els [31] and within the rehabilitation treatment itself in 
the case of the remaining 8 models [18, 30, 34], in which 
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the predictors were features deriving from instrumental 
data.

To be concise and to ease the performance compari-
son across models, both predictors and outcomes were 
categorised. Regarding the outcomes, the categorisa-
tion was performed using the International Classifica-
tion of Functioning, Disability and Health (ICF) [37] on 
outcome measures. At first, each outcome measure was 
assigned with the corresponding detailed ICF classifica-
tion (Table 4) then, for analyses, the outcomes were dis-
tinguished among those related to body functions and 
those related to activities and participation.

It emerged that in some cases the same clinical scale 
used for the outcome definition was the expression of dif-
ferent outcome types, highlighting a strong heterogene-
ity in the use of clinical tools for functional assessment in 
rehabilitation.

The outcome measures resulted to be associated, for 
the majority of the models (23 out of 31), with activities 
and participation, whilst a way smaller number of models 
[8] attempted the prediction of outcomes related to body 
functions.

For what concerns the predictors, the categorisation 
could not be performed on the ICF model, since most of 
the paper did not provide the exact measures describing 
the features; thus, a different kind of grouping was per-
formed. At first, the classes were blindly identified trying 
to address in the most complete way the stroke patients’ 
assessment; then, each group was populated for every 
model included. The proposed classes were the following 
(in brackets some examples for each class are presented):

– Demographic characteristics (age, gender, marital 
status, employment status…).

– Medical history (presence of hypertension, presence 
of diabetes mellitus, presence of chronic obstructive 
pulmonary disease, presence of chronic heart dis-
ease…).

– Stroke assessment through clinical evaluation (length 
of stay, presence of dysphagia, presence of nasogas-
tric tube, presence of tracheostomy…).

– Stroke assessment through laboratory analysis (pres-
ence of recombinant tissue plasminogen activator, 
blood urea nitrogen, haemoglobin…).

– Stroke assessment through imaging (area of the left 
supramarginal gyri obtained by MRI, area of the right 
thalamus obtained by MRI, area of the left superior 
parietal regions obtained by MRI).

– Functional assessment (Motricity Index score, Modi-
fied Barthel Index score, Berg Balance Scale score…).

– Neurological assessment through clinical examina-
tion (side of the impairment, type of stroke, TPO…).

– Neurological assessment through instrumental 
examination (not reported).

– Biomechanical assessment through clinical examina-
tion (10 m walking test speed).

– Biomechanical assessment through instrumental 
examination (mean velocity from robotics assess-
ment, peak velocity from robotics assessment, pas-
sive range of motion from robotics assessment, active 
range of motion from robotics assessment…).

Figure  3 presents the histogram with the relative fre-
quencies of these classes in the models. The predictor 
classes were not mutually exclusive, as models usually 
included features of different nature (up to six different 
classes of features were used within the same model). In 
particular, 11 models retained features from 1 class only, 
whilst 15 models out of 31 performed the training with 
features belonging to more than 3 classes.

It can be noticed that due to the blinded nature of this 
category identification, the class neurological assess-
ment through instrumental examination is not reported 
because it was never observed in the included studies. On 
the contrary, the two most populated predictor classes 
used in the models were demographic characteristics and 
stroke assessment through clinical examination, used in 
18 out of 31 models. Interestingly, among the most popu-
lated classes of predictors, it was found that the biome-
chanical assessment through instrumental examination 
was used in 12 different models.

The number of predictors ranged between 2 and 51 fea-
tures, with a mean value (SD) of 14.2 (12.8). Among the 
models, 17 reported a process of feature selection before 
the development of the model, 5 of which performed it 
through an exhaustive search approach. However, less 
than half of the models adopting an automatic strategy to 
reduce features (8 out of 17) provided the final number of 
retained predictors used for the prognosis.

Regarding the use of predictors obtained through 
instrumental data, the features used in the included stud-
ies were related to biomechanical assessment through 
instrumental examination and stroke assessment through 
imaging. In particular, 12 models belonging to 5 different 
studies [18, 19, 22, 30, 34] used kinematic data among the 
predictors.

Description of the methods
The most used algorithms among models are regressions, 
specifically 12 models trained linear regressions and 8 
models logistic ones (Fig. 4, left).

