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Abstract
The search for predictive biomarkers of disease from high-throughput mass spectrometry (MS) data requires a
complex analysis path. Preprocessing and machine-learning modules are pipelined, starting from raw spectra, to set
up a predictive classifier based on a shortlist of candidate features. As a machine-learning problem, proteomic
profiling on MS data needs caution like the microarray case. The risk of overfitting and of selection bias effects
is pervasive: not only potential features easily outnumber samples by103 times, but it is easy to neglect information-
leakage effects during preprocessing from spectra to peaks. The aim of this review is to explain how to build a
general purpose design analysis protocol (DAP) for predictive proteomic profiling: we show how to limit leakage
due to parameter tuning and how to organize classification and ranking on large numbers of replicate versions of
the original data to avoid selection bias. The DAP can be used with alternative components, i.e. with different
preprocessing methods (peak clustering or wavelet based), classifiers (e.g. Support Vector Machine) or feature
ranking methods (recursive feature elimination or I-Relief). A procedure for assessing stability and predictive value
of the resulting biomarkers’ list is also provided.The approach is exemplified with experiments on synthetic datasets
(from the Cromwell MS simulator) and with publicly available datasets from cancer studies.
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INTRODUCTION
Proteomic profiling is applied to identify biomarkers

relevant for molecular diagnostic or prognostic

purposes. Technologies for high-throughput mass

spectrometry (MS) are experiencing a substantial

growth and diffusion, giving researchers the oppor-

tunity not only to face new biological questions but

also to improve the techniques used at different steps

of the profiling process. First, a growing number of

both matrix-assisted laser desorption/ionization

(MALDI) and surface-enhanced laser desorption/

ionization (SELDI) datasets has become publicly

accessible. Secondly, availability of signal processing

and machine-learning methods has also recently

spread, with the final aim of selecting a list of

biomarkers that stand the best chance of predicting
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a class label (classification) or a response indicator

(regression). In this review, we focus on the design of

predictive classifiers and of feature selection on MS

data; we treat the different preprocessing and

biomarker selection methods that have been pro-

posed as given building blocks of a chain (or

pipeline) of spectra analysis and profiling methods.

We consider the problem of either studying a new

element of the preprocessing and classification chain

or just of setting up one chain to address a clinical or

prognostic question. In practice, we aim at defining

how data preparation and profiling methods have to

be organized in a complete schema of procedures,

given a set of labeled spectra and a classification task

with classes defined by labels.

The first aim is just to achieve reproducible

results. Indeed, similar to the evolution of microarray

technology, a critical revision of proteomic profiling

has arisen, pointing out the need for the most careful

handling of the preprocessing and modeling tools

[1–4]. In order to ensure reproducibility of experi-

ments, a main critical issue is the experimental design

methodology, which may pose the results at risk of

selection bias [1, 5–10]. For microarrays, a set of

comprehensive guidelines for the development and

validation of predictive models or classifiers, likely to

give biomarkers and classifiers with reproducible

outcomes on novel data, is the expected results of

MAQC-II, a multicentric project promoted (by the

U.S. Food and Drug Administration (FDA) [11]).

Here we try to introduce similar concepts and a

general data analysis workflow that deals also with

the preprocessing issues typical of MS data.

