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Abstract

We investigate the usage of a Schlieren imaging setup to measure the geometrical dimensions of a

plasma channel in atomic vapor. Near resonant probe light is used to image the plasma channel in

a tenuous vapor and machine learning techniques are tested for extracting quantitative information

from the images. By building a database of simulated signals with a range of plasma parameters for

training Deep Neural Networks, we demonstrate that they can extract from the Schlieren images

reliably and with high accuracy the location, the radius and the maximum ionization fraction of the

plasma channel as well as the width of the transition region between the core of the plasma channel

and the unionized vapor. We test several different neural network architectures with supervised

learning and show that the parameter estimations supplied by the networks are resilient with respect

to slight changes of the experimental parameters that may occur in the course of a measurement.
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I. INTRODUCTION

Rapid developments in computing and information science in recent years led to increas-

ingly sophisticated Machine Learning (ML) implementations. The list of possible applica-

tions is ever growing, including (but not limited to) autonomous driving [1] , healthcare [2],

speech recognition [3] and various high-energy physics studies [4, 5]. Machine learning

methods have been used for some time also for evaluating optical diagnostic measurements

in plasma physics, for example, tomographic measurements of radiation from fusion plasmas

[6–9].

Schlieren imaging is a sensitive method for the detection of refractive index variations

in transparent media, used widely in aeronautics and fluid dynamics [10]. The method is

also extensively used for the investigation of plasma processes in atmospheric gases [11] and,

in particular for a wide range of processes involving laser induced plasma [12–16]. Quite

recently, ML techniques have been proposed to extract information from Schlieren imaging

measurements of flows and shocks [17–19].

Plasma wakefield acceleration is a technology that promises a new generation of com-

pact particle accelerators for scientific and commercial uses [20, 21]. Numerous research

groups and collaborations are working worldwide to overcome the technological difficulties

that wakefield acceleration poses. The AWAKE Collaboration hosted at CERN is a project

where a high-energy proton bunch is used to drive plasma wakefields for electron accelera-

tion [22, 23]. At the heart of the novel accelerator device, a 10-meter-long plasma channel

achieves the modulation of the energetic proton bunch and the acceleration of witness elec-

tron bunches in the emerging wakefields. Created via photoionization using a terawatt laser

system in a rubidium vapor source chamber [24, 25], plasma channel generation is in itself a

complex problem of laser beam propagation/filamentation [26–28]. Optical diagnostic tools

monitoring the plasma channel can thus have a significant role in optimizing, improving the

accelerator device and understanding wakefield physics.

In this paper, we consider using a Schlieren imaging setup as a diagnostic tool to determine

vital parameters of a narrow plasma channel in tenuous (N = 1014 − 1015 cm−3) atomic

vapor. The setup is similar to the one tested to observe atomic excitation in rubidium vapor

[29] and is geared toward determining the precise location and diameter of the rubidium

plasma channel as well as the characteristic length for the spatial decay of plasma density.
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We test the use of Deep Neural Networks (DNNs) as universal function approximators to

extract quantitative information on the plasma from the Schlieren images. We build datasets

of simulated measurements to train networks with different architectures to estimate the

parameters of the plasma. We demonstrate that Schlieren imaging and machine learning

techniques can be used effectively together to obtain information crucial for the operation

of a proton-driven wakefield accelerator.

II. SCHLIEREN IMAGING OF A PLASMA CHANNEL CROSS-SECTION

A. Measurement principle

In the novel accelerator device of the AWAKE Collaboration, a 10-meter-long rubidium

vapor source is used, with a TW power laser pulse propagating along the axis to ionize the

vapor. Plasma for accelerator operation must satisfy very stringent constraints with respect

to homogeneity of density. This is can be fulfilled by carefully tailoring rubidium vapor den-

sity in the chamber and achieving single-electron ionization of the atoms with a probability

very close to unity [30]. The propagation of the ultra-short, TW ionizing pulse along the va-

por source is itself a complex nonlinear process [26], especially because it is resonant with the

rubidium D2 transition line [27, 28]. Validating the quality of the plasma can be done near

the downstream end of the vapor source, where a pair of observation ports on opposite sides

of the chamber allow the passage of a probe beam transverse to the plasma channel axis.

