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ABSTRACT  
Computational methods based on machine learning have had extensive development and 

application in hydrology, especially for modelling systems that do not have enough data. Within 

this problem, there are data series that are missing, and that should not necessarily be discarded; 

this is achieved by means of the imputation of the same ones, obtaining complete sets. For this 

reason, this research proposes a comparison of computer-learning techniques to identify those 

best suited for hydrographic systems of the Pacific of Ecuador. For the elaboration of this 

investigation, the hydro-meteorological records of the monitoring stations located in the 

watersheds of the Esmeraldas, Cañar and Jubones Rivers were used for 22 years, between 1990 

and 2012. The variables that were imputed were precipitation and flow. Automatic learning 

machines of the Python Scikit_Learn module were used; these modules integrate a wide range 

of automated learning algorithms, such as Linear Regression and Random Forest. Finally, 

results were obtained that led to a minimum useful mean square error for Random Forest as an 

automatic machine-learning imputation method that best fits the systems and data analyzed. 

Keywords: data imputation, hydrographic systems, machine learning. 

Métodos de aprendizado de máquina para dados de imputação 

hidrológica: análise da qualidade de ajuste do modelo em sistemas 

hidrográficos do Pacífico - Equador 

RESUMO 
Métodos computacionais baseados em aprendizado de máquina tiveram amplo 

desenvolvimento e aplicação em hidrologia, especialmente para modelagem de sistemas que 

não possuem dados suficientes. Dentro deste problema faltam séries de dados que não devem 

ser necessariamente descartadas. Isso é feito por meio da imputação das mesmas obtendo-se 

conjuntos completos. Por este motivo, esta pesquisa propõe uma comparação de técnicas de 

aprendizagem computacional para identificar aquelas mais adequadas aos sistemas 

hidrográficos do Pacífico do Equador pelo interesse representado pelo estudo destes sistemas 

por complementaridade hidrológica. Para a elaboração desta investigação foram utilizados os 

registros hidrometeorológicos das estações de monitoramento localizadas nas bacias dos rios 

Esmeraldas, Cañar e Jubones durante 22 anos, compreendidos entre 1990 e 2012. As variáveis 
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imputadas foram precipitação e vazão. Foram utilizadas máquinas de aprendizagem automática 

do módulo Python Scikit_Learn; esses módulos integram uma ampla gama de algoritmos de 

aprendizagem automatizados, como Linear Regression e Random Forest. Finalmente, foram 

obtidos resultados que levaram a um erro quadrático médio útil mínimo para Random Forest 

como um método de imputação de aprendizado de máquina automático que melhor se ajusta 

aos sistemas e dados analisados. 

Palavras-chave: aprendizado de máquina, imputação de dados, sistemas hidrográficos. 

1. INTRODUCTION  

In recent years, methods based on machine learning have advanced considerably and have 

been applied in several areas of science and technology. Within hydrology, they have been 

widely applied in the development of basin behavior models, especially those that do not have 

enough information to apply physical models. In this aspect, another problem is that much of 

the available information is incomplete, and the series that are available are useless, further 

reducing the data for the work of hydrological modelling.  

Hydrologists and water managers have made use of observed relationships between rainfall 

and runoff to predict streamflow ever since the creation of the rational method in the 19th 

century (Beven, 2012), a properly designed monitoring network with optimal data allows us to 

know the relationship between these behaviours and to be able to apply this in studies of water 

interest. However, streamflow and rainfall records suffer from missing observations, mostly 

resulting from unexpected causes including the loss of records, sensor problems, or disruption 

of data collection (Ng et al., 2009).  

In the area of analysis, one of the problems is that there are not enough nor adequate 

monitoring systems, and from those that exist a large amount of missing data is evident. This 

makes the process of modelling these watersheds complicated and inaccurate; the application 

of this type of study generates knowledge of the area and its subsequent exploitation for 

different activities linked to water. These data would result in an incorrect response of 

hydrological models, but it is illogical to ignore abnormal or missing values if there is limited 

data available; substantial uncertainty in hydrologic and water quality modelling can be driven 

by these missing records (Kim et al., 2015). There are several methods to solve the problem of 

missing observations from statistics based on linear regressions that have already been validated 

in other investigations. These depend on the amount of data existing in the series and the data 

and relationships that they have with neighbouring weather stations (Mwale et al., 2012; Rees, 

2009). For these reasons, authors such as (Adeloye, 2009) indicate that regression methods 

might only be applicable when all predictors exist.  