The workflow for a proteomic profiling process

is typically seen as a pipeline concatenating two

engines: a preprocessor engine with a classification-

ranking one. Spectra enter the pipeline as raw data,

undergo a sequence of elementary normalization and

feature extraction steps so to get finally encoded as a

feature matrix. One row, i.e. a vector of real values,

and one label become one input–output pair to be

learned by a classifier. Defining the classifier

(between different alternatives) and tuning it for

best performance is the goal of the second engine,

which also provides a sublist of features with top

relevance for discrimination. To ensure reproduci-

bility, we need to specify how the available data

material is fed to the system. The key to reprodu-

cibility is vastly in the system of specifications that are

given for selecting training, and test datasets

(extracted by partitioning or subsampling from the

data at hand) to simulate the accuracy of the classifier

on future data and the interest of using the selected

features as prognostic markers. It is worth laying out

a design analysis protocol (DAP) in which data

preparation, preprocessing, model selection, and

performance evaluation are all detailed. The diagram

in Figure 1 outlines a generic DAP workflow for

proteomic profiling. We suggest focusing first on the

organization of the system than on its specific

elements. As an example, the preprocessing encoding

from spectra to features (upper left of Figure 1) can

be organized by combination of elementary pre-

processing methods. When dealing with MS profil-

ing, crucial is such initial upstream preprocessing

phase obtained through a concatenation of smooth-

ing, normalization and feature extraction methods

(in some order). A wide variety of techniques have

been introduced to tackle the preprocessing steps

from raw data to the peak extraction and quantifica-

tion [5, 12–14], as well as to deal with the

downstream phase, from peaks to classification

models and biomarker identification [4, 15].

UPSTREAMANALYSIS
Extensive low-level processing can be combined

with machine learning also in the first phase:

clustering approaches have been successfully used

to match peaks across spectra (see [13] with updates

in [16]). Computer vision approaches to signal

handling are often applied to proteomics spectra as

in [14, 17]: the authors deal with the multiple peak

alignment task by using a scale-space method in the

first case and a robust point matching algorithm in

the second. Noy and Fasulo [18] introduced a

model-based approach to feature extraction in which

spectra are decomposed into a mixture of distribu-

tions derived from peptide models. Klann and

coworkers [19] perform deconvolution of signals

with peak-like structures and propose wavelet

shrinkage, i.e. a regularization procedure, for model

selection. A hybrid ant colony optimization (ACO)

and support vector machines (SVM) approach is used

by Ressom and coworkers [20] to select a parsimo-

nious set of biomarkers from MALDI time-of-flight

data (MALDI-TOF), after a preprocessing phase that

involves outlier screening, binning, baseline removal

and spectra normalization by total ion current (TIC).

Note that normalization by area under the curve

(AUC) usually requires multiplication for a scale

factor such as the mean or median AUC to ease
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visualization [21, 22]. In [23], a low-level processing

algorithm for MS spectra is presented, based on a

denoising phase with the undecimated discrete

wavelet transform (UDWT). To complete the

preprocessing phase two main parameters have to

be set in this case: the type of wavelets to be used and

the threshold level. The authors employ Daubechies

wavelets [24] and set the wavelet degree to eight for

all analysis. By transforming the signal to the wavelet

domain thresholding, and back-transforming they

achieve an effective noise reduction, while detecting

the interesting peaks.

DATA ANALYSIS PROTOCOL
The first step in a proteomic profiling task is the

design of a protocol organizing the data life cycle,

from a collection of raw MS spectra to a list of

candidate biomarkers. We need to specify elemen-

tary steps for the preprocessing, how to partition data

in development-validation splits (and development

sets in training-test parts), classification and feature

ranking procedures and validation of the resulting

models.

The structure of a DAP workflow for proteomic

profiling is displayed in Figure 1. The MS spectra are

first passed to the preprocessing engine. As soon as

possible, we set apart a portion of the data for

validation, and then apply a pipeline of preprocessing

modules to the development data. Ideally, each

step should be applied to spectra separately

(dashed boxes in Figure 1), i.e. preprocessing

parameters should be used unmodified during

upstream analysis of validation (e.g. with AUC

normalization).

The workflow expands an experimental schema

for gene expression profiling [25]. Predictive models

and feature ranking are based on SVM classifiers

coupled with an Entropy Based-Recursive Feature

Elimination (E-RFE) variable selection step. The

classification and ranking analysis (lower left box in

Figure 1) is formed by a preparation phase and an

internal validation loop of B runs derived from the

BioDCV profiling method [25]. For each run, data

Figure 1: A workflow for proteomic profiling.
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are split in two datasets by random partitioning at

fixed ratio (e.g. 75% for training and 25% test: ‘Split

data set’ block in Figure 1). Splits include stratifica-

tion for class labels and any potential sub grouping

available from clinical data and a priori knowledge.

The training portion is used for training classifiers

and for model selection. Within the BioDCV

internal training steps, different kernel methods

(e.g. linear and non-linear SVM, data-driven kernels

[26], linear SVM) can be trained for classification.