Precise measurements are hampered by the fact that plasma density distribution should be

observed on a timescale much shorter than the ∼ 10µs recombination/diffusion timescales

and that the vapor (and hence the plasma) is extremely tenuous, its N = 1014 − 1015 cm−3

density being 4-5 orders of magnitude smaller than the normal atmospheric density.

The measurement setup that can be used for the required observation is sketched on

Fig. 1. A Gaussian probe beam with beam waist parameter w0 = 2.6 mm transits the

chamber of the vapor source along the z axis through a pair of viewports. The diameter of

the chamber cross-section is 4 cm and the probe beam waist is positioned near the center of

the chamber. Two lenses with focal lengths f = 75 cm are placed in a ’4f ’ setup [31] after

the chamber, with a D = 1.5 mm diameter circular mask positioned on the optical axis in

the back focal plane of the first lens. A gated, image intensified camera (GC) detects the
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probe beam, triggered about 100 ns after the ionizing laser and gated to collect light for 100

ns exposure time. The probe beam is from a diode laser tuned to λ = 780.311 nm, close to

the λ = 780.241 nm D2 resonance wavelength of rubidium. With this choice, the anomalous

dispersion around the resonance line yields a refractive index change of δnv = 10−4 − 10−3

caused by the vapor for N = 1014− 1015 cm−3 densities. At the same time, refractive index

change due to the plasma dispersion is δnp =
√

1− ω2
p/ω

2−1 = (−2.7)·10−8 —(−2.7)·10−7,

over 3 orders of magnitude smaller. The Rayleigh-length of the probe beam with these

parameters is R ≈ 27 m, so the transit of the probe beam across the 4 cm thick layer

of rubidium vapor amounts to a phase-shift of the Gaussian beam profile due to vapor

dispersion, combined with an attenuation factor due to absorption. The circular mask at

the focal plane between the two lenses acts as a high pass filter that blocks all of the probe

light, unless a plasma channel (the Schlieren object) modulates the probe beam phasefront

sufficiently such that some of the probe is deflected around the mask’s edge.

L1W M
L2P W

C

GC

y

PB

z

x

FIG. 1: Sketch of the Schlieren imaging measurement setup (not drawn to scale). PB - probe

beam, C - vapor source chamber cross-section, W - viewport, P - plasma channel cross section, L1,

L2 - 75 cm focal length lenses in 4f setup, M - mask, GC - gated camera.

An example of a measured image can be seen on Fig. 2 a). Now the probe beam diameter

(∼mm) is negligible with respect to the spatial scale (∼m) at which the plasma channel cross-

section changes along the x axis (the direction of propagation for the TW ionizing pulses).

Therefore, the refractive index variation (and hence probe beam phase modulation) changes

only along the y direction. Changes along the x direction on the measured image are only
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due to the variation of the probe beam amplitude along this coordinate. Thus the measured

image contains stripes parallel with the x axis and it is convenient to create a 1D lineout

along y by taking a region of interest (ROI) from the region of x where the probe beam is

the most intense and averaging this along x (Fig. 2 b) ). This procedure helps reduce the

noise level of the signal and produces a 1D curve that contains the same information on the

plasma as the 2D camera image does. The task is to extract quantitative information on

the plasma channel from this curve.
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FIG. 2: a) Schlieren image on the gated camera. Lines in the middle mark the region of interest

(ROI) from which we calculate the lineout around the probe beam center. b) Lineout taken from

the Schlieren image ROI by averaging along x.

B. Obtaining plasma parameters

To help interpret images obtained in the measurement, we first note, that if the plasma

distribution in the y − z plane is given, we can easily calculate the measured signal. The

precise refractive index and absorption parameter for the probe beam wavelength can be

obtained from the composite lineshape function using the material parameters of the ru-

bidium D2 line [32]. (Note that the vapor densities used here require that we augment the

description of [32] with a pressure broadening term in the homogeneous lineshape [33].) The

integrated phaseshift of the probe beam and the overall attenuation can then be computed,

and the transit across the 4f system with the mask can be calculated using the standard
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formulas for Fourier optics [31]. Therefore we start the analysis by assuming some functional

form for the ionization probability in the vapor, and observing the simulated signal that this

plasma distribution would produce.