Artificial neural networks (ANNs), regression trees, and support vector machines have 

been shown to be powerful tools for predictive modelling and exploratory data analysis, 

particularly in areas that do not meet the conditions for using traditional statistical methods 

(Shortridge et al., 2016). These methods have mathematical formulations that require a high 

cost of computational processes, but are very effective when there are non-linear relationships 

to use traditional statistical methods (Dawson et al., 2010). These strengths make them very 

useful, especially in countries with poor monitoring traditions, where gaps of information in 

climatological and hydrologic time series are ubiquitous (Campozano et al., 2014). 

2. MATERIALS AND METHODS 

The analysis stations are located in three main river basins of the coastal zone of Ecuador. 

These are the Cañar River, the Jubones River and the Esmeraldas River. These basins have 
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around 318 weather stations and 106 hydrological stations. The three systems have been chosen 

because they have the largest monitoring network in the country and represent a significant area 

of analysis (see Figure1). 

 
Figure 1. Location of the hydrographic systems for the analysis. 

The sample of the stations to be analyzed was obtained by simple random sampling. One 

meteorological station and one hydrological station were selected per basin, as well as two 

nearby reference stations for the case of meteorological stations and a reference station for the 

example of hydrological stations. These nearby reference stations were selected as predictors 

at the time of analysis of data.  

2.1. Data Imputation Methods 

For the development of the imputation model with the uses of machine learning, we work 

with a pattern search to optimize parameters and later cross-validation for the periods of 

analysis of the research (Kim et al., 2015) (Carpenter, 19991). This imputation method is based 

on supervised learning models, that is, the machine is presented with the response information 

at the same time as the input information, with which the machine will learn to arrive at the 
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answer through an iterative process. Within the operation of a machine learning, we have an 

input data vector that transfers it to the network where the complexity of the training is 

determined, thus obtaining a vector of data output as a result of the model (Guo et al., 2015).  

The process is divided into training data, test data, and validation data; this division is 

established through cross-validation that allows an adequate distribution of the data between 

test data and validation so that the model does not over-fit in the trained data and have 

deficiencies in the validation data (see Figure 2). Followed by the supervised learning machine, 

this information is processed and a linear model based on the least square’s method is 

established. The multiple iterations that the learning machine performs with the training and 

test data allow us to identify the best linear model, which will allow the imputation of hydro-

meteorological data. 

 
Figure 2. Cross-validation operation, between training, testing and validation data. 
Source: www.towardsdatascience.com 

The Tansig Function is used as a transfer function since it gives efficient results within 

hydrological studies (Kim et al., 2015; Akhter, 2017), the function is as Equation 1 follows:  

𝑦 = 𝑓 ∑ 𝑤𝑖
𝑁
𝑖=1 𝑥𝑖 + 𝑏         (1) 

Where xi is the input in the network, y is the output in the network, N is the number of 

neurons in the input vector, wi is the connection weight between input and output, f is the 

transfer function, and b is the bias term. 

To analyze the weight of each calculation, the neural networks use a back-propagation 

algorithm, where the error in the output data and the observed data are analyzed. It is a type of 

supervised learning based on the generalization of the delta rule (Veintimilla-Reyes and 

Cisneros, 2015; Hsu et al., 1995; Bisoyi et al., 2019). This algorithm updates weights by 

moving along the gradient descent of the error function, which allows the steepest decreasing 

change. The advantages of this algorithm are its ability to adjust the learning rate by updating 

the learning rate parameter and it also guarantees less oscillation with the momentum constant 

(Kim et al., 2015). The process is repeated until the error is minimized. This method is widely 

used in hydrological studies (Dawson and Wilby, 2001). 
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In this research, we analyze and compare two methods. The first method is autonomous 

learning based on linear regression, which integrates statistical models for relating responses to 

linear combinations of predictor variables (Ahmad et al., 2010; Srivastava et al., 2013). The 

second method is the random forest algorithm, which is widely used for the study of water 

resources. Applications falling under this category include streamflow modeling using data-

driven rainfall-runoff models, while streamflow imputation of missing values is also generating 

increased interest (Tyralis et al., 2019). 

Random Forest is a supervised Machine Learning algorithm based on a stochastic model 

that relates a result to explanatory variables or characteristics. Each decision within the tree can 

be viewed as a set of conditions, organized hierarchically and applied successively to the data 

set. For regression applications, they provide independent numerical predictions of the 

phenomenon of interest. In the end, the result corresponds to the mean forecast of all individual 

trees (Muñoz et al., 2018). 