We can also apply alternative feature ranking

algorithms (mostly from the wrapper family: recur-

sive feature elimination (RFE) and variants, I-Relief

[27]). The pair (classifier, ranking method) will be

considered as elementary model and evaluated on

the test dataset at increasing feature subset sizes. As a

first result, all the B accuracy estimates (test error)

will be used to obtain average test error (ATE)

measures, with confidence intervals, at each feature

set size. The set of B ranked lists will be used to

create an optimal list of the features most present in

the top positions or having best mean positions [28].

One set of ranked peak lists and predictive accuracy

estimates (total and per class) will be derived, given

the experimental condition and the current devel-

opment dataset. In [28] we show by algebraic

methods that the entire set of ranked lists obtained

in the B internal validation runs can be used to

evaluate the distributions of the mutual distances

between partial top-k sublists, obtaining a ‘stability’
measure of the resulting biomarker list. Stability can

be used together with accuracy to select the optimal

models. Classifiers based on optimal models and

optimal feature lists are applied on the validation

dataset. Preprocessing, analysis and validation are

then repeated N times, thus obtaining an average

validation error that can be used as an estimate of

performances on novel data, as shown in the

rightmost upper section of the DAP graph.

The same DAP diagram can be used to compare

different classifiers or alternative preprocessing meth-

ods. In particular, to ensure that the procedure is not

affected by any systematic bias, a suitable number of

replicated experiments are run on the dataset after

having randomly permuted the sample labels: to be

evaluated as unbiased, the procedure should produce

an ATE curve lying close to the dataset no

information error rate (i.e. the samples ratio between

the smallest class and the whole dataset sizes,

corresponding to the error reached by classifying all

samples as belonging to the most populous class).

The preprocessed dataset (from development data) is

often analyzed by a battery of different classifiers:

different classification models are evaluated at a grid

of parameters so to get a first landscape of predicted

measures of accuracy as function of classifier type and

parameters’ choice. Alternative models will be

evaluated by k-fold cross-validation (k-CV), with k
chosen according to dataset dimensions (typically

k� 10), or by resampling. The list of tested models

will include SVM (different kernels), kNN, classifi-

cation trees and ensemble methods (bagging and

boosting) amongst the aforementioned. Tables with

expected accuracy (total and per class) will be

analyzed and optimal parameters will be chosen for

a reduced set of best classifiers. Typically one or two

types of classifiers and a limited number of alternative

parameters are selected for internal validation.

Finally, outlier and subtype detection can also be

obtained with the same schema: spectra can be

evaluated for possible removal (shaving) [29] and

evidence for potential unreported subtype structure

investigated [30] and considered for stratification in

the subsequent analyses.

We emphasize that correctly characterizing the

overall schema so to avoid the effects of selection bias

in the analysis is the core message of the paper.

Working examples with our solutions and alternative

approaches (both for preprocessing and machine-

learning components) will be provided to exemplify

its use in practice.

PEAKCLUSTERING
Within the proteomic profiling DAP, we can

compare alternative preprocessing engines. The

example used by the DAP in Figure 1 implements

a pipeline of existing modules for a preprocessing

based on peakclustering (PC): the steps are baseline

correction, AUC normalization, peak extraction,

peak clustering and peak assignment [31,13]. Each

MS spectrum is described by a set of pairs of ordered

mass-over-charge ratio (m/z) values and correspond-

ing intensity: the preprocessing phase is generally

meant to reduce dimensionality (number of m/z
values) and to obtain a set of potential markers at

the local maxima of the signal. In this example,

baseline is estimated and removed by loess (local

linear regression) [22] over the local minima with the

PROcess package of the R statistical environment

[32]. Each signal is then normalized ‘across spectra’

by using a function of the AUC [31] (the formula
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includes the median AUC). As in [13], a peak

candidate is detected given three conditions: (i) it

must have the highest intensity among its nearest

neighbors, (ii) it must be higher than a chosen

threshold and (iii) higher than a function of the

signal-to-noise ratio (SNR). Furthermore, two

candidate peaks overlap if they both lie in a

window of a chosen width (the ‘peak width’, t).
The peaks from all spectra are grouped through

complete hierarchical clustering on the logarithmic

scale of their m/z [13]. Another parameter (the ‘peak

gap’, l ) defines the cut level for the clustering and

thus a partition whose cluster centroids define the

‘common peaks’, i.e. those common to all spectra.