To find a physically meaningful set of functions for the plasma density, we note that

for relatively small ionizing pulse energies, we expect the ionization probability to be some

power of the pulse intensity in general for multiphoton ionization. For large ionizing pulse

energies, ionization probability saturates to values very close to unity in the central part of

the beam [27, 30]. The plasma channel is assumed to be axisymetric in the y−z plane, with

center relatively close to the axis of the vapor source (and optical axis). Since a shift of the

plasma in the z direction (parallel to the probe beam propagation) cannot be detected by

the setup (the quantities we measure arise as integrals along z), we characterize the plasma

center location with a single coordinate y0, measured from the optical axis. The plasma

density is thus assumed to have the following form:

Nplasma =


N0Pmax, if r ≤ r0,

N0Pmax exp

(
−(r − r0)2

t20

)
, if r > r0.

(1)

Here N0 is the vapor density, Pmax is the maximum ionization probability of the vapor at

the plasma channel center, Pmax ∈ [0, 1]. r =
√

(y − y0)2 + z2 is the geometric distance

from the plasma channel center, located at (y, z) = (y0, 0), r0 is the radius of the plasma

channel core where the ionization fraction (and hence the plasma density) is constant, and

finally t0 is the parameter that characterizes the width of the transition region between the

plasma channel center and the completely unionized vapor.

The functional form written here can account for a weakly ionized vapor, when r0 = 0

and the plasma density distribution is an axisymmetric Gaussian. It can also account for the

opposite case, when there is a sizeable domain of fully ionized vapor Pmax = 1, r0 > 0 and a

Gaussian shaped transition region surrounding it (see Fig. 3 a)). Clearly, not all parameter

sets are physically realistic. Since the central, constant density region is associated with a

saturation of the ionization fraction, r0 > 0 happens only for Pmax ≈ 1.

Given the above explicit functional form, we can calculate simulated signals on the gated

camera for any set of plasma parameters {y0, r0, t0, Pmax}, some examples can be seen on

Fig. 3 b). The mathematical task is now to determine the plasma parameters that had been

used to give rise to the given (possibly noisy) signal. Because of the nonlinear, integral-
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FIG. 3: a) Ionization probability for a weakly ionized (Pmax < 1, r0 = 0), narrow plasma channel

(solid blue line) and a saturated core Pmax = 1, r0 > 1, wide plasma channel (dashed red line).

b) The corresponding simulated signals (signal for a weakly ionized plasma has been scaled up for

better visibility).

type relationship between the parameters and the Schlieren signal, this is a difficult task.

Therefore, in the following section we propose a novel method for processing the Schlieren

signals with the application of DNNs.

III. INFERRING THE PLASMA PARAMETERS WITH NEURAL NETWORKS

Machine learning techniques have been successfully utilized in many fields, where it is

an essential necessity to provide a precise and quick evaluation of to the input data with

significant non-linearities [34]. A typical data-based application of a feedforward artificial

neural network is the non-linear regression, which is aimed to infer some parameters from

the input data:

yj,Pred = f(x) = A

(
N∑
i=1

wijxi + bi

)
, (2)

where A is some non-linear activation function, N is the number of the neurons in the layer, bj

is a bias vector and the wij matrix contains the trainable parameters. A network may consists

of multiple such layers—this is the case when it is called a deep neural network. During

a supervised training cycle (epoch) of the network, the training input data is evaluated
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and compared to a reference output according to well defined loss function, L(yPred, yTrue).

The objective then is to minimize this loss function by optimizing the weights in the wij

matrices, which is performed by the backpropagation: the weights receive updates that are

proportional to the partial derivatives of the loss function with respect to the weights. This

process is then repeated iteratively in several epochs until some stopping condition.

During a supervised training of a DNN model, there are a variety of tunable parameters

that are specific to the given architecture and training method (so called hyperparameters),

like the learning rate (which controls the extent of update that the weights receive dur-

ing backpropagation), the moments of the stochastic gradient descent optimizer (like in

the popular Adam algorithm [35]) or some weight parameters in a multi-component loss

function [36]. However, one of the most crucial and necessary element of the training is

undoubtedly a good quality training dataset.

