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Machine Learning methods for 

Quantitative Radiomic Biomarkers
Chintan Parmar1,3,4,*, Patrick Grossmann1,5,*, Johan Bussink6, Philippe Lambin3 & 

Hugo J. W. L. Aerts1,2,5

Radiomics extracts and mines large number of medical imaging features quantifying tumor 

phenotypic characteristics. Highly accurate and reliable machine-learning approaches can drive the 

success of radiomic applications in clinical care. In this radiomic study, fourteen feature selection 

methods and twelve classification methods were examined in terms of their performance and 
stability for predicting overall survival. A total of 440 radiomic features were extracted from pre-

treatment computed tomography (CT) images of 464 lung cancer patients. To ensure the unbiased 

evaluation of different machine-learning methods, publicly available implementations along with 
reported parameter configurations were used. Furthermore, we used two independent radiomic 
cohorts for training (n = 310 patients) and validation (n = 154 patients). We identified that Wilcoxon 
test based feature selection method WLCX (stability = 0.84 ± 0.05, AUC = 0.65 ± 0.02) and a 

classification method random forest RF (RSD = 3.52%, AUC = 0.66 ± 0.03) had highest prognostic 

performance with high stability against data perturbation. Our variability analysis indicated that 

the choice of classification method is the most dominant source of performance variation (34.21% 
of total variance). Identification of optimal machine-learning methods for radiomic applications is a 
crucial step towards stable and clinically relevant radiomic biomarkers, providing a non-invasive way 

of quantifying and monitoring tumor-phenotypic characteristics in clinical practice.

‘Precision oncology’ refers to the customization of cancer care, where practices and/or therapies are being 
tailored to individual patients. Such customization process can maximize the success of preventive and 
therapeutic interventions with minimum side e�ects. Most of the precision oncology related research has 
centered on the molecular characterization of tumors using genomics based approaches, which require 
tissue extraction by tumor biopsies. Although several genomics based approaches have successfully been 
applied in clinical oncology1, there are inherent limitations to biopsy based assays. Tumors are spatially 
and temporally heterogeneous, and repeated tumor biopsies, which increase the risk for a patient, are 
o�en required to capture the molecular heterogeneity of tumors. �ese ethical and clinical challenges 
related to biopsy-based assays, can be addressed by medical imaging, which is a routine practice for 
cancer diagnosis and staging in clinical oncology. Unlike biopsies, medical imaging is non-invasive and 
can provide information regarding the entire tumor phenotype, including the intra-tumor heteroge-
neity. Furthermore, recent advances in high-resolution image acquisition machines and computational 
hardware allow the detailed and e�cient quanti�cation of tumor phenotypic characteristics. �erefore, 
medical imaging provides unprecedented opportunities for precision oncology.

“Radiomics”, an emerging and promising �eld, hypothesizes that medical imaging provides crucial 
information regarding tumor physiology, which could be exploited to enhance cancer diagnostics2. It 
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provides a comprehensive quanti�cation of tumor phenotypes by extracting and mining large number 
of quantitative imaging features3. Several studies have investigated various radiomic features in terms of 
their prognostic or predictive abilities and reliability across di�erent clinical settings4–10. Di�erent studies 
have shown the discriminating capabilities of radiomic features for the strati�cation of tumor histology6, 
tumor grades or stages11, and clinical outcomes8,12,13. Moreover, some studies have reported the associa-
tion between radiomic features and the underlying gene expression patterns8,14,15.

“Machine-learning” can be broadly de�ned as computational methods/models using experience (data) 
to improve performance or make accurate predictions16. �ese programmable computational methods are 
capable of “learning” from data and hence can automate and improve the prediction process. Predictive 
and prognostic models with high accuracy, reliability, and e�ciency are vital factors driving the success 
of radiomics. �erefore, it is essential to compare di�erent machine-learning models for radiomics based 
clinical biomarkers. Like any high-throughput data-mining �eld, radiomics also underlies the curse of 
dimensionality17, which should be addressed by appropriate feature selection strategies. Moreover, feature 
selection also helps in reducing over�tting of models (increasing the generalizability). �us, in order to 
reduce the dimensionality of radiomic feature space and enhance the performance of radiomics based 
predictive models, di�erent feature selection methods18 should be thoroughly investigated. However, as 
radiomics is an emerging research �eld, most of the published studies have only assessed the predictive 
capabilities of radiomic features without putting much emphasis on the comparison of di�erent feature 
selection and predictive modeling methods. Only few recent studies have investigated the e�ect of dif-
ferent feature selection and machine learning classi�cation methods on radiomics based clinical predic-
tions19,20, but with limited sample sizes. Furthermore, these studies lacked independent validation of the 
results, which may restrict the generalizability of their conclusions.