Regarding the validation process, 28 models performed 
internal validation, internally divided into cross-valida-
tion, split-sample and bootstrap methods, whilst only 
3 models performed external validation (Fig.  4, right). 
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More in detail, regarding the specific group in which 
cross-validation was performed [15], only for 10 mod-
els was clearly stated the purpose of the method, either 
if used for fine-tuning of hyper-parameters or performed 
on the same parameters for testing the generalisability 
of the model. In particular, Mostafavi et al. [30] and Zar-
iffa et al. [34] reported the use of cross-validation for the 
optimisation of hyper-parameters, whilst Sale et  al. [31] 
and Li et  al. [28] addressed nested cross-validation for 
both purposes.

Cross-validation was performed also by De Marchis 
et al. [23], who calibrated a logistic regression with ten-
fold cross-validation, for the identification of the inter-
cept, keeping fixed the regression coefficients, then an 
external validation was performed for the calculation of 
the performance metrics of the model. König et  al. [26] 
and De Ridder et  al. [24] also reported a recalibration 
and internal validation respectively, without stating the 
approach used.

Model performances
Model performances were evaluated through several per-
formance measures, coherently with the type of the vari-
able used as outcome. In particular, accuracy, sensitivity, 
specificity, AUC, Hosmer–Lemeshow test and NRI were 
used for categorical outcomes, whilst the remaining  R2, 
R-value, RMSE, NRMSE, MDP and SRD were used with 
numerical outcome variables.

The most common performance metrics for numerical 
and categorical outcomes were respectively the  R2, indi-
cating the percentage of outcome variance explained by 
the predictors, and the area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve (Table 5).

Of the 9 models for which the evaluation was per-
formed with the AUC, the values ranged from 0.73 to 
0.97 and 3 models had performances greater than 0.90 
[29, 33, 36]. The values of  R2 ranged from 2.24% [18] up 
to 77% [22].

A detailed view of the models
From the above considerations, it emerged that the most 
used algorithms among models were the regressions, 
both logistic and linear, whilst the remaining algorithms 
were almost equally explored. More specifically, by a first 
broad categorisation of the outcomes based on the ICF 
model, it was noticeable how logistic regressions were 
preferred for activities and participation category, whilst 
the linear regressions for the body functions. For what 
concerns the relationship among predictor and outcome 
classes, no preferred choice seemed to be generally taken. 
Some exceptions are the biomechanical assessment 
through clinical evaluation class, which was related only 

to body functions outcomes, and the stroke assessment 
through laboratory analysis class, interestingly used only 
for activities and participation category.

A global representation of the models investigated in 
the studies is shown in terms of the outcome measure—
outcome classes—predictor classes relationships (Fig.  5, 
on the top). As mentioned before, for brevity, all the 
results are displayed considering a categorisation both 
for predictors and outcomes. Although the predictors are 
categorised, it summarises the state of the art in terms 
of models for functional outcome prediction. However, 
it is not evident any preferred association both in terms 
of outcome measures with respect to the outcome type 
and also in the model inputs given a specific outcome. 
Regarding the model input, almost half of the included 
studies (8 out of 19) reported among the limitations that 
the clinical practice drove the choice of features. Indeed, 
the variables adopted for the models were often obtained 
from the clinical scales in use in the centre.

At the bottom of the same figure, the number of par-
ticipants, categorised with the cut-offs of 100 and 1000 
patients, is in relation to the validation approach and the 
algorithms used. From this relation, it is visible that more 
complex validation approaches, such as bootstrap valida-
tion, were used only with linear and logistic regressions. 
Moreover, the same validation approaches were used 
with models trained on greater numbers of participants, 
whilst the cross-validation was performed mostly on 
models with less than 100 participants. To conclude, no 
linear relationship between the number of input features 
and the number of participants was found.

Discussion
The total number of included studies [19] confirms the 
interest of the research community in the field of ML 
tools for stroke prognosis, even though the strict require-
ments on the validation markedly reduced the number 
of eligible papers. Indeed, we constrained our analysis to 
studies including either internal or external validation of 
the models. In our view, such a requirement is fundamen-
tal to assess the generalisation capability and then the 
real applicability of an ML solution. Limiting the analysis 
to prognostic factors or ML methods without testing the 
models on new, unseen data does not allow one to quan-
tify directly the potential of the model without recurring 
to probabilistic approximations [38]. However, it is worth 
noting that the exclusion criteria on algorithm validation 
resulted in a large number of discarded studies, with a 
number of excluded papers even larger than those dis-
carded for the criteria on the outcome type.