A. Dataset generation

Based on the formulation discussed in II B, we have implemented a Python script that is

able to simulate the Schlieren signal from a given set of plasma parameters. We have utilized

this script to generate datasets for the training, validation and testing of the DNNs.The

datasets contained the simulated Schlieren signals sampled at 1024 points, paired with the

set of generating plasma parameters {y0, r0, t0, Pmax} used to obtain them. For each set of

parameters, y0 and t0 were randomly chosen, distributed uniformly on a given interval. Pmax

was chosen such that its 1/n-th power was a uniform random number on the interval [P0, 1]:

Pmax ∈ [P n
0 , 1]1/n (3)

This method skews the probability distribution of Pmax to favor values close to 1 somewhat,

the exact amount depending on the positive integer generating parameter n. Note that

n = 1 corresponds to uniformly distributed Pmax values on the [P0, 1] interval. For r0, we

enforced the following rule:

r0 <
Q

(1− Pmax)2
(4)

with Q = 0.25µm. This value guarantees r0 to have substantial values only when Pmax is

close to 1.
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In order to perform the training process with physically realistic data, the signal was

slightly smeared with additive and multiplicative Gaussian noises. We then filtered the

signals to reject samples whose signal to noise ratio was judged too small to evaluate reliably.

First, we dropped samples whose maximum amplitude was less than 5.0 units. The reason

for this is that, such samples resemble only noise, and no peaks or interference patterns

can be extracted from them. Then, we dropped samples with the absolute value of their

mean less than 1.0. Our argument behind it is that there are samples with a maximum

amplitude greater than 5.0 resembling noise and having a single large value somewhere,

however, further raising the minimum accepted signal amplitude would exclude samples with

acceptable signal/noise ratio. Note that the filtering also affects the statistical distribution

of generating parameters in the final dataset created. Parameter sets that yield a plasma

that is ”undetectable” at the given noise level - e.g. because the ionization probability is too

small, or the plasma is shifted too far out of the probe beam to be detected - are excluded.

This filtering of the data greatly improves the performance of the network, but it does not

introduce any artificial, unwanted bias.

In most of the machine learning applications, it is crucial to standardize the data with

some pre-processing method. However, in our case, we have full control over the generation

of the simulated datasets, therefore only the followings have been considered:

1. The input is a vector of 1024 elements, representing the detector image. Since the

signal amplitude is sensitive to the degree of ionization, we did not apply any scaling

to the input.

2. In order to improve the learning process and reduce numerical instabilities, the plasma

parameters have been multiplied with a constant factor to scale them into an approx-

imately uniform range:

P̃max = FP · Pmax, (5a)

ỹ0 = FY · y0, (5b)

t̃0 = FT · t0, (5c)

r̃0 = FR · r0. (5d)

The scaling factors have been chosen as: FP = 1, FY = FT = 102 and FR = 103. The overall

distributions of the parameters after these scalings are plotted on Figure 4.

9



0.65 0.70 0.75 0.80 0.85 0.90 0.95
Pmax

0.10

0.05

0.00

0.05

0.10

y 0

Sample size: 1515868
FV = 102  FR = 103  FP = 1
All data

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Pmax

10 6

10 5

10 4

10 3

10 2

10 1

100

r 0

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Pmax

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

t 0

100

101

102

100

101

102

103

104

100

101

102

FIG. 4: The distribution of the parameters in the training data.

Both for training and validating purposes, we generated realistic and noiseless datasets

with different distributions given by n = 1, 3, 5, 7 and 10, respectively. First, we trained

and validated the networks on distinct datasets, that is, using datasets corresponding only

to n = 1 with noise, then e.g. n = 5 with noise, etc. We accepted a configuration only

if the validation was convincing both for realistic and noiseless datasets. We also tested

cross-validation in terms of noise and distribution in Pmax. That is, we tried to validate a

network trained with realistic data on noiseless data and vice versa, and also tried validating

a network such that the training and validating datasets have different distributions in

Pmax. In theses cases, we experienced bad correlations between the true and the predicted

parameters. According to theses experiences, first we decided to use unified datasets both for

training and validating purposes, i.e. the datasets contained realistic and noiseless samples

from all Pmax distributions, given above. Later on, we used only realistic training and

validating datasets with mixed distributions in Pmax.