In this study, we investigated a large panel of machine-learning approaches for radiomics based sur-
vival prediction. We evaluated 14 feature selection methods and 12 classi�cation methods in terms of 
their predictive performance and stability against data perturbation. �ese methods were chosen because 
of their popularity in literature. Furthermore, publicly available implementations along with reported 
parameter con�gurations were used in the analysis, which ensured an unbiased evaluation of these meth-
ods. Two independent lung cancer cohorts were used for training and validation, with in total image and 
clinical outcome data of 464 patients. Feature selection and predictive modeling are considered as the 
important building blocks for high throughput data driven radiomics. �erefore, our investigation could 
help in the identi�cation of optimal machine-learning approaches for radiomics based predictive studies, 
which could enhance the applications of non-invasive and cost-e�ective radiomics in clinical oncology.

Methods
Radiomic Features. A total of 440 radiomic features were used in the analysis. �ese radiomic features 
quanti�ed tumor phenotypic characteristics on CT images and are divided into four feature groups: I) 
tumor intensity, II) shape, III) texture and IV) wavelet features. Tumor intensity based features estimated 
the �rst order statistics of the intensity histogram, whereas shape features described the 3D geometric 
properties of the tumor. Textural features, derived from the gray level co-occurrence (GLCM)21 and 
run length matrices (GLRLM)22, quanti�ed the intra-tumor heterogeneity. �ese textural features were 
computed by averaging their values over all thirteen directions. Wavelet features are the transformed 
domain representations of the intensity and textural features. �ese features were computed on di�erent 
wavelet decompositions of the original image using a coi�et wavelet transformation. Matlab R2012b 
(�e Mathworks, Natick, MA) was used for the image analysis. Radiomic features were automatically 
extracted by our in-house developed radiomics image analysis so�ware, which uses an adapted version 
of CERR (Computational Environment for Radiotherapy Research)23 and Matlab for the preprocessing 
of medical images. Mathematical de�nitions of all radiomic features, as well as the extraction methods, 
were previously described8.

Datasets. In this study, we employed two NSCLC cohorts from the two di�erent institutes of 
Netherlands: (1) Lung1:422 NSCLC patients treated at MAASTRO Clinic in Maastricht. (2) Lung2:225 
NSCLC patients treated at Radboud University Medical Center in Nijmegen. CT-scans, manual delinea-
tions and clinical data were available for all included patients. More details on the included datasets are 
described in Supplementary-A. We dichotomized the censored continuous survival data using a cuto� 
time of 2 years. �e patients who lived beyond the cuto� time were labeled as 1, whereas the deceased 
ones were labeled as 0. �e objective of the study was to stratify patients into these two labeled survival 
classes. Two-years is considered as a relevant survival time for NSCLC patients and several other studies 
have designed their prediction models using a survival cuto� of 2 years24–26. We excluded the patients, 
which were followed for less than 2 years. It resulted in 310 patients in training cohort (Lung1) and 154 
patients in validation cohort (Lung2). All the features were normalized using Z-score normalization.

Feature Selection Methods. Fourteen feature selection methods based on �lter approaches were 
used in the analysis (Fisher score (FSCR), Relief (RELF), T-score (TSCR), Chi-square (CHSQ), Wilcoxon 
(WLCX), Gini index (GINI), Mutual information maximization (MIM), Mutual information feature 
selection (MIFS), Minimum redundancy maximum relevance (MRMR), Conditional infomax feature 
extraction (CIFE), Joint mutual information (JMI), Conditional mutual information maximization 
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(CMIM), Interaction capping (ICAP), Double input symmetric relevance (DISR)). In order to improve 
the readability of this manuscript, we have de�ned all the acronyms related to feature selection methods 
in Table 1. We chose these methods mainly because of their popularity in literature, simplicity and com-
putational e�ciency. Furthermore, publicly available implementations were readily available for these 
methods27,28, which increases their reusability. Filter methods are feature-ranking methods, which rank 
the features using a scoring criterion. All �lter based feature selection methods can be divided into two 
categories: univariate methods and multivariate methods. In case of univariate methods, the scoring 
criterion only depends on the feature relevancy ignoring the feature redundancy, whereas multivari-
ate methods investigate the multivariate interaction within the features and the scoring criterion is a 
weighted sum of feature relevancy and redundancy. Feature relevancy is a measure of feature’s association 
with the target/outcome variable, whereas feature redundancy is the amount of redundancy present in a 
particular feature with respect to the set of already selected features. Further description regarding the 
theoretical formulation of feature selection problem and each of the used feature selection methods can 
be obtained from Supplementary-B online.