For the description of outcomes and predictors, we 
decided to report frequencies among models. However, 
due to the large variability in the number of models 
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reported for each study (from 1 up to 102), we selected 
those resulting as the best performing on the perfor-
mance metric reported by the authors. This summari-
sation was performed among models developed with 
different algorithms or predictors, while distinct models 
for each study were presented when different outcome 
measures or types (categorical or numerical) were used. 
This process was considered necessary in order to display 
weighted results among the included studies, without 
the influence of the number of models that the authors 
decided to report.

The distinction in classes for both outcomes and pre-
dictors was necessary to group the results and gener-
ate model comparisons. The generation of classes was 
performed differently on the outcomes and predictors, 
as in some cases (5 models out of 31) the input features 
were given already in categories by the authors. Often, a 
detailed description of the measures used to define these 
features was not provided. Hence, in the case of pre-
dictors, the categorisation with the ICF model was not 
possible. Indeed, the proposed predictor categorisation 
allowed to distinguish among features related to demo-
graphics, medical history and clinical, biomechanical and 
neurological evaluation of stroke and allowed to discrim-
inate among purely clinical, instrumental or laboratory-
related features.

Nevertheless, it is important to consider that despite 
the conciseness and simplicity of this representation, the 
categorisation of features lacks clinical relevance, a phe-
nomenon that is related to two aspects. First, in the cate-
gorisation process, the details on the specific outcome or 
predictor type were lost. In addition, in the case of out-
comes, the categorisation was limited to the measure of 
the features, neglecting the outcome type, such as motor 
improvement, functional independence or functional sta-
tus. Although from the clinical point of view the specific 
instrument that defines a certain condition has great rel-
evance [39], this aspect needs attention for an appropri-
ate interpretation of the targeted outcome.

For this reason, our suggestion is to detail the spe-
cific variables addressed to find elements that can drive 
the development of new solutions. The application of 
the PROBAST tool for the analysis of the quality of the 
included papers highlighted that more than half of the 
studies were using data from the clinical practice of the 
specific centre. Hence, the heterogeneity found among 
models may be explained by a poor standardisation of 
post-stroke rehabilitation protocols for usual care. There-
fore, to fairly compare the performance of ML tools for 
predictive models and then assess their efficacy for per-
sonalised therapies, it would be crucial to establish a 
common protocol for stroke rehabilitation.

Among the classes of predictors used in the models, 
the two most populated were demographic characteris-
tics and stroke assessment through clinical examination, 
not surprisingly used in 18 out of 31 models, as they are 
related to features that are accessible and fast to collect. 
Surprisingly, the class of predictors related to biomechan-
ical assessment through instrumental examination was 
also frequently addressed (12 models), indicating a grow-
ing interest in the use of advanced instrumentation for 
the biomechanical assessment of patients’ kinematics. In 
particular, the studies from Mostafavi et al. [30] and Bland 
et  al. [22] reported the greatest number of participants 
over which a biomechanical instrumented examination 
was performed, with 126 and 269 patients respectively.

Moreover, it was noted that less than half of the papers 
reporting the feature selection provided the list or the 
number of the features actually entering the model. Addi-
tionally, the PROBAST tool does not fully consider this 
missing information, considering almost all the models in 
the predictors section with a low risk of bias. However, a 
proper description of the feature selection phase is cru-
cial, as it can guarantee not only the reproducibility of the 
study itself but also the identification of hidden causative 
associations among outcome and predictors not emerged 
by classical bio-statistical correlation analyses.

The algorithms most frequently used among the included 
models were linear and logistic regressions, confirming a 
preferable choice toward more conventional and interpret-
able methods, rather than more complex and advanced 
ones. Going more in detail, a preferred association of logis-
tic regressions and linear regression with outcomes belong-
ing to activities and participation and body functions, 
respectively, was noticed. This aspect may be addressed as 
a further confirmation of the need for interpretability of the 
models. Our findings highlight how outcomes related to 
higher-level human domains, such as activities and partici-
pation outcomes, are rather simplified as categorical fea-
tures and implemented into logistic regressions.