The unified and filtered datasets contained a total amount of 1.40M training and 0.23M

validating samples, respectively.

According to the argument in II B, there is a strong correlation between the parameters
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Pmax and r0: the r0 > 0 values are favored only when Pmax ∼ 1. In order to improve

the statistics of the training dataset, an additional set was also generated, that allowed

configurations only with r0 > 0.5 mm—hence there is a small jump in the r0 distribution

of Figure 4. The correlations between the parameters are also visualized in Figure 5, which

presents the rxy Pearson correlation coefficients of the training data with a population size

of n = 1, 515, 868 samples, defined by the following equation:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
(6)

FIG. 5: The Pearson correlations in the training data.

As the figure shows, the r0 (the radius of the plasma) is strongly correlated with the max-

imum ionization probability, while the transition region width, t0 is only slightly correlated

with Pmax and r0. The y0 location is basically uncorrelated with the other parameters.

B. Methodology

Our aim is to develop a robust framework that is able to infer the plasma parameters from

the Schlieren signals with high accuracy. To achieve this, a customizable DNN framework has

been implemented in Python, using Keras v2.7.0 with Tensorflow v.2.7.0 backend [37, 38].

The basic building block of the framework, referred as Dense block is sketched on Figure
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6, which consists of a fully connected layer, followed by a batch normalization, a scaled

exponential linear unit (SELU [39]) and a dropout layer with fixed dropout rate of 0.1.

FIG. 6: A basic building block of the applied neural networks.

Our neural networks have been composed of such building blocks as it is depicted on

Figure 7, which has three distinct parts and several configurable parameters. In the first

part (marked with light pink background) one or more feature extraction block process the

input data, with Di parallel Dense blocks and with Ni neurons in each block. Subsequently,

the output of theDi Dense blocks are merged, which is then followed by a SoftMax activation.

The L index specifies the L − 1 number of the consecutive feature extraction blocks, and

afterwards a concatenation layer merges the parallel blocks in the Lth layer (as an analogy for

flattening, marked with light blue background). In the third part, HL hidden layer follows,

with NHL neurons in the given layer. Finally, the last fully connected layer represents the

four plasma parameters with linear activation. The mean absolute error has been chosen for

the loss function, while the the optimization was performed with the Adam algorithm [35].

The initial learning rate has been slowly decreased with a linear decay.

FIG. 7: The structure of the implemented neural networks.

The training, evaluating and testing were performed on the GPU clusters of the Wigner

Scientific Computational Laboratory (WSCLAB).
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C. Network implementations

In this study, several different architecture implementations have been investigated. Dur-

ing training, the mean absolute error was utilized as the loss function, defined as:

L(yPred, yTrue) =
1

N

N∑
i=1

|yPred − yTrue| (7)

Furthermore, the training process was monitored with the mean squared error and Log-Cosh

errors as additional metrics [40], and 15% of the training data was used for validating each

epoch. Hereinafter, we refer to the calculation of the loss for every epoch as the measurement

of training quality. Obviously, bad convergence in the measurement of training quality shows

bad correlation between the true and predicted parameters. However, it is still possible that

with quick and clear convergence, the correlations are still poor. We found that it is sufficient

to train the networks for 20, 000 epochs to get the best achievable quality of predictions.

Considering the initial learning rate, we tried different values in the [10−4, 10−2] ranges.

Taking lower initial values results in clearer and faster convergence in the measurement of

training quality, however, with too small values, the correlations become bad. Taking too

high initial values results in high fluctuations and very slow convergence in the measurement

of training quality with bad correlations. We found that the best value for the initial learning

rate is 3 · 10−5.

We also tried different kinds of activation functions for the last layer in our networks, and

found that the best choice is the linear activation, which is a common choice for regression

tasks. Since in this way the possible values of the parameters were not limited neither from

below nor from above, the network was forced to learn the physically relevant value ranges

of the plasma parameters.