Classifiers. In machine-learning, the classi�cation is considered as a supervised learning task of infer-
ring a function from labeled training data16. �e training data consists of a set of examples, where each 
example is represented as a pair of an input vector (features) and a desired output value (target or cat-
egory label). �e classi�cation algorithm (classi�er) analyzes the training data and infers a hypothesis 
(function), which can be used for predicting the labels of unseen observations. Many classi�ers belonging 
to di�erent areas of computer science and statistics have been proposed in machine-learning litera-
ture29. In our study, we used 12 machine-learning classi�ers arising from 12 classi�er families (Bagging 
(BAG), Bayesian (BY), Boosting (BST), Decision trees (DT), Discriminant analysis (DA), Generalized 
linear models (GLM), Multiple adaptive regression splines (MARS), Nearest neighbors (NN), Neural 
networks (Nnet), Partial least square and principle component regression (PLSR), Random forests (RF), 
and Support vector machines (SVM)). �e acronyms related to classi�ers are de�ned in Table  1. All 
classi�ers were implemented using R package caret30, which provides a nice interface to access many 
machine-learning algorithms in R. Furthermore, it also provides a user-friendly framework for training 
di�erent machine-learning models. Classi�ers were trained using the repeated (3 repeat iterations) 10 
fold cross validation of training cohort (Lung1) and their predictive performance was evaluated in the 
validation cohort (Lung2) using area under ROC curve (AUC). We used parameter con�gurations that 
were previously de�ned by Fernandez-Delgado et al.31 in a comprehensive comparative study of 179 clas-
si�ers and 121 di�erent datasets. We have listed the classi�cation methods along with their parameters 
and corresponding R packages in Supplementary-C online.

Classi�cation 
method 
acronym

Classi�cation method 
name

Feature 
Selection 
method 
acronym Feature selection method name

Nnet Neural network RELF Relief

DT Decision Tree FSCR Fisher score

BST Boosting GINI Gini index

BY Bayesian CHSQ Chi-square score

BAG Bagging JMI Joint mutual information

RF Random Forset CIFE
Conditional infomax feature 

extraction

MARS
Multi adaptive regression 

splines
DISR Double input symmetric relevance

SVM Support vector machines MIM Mutual information maximization

DA Discriminant analysis CMIM
Conditional mutual information 

maximization

NN Neirest neighbour ICAP Interaction capping

GLM Generalized linear models TSCR T-test score

PLSR
Partial least squares and 
prinicipal componenet 

regression
MRMR

Minimum redundancy maximum 
relevance

— — MIFS
Mutual information feature 

selection

— — WLCX Wilcoxon

Table 1.  Table de�ning the acronyms related to the used feature selection and classi�cation methods.
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Analysis
Predictive Performance of Feature Selection and Classification Methods. In order to investi-
gate and compare di�erent feature selection and classi�cation methods, we created a three-dimensional 
parameter grid for the analysis. For each of the 14 feature selection methods, we incrementally selected 
features ranging from 5 up to 50, with an increment of 5 features (n =  5, 10, 15, 20, … , 50). �ese subsets 
of selected features were then evaluated by using each of the 12 machine-learning classi�ers and area 
under ROC curves (AUC).

Stability of Feature Selection and Classification Methods. In order to assess the stability of 
feature selection methods, we used a stability measure proposed by Yu et al.32 under the hard data 
perturbation settings33. We quanti�ed the stability of a method as the similarity between the results 
obtained by the same feature selection method, when applied on the two non-overlapping partitions  
(of size N/2) of the training cohort (Lung1). To compute similarity between the two resultant feature sets, 
a weighted complete bipartite graph was constructed, where the two node sets corresponded to the two 
sets of selected features. �e edge weights were assigned as the absolute Spearman correlation coe�cient 
between the features at the nodes. We then applied the Hungarian algorithm34 to identify the maximum 
weighted matching between the two node sets, and then similarity (stability) was quanti�ed as the �nal 
matching cost. For each feature selection method, we computed the stability 100 times using a bootstrap 
approach and reported the median ±  std values in the results.