3. RESULTS AND DISCUSSIONS 

The machine of autonomous learning based on linear regression and in random decision 

forests produced models that allowed the imputation of missing data in the hydro-

meteorological records of the stations located in the study basins, i.e., the stations of the basins 

of the Esmeraldas, Cañar and Jubones Rivers. The following models are calibrated to meet the 

imputation of missing data from each station within the period of records comprising 22 years, 

from 1990 to 2012, for both meteorological stations and hydrological stations. It should also be 

taken into account that we worked only with the hydro-meteorological stations near the 

hydrographic basin, and that in the analysis of correlations they maintained between them a 

correlation value greater than or equal to 0.75. 

The analysis of the best regressions obtained for each imputed data in the selected 

meteorological stations is presented (see Figure 3). These models were established with the 

Linear Regression learning machine of the Sklearn Python library, and their data sets were 

applied for cross-validation as a fundamental pillar for the validation of results (Hastie et al., 

2017). The analyses have a relationship between the test values and the predicted values. As a 

result of these results, the linear models allowed imputation of missing data in the hydro-

meteorological records. In the figure, it can be seen that there is a linear relationship for each 

of the data and the stations. This relationship has to be validated by statistical indicators of 

goodness-of-fit between observed and predicted data (Tyralis et al., 2019; Zambrano-Bigiarini, 

2017; 2011). These analyses are presented in Section 3.1, where they are compared between 

the two methods presented in this research.    

Table 1 shows the equations of the linear models that have been obtained for each station 

with the stations with which it has been correlated with the previous spatial analysis. This line 

regression model is obtained by the Machine Learning Linear Regression algorithm between 

test values and the predicted values of the stations. 

Similarly, the analysis of the allocation models based on the Random Forest learning 

machine (see Figure 4) is presented. The relationship between the values of the data of the 

reference station and the data of the analysis station is evaluated; each parameter of the model 

is calibrated so the statistical indicator is the most reliable.  
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Figure 3. Linear regression line obtained by the Machine Learning Linear Regression algorithm 

between test values and the predicted values of the stations. 

Table 1. Linear models for each weather station. 

Weather station  Linear Model  

M003 20.91 + 0.8150 M364 

M364 22.68 + 0.8370 M003 

M411 1.59 + 1.0939 M31 

M031 10.52 + 0.6960 M411 

M040 24.75 + 0.2145 M185 + 0.5375 M292 

M185 23.25 + 0.3488 M040 + 1.2632 M292 
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Figure 4. Predictive model obtained by the Machine Learning Random Forest algorithm 

between test values and the predicted values of the stations. 

3.1. Analysis of statistical index for model validation   

To perform an interpretation, comparison, and analysis of applicability for large 

hydrographic systems where the basin has many variations in both meteorological and 

hydrological behaviour, it is necessary to obtain indicators of goodness-of-fit that indicate 



 

 

Rev. Ambient. Água vol. 16 n. 3, e2708 - Taubaté 2021 

 

8 Diego Heras et al. 

which is the optimal model. The statistical significance of the performance statistics is an aspect 

that is generally ignored that helps in reducing subjectivity in the proper interpretation of the 

model performance (Ritter and Muñoz-Carpena, 2013). To obtain these indicators, the data 

observed in the meteorological stations have been compared with the simulated data (imputed 

through the techniques analyzed). This process allows us to validate which of the two methods 

has a better fit, and therefore, which would be more efficient and result better in subsequent 

applications. 

The indicators have been analyzed, and the efficiency coefficient of Nash and Sutcliffe 

(Nash and Sutcliffe, 1970) has received considerable attention in hydrological modelling 

(Gupta and Kling, 2011; Moussa, 2010). It has already been used for the imputation of missing 

data and it is generally used in other fields of science (Schaefli and Gupta, 2007). It is also 

tested by the Kling-Gupta Index of Efficiency (KGE) (Galleguillos et al., 2017), which uses the 

values between -1 and 1, with the value 1 as an ideal and positive values greater than 0.5 as 

sufficiently robust correctors. The Mean Square Error is a standard indicator for this type of 

analysis (Gupta et al., 2009). 

To determine the best method for data imputation, the indices are compared (Table 2). It 

is observed that the best method in the three reliability analyses is the Random Forest. The 

Mean Square Error is the one that indicates the highest relation of the imputed values and, 

observed with 0.01, the NSE and KGE index has values of 0.76 and 0. 67 respectively, 

indicating good data adjustments. 