For each spectrum, a peak is selected if its distance

from a common peak is5s¼ log(l ). Peaks are much

larger and less overlapping for higher m/z ranges, thus
the threshold s needs to be focused or adapted to the

sub range of interest: this is also sensible if the

instrument is known to be calibrated in a fairly

narrow range. Figure 2 displays an example of the

whole process on a real spectrum.

Expected peak width and peak gap are good

examples of parameters that are critical for DAP’s

automation: they are related to the physical

characteristics of the spectrometer and to the m/z
range of interest. The mean number of detected

peaks decreases significantly as a function of the

width parameter. Usually, these parameters are

manually fine-tuned after a visual inspection or by

using a priori knowledge.

One should mark which preprocessing steps are

applied to each spectrum separately (i.e. baseline

correction and peak extraction), and which (normal-

ization, peak clustering and peak assignment) have to

be performed on all spectra at the same time and thus

need a careful handling. For the latter steps, we need

to decouple preprocessing of development and

validation datasets because there is a potential

opportunity for overfitting effects whenever devel-

opment and validation datasets are simultaneously

preprocessed. In our case, to avoid information

leakage, we use the median AUC from development

to normalize spectra in validation—and not a median

AUC computed on all data.

ALTERNATIVE PREPROCESSING
As an alternative example for the preprocessing

engine within the DAP, we employ a wavelet

denoising procedure proposed by Coombes and

Figure 2: Preprocessing of one cancer patient spec-
trum (dataset OV1, see Supplementary Material). Top:
raw spectrum with baseline identification. Middle: nor-
malization after baseline subtraction. Bottom: peak
extraction (squares) and centroid identification (lines).
Insets show leftmost range (m/z51000Da). Modified
from [15].
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coworkers in [33] (as an evolution of [23]) for

common peaks identification and intensity quantifi-

cation (see Supplementary Material). To the classi-

fication engine we pass the feature matrix from either

one of the two approaches (the readers may sub-

stitute here their favorite approach or introduce a

new component).

Preprocessing methods often require tuning of

window sizes or of thresholds. Machine-learning

principles can be used to automate this practice: for

the peak-clustering method, we build a classifier

whose features are picked up from all those detected

by preprocessing at different peak width and peak

gap choices. We call ‘multiresolution’ (MR) this

procedure of ranking over the aggregated features,

leaving to the feature selection algorithm in BioDCV

the responsibility of choosing the most discriminat-

ing features, possibly defined by different peak width

and peak gap pairs in distant intervals of the

spectrometer range.

EXAMPLES
We can illustrate the general strategy for machine-

learning profiling DAP in concrete with examples on

classification of two synthetic and two real MS

datasets (described in Supplementary Material).

Given workflows as in Figure 1, we analyzed different

preprocessing procedures, classifiers and feature rank-

ing algorithms. The MR algorithm was also tested.

Two synthetic datasets (MR1 and MR2) were

created with the Cromwell proteomic MALDI-TOF

simulation engine [3]. The spectra in MR1 were set

so to have 81 peaks of which 14 discriminant with

different intensities (10 000 and 5000) assigned for

two classes. Four instances of MR1 were generated

for increasing levels of noise over intensity (see

Supplementary Material for details). The synthetic

dataset MR2 mimics a clinical diagnostic experiment

setup in which potential discriminating peaks belong

to two different and distant regions within the m/z
operation range of the spectrometer. This two-band

structure is sketched in Figure 3.

The two real datasets regard discrimination of

ovarian cancer from controls on two different

platforms (OV1: 253 SELDI-TOF spectra; OV2:

170 MALDI-TOF spectra, described in

Supplementary Material).

A profiling experiment, following the DAP

workflow outlined in Figure 1, was run on MR1,

OV1 and OV2 datasets, choosing PC as

preprocessing engine, SVM as classifier, and RFE as

ranking algorithm.

For MR1, at all the noise levels, the 81 peaks

were found. Higher noise levels introduced extra

non-discriminant features but they were low ranked.