�e empirical stability of a classi�er was quanti�ed using the relative standard deviation (RSD %) and 
a bootstrap approach. We �rst selected 30 representative features using the Wilcoxon based feature selec-
tion method WLCX and used them to compute the classi�er stability. For each classi�cation method, we 
trained the model on the subsampled training cohort (size N/2) and validated the performance on the 
validation cohort using AUC. Subsampling of the training cohort was done 100 times using a bootstrap 
approach. RSD is the absolute value of the coe�cient of variation and is o�en expressed in percentage. 
Here, it was de�ned as

σ

µ
=

( )
⁎RSD 100

1

AUC

AUC

where σAUC and µ
AUC

 were the standard deviation and mean of the 100 AUC values respectively. It 
should be noted that higher stability in the case of classi�ers corresponds to lower RSD values.

Stability and Predictive Performance. In order to identify the highly reliable and accurate meth-
ods, we used the median values of AUC and stability as thresholds. We created two rank lists based on 
AUC & stability and cited the methods as highly accurate and reliable, which ranked in the top half of 
both the ranked lists. Feature selection methods having stability ≥ 0.735 (median stability of all feature 
selection methods) and AUC ≥  0.615 (median AUC of all feature selection methods) are considered as 
highly reliable and accurate methods. Similarly, classi�cation methods having RSD ≤  5.97 (median RSD 
of all classi�ers) and AUC ≥  0.61 (median AUC of all classi�ers) are considered as highly reliable and 
accurate ones.

Experimental Factors Affecting the Radiomics Based Survival Prediction. �ere are three main 
experimental factors, which can potentially a�ect the prediction of radiomics based survival prediction: 
feature selection method, classi�cation method and the number of selected features. Multifactor ANOVA 
was used to quantify the variability in AUC scores contributed by these factors and their interactions. 
In order to compare the variability contributed by each factor, the estimated variance components were 
divided by the total variance.

All the analysis was done using R so�ware (R Core Team, Vienna, Austria) version 3.1.2 and Matlab 
R2012b (�e Mathworks, Natick, MA) with Windows 7.

Results
To investigate the machine-learning approaches for prognostic radiomic biomarkers, a total of 440 radi-
omic features were extracted from the segmented tumor regions of the pre-treatment CT images of two 
independent NSCLC cohorts. Feature selection and classi�cation training was done using the training 
cohort Lung1 (n =  310 patients), whereas the validation cohort Lung2 (n =  154 patients) was used to 
assess the predictive performance [see Fig. 1].

Predictive Performance of the Feature Selection and Classification Methods. Predictive per-
formance of di�erent feature selection and classi�cation methods was assessed using the area under 
receiver operator characteristic curve (AUC). Figure  2 depicts the performance of feature selection  
(in rows) and classi�cation methods (in columns) using 30 selected features, which are the 30 top ranked 
features, resulted in feature selection. For each classi�cation method, there are 14 AUC values corre-
sponding to the 14 di�erent feature selection methods. We used a median of all 14 AUC values as a 
representative AUC of a classi�er. Similarly, for each feature selection method, a median of 12 AUCs 
(corresponding to 12 classi�cation methods) is used as a representative AUC. �ese representative AUC 
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Figure 1. A total of 440 radiomic features were extracted from the segmented tumor regions of the pre-

treatment CT images of 464 NSCLC patients. Feature selection and classi�cation training was done using 