In Table I the specific values of the configurable parameters and the final loss value for

the listed variants are summarized. In the followings, the best three variants are compared.

Models named Bush and Skirun included only feature extraction parts without additional

hidden layers, while the model named LongBottle is a special case of the network, where no

explicit feature extraction blocks have been applied, therefore it is considered as a traditional

deep neural network. For a reference of the models, see Table I.
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TABLE I: The configurable hyperparameters.

Skirun Bush LongBottle

DL 16, 8, 4 16, 4 1, 1, 1, 1, 1

NL 512, 256, 128 256, 64 1024, 512, 256, 128, 64

NHL 0 0 0

Trainable parameters 9.6M 4.3M 1.75M

Final loss 0.00402 0.00667 0.00954

IV. RESULTS

In order to test the performance of the trained networks, the plasma parameters have been

predicted from the validation dataset described in the previous section. Figure 8 presents

the Pearson correlation coefficients of the predicted parameters for the different networks.
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FIG. 8: The learned Pearson correlations.

The different architectures learned the same correlations, there is both qualitative and

quantitative agreement. Comparing the results with the reference plotted in Figure 5, the

following conclusions can be drawn:

1. the y0 parameter is basically uncorrelated, which is well reproduced by all variants;

2. the networks predict ∼ 25% higher rt0,r0 correlation than the reference;

3. the predicted rPmax,r0 correlation is ∼ 60% higher, than the reference;

4. in the reference, the rPmax,t0 correlation in only 8.6%, while it is much higher, ∼ 38%

from all the predictions.
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Note that the uncorrelatedness of the y0 parameter means that the plasma parameters

have a translation invariance with respect to y0. This exactly agrees the fact that the

properties of the plasma channel are independent of the exact position of the ionizing laser

pulse if the vapor has a uniform density distribution. It is also important to emphasize

that we did not put any constraint on the plasma parameters, like Pmax ∈ [0, 1]. All the

presented network variants recognized the physical range of the parameters along with the

correlations between them, e.g. larger values for r0 are favored at higher values of Pmax.

The predicted parameters are plotted versus the true values for all the investigated net-

works in Figure 9. All of the network variants produced a fairly adequate prediction of the

plasma parameters—however, there are some significant differences. The LongBottle variant

produced the largest deviation for all parameters, but it is worthwhile to note that among

the investigated architectures this contained the least trainable parameters—only 1.75M ,

which is less than the half of the second network. On the other hand, we have found that just

increasing the number of trainable parameters is not enough for significant improvement,

the feature extraction blocks are also necessary.

To quantify the goodness of the predictions, first, a linear fit was performed to all param-

eters, and the mean error along with the mean absolute error is shown for all case. Second,

the amplitude and phase errors were investigated according to the following considerations.

Let yPred, yNoisy and yTrue denote the predicted and the simulated Schlieren signals with

and without the simulated noise, respectively. That is,

yNoisy(x) ≈ yTrue(x) + n(x) (8)

with n(x) denoting the noise such that∫ xmax

xmin

n(x)dx = 0. (9)

Introducing the local noise to signal ratio

η(x) =
n(x)

yTrue(x)
, (10)

equation (8) can be rewritten as

yNoisy(x) ≈ yTrue(x) [1 + η(x)] . (11)

Recall that for Pmax ≈ 1, the local noise to signal ratio can be neglected. However, the

smaller values Pmax takes, the larger will be the fraction of the [xmin, xmax] interval where
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FIG. 9: The learned parameter correlations.

η(x) plays a significant role. This can be seen on the top and bottom panels of Fig. 11,

respectively.