In all runs, 13 out of 14 peaks were always detected

as top discriminating (the leftmost was confused with

non-discriminating peaks).

The effect of batch preprocessing of training and

test data together is shown in Figure 4 for the OV1

data. A discrimination error below 3% (AVE: average

error on validation) is obtained with55 features by

profiling on these controversial data [34]. The

average test error (ATE) is more optimistic than

the validation error when training and test data in the

development are processed all together. The ATE is

instead upward biased when test data are prepro-

cessed with parameters computed on training.

Figure 3: A two-band distribution of peaks (synthetic
dataset MR2): bars indicate average intensities for class1
(in light) and -1 (in dark); peaks discriminate classes in
two distant regions of the simulatedm/z range.

Figure 4: Comparing error estimates (cancer data
OV1) on validation with ATE for batch preprocessed and
non-batch data. Inset: detail of the error curves.
Modified from [15].
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Consistency with previous work has been shown

on the OV2 dataset and N¼ 5 development/

validation splits and B¼ 400 training/test runs [15]:

in this configuration we use about 128 samples in

development and get AVE¼ 24.5% with all features

(best result on validation), to compare with a 5-CV

error on 136 samples ranging from 21 to 27% in [35].

The most discriminating peaks for [35] are also

confirmed: mean spectra (AVG) for the two classes

are shown in Figure 5 for the first (3960 Da) and fifth

(4060 Da) most relevant peaks. In the same

DAP configuration, we also checked for potential

selection bias by randomly permuting the

class labels obtaining AVE¼ 49.1%, i.e. above the

no-information rate (45.3%) on all data.

The BioDCV profiler can be used with different

preprocessing engines. We applied a DAP as in

Figure 1 with N¼ 10 splits to compare the PC and

the wavelet denoising (WD) preprocessing pipelines

(described above) on the OV2 dataset. Although the

final classification scores are fairly comparable, the

methods found smaller sets of candidate features with

WD preprocessing (PC set sizes: min¼ 76,

med¼ 79.5, max¼ 83; WD: min¼ 53, med¼ 54.5,

max¼ 60). Locations of candidate peaks can change

for different splits, as shown in Figure 6. The diagram

also displays the agreement between methods. Note

that here for PC we choose peak width and peak gap

to favor detection of peaks in the rightmost region of

the spectrum: a different resolution would give a

different alignment diagram (but not necessarily

different final biomarker lists). Effects on AVE

curves are discussed in Supplementary Material

(Figure 2S).

Figure 5: Discriminating peaks (cancer data OV2) in
the [3900, 4100] Da interval, mean spectra (AVG) with
95% CI.Modified from [15].

Figure 6: OV2 MS data: peak alignment diagram for two preprocessing methods (PC: darker rectangles for peak
cluster ranges;WD: white squares for peak locations; x-axis:m/z) and10 dev/valid splits (S1^S10).
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It is interesting to study how peak importance

(according to machine learning) is reproducible for

different validation splits. We applied profiling and

quantified the best ranked features (WD preprocess-

ing, SVM/RFE) for OV2 on N¼ 10 splits (S1–S10).

The diagram in Figure 7 (see colour version in

Supplementary Material) highlights peaks’ relevance

by counting for each peak candidate its frequency in

the resulting top-10 positions after ranking. Several

locations are consistently top ranked in all splits,

with most discriminant peaks concentrated below

10 000Da. The peaks shown in Supplementary

Figure 5S are also consistently top ranked.

The main use of this approach is possibly the fair

comparison of alternative preprocessing or classifica-

tion modules. We preprocessed the MS cancer

dataset OV2 by both PC and WD methods, and

then applied a suite of classifiers (kNN, trees, Linear,

Gaussian, data-driven SVM: see Table 3S in

Supplementary Material) without feature selection

and different parameters. In this ‘landscape’ of

experimental conditions we found that kNN and

tree stumps have poor accuracy even on the

development sets. The other methods (i.e. SVM

with different kernels and trees) reach zero

classification error on the development data, but

SVM perform better in validation. The linear kernel

is the best classifier for both preprocessing pipelines,

but all classifiers have better performances with WD.