the training cohort Lung1 (n =  310), whereas Lung2 (n =  154) cohort was used as a validation cohort.
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values for the classi�cation and feature selection methods are given in Table 2. For classi�cation meth-
ods, random forest (RF) displayed highest predictive performance (AUC: 0.66 ±  0.03) (median ±  std), 
whereas decision tree (DT) (AUC: 0.54 ±  0.04) showed the lowest predictive performance. As far as 
feature selection methods are concerned, the Wilcoxon test based method WLCX showed highest pre-
dictive performance (AUC: 0.65 ±  0.02), whereas method CHSQ (AUC: 0.60 ±  0.03) and CIFE (AUC: 
0.60 ±  0.04) had the lowest median AUCs. We repeated the above experiment by varying the number of 
selected features (range 5–50). Results corresponding to 10, 20, 40 and 50 representative (top ranked) fea-
tures are reported in Supplementary Figures S1, S2, S3 and S4 online. Furthermore, median AUC values 
over each of the experimental factors (feature selection methods, classi�cation methods and number of 
selected features) are depicted by the heatmaps in Supplementary Figures S5, S6 and S7 online. Here as 
well, random forest (RF) (classi�er) and Wilcoxon test based method WLCX (feature selection) showed 
highest median AUCs in majority of cases.

Stability of the Feature Selection and Classification Methods. We assessed the feature selection 
methods in terms of their stability against data resampling using the hard data perturbation settings33. We 

Figure 2. Heatmap depicting the predictive performance (AUC) of feature selection (in rows) and 

classi�cation (in columns) methods. It can be observed that RF, BAG and BY classi�cation methods and 

feature selection methods WLCX, MRMR and MIFS shows relatively high predictive performance in many 

cases.
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observed that MIM was the most stable method (stability =  0.94 ±  0.02) (median ±  std) followed by RELIEF 
(stability =  0.91 ±  0.05) and WLCX (stability =  0.84 ±  0.05), whereas GINI (stability =  0.68 ±  0.10), JMI 
(stability =  0.68 ±  0.05), CHSQ (stability =  0.69 ±  0.09), DISR (stability =  0.69 ±  0.05) and CIFE (stabil-
ity =  0.69 ±  0.05) showed relatively low stability [Table 2].

Empirical stability of classi�cation methods was quanti�ed using the relative standard deviation (RSD) 
and a bootstrap approach. We observed that BY was the most stable classi�cation method (RSD =  0.86%) 
followed by GLM (RSD =  2.19%), PLSR (RSD =  2.24%) and RF (RSD =  3.52%). BST had the highest 
relative standard deviation in AUC scores (RSD =  8.23%) and hence the lowest stability among the clas-
si�cation methods. RSD (%) values corresponding to all 12 classi�ers are reported in Table 2.

Stability and Predictive Performance. Scatterplots in Fig.  3 assesses the stability and predic-
tion performance. It can be observed that feature selection methods WLCX (stability =  0.84 ±  0.05, 
AUC =  0.65 ±  0.02), MIFS (stability =  0.8 ±  0.03, AUC =  0.63 ±  0.03), MRMR (stability =  0.74 ±  0.03, 
AUC =  0.63 ±  0.03) and FSCR (stability =  0.78 ±  0.08, AUC =  0.62 ±  0.04) should be preferred as their 
stability and predictive performance was higher than the corresponding median values across all feature 
selection methods (stability =  0.735, AUC =  0.615). Similarly for classi�cation methods, RF (RSD =  3.52%, 
AUC =  0.66 ±  0.03), BY (RSD =  0.86%, AUC =  0.64 ±  0.05), BAG (RSD =  5.56%, AUC =  0.64 ±  0.03), 
GLM (RSD =  2.19%, AUC =  0.63 ±  0.02), and PLSR (RSD =  2.24%, AUC =  0.63 ±  0.02), the stability and 
predictive performance was higher than the corresponding median values (RSD =  5.93%, AUC =  0.61).

Experimental Factors Affecting the Radiomics Based Survival Prediction. To quantify the 
e�ects of the three experimental factors (feature selection methods, classi�cation methods and the num-
ber of selected features), we performed multifactor analysis of variance (ANOVA) on AUC scores. We 
observed that all three experimental parameters and their interactions are the signi�cant factors a�ecting 
the prediction performance [Fig. 4]. Classi�cation method was the most dominant source of variability 
as it explained 34.21% of the total variance in AUC scores. Feature selection accounted for the 6.25%, 
whereas interaction of classi�er & feature selection explained 23.03% of the total variation. Size of the 
selected (representative) feature subset only shared 1.65% of the total variance [Fig. 4].