The high accuracy of our models suggests that after some slight phase and amplitude

corrections, the true signals can be restored from the predicted ones. That is,

yPred(x) ≈ a · y (x− xph,corr) (12)

with xph,corr denoting the phase correction and a being close to unity. y(x) can either be

yNoisy(x) or yTrue(x). As discussed above, for Pmax ≈ 1, the relation yTrue(x) ≈ yNoisy(x)

holds. In order to see how the constant a measures the quality of the fitting, first, consider
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the normalized signals in the followings:

ỹ(x) =
y(x)

C
(13)

with

C =

∫ xmax

xmin

|y(x)| dx. (14)

Let the phase dependent amplitude error defined as

Aerr (xph) =

∫ xmax

xmin

|ỹ(x)− ỹPred (x− xph)| dx (15)

with ỹ(x) being either ỹTrue(x) or ỹNoisy(x), and xph being a small phase shift in the predicted

signal. Due to the high accuracy of the predictions, we can assume that for some small value

of xph,min, Aerr (xph,min) will be minimal. Therefore, we define Aerr = Aerr (xph,min) as the

amplitude error and xph,err = xph,min as the phase error. Using the approximation showed

in Eq. (12), it is easy to see that comparing the true, i.e. noiseless signal to the predicted

one, the expression of the amplitude error reduces to

Aerr = |1− a| , (16)

meaning that Aerr is a good estimate for the relative error of the amplitude of the signal.

When comparing the predicted signal to the noisy one, and considering the cases where the

local noise to signal ratio is negligible, we get the same approximating expression for Aerr

and therefore its meaning remains unchanged. However, when η(x) is not negligible, Aerr

neither does have such a nice graphical meaning as before, nor can be approximated with a

simple formula. In contrast, when interpreting the phase error, we recall that both for the

noiseless and noisy cases, the relation xph,min = xph,corr holds. Therefore, xph,err = xph,corr,

that is, the phase error is the slight correction with which the original signal can be restored

from the predicted one with high accuracy.

We used the quantities defined above to measure the quality of the predictions as follows.

For every test sample, we calculated Aerr and xph,err and made a histogram from them.

In the histogram of the amplitude error we divided the [0, Aerr,max] interval to 1 024 bins,

while in the histogram of the phase error we took 51 bins since the phase error ranged from

−25 pixels to 25 pixels. We calculated the midpoints of the intervals representing the bins

and assigned the counts of the bins to the corresponding midpoints. Then, we divided the

number of counts of the bins with the total number of samples to obtain the probability
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of the signal having Aerr amplitude error and xerr phase error, respectively. From these

probabilities we calculated the mean values of Aerr an |xerr| with

〈Aerr〉 =
∑
i

p (Aerr,i)Aerr,i (17)

and

〈|xerr|〉 =
∑
i

p (xerr,i) |xerr,i| , (18)

respectively.
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FIG. 10: The average error values (see text for details).

We show the probabilities of errors versus the errors on the bottom two panels of Fig. 10.

The orange and blue curves correspond to comparing the predicted signal to the noisy and

noiseless signals, respectively. As discussed above, both the probability histogram and the

mean value of the amplitude error for the noiseless case shows the validity of the approx-

imation given in Eq. (12). For every model, the relative error of the amplitude remains
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below 10 % with a mean value of around 5 %. The severe distortion of the noise can also be

seen on the figures. The long tail of the noisy histograms suggests that the vast majority

of the samples are weighted with a significant amount of noise. However, considering the

phase errors, we cannot see any difference between the noisy and the noiseless probability

histograms as they overlap. This suggests that the predictions carry a very small amount

of phase error. More precisely said, most prediction does not suffer a phase error at all. For

all the models, only an unnoticeable fraction of the predictions carries a phase error greater

than 10 pixels. The mean value of the absolute phase errors reveals that the vast majority of

the predictions has a phase error less than 2 pixels, corresponding to a relative phase error

of 0.1− 0.2 %.
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FIG. 11: Example predictions by the three models.

Finally, Figure 11 shows some examples for the predicted parameters and the Schlieren

signals for each network architectures.

A. Robustness of the models

Whether trained neural networks may be useful for the evaluation of real measurements

also depends on the sensitivity of their results on parameter changes of the experiment. The

networks have been trained on samples calculated with a set of fixed parameters, but some

parameters can actually fluctuate or drift somewhat during the course of a measurement.