Finally, we consider the testing of hybrid methods

that integrate preprocessing and machine-learning

components. The new MR profiling procedure was

applied with PC preprocessing, linear SVM-RFE to

the synthetic MR2 and cancer OV2 datasets, with

N¼ 3 splits. On the MR2 dataset, we applied the

machine learning engine on the union set of peaks

preprocessed at two different resolutions R1 and R2,

one tuned for54400 Da and another for >17 500 Da.

At MR, peaks from both the resolutions are

selected, with AVE(MR)¼ 4.6% which improves

over AVE(R1)¼ 5.6% and AVE(R2)¼ 30.6% (see

Supplementary Material for details). For the OV2

dataset we considered 10 resolutions R1–R10 (see

Supplementary Material). The peaks detected at

resolution R2 and R8 in two different regions of the

spectra are shown in Supplementary Figure 3S.

Increasing values of peak width and gap allow

identifying peaks toward the rightmost part of the

spectra, as shown in Supplementary Figure 4S. The

average m/z of the detected peaks does not depend

Figure 7: Peak relevance diagram (WD preprocessing, SVM/RFE, N¼10 splits S1^S10, x-axis: m/z) on OV2 cancer
dataset.Candidate peaks are marked by thin vertical segments: height of grey bars indicates relevance as fraction of
times in top-10 lists after classification and ranking.
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on the resolution, but their average position

weighted by relative importance increases with

peak width and gap while the discriminant peak

positions are concentrated in the leftmost part of the

spectra. As shown in Supplementary Table 5S, with

MR, the minimum validation error AVE¼ 23% is

obtained with only three peaks. The accuracy is

comparable to AVE¼ 26% obtained with resolution

R5, but can be obtained without predefining

resolution or region of interest.

Grid computing resources were provided by the

infrastructures of the European project Enabling

Grids for E-sciencE (EGEE) within its Biomed

virtual organization. The BioDCV system was run

simultaneously on up to 120 CPUs distributed in

several computing centers in France, Spain, UK, the

Netherlands, Greece, FYROM and Italy.

DISCUSSION
A proteomic profiling study is a complex task. A DAP

can be seen as a roadmap leading to best reproduci-

bility of results on novel data through reliable choices

of the preprocessing and machine-learning modules.

The risk of information leakage is potentially high,

thus the need of implementing robust preprocessing

methods with limited use of intra-spectra informa-

tion. To this purpose, automating of parameter tuning

and organizing classification and ranking based on

large numbers of replicate versions of the original data

are essential. We tested the MR approach to include

part of parameter tuning within the feature ranking

process. We remark that the method identifies peak

locations and interval of interest in the MS spectra,

i.e. reaching one step before the biomarker identifica-

tion. Also, in our experiments we did not include

information on the calibration range of the instru-

ment, but the method can be easily adapted to focus

on specific regions of interest.

The results obtained on synthetic datasets demon-

strate the method, and those on the cancer datasets

match with literature. Although we are aware of the

limitations of the OV1 dataset [34], we demonstrated

our methodology by obtaining results similar to

those in [1, 36, 37]. While the authors reach near

perfect classification with almost any attempted

method (Wilcoxon test, kNN, SVM), our slightly

worse accuracy is probably due to the caution of

separately preprocessing training and test data. On

the other hand, with batch preprocessed training/test

splits, a close to perfect classification error is achieved.

The OV2 data set is harder to classify but includes

more reliable data. The obtained results are com-

pliant with previously published results [35].

Moreover, the DAP allowed unbiased estimates

of accuracy for different preprocessing engines (the

wavelet denoising method performed better than the

PC one) and of alternative classification modules.

In the MR experiments, the results show that one

resolution will be always optimal for one dataset and

one instrument. We believe that leaving the task of

choosing the best features to the system is especially

convenient in order to limit manual tuning, and thus

potential dependence effects affecting predictive use

of the models and of the biomarkers. Finally, the

multiresolution method could be clearly used to

combine together features coming from heterogene-

ous platforms, thus supporting integrative genomic

studies.

SUPPLEMENTARYMATERIALS
Supplementary Materials are available at Briefings in
Bioinformatics Online.
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