Discussion
Medical imaging is a routinely used and easily accessible source of information in clinical oncology. It 
serves as a non-invasive and cost-e�ective cancer diagnostic tool. Radiomics employs the medical imag-
ing data for the customization of cancer care and hence adds a new and promising dimension to preci-
sion oncology2,3,8. Moreover, it can also capture the intra-tumor heterogeneity, which is o�en considered 
as an important biomarker in oncology12,35–37. A number of studies have built radiomics based predictive 
models for various clinical factors (tumor grades, survival outcomes, treatment response, etc.)12. For the 
successful realization of radiomics based predictive analyses, it is required to evaluate and compare dif-
ferent feature selection and predictive modeling methods, which was the primary objective of this study.

Various feature selection methods have been employed for high-throughput data mining problems38. 
In general, feature selection methods are categorized into three main categories: (1) �lter methods (2) 

Classi�cation 
method AUC RSD %

Feature 
Selection 
method AUC Stability

Nnet 0.57 ±  0.04 6.41 RELF 0.61 ±  0.04 0.91 ±  0.05

DT 0.54 ±  0.04 7.89 FSCR 0.62 ±  0.04 0.78 ±  0.08

BST 0.58 ±  0.04 8.23 GINI 0.62 ±  0.04 0.68 ±  0.10

BY 0.64 ±  0.05 0.86 CHSQ 0.60 ±  0.04 0.69 ±  0.09

BAG 0.64 ±  0.03 5.56 JMI 0.61 ±  0.04 0.68 ±  0.05

RF 0.66 ±  0.03 3.52 CIFE 0.60 ±  0.03 0.69 ±  0.05

MARS 0.61 ±  0.03 6.98 DISR 0.62 ±  0.05 0.69 ±  0.05

SVM 0.61 ±  0.03 6.39 MIM 0.61 ±  0.04 0.94 ±  0.02

DA 0.61 ±  0.02 6.37 CMIM 0.62 ±  0.04 0.73 ±  0.04

NN 0.61 ±  0.02 4.08 ICAP 0.61 ±  0.03 0.72 ±  0.04

GLM 0.63 ±  0.02 2.19 TSCR 0.61 ±  0.02 0.78 ±  0.12

PLSR 0.63 ±  0.02 2.24 MRMR 0.63 ±  0.06 0.74 ±  0.03

— — — MIFS 0.63 ±  0.06 0.8 ±  0.03

— — — WLCX 0.65 ±  0.02 0.84 ±  0.05

Table 2.  Table describing the median values of AUC and stability for di�erent Classi�cation and 

Feature Selection methods.
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wrapper methods and (3) embedded methods. In this study, we investigated 14 di�erent �lter based 
approaches for radiomics based survival prediction. We only used �lter-based approaches because they 
are computationally more e�cient and less prone to over�tting than the wrapper and embedded meth-
ods18,27. Furthermore, unlike wrapper and embedded methods, �lter methods are classi�er independent. 
�us, they allow separation of the modeling and feature selection component of the predictive analysis, 
which increases the generalizability of each component and hence the overall analysis.

We also investigated 12 machine-learning classi�cation methods belonging to 12 di�erent classi�er 
families. Many classi�ers have been proposed in the machine-learning literature. �eoretically speaking, 
these classi�ers belong to di�erent �elds (classi�er families) of computer science and statistics. �erefore, 
it could really be di�cult to understand the underlying assumptions of each and every classi�er and tune 
the parameters in an unbiased manner. �e parameter tuning could be biased by user’s more (or lack of) 
expertise with some classi�ers over the others. Usually, the studies, which propose a new classi�er, only 
compare it to the reference classi�ers of same family excluding the other classi�er families. Even if 

Figure 3. Scatterplots between the stability and predictive performance (AUC) of feature selection (FS) 

(Le�) and classi�cation methods (CF) (right). Feature selection methods having stability ≥ 0.735 (median 

stability of FS) and AUC ≥  0.615 (median AUC of FS) are considered as highly reliable and predictive 

methods. Similarly, classi�cation methods having RSD ≤  5.97 (median RSD of CF) and AUC ≥  0.61 (median 

AUC of CF) are considered as highly reliable and accurate ones. Highly reliable and predictive methods are 

displayed in a gray square region.