Another fundamental aspect for the development 
of reliable predictive models is the sample size. In this 
review, almost half of the developed models received 
the answer ‘No’ or ‘Probably no’ in the PROBAST tool 
question ‘Were there a reasonable number of partici-
pants with the outcome?’. The evaluation of this assess-
ment for the PROBAST tool was performed, following 
instructions available for the tool usage, using the rule 
of thumb indication of at least 10 samples for each fea-
ture. Although this assessment may appear too empiri-
cal, the lack of regard for a sufficiently large sample size 
was confirmed by a non-linear relationship among the 
number of patients and predictors used. Having larger 
sample sizes dedicated to the development and valida-
tion of the model allows researchers to avoid overfitting 
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complex models and thus to avoid the risk of lacking 
model generalisation when evaluating new data. Moreo-
ver, larger numbers would justify the exploration of more 
recent ML tools, such as deep learning methods. Among 
the included studies, those with higher numbers of par-
ticipants were characterised by multicentric structured 
databases [20, 21, 24, 26]. Indeed, the implementation of 
digital infrastructures such as databases, digital clinical 
folders or data lakes for data storage could promote a dig-
ital and data-driven environment, in which a structured 

and systematic collection of the data is coupled to daily 
clinical practice.

Differences exist among the possible strategies for 
method validation; however, we preferred not to fur-
ther constrain the inclusion criteria. The validation 
approaches were broadly distinguished among external 
and internal validation and within the latter type, fur-
ther groups were created to differentiate among cross-
validation, split-sample and bootstrap methods. For 
what concerns cross-validation, further considerations 
need to be done, as its use could have a twofold purpose, 

Fig. 3 Frequencies of the predictor classes among models (N = 31)

Fig. 4 Algorithms (on the left) and validation approaches (on the right) among the best performing models (N = 31). FOS fast orthogonal search, 
LogR Logistic Regression, LR Linear Regression, SVM Support Vector Machines, kNN k-Nearest Neighbours, RF Random Forest, NN Neural Network, PCI 
Parallel Cascade Identification
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either for fine-tuning of hyper-parameters or accounting 
for generalisability, similarly to what is performed with 
external validation. Especially with complex algorithms, 
it is important these processes of fine-tuning and gener-
alisability are performed with independent methods, in 
order to avoid the overfitting of the model on the specific 

fold configuration. In this study, only four papers [28, 30, 
31, 34] clearly reported the final purpose of the validation 
approach, hence we decided not to perform further cate-
gorisations within the group of models validated through 
cross-validation.

Fig. 5 Alluvial charts reporting an overview of the models. They show outcome measures—outcome classes—predictor classes (top) and the 
number of participants—validation approach—algorithm (bottom)
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In this work, De Marchis et  al. [23], De Ridder et  al. 
[24] and Kӧnig et al. [26] reported both an internal tun-
ing of the parameters and an external validation were 
used for the development and validation, or calibration, 
of the model. These studies were among those involving 
the highest number of participants. Indeed, coherently 
with the technical characteristics of the approaches, a 
higher number of participants seemed to be associated 
with higher complexity of validation approaches (Fig. 5). 
Although methods like bootstrapping are very efficient 
and account for sampling variability and cross-validation 
methods, they should not substitute external validation in 
prediction research, which should be the best practice. In 
fact, external validation requires new data to be collected, 
but it assesses the generalisability of the models by consid-
ering changes among populations of patients [40]. For this 
reason, this effort should usually be planned after model 
development after a proper tuning of hyper-parameters.

In this review, we found several limitations in the cur-
rent state of the art: a limited number of participants, high 
heterogeneity among factors and outcome measures and 
a small number of models with external validation after 
appropriate fine-tuning of hyper-parameters. Moreover, 
the variety of modalities used for the evaluation of the 
model performance is limiting the possibility to provide a 
unique, performing model among those found in the litera-
ture. Despite these methodological restrictions, the results 
show it is possible to identify the most frequently used pre-
dictors and algorithms given a specific outcome; this ability 

provides insight into the state of the art and a useful per-
spective for the development of new solutions (Fig. 5).

Conclusions
Predictive models can be a very promising support tool for 
clinicians. ML algorithms can be easily deployed for this 
purpose, due to their capability of handling large cohorts 
and high dimensional datasets; indeed, once trained, 
they provide accurate estimates at a low cost. Among 
the advantages, this kind of solution could stimulate a 
more data-driven approach in clinical practice, promote a 
more structured definition of studies and reduce the gap 
between clinical and research areas. For this reason, we 
suggest promoting additional research in this field, with 
larger datasets, external validation of the models and an 
accurate and scientifically driven selection of outcomes 
and predictors. Furthermore, the implementation of 
defined protocols and registers for the evaluation of post-
stroke patients in clinical practice is strongly suggested.

This would allow for larger datasets and a broad vari-
ety of features, including instrumental ones, that are 
crucial elements in the development of predictive mod-
els. We are convinced that to optimise and personalise 
the rehabilitation treatment, future research should 
lead to extensively validated ML methods that become 
embedded in decision support tools of daily use.
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