This means that the neural networks will be used for evaluating samples that have been

obtained with slightly different experimental parameters, therefore it is important to verify
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that network predictions are not affected substantially by such slight changes. In the setup

considered here, the vapor density and the probe laser intensity are the most important

parameters that may change slightly. The vapor density can be held constant to better than

1% accuracy, while the probe laser power may change possibly by a few per cents. In order

to evaluate the effect of parameter changes, we have generated sets of test samples with

vapor density decreased/increased by 2%, 5% and 10%, respectively, as well as sets where

the probe laser power was changed by the same amount. The mean absolute error σ of

parameter prediction was calculated in each case, as well as the mean error δ, whose increase

signifies systematic errors of the prediction. Please note that the purpose of this section is

to test the robustness of the trained models—however, these changes in the vapor density

and probe laser intensity could be easily incorporated in additional training datasets, that

could further improve the neural networks’ ability to give accurate and reliable predictions

to the plasma parameters.
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FIG. 12: a) Mean squared error σ and b) mean error δ of parameter prediction as a function of

vapor density change from the value used for training.

Figure 12 a) shows the increment of parameter prediction error as the vapor density

deviates from the value used during training. The mean error δ for the same parameter

predictions can be seen on Fig. 13. (Note that the values are plotted in µm.) It is interesting,

that while σ does not increase substantially for a deviation of 2% for any of the three

parameters plotted, δ does deviate from the ideal value for r0 and t0 in opposite sense.

Nevertheless, a systematic error < 20µm for ∆N = 2% is completely negligible. Probe laser
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FIG. 13: a) Mean squared error σ and b) mean error δ of parameter prediction as a function of

probe laser power change from the value used for training.

power changes have a much smaller effect (see Fig. 13), even for a power variance of ±10%.

V. SUMMARY

In this paper a novel method to predict the geometrical dimensions of a plasma chan-

nel in atomic vapor has been presented, applying machine learning techniques. Schlieren

imaging is an important method used to monitor the plasma properties, which is a crucial

task in plasma wakefield acceleration technology. The implemented DNNs provide a robust

and efficient framework to predict the plasma parameters from the noisy Schlieren signals

with high accuracy. Without putting any constraint on the networks, they recognized the

physical ranges of the parameters describing the plasma channel. The robustness of the

networks has also been presented with respect to slight changes of the power of the probe

laser and the density of the vapor. Improving this robustness may be achieved by further

training the presented models on datasets corresponding to different powers of the probe

laser and different vapor densities. These results and considerations suggests that after some

improvement, the presented networks will be eligible to reliably evaluate the corresponding

experimental data.
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[24] E. Öz and P. Muggli, Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 740, 197 (2014), ISSN

0168-9002, proceedings of the first European Advanced Accelerator Concepts Workshop 2013,

URL http://www.sciencedirect.com/science/article/pii/S0168900213015003.

[25] G. Plyushchev, R. Kersevan, A. Petrenko, and P. Muggli, Journal of Physics D: Applied

Physics 51, 025203 (2017), URL https://doi.org/10.1088/1361-6463/aa9dd7.

[26] A. Couairon and A. Mysyrowicz, Physics Reports 441, 47 (2007), ISSN 0370-1573, URL

http://www.sciencedirect.com/science/article/pii/S037015730700021X.

[27] G. Demeter, Phys. Rev. A 99, 063423 (2019), URL https://link.aps.org/doi/10.1103/

PhysRevA.99.063423.

24

https://doi.org/10.1088/0031-8949/58/6/017
https://doi.org/10.1063/1.2206773
https://doi.org/10.1063/1.2206773
https://arxiv.org/abs/2201.05233
http://www.sciencedirect.com/science/article/pii/S0168900216001881
http://www.sciencedirect.com/science/article/pii/S0168900216001881
http://www.sciencedirect.com/science/article/pii/S0168900213015003
https://doi.org/10.1088/1361-6463/aa9dd7
http://www.sciencedirect.com/science/article/pii/S037015730700021X
https://link.aps.org/doi/10.1103/PhysRevA.99.063423
https://link.aps.org/doi/10.1103/PhysRevA.99.063423


[28] G. Demeter, J. T. Moody, M. A. Kedves, B. Ráczkevi, M. Aladi, A.-M. Bachmann, F. Batsch,
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