Figure 4. Variation of AUC explained by the experimental factors and their interactions. It can be 

observed that classi�cation method was the most dominant source of variability. Size of the selected 

(representative) feature subset shared the least of the total variance.
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classi�ers belonging to di�erent families are considered for comparison, these reference classi�ers are 
usually implemented using simple tools and with limited parameter con�gurations while carefully tuning 
the proposed classi�er. �ese could consequently bias the results in favor of the proposed classi�ers31. 
In our study, we are not proposing any new classi�er and we have used the same implementation tool  
(R package caret) for all the classi�ers. Furthermore, to ensure unbiased usage of classi�ers, we used 
parameter con�gurations that were previously de�ned by Fernandez-Delgado et al.31, in an exhaustive 
study of comparing 179 classi�ers over 121 di�erent datasets. �ese parameter con�gurations were 
selected from the literature and have been previously validated on a large number (121) of datasets 
belonging to di�erent �elds. Furthermore, in our study, the parameters were tuned using the repeated 
cross validation of training data only. Hence, our experimental design allowed us to evaluate di�erent 
classi�cation methods in an unbiased manner.

Our results show that the Wilcoxon test based feature selection method WLCX yields the highest pre-
dictive performance with the majority of classi�ers. Interestingly, WLCX is a simple univariate method 
based on ranks, which does not take into account the redundancy of selected features during feature 
ranking. �e majority of feature selection methods gave highest predictive performance when used with 
the random forest (RF) classi�er. One could argue that with di�erent parameter con�gurations, the 
performance of classi�cation methods may improve further. An exhaustive parameter tuning could be 
investigated for evaluating the improvement of prediction performance. However, the required compu-
tational resources and high time complexity can hinder the exhaustive search. We expect that future 
radiomic studies focusing on di�erent clinical outcomes and similar analysis framework could provide 
better understanding in this regard. A limited number of methods, which are consistently high perform-
ing across di�erent radiomic studies, could be further assessed with an exhaustive parameter tuning. 
Nevertheless, It should be noted that random forests (RF) have displayed high predictive performance 
in several other biomedical and other domain applications as well31. �ese results indicate that choosing 
the WLCX feature selection method and/or RF classi�cation method increases predictive performance 
in radiomics.

Results related to our stability analysis provide another dimension for choosing the feature selection 
and classi�cation methods. Depending upon the applications, one may give importance to the predictive 
performance or stability and accordingly opt for the required method. Results related to multifactor 
ANOVA indicated that the classi�cation method is the most dominant source of variation in the pre-
diction performance (AUC) and hence should be chosen carefully. Size of the selected feature subset 
contributed the least in the total variation of AUC.

Only few studies have investigated and compared di�erent feature selection and machine-learning 
modeling methods for radiomics based clinical predictions19,20. Recently, Hawkins et al.19 have compared 
four di�erent feature selection and classi�cation methods for CT based survival prediction of NSCLC 
patients. �is study, however, was limited by the small cohort size as the �nal results were obtained on 
only 40 patients. Furthermore, it also lacked an independent validation of the results. On the contrary, 
two independent radiomic cohorts of sizes 310 and 154 patients were used in our analysis and an inde-
pendent validation of the results was reported.

Our radiomic analysis is focused on the prediction of two-year patient survival in NSCLC patients. It 
provides an unbiased evaluation of di�erent machine-learning methods of feature selection and classi�-
cation. It could be considered as a reference for the future radiomics based predictive studies. Our results 
indicated that choosing Wilcoxon test based feature selection method WLCX and/or random forest (RF) 
classi�cation method gives highest performance for radiomics based survival prediction. Furthermore, 
these methods also turned out reasonably stable against data perturbation and hence they could be pre-
ferred for radiomics based predictive studies. �ese results should be further tested in other radiomics 
based predictive studies, with di�erent imaging modalities and in di�erent cancer types.

It has been previously shown that for NSCLC patients, statistical models based on patient’s tumor 
and treatment characteristics provide signi�cantly better predictions than the human expert24. Moreover, 
several other studies have highlighted the limitation of doctors’ prognostic capability for terminally ill 
cancer patients39–41. �e predictions of human experts can su�er from inter-observer variability. On the 
contrary, statistical models could make the prediction system more deterministic if the parameter con-
�gurations and the training framework are �xed.

�e potential clinical utility of radiomics based prognostic models has been stated in previous study8. 
With expanding radiomics cohorts and feature dimensions, we expect higher prediction performance 
in future radiomic studies. Furthermore, the integrative studies like radiomics-genomics in combina-
tion with standard clinical covariates could also improvise the prediction performance and further vali-
date the utility of these methods in clinical practice. Overall, our analysis is a step forward towards the 
enhancements of radiomics based clinical predictions.
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