Table 2. Comparison of indexes of the evaluated methods. 

LINEAR REGRESSION RANDOM FOREST 

STATION MSE NSE KGE STATION MSE NSE KGE 

M003 0 0.75 0.55 M003 0 0.78 0.68 

M364 0 0.75 0.55 M364 0 0.78 0.68 

M411 0.02 0.71 0.52 M411 0 0.78 0.68 

M031 0.1 0.7 0.50 M031 0 0.78 0.68 

M040 0 0.75 0.45 M040 0.06 0.7 0.65 

M185 0.32 0.68 0.4 M185 0.07 0.7 0.65 

M292 0.08 0.65 0.45 M292 0.02 0.73 0.66 

H172 0.05 0.6 0.45 H172 0 0.78 0.68 

H173 0 0.65 0.43 H173 0 0.78 0.68 

MEAN 0.06 0.69 0.48 MEAN 0.01 0.76 0.67 

The evaluations of the indices verify that the models have given good results. Reliable 

indices are appreciated with the tools of artificial intelligence, although reviewing each accurate 

indicator the NSE index for Linear Regression is 0.69 compared to 0.76 for Random Forest; the 

two values show right adjustments between the data (Waseem et al., 2017). The KGE index 

between the models has more noticeable differences between Linear Regression (0.48) and 

Random Forest (0.67), the Random Forest indicator has given values that establish (Näschen et 

al., 2018; Pool et al., 2018) the use of that model as the best for analysis of large river basins 

with variations of the Pacific climatology.  

For several decades the need to have complete time series to validate subsequent studies 

has meant that many studies are done, and various techniques have been used. In Aissia et al. 

(2017), a review of multivariate methods and their application to reduce the loss of information 

is made; these range from simple relationships such as linear regressions that are based on 

spatial approximations, artificial intelligence techniques, and even much more innovative 

methods, such as those presented by Williams et al. (2018), who formed two methods with 

Bayesian structures to generate an algorithm that represented the signal of the time series of 
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temperatures. In Teegavarapu (2019) research, spatial interpolation methods were evaluated, 

although Euclidean distances were substituted to improve fit indicators' goodness. 

In another study carried out by Chen et al. (2019), several techniques were tested to impute 

precipitation data with the premise that having complete series improves analyses within 

hydrographic basins. After using several methods, they decide to perform the hydrological 

model with the best fit; This leads us to consider that there is no "best" technique, but rather 

that the analysis must be based on several determining factors such as the type of 

hydrometeorological variable, the years of the series, the time scale, spatial variations, 

conditioning factors or external phenomena. 

The apparent difference compared to traditional methods is that the response to abnormal 

weather patterns can be better exploited, which is of great interest for rainfall patterns as 

variable as that of the Pacific in Ecuador, which is influenced by various external phenomena. 

4. CONCLUSIONS 

In this study, we propose the analysis of two traditional methods of artificial intelligence 

to study the accuracy and use for imputation of missing data in Hydrographic Systems on the 

slope of the Pacific in Ecuador. The two methods proposed and evaluated were Linear 

Regression and Random Forest, which were tested in the three most representative 

Hydrographic Systems of the country, in the basins of the Esmeraldas, Cañar and Jubones 

Rivers, intending to cover the extension of the surface and the water from north to the south of 

Ecuador. 

After carrying out a preliminary analysis of the data, we worked with 9 test stations in the 

three systems, observing goodness-of-fit indicators for each of the stations and each model, we 

worked with Medium Squared Error (MSE), Nash and Sutcliffe (NSE) and Kling-Gupta Index 

of efficiency (KGE). The values obtained after the goodness-of-fit analysis mark ranges for 

good efficiency analyses, but the Random Forest model has the three best indicators both on 

average and for each of the analysis stations. It is important to highlight the importance of 

carrying out this type of analysis in watersheds of the Pacific slope of Ecuador, since available 

information is scarce and the hydro-meteorological behaviour is different from the Amazon 

slope. They are also very large systems in extension but with hypsometries marked by very 

marked altitudinal differences in a small area of land and with a lower amount of water 

compared to the Amazon slope.  

After the data analysis and the discussion process with authors who have carried out similar 

works worldwide for several decades, it can be seen that techniques that can reproduce atypical 

effects should be evaluated in the first place and then validated before their application to the 

management of water resources